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Abstract

The cross section for radiative thermal neutron capture on 3He (3He + n → 4He + γ, known as

the hen reaction) is calculated based on heavy-baryon chiral perturbation theory. The relevant

M1 operators are derived up to next-to-next-to-next-to-leading order (N3LO). The initial and final

nuclear wave functions are obtained from the rigorous Faddeev-Yakubovski equations for five sets

of realistic nuclear interactions. Up to N3LO, the M1 operators contain two low-energy constants,

which appear as the coefficients of non-derivative two-nucleon contact terms. After determining

these two constants using the experimental values of the magnetic moments of the triton and 3He,

we have carried out a parameter-free calculation of the hen cross section. The results are in good

agreement with the data.
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I. INTRODUCTION

The radiative capture of a slow neutron on 3He (3He+n→ 4He+γ), or the hen process, is

an example of rare situations where the contributions of the single-nucleon (1B) currents are

strongly suppressed due to the so-called pseudo-orthogonality, which refers to the fact that

the major components of the initial and final states belong to different representations of the

spatial symmetry group and hence cannot be connected by the r-independent leading 1B

operators. To be more specific, the hen reaction proceeds from a Jπ = 1+ n+3He state whose

dominant component belongs to a [31] representation of the spatial permutation group,

while the final α-particle state belongs to a [4] representation, and these two representations

cannot be connected by the leading Gamow-Teller operator, ~τ~σ. This suppression is so

drastic that the meson-exchange-current (MEC) “corrections” become comparable to the

1B contributions. Furthermore, it turns out that the MEC and 1B terms in this case come

with opposite signs, leading to a further drastic suppression of the hen cross section.

The hen process near threshold is governed by the M1 operators (since both the initial

and final states are dominated by the S-waves at low-energy), and the MEC contributions

to them consist of the well-known one-pion-exchange part and the short-range part. It

is to be noted that the latter is not constrained by the symmetries of QCD, and that

because of the above-mentioned suppression and the cancellation mechanisms, the short-

range contributions are crucially important even for a rough estimation of the cross section.

Furthermore, the strong suppression of the 1B matrix elements implies that their values are

sensitive to the details of the wave functions. Therefore, for a precise estimation of the hen

cross section, it is imperative to have: (i) a reliable method for deriving the relevant MEC

operators with a good control of short-range physics, and (ii) the accurate wave functions

for the initial and final nuclear states. These requirements make the quantitative estimation

of the hen cross section highly non-trivial.

At the same time, the strong enhancement of the relative importance of MEC in the hen

process makes it a valuable testing ground for the roles of MEC in light nuclei. Apart from

this point, which is important on its own right, a careful study of the hen process is also of

great significance in connection with the so-called hep processes, 3He + p→ 4He + νe + e+,

because hep shares all the aforementioned features of hen: the drastic suppression of the 1B

contributions, strong cancellation between the 1B and 2B contributions, and the sensitivity
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of the transition amplitude to the details of the nuclear wave functions. The hep process is

one of the proton-burning reactions that take place in the interior of the sun and, since hep

produces the highest-energy solar neutrinos, it has attracted much attention in the study

of the solar neutrinos (see [1, 2] for a recent review) and motivated a series of elaborated

studies [3–6]. Park et al. [7] developed an effective field theory (EFT) approach, which

has come to be known as “more-effective EFT” (MEEFT for short) [8] and, with the use

of MEEFT, they calculated the hep S-factor with an estimated accuracy of about 15 %. In

view of the fact that the previous theoretical estimations of the hep S-factor ranged over

two orders of magnitude [7], this is a remarkable feat. A direct test of this theoretical result,

however, is not possible because of the unfeasibility of the hep cross section measurement.

Meanwhile, the threshold hen cross section has been measured with reasonable accuracy:

σexp = (54± 6) µb [9] and σexp = (55 ± 3) µb [10]. Given the close similarity between hen

and hep, it is expected that comparison between theory and experiment for the hen case

offers valuable information on the validity of the theoretical framework employed for the hep

calculation in [7]. This gives an additional motivation for carrying out a detailed study of

hen.

Although the theoretical investigation of hen has a long history, the hen cross section has

never been explained in a satisfactory manner. Towner and Khanna [11] and Wervelman

et al. [10] performed shell-model calculations for schematic Hamiltonians and obtained σ =

(14 ∼ 125) µb and σ = (47±18) µb, respectively. Much more elaborate calculations with the

use of realistic Hamiltonians have been performed by Carlson et al. [14] and by Schiavilla

et al. [6], arriving at σ =112 µb and σ =86 µb, respectively. These works are based on the

conventional approach, the so-called standard nuclear physics approach (SNPA for short),

which consists in the use of phenomenological transition operators and phenomenological

wave functions. SNPA has been enormously successful in correlating and explaining a vast

range of electroweak nuclear transitions in nuclei but, from a formal point of view, it has an

insufficiency that it is not equipped with a systematic way of reducing the uncertainty in

the MEC operators. The MEC operators in SNPA are constructed based on the approach of

Chemtob and Rho [15]. Although this construction of the MEC operators is guided by chiral

symmetry and the Ward identities, it is in general unavoidable to have “model-dependent

terms”.

In this paper we report on a parameter-free MEEFT calculation for the hen cross section
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at threshold, adopting essentially the same method as used in [7].#1 In MEEFT the tran-

sition operators are derived from the systematic expansion of the heavy-baryon chiral per-

turbation theory (HBChPT), and the nuclear matrix elements are obtained by sandwiching

these operators between the wave functions generated from a high-precision phenomenologi-

cal nuclear potential. Mismatch in the short-range part of the wave function is overcome by

the renormalization procedure for the local operators, according to the premise of low-energy

EFTs (see below). Thus MEEFT takes advantage of the systematic nature of EFTs and the

availability of state-of-the-art wave functions. The mentioned “formal” mismatch may be

regarded as a weak point, and also the accurate reproduction of the relevant effective-range

parameters (ERPs) is not automatically guaranteed in MEEFT; we shall come back to these

points later in the text.

In the present work we derive the M1 operators within HBChPT up to N3LO. These

M1 operators turn out to contain two low-energy constants (LECs), denoted by g4s and g4v,

which are the coefficients of two-nucleon contact-term operators. These LECs can be fixed

by requiring that the experimental values of the magnetic moments of the triton and 3He,

µ(3H) and µ(3He), be reproduced; this is the same strategy as adopted in Refs. [20, 21],

where the M1 properties of the A=2 and A=3 systems were studied in MEEFT. A remark is

in order here on how the short-range contributions are taken into account in MEEFT. The

basic premise of EFT is that physics pertaining to ranges shorter than the experimentally

relevant scale is to be lodged in local operators. It means that, provided that a proper renor-

malization procedure is implemented to the coefficients of the local operators (i.e., LECs),

the renormalization invariance ensures that the net physical amplitudes be independent of

the details of short-range physics. We implement the renormalization condition here by

adjusting the values of LECs (g4s and g4v for hen and d̂R for hep) so as to reproduce a set

of known experimental data [ µ(3H) and µ(3He) for hen and the tritium-beta-decay rate for

hep ]. This matching procedure should be done for each cutoff value and for each potential

adopted. Differences in short-range contributions calculated for each case shift the values of

LECs (which are not physical observables), but the physical amplitudes should remain un-

affected if renormalization invariance is to hold. The validity of this scheme can be checked

#1 There has been an attempt by Song et al. [16] to carry out an MEEFT calculation of hen, but an

approximate treatment of the scattering wave function in [16] limits its reliability.
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by monitoring the stability of the relevant physical observables with respect to changes in

the cutoff parameter Λ. It turns out (see below) that, in the present hen case, the inclusion

of the local-operator (or contact term) contributions reduces the Λ-dependence by a factor

of ∼5, demonstrating the validity of the adopted renormalization procedure. The residual

Λ-dependence may be ascribed to higher order contributions.

One might also worry about the current conservation of MEEFT at short-range. Al-

though the M1 operators arise from the transverse parts of the currents (which by definition

have vanishing divergence), current conservation is still relevant in the present context. The

reason is that, since most of the Feynman diagrams generate both longitudinal and trans-

verse parts simultaneously, the current conservation breaking in the longitudinal part of the

calculated current signals possible mismatch in the M1 operator. This can be part of the

aforementioned mismatch problems in MEEFT. The consequences of current conservation

breaking were studied by Pastore et al. and Kolling et al. [17–19] and, according to these

works, current conservation violation has only minor effects. We have also compared our

current operators with those given in these references, which use slightly different power

counting schemes. We have found that, after taking into account the renormalization for

the LECs and the fact that the contact terms are effective only at S-waves, there is no dif-

ference in the two-pion and shorter-ranged contributions. In the long-range region, however,

there are additional Sachs terms in Ref.[12, 13] whose coefficients are fixed by the nuclear

Hamiltonian. #2 Although the omission of those terms results in a violation of exact current

conservation and leads to certain formal mismatches between the current structure and the

potential, it is beyond the scope of our present work to fully solve these problems. Here

we take the viewpoint that the numerical consequences of these mismatches can be inferred

from the cutoff-dependence of the calculated values of observables. It is reassuring that, in

our case, this cut-off dependence turns out to be very weak (see Table IV).

In the above we focused on the short-range contributions. It is however important to note

that, for A-body systems with A ≥ 3, even a so-called realistic nuclear interaction often fails

to reproduce accurately the ERPs that govern the long-range part of the transition matrix

elements. If such a mismatch in the long-range region occurs, it cannot be cured by the

#2 After the submission of our paper, a full EFT calculation of the HEN process becomes available[12, 13].

The numerical results in this latest calculation are close to those of our work here despite differences in

the formalisms.
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renormalization of local operators, a problem that can seriously affect the reliability of a

calculated transition amplitude. As an exception to this general statement, however, we

should mention that, if a clean correlation between the ERPs and the transition amplitude

under consideration can be established, this correlation can be used to drastically reduce the

model dependence of the calculated transition amplitude [21]. This point will be explained

in more detail later in the text (Subsection III A). Here we simply state that, by taking

advantage of this feature, we obtain as the best estimate for the threshold hen cross section:

σ = (49.4±8.5) µb (for the AV18+UIX potential), and (44.4±6.7) µb (for the I-N3LO+UIX∗

potential); see eq.(22) for details. Good agreement of these estimates with the experimental

value of the hen cross section gives strong support to the previous MEEFT calculation for

the hep S-factor [7].

We wish to emphasize that the present work is the first calculation of hen that employs

fully realistic nuclear wave functions #3; these wave functions are numerically exact solutions

to the Faddeev-Yakubovsky equations in configuration space for a specified realistic nuclear

interaction. It is to be noted that hitherto even the most advanced realistic calculations [6,

14, 16] disregarded the coupling of the n-3He to the p-3H state in the asymptote of the

initial wave function. This can have significant numerical consequences in evaluating the 1B

contributions; see Section IIIB, for details.

This paper is organized as follows. In the next section we explain the formalisms used to

derive the M1 operators and to obtain the four-body nuclear wave functions. Section 3 gives

numerical results and analyses. In the final section the implication of our work is discussed.

II. FORMALISM

A. Electromagnetic M1 operators and the hen cross section

In this section we present M1 operators that arise from the multipole expansion of the

electromagnetic (EM) currents obtained from HBChPT up to N3LO in chiral order counting.

HBChPT contains nucleons and pions as pertinent degrees of freedom, with all the other

massive fields integrated out. In HBChPT, the EM currents (and consequently the M1

#3 After submission of our manuscript, another EFT calculation of the hen process has appeared[12], where

both the potential and current operator are derived in EFT.
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operators) are expanded systematically with increasing powers of Q/Λχ, where Q stands for

the typical momentum scale of the process and/or the pion mass; Λχ ∼ 4πfπ ∼ m ∼ 1 GeV

is the chiral scale, where fπ ≃ 92.4 MeV is the pion decay constant, and m is the nucleon

mass. We remark that, while the nucleon momentum pi is of the order of Q, its energy

(∼ p2
i /m) is of the order of Q2/m, and consequently the four-momentum of the emitted

photon qµ = (ω, q) should also be counted as O(Q2/m).

We derive the MEC operators from the non-relativistic reduction of irreducible contribu-

tions of Feynman diagrams in HBChPT. Irreducible contributions coming from box diagrams

are obtained by removing pure nucleon-pole contributions. As mentioned, it is to be noted

that there exist other approaches to deriving MEC operators from HBChPT [17–19]. Al-

though detailed comparison of our formalism with these approaches should be informative,

we relegate it to future studies.

The M1 operator µ1M(q) is defined as

µ1M(q) ≡
(

iq√
6π

)−1

T̂Mag
1M (q) (1)

with

T̂Mag
JM (q) ≡

∫
d3x

[
jJ(qx)Y M

JJ1(x̂)
]
· j(x), (2)

where q ≡ |q| = 20.578 MeV, jJ(qx) is the spherical Bessel function of order J , Y M
JJ1(x̂) is

the vector spherical harmonics, and j(x) is the EM current operator. We have chosen the

normalization of µ1M(q) such that it becomes the usual magnetic dipole moment in zero q

limit.

In terms of µ1M(q), the hen cross section at thermal energy is given by

σ = απ
c

vrel

( q

mc2

)2 ( q

~c

)
|M|2 (3)

with

M≡
〈
ΨJ=0,M=0

4He

∣∣∣µ11(q)
∣∣∣ΨJ=1,M=−1

n3He

〉
, (4)

where α is the fine structure constant, m is the nucleon mass and vrel = 2200 m/s is the

thermal neutron velocity.

The detailed full forms of the M1 operators up to N3LO are given in our recent papers[20,

21], which we briefly summarize here. The M1 operators up to N3LO consist of one-body(1B)
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and two-body(2B) contributions; three-body operators enter only at N4LO or higher orders

in our counting scheme.

The 1B M1 operators read, in the center of mass frame,

µ1B(q) =
1

2m

∑

i

{
ĵ0(qri)

[
σi

(
µi −Qi

p2
i

2m2

)
− µi −Qi

2m2
p̄iσi · p̄i

]

+ ĵ1(qri)

[
Qiri × pi

(
1− p2

i

2m2

)
− w(2µi −Qi)

4m
iri × (p̄i × σi)

]

+
(qri)

2

30
ĵ2(qri) µi (3r̂i r̂i · σi − σi) + · · ·

}
, (5)

where ĵn(x) ≡ (2n+1)!!
xn jn(x), Qi and µi are the charge and magnetic moments of the i-th

nucleon, respectively, and pi ≡ 1
2
(i
←−∇ i − i

−→∇ i) is the mean momentum operator of the i-th

nucleon.

The two-body M1 operators #4 up to N3LO can be divided into four types: the soft-one-

pion-exchange (1π) term, the vertex correction to the one-pion exchange (1πC) term, the

two-pion-exchange (2π) term, and the contact-term contribution (CT),

µ2B(q) =
∑

i<j

[
µ1π

ij +
(
µ1πC

ij + µ2π
ij + µCT

ij

)]
= NLO + N3LO. (6)

The soft-one-pion-exchange (1π) term is NLO and can be written in terms of r = rj − rk,

r = |r|, r̂ = r/|r|, R = (rj + rk)/2, R = |R|, Sjk = 3σj · r̂σk · r̂ − σj · σk, gA ≃ 1.2695,

µ1π
jk =

g2
A

8f 2
π

[
T̂

(×)
S

(
2

3
yπ

1Λ(r)− yπ
0Λ(r)

)
− T̂

(×)
T yπ

1Λ(r)

]
ĵ0(qR)

− g2
Am2

π

24f 2
π

τ z
×R× r [σ1 · σ2ȳ

π
0Λ(r) + Sjky

π
2Λ(r)] ĵ1(qR) + · · · , (7)

where, T̂
(⊙)
S ≡ τ z

⊙σ⊙ and T̂
(⊙)
T ≡ τ z

⊙

[
r̂ r̂ · σ⊙ − 1

3
σ⊙

]
, τ⊙ = τ1 ⊙ τ2, σ⊙ = σ1 ⊙ σ2, with

⊙ = ±, ×. The cutoff dependence of 2B operators is taken into account by introducing

a Gaussian regulator with a cutoff Λ when performing Fourier transformation of the 2B

operators into coordinate space; this procedure gives the regularized delta and Yukawa

#4 In this work we neglect the so-called fixed-current contribution, which is proved to be numerically negli-

gible [20].
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functions,

δΛ(r) ≡
∫

d3k

(2π)3
e−k

2/Λ2

eik·r,

yπ
0Λ(r) ≡

∫
d3k

(2π)3
e−k

2/Λ2

eik·r 1

k2 + m2
π

,

yπ
1Λ ≡ −r

d

dr
yπ

0Λ, yπ
2Λ ≡

r

m2
π

d

dr

1

r

d

dr
y0Λ, (8)

where, mπ is the pion mass.

The one-loop vertex correction to one-pion exchange (1πC term) reads

µ1πC
jk = − g2

A

8f 2
π

(c̄ω + c̄∆)

[
(T̂

(+)
S + T̂

(−)
S )

ȳπ
0Λ

3
+ (T̂

(+)
T + T̂

(−)
T ) yπ

2Λ

]
ĵ1(qR)

+
g2

A

8f 2
π

c̄∆

[
1

3
T̂

(×)
S ȳπ

0Λ −
1

2
T̂

(×)
T yπ

2Λ

]
ĵ1(qR)

− 1

16f 2
π

N̄WZτj · τk [σ+ȳπ
0Λ + (3r̂r̂ · σ+ − σ+)yπ

2Λ] ĵ1(qR), (9)

where the values of the LECs, (c̄ω, c̄∆, N̄WZ) ≃ (0.1021, 0.1667, 0.02395), are determined

from the resonance saturation model[22, 23].

The two-pion exchange (2π) term reads

µ2π
jk =

1

128π2f 4
π

[(
T̂

(+)
S − T̂

(−)
S

)
LS(r) +

(
T̂

(+)
T − T̂

(−)
T

)
LT (r)

]
ĵ1(qR)

− 1

256π2f 4
π

(τj × τk)
zR× r̂

d

dr
L0(r)ĵ0(qR) , (10)

where

LS(r) = −g2
A

3
r

d

dr
K0 +

g4
A

3

[
4K1 − 2K0 + r

d

dr
(K0 + 2K1)

]
,

LT (r) =
g2

A

2
r

d

dr
K0 +

g4
A

2

[
4KT − r

d

dr
(K0 + 2K1)

]
,

L0(r) = 2K2 + g2
A(8K2 + 2K1 + 2K0)

−g4
A(16K2 + 5K1 + 5K0) + g4

A

d

dr
(rK1). (11)

The loop functions K ′s are defined in Ref. [7, 22] .

It is to be noted that the contact-term µCT
ij contains two low-energy constants (LECs),

g4s and g4v,

µCT
ij =

1

2m
[g4s(σi + σj) + g4v(~τi × ~τj)

z(σi × σj)] δ
(3)
Λ (rij). (12)
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Both g4s and g4v have the dimension of fm3. Since the values of these LECs are not deter-

mined by symmetry arguments, they need to be fixed either by solving QCD at low-energy

or by fitting to a set of experimental observables that are sensitive to them. Since the former

is not feasible at present, we resort to the latter. Specifically, we fix g4s and g4v so as to

reproduce the experimental values of µ(3H) and µ(3He), for each nuclear interaction model

adopted and for each cutoff value.

B. Faddeev-Yakubovsky equations

The relevant four-nucleon wave functions are obtained by solving the Faddeev-

Yakubovsky (FY) equations in configuration space [24, 25]. The FY formalism offers a

mathematically rigorous description for both continuum and bound states. In this formal-

ism wave functions are naturally decomposed into so-called FY amplitudes (FYAs). For

A = 4 systems, there appear two types of FYAs, which we refer to as components K l
ij,k and

Hkl
ij where i, j, k, l are particle indices. The asymptotes of the components K l

ij,k and Hkl
ij

incorporate 3+1 and 2+2 particle channels, respectively (see Fig.1).

FIG. 1: (Color online) The FY components K4
12,3 and H34

12 for a given particle ordering. As z →∞,

the K components describe 3+1 particle channels, while the H components contain asymptotic

states of 2+2 channels, see figure [a]. Figure [b] shows the j-j coupling scheme used in expanding

K and H into partial wave bases.

The FYAs are evaluated in the isospin formalism, i.e., protons and neutrons are regarded

as degenerate states with the same mass, which is fixed to ~
2/m = 41.47 MeV·fm2. Three-

body forces typically arise from integrating out the higher-energy degrees of freedom, and

therefore they can be decomposed as V123 = V 3
12 +V 1

23+V 2
31, where k in V k

ij is the particle in a
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high-energy intermediate state.[31]. In the presence of a three-body force, the FY equations

for K ≡ K4
12,3 and H ≡ H34

12 read [26, 27]

(
E −H0 − V12 −

∑

i<j

V C
ij

)
K = V12(P

+ + P−) [(1 + Q)K + H ] +
1

2

(
V 1

23 + V 2
31

)
Ψ,

(
E −H0 − V12 −

∑

i<j

V C
ij

)
H = V12P̃ [(1 + Q)K + H ] , (13)

where Vij and V C
ij are, respectively, the short-ranged part and the Coulomb-dominated long-

range part of the interaction between the i-th and j-th nucleons. P+ = (P−)−1 ≡ P23P12,

Q ≡ −P34 and P̃ ≡ P13P24 = P24P13, where Pij is the particle permutation operator. In

terms of the FYAs, the total wave function of an A = 4 system is given by

Ψ =
[
1 + (1 + P+ + P−)Q

]
(1 + P+ + P−)K + (1 + P+ + P−)(1 + P̃ )H. (14)

We expand K and H in terms of the tripolar harmonics Y α
i (x̂i, ŷi, ẑi), which comprise the

spins and isospins of the nucleons as well as the angular variables,

Φi(~xi, ~yi, ~zi) =
∑

α

Fα
i (xi, yi, zi)

xiyizi
Y α

i (x̂i, ŷi, ẑi), (15)

where Φ stands for either K or H , and the subscript i denotes the particle-grouping class

(among the four nucleons). We note that the total angular momentum and its projection,

parity and the third component of the isospin (Tz = 0) are good quantum numbers, and the

subscript α denotes collectively eleven other non-fixed quantum numbers. We use the j-j

scheme for the coupling of angular momenta, as illustrated in Fig. 1b. The Jacobi coordinates

used here are depicted in Fig. 1. This choice of coordinates allows us to separate the center-

of-mass motion and guarantees that the kinetic energy operator is independent of the angular

variables.

The expansion of Eq. (13) in terms of the natural configuration space basis leads to

coupled integro-differential equations for the radial parts of FYAs (Fα
i (xi, yi, zi)). Note

that, contrary to the ordinary 3N problems, the number of radial parts of FYAs is infinite

even when the pair interaction is restricted to a finite number of partial waves. This situation

arises from the existence of the additional degree of freedom lz in the expansion of the K-

type components. In numerical calculations, therefore, we need to introduce an additional

truncation by identifying relevant amplitudes and discarding the remainder (see below).
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C. Boundary conditions

Eqs. (13) needs to be supplemented with appropriate boundary conditions, which can be

written in the Dirichlet form. For both bound and scattering states, the radial FYAs satisfy

the regularity conditions:

Fα
i (0, yi, zi) = Fα

i (xi, 0, zi) = Fα
i (xi, yi, 0) = 0. (16)

For bound state problems, since the wave functions are compact, the regularity conditions

can be implemented by requiring Fα
i to vanish at the borders of the hypercube, [0, Xmax]×

[0, Ymax]× [0, Zmax],
#5

Fα
i (Xmax, yi, zi) = Fα

i (xi, Ymax, zi) = Fα
i (xi, yi, Zmax) = 0. (17)

The hypercube is chosen large enough to accommodate the wave functions.

On the other hand, a scattering state near threshold contains two coupled channels, n-

3He and p-3H, both of which are of type K. In this case we impose the following matching

condition at zi = Zmax:

Kα
i (xi, yi, Zmax) =

1√
4

∑

j′zl′zT ′z

3

{fαa

i (xi, yi)}J3≡
1

2
,T3T z

3

⊗
{
Yl′z(ẑi)⊗ si

}
j′z

〉

JM

×
(

i

2

[
δlz ,0h

−
lz
(pnZmax)− Sj′zl′zT ′z

3
,jzlzT z

3
h+

l′z
(pnZmax)

]
CT0

T3T ′z

3
, 1
2
− 1

2

− i

2

√
p′p
pn

Sj′zl′zT ′z

3
,jzlzT z

3
e2iσ

l
′
z u+

l′z
(η, p′pZmax) CT0

T3T ′z

3
, 1
2

1

2

)
. (18)

Here pn = 3
4~

mvrel is the neutron momentum in the n-3He channel, while pp =
[
p2

n + 3m
2~2 (B3H − B3He)

]1/2
is the proton momentum in the p-3H channel; h±

lz
are the spher-

ical Hankel functions, and u+
l′z

is the outgoing Coulomb function for the p-3H channel with

η = 4
3
αmc/(~pp). The functions {fαa

i (xi, yi)}J3≡
1

2
,T3T z

3

with T z
3 = ±1

2
are the normalized

Faddeev amplitudes for 3He and 3H, which we obtain by solving the corresponding 3N bound

state problems.

#5 (Xmax, Ymax, Zmax) are chosen to be (Ly,
√

3/4Ly,
√

2/3Lz) for the component K and (Ly, Ly,
√

1/2Lz)

for the component H, where Ly = 25 fm and Lz = (27 ∼ 30) fm. We have verified that a hypercube size

larger than these values does not cause any noticeable changes.
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We neglect the T 6= 0 components in our 4He bound-state calculation as they represent

less than 0.01% [48] of the total wave function. However, for the rigorous solution of the

scattering problem, we cannot use the T = 0 approximation; we do need to consider admix-

tures of T = 1 and T = 2 states. These admixtures are needed in order to correctly separate

the asymptotes of the n-3He and p-3H channels, which have different thresholds due to the

difference in the 3He and 3H binding energies.

III. RESULTS

In this work we have performed rigorous FY calculations for five sets of nuclear poten-

tials: AV18, I-N3LO, INOY, AV18+UIX and I-N3LO+UIX*. Here AV18 stands for the

Argonne v18 potential [28], I-N3LO for the chiral N3LO potential of the Idaho group [29],

and INOY for the non-local configuration space potential that has recently been derived by

Doleschall [30]; UIX is the tri-nucleon interaction derived by the Urbana group [31]. For the

case of I-N3LO+UIX*, we have attached an asterisk to indicate that the A2π parameter in

UIX has been slightly modified (from −0.0293 to −0.03827) so as to reproduce the triton

binding energy precisely, see Ref. [21] for details.

For each of these five nuclear interactions, and for each of the three choices of the cutoff

parameter, Λ = 500, 700 and 900 MeV, we determine the LECs, g4s and g4v, in such a manner

that the experimental values of the triton and 3He magnetic moments are reproduced. We

then proceed to calculate the hen cross section, σ. The results are given in Table I. The

table also shows the calculated values of the binding energies of 3H, 3He and 4He, the point-

proton rms radius rHe4 of 4He,#6 the D-state probability of 4He, and the spin-triplet n-3He

scattering length, anHe3.

The bound state properties calculated in this work agree well with those obtained in

other calculations [34–36]. Theoretical calculations for anHe3 are much less established, but

we have checked that our results agree within 2% with the momentum-space FY calculation

#6 The point-proton rms radius rHe4 is defined as (rHe4)
2 ≡ r2

c (4He) − r2
p − r2

n, where rc(
4He) is the proton

charge rms radius of 4He, rp and rn are the rms charge radius of the proton and neutron, respectively.

See, for example, [32] for detailed explanation. With the 4He proton charge radius rc(
4He) = 1.681(4) fm

obtained in a recent analysis [33] and with the 2008 PDG values for the proton and neutron rms radii,

rp = 0.875(7) fm and r2
n = −0.1161(22) fm2, we arrive at rHe4 = 1.475(6) fm, which is about 1.4 % larger

than the estimate given in [32].
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TABLE I: The hen cross section, σ, calculated for the five realistic nuclear interactions mentioned

in the text. The uncertainties attached to σ represent the variation of σ as the cutoff parameter Λ

is varied in the range Λ = (500 ∼ 900) MeV. Also shown are the calculated values of the binding

energies (BE; in units of MeV) for 3H, 3He and 4He, the point-proton rms radius [33] rHe4 (in

fm), the D-state probability PD(4He) (in per cent) of the α-particle, and the spin-triplet n-3He

scattering length, anHe3 (in units of fm).

BE(3H) BE(3He) BE(4He) rHe4 PD(4He) anHe3 σ [µb]

AV18 7.623 6.925 24.23 1.516 13.8 3.43 − 0.0082i 80.0 ± 12.2

I-N3LO 7.852 7.159 25.36 1.52 9.30 3.56 − 0.0070i 57.3 ± 7.9

INOY 8.483 7.720 29.08 1.377 5.95 3.26 − 0.0058i 34.4 ± 4.5

AV18+UIX 8.483 7.753 28.47 1.431 16.0 3.23 − 0.0054i 49.4 ± 8.5

I-N3LO+UIX* 8.482 7.737 28.12 1.475 10.9 3.44 − 0.0055i 44.4 ± 6.7

Exp.: 8.482 7.718 28.30 1.475(6) 3.278(53) − 0.001(2)i 55± 3, 54± 6

of the Lisboa group [37], as well as with the RGM calculation carried out by Hofmann [38]

for the AV18 and AV18+UIX potentials.

The table also indicates that the three-nucleon interactions (TNIs) play an important

role in bringing the binding energies and anHe3 close to their respective experimental values.

We remark that there is some uncertainty in the experimental value of anHe3. The value

listed in the table is due to an R-matrix analysis [39] of the n-3He scattering data measured

before the year 2002. Recently new measurements of the coherent scattering length have

been performed at NIST [40] and ILL [41], but the results of the two groups do not agree

with each other, and both of them are in disagreement with the old ILL measurement.

The D-state probability of the α-particles, PD(4He), which is closely related to the tensor

forces, shows strong model dependence. However this quantity is not an observable, and

it turns out to be difficult to constrain this quantity by studying other processes that are

sensitive to PD(4He) [42].

As mentioned, to solve the FY equation numerically, we need to introduce truncations

in the angular momentum expansion of the FYAs. We implement these truncations by

assuming that the partial FYAs with jx, jy, jz (and lz for the type H) larger than a specified

value, max(ji), can be ignored. To illustrate the convergence property of the hen amplitude
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TABLE II: The real parts of contributions to the hen amplitude from the indicated types of the

transition operators calculated for three different values of max(ji), the maximal value of partial

angular momenta ji allowed in the expansion of FYAs. We show here the results obtained with the

INOY wave functions and with Λ=700 MeV. The one-body leading order (1B:LO) contribution

represents the impulse approximation terms, while 1B:RC corresponds to the relativistic corrections

to the one-body current. The finite-range two-body current is decomposed into NLO one-pion

exchange (1π), N3LO pion-loop corrections (1πC) and N3LO two-pion exchange (2π) terms. The

contact-type two-body current is decomposed into the g4s and g4v terms. All the matrix elements

are given in units of fm3/2. For the values of g4s and g4v relevant to the present case, see Table III.

max(ji) ≤3 max(ji) ≤4 max(ji) ≤5

1B: LO 0.0455 0.0496 0.0511

1B: RC 0.0537 0.0535 0.0534

1B-total 0.0992 0.1031 0.1045

2B: 1π (NLO) −0.0771 −0.0781 −0.0786

2B: 1πC (N3LO) −0.0855 −0.0861 −0.0866

2B: 2π (N3LO) −0.0380 −0.0383 −0.0384

finite (total w/o CT) −0.2006 −0.2025 −0.2035

2B:g4s 0.0471g4s 0.0472g4s 0.0473g4s

2B:g4v −0.0718g4v −0.0722g4v −0.0725g4v

2B: CT (N3LO) −0.2473 −0.2495 −0.2507

Total −0.1482 −0.1464 −0.1462

as a function of max(ji), we show in Table II the results obtained for max(ji)= 3, 4 and

5. The table gives the real parts of individual contributions from the indicated types of

the transition operators, calculated with the INOY interaction for Λ = 700 MeV. One can

see that, with max(ji) =5 (used in the present work), the numerical accuracy of a few
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percent or better is achieved. The leading one-body (1B:LO)#7 contribution shows the

slowest convergence, which can be understood by recalling that the 1B impulse contribution

undergoes a huge cancelation due to the orthogonality between the incoming and outgoing

nuclear wave functions. We have also checked that the convergence pattern is similar for

the results with other nuclear potentials as well as for the imaginary parts of the transition

amplitudes.

It turns out that the 1B:RC is dominated by the last term of the 2nd line of eq.(5), which

accounts more than 95 % of 1B:RC. Note that this term is proportional to ω (the energy of

the emitted photon), and hence does not contribute to the magnetic-moment operators.

As can be seen from Table II, the calculated value of the hen cross section, σ, for AV18

(INOY) is too large (small) compared with the experimental value, σexp, while the results

for the remaining three nuclear interactions exhibit only mild variations around σexp. A

detailed discussion of this model dependence will be given in the next subsection, but this is

a good place to discuss certain features specific to AV18 and INOY. First, the conspicuous

deviation of σ(AV18) from σexp is not surprising, since AV18 without additional three-body

nuclear interactions fails to reproduce the binding energies of the relevant nuclei. We also

remark that, although the INOY potential is capable of reproducing the binding energies

and rms radii of the A = 3 system quite accurately [43], it is known to give too large binding

energies and too small rms radii for A ≥ 4 nuclei [44] ; it also gives overbound and too dense

nuclear matter [45]. Such a feature leads to the reduction of the overlap between the n-3He

and 4He wave functions and hence to underestimation of σ. It is also to be noted that the

results for INOY deviate from the Tjon-line (a line that correlates the A = 3 and A = 4

binding energies) rather severely, indicating that caution should be exercised in using INOY

for the A ≥ 4 systems.

For further discussion, we list in Table III the values of the hen matrix element M
[eq.(4)], and the LECs, g4s and g4v, evaluated at Λ = 700 MeV, for each of the five nuclear

interactions under consideration. The real part of M is written as the sum of 1B and 2B

#7 Among the one-body M1 operator given in eq.(5), the 1B:LO corresponds to

µ1B:LO(q) =
1

2m

∑

i

[
µiĵ0(qri)σi + Qiĵ1(qri)ri × pi

]
.
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TABLE III: Real and imaginary parts of the hen matrix elementM (in units of fm3/2) calculated

for Λ = 700 MeV. Also listed are the values of g4s and g4v (in units of fm3) determined so as to

reproduce the magnetic moments of the 3H and 3He nuclei. ℜM is written in the format of: (1B)

+ (2B w/o CT) + (g4s-term) + (g4v-term) = (total).

g4s g4v ℜM ℑM

AV18 0.3958 0.1947 0.1531 − 0.3777 + 0.0237 g4s − 0.0403 g4v = −0.2231 0.0249

I-N3LO 0.3919 2.7479 0.1304 − 0.2248 + 0.0198 g4s − 0.0371 g4v = −0.1885 0.0203

INOY 0.2313 0.8021 0.1045 − 0.2035 + 0.0473 g4s − 0.0725 g4v = −0.1462 0.0154

AV18+UIX 0.5810 −0.4615 0.1518 − 0.3567 + 0.0205 g4s − 0.0377 g4v = −0.1756 0.0179

I-N3LO+UIX* 0.5402 2.3249 0.1305 − 0.2253 + 0.0175 g4s − 0.0347 g4v = −0.1661 0.0183

contributions, with the dependence on g4s and g4v also shown.

We see from the table that the 2B contributions are about two times as large as the

1B contributions and that the 2B and 1B terms have opposite signs. These features are

consistent with the observation made in [14, 16]. Secondly, there are substantial model

dependence even in the 1B sector, which might be traced to the fact that not all the adopted

nuclear potentials accurately reproduce the ERPs that govern the long-r contributions of

1B. Finally, the inclusion of TNI(UIX) plays quite an important role in reducing the model

dependence.

A. Model-dependence

As mentioned, the calculated values of the hen cross section σ, shown in Table I exhibit

significant dependence on the nuclear interactions used. In examining this model depen-

dence, it is informative to recall the results of our previous MEEFT study [21] on the M1

properties of the A ≤ 3 nuclei. It was found in [21] that the M1 matrix elements (MEs) of

the A=3 systems and the triton binding energy B3 calculated for various realistic nuclear

interactions exhibit strong correlations and they lie on a well-defined curve in the MEs-B3

plot. Meanwhile, since B3 governs the long-distance contributions to the MEs, the model-

dependence (viz., variations in the MEs corresponding to the different nuclear potentials that

give different values for B3) cannot be cured by renormalizing the local (or short-ranged)
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operators. As discussed in [21], however, the use of the empirical correlation curve between

the MEs and B3 allows us to drastically reduce scatter in the calculated values of the MEs.

This is achieved by introducing a constraint that only those values of the MEs be accepted

which, along the correlation curve, have values of B3 consistent with its experimental value.

This constraint was found to essentially eliminate the model dependence in the MEs [21].

We expect that in principle a similar procedure can be adopted for the hen process. To

this end, it seems useful to find a quantity that is related to the ERS in the A=4 systems

and that exhibits strong correlation with the hen cross section, σ. We define the quantity ζ

by

ζ ≡
[
q (anHe3/rHe4)

2
]−2.75

, (19)

where q = BE(4He)− BE(3He), and the other quantities have already appeared in Table I.

Fig. 2 shows the calculated values of σ as a function of ζ .

Strong linear dependence between σ and ζ can be seen. Suppose we take this correlation

seriously and consider the quantity σ̃ defined by

σ̃ ≡ ζexp

ζ
σ , (20)

where ζexp is the value of ζ when all the quantities in eq.(19) are given their respective

empirical values. Then σ̃ turns out to be almost model-independent:

σ̃ = (54.8± 8.4, 54.5± 7.5, 53.9± 7.1, 54.8± 9.4, 56.4± 8.5) µb (21)

for AV18, I-N3LO, INOY, AV18+UIX and I-N3LO+UIX*, respectively, and these values

are all in agreement with data.

It is however not quite clear whether the correlation between σ and ζ is accidental or

physical in nature. Furthermore, since hen is a four-body process that involve a large

number of ERPs to be controlled, our numerical results that only cover five different nuclear

interactions may not be sufficient to establish the meaning of correlation unambiguously. For

example, a correlation similar to the one between σ-ζ can be seen if we plot σ against q5P
2/3
D .

(It is however not clear whether this correlation is independent of the σ-ζ correlation. They

can be just different ways to express the same correlation, because PD and rHe4 may not be

independent of each other.) Without delving into the discussion of physics behind the σ-ζ

correlation, we take here the viewpoint that the σ calculated with a nuclear interaction that
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FIG. 2: (Color online) The hen cross section σ (in units of µb) plotted against ζ/ζexp, where

ζ =
[
q (anHe3/rHe4)

2
]−2.75

, and ζexp is the value of ζ when all the quantities therein are given their

respective empirical values (See Table I). For each indicated nuclear interaction, the error bar

represents the range of variation for three different choices of the cutoff parameter: Λ = 500 MeV

(lower end), 700 MeV (filled circle) and 900 MeV (upper end). The lines in red with label “Exp”

denote the experimental data, 54± 6 µb [9] and 55± 3 µb [10].

does not reproduce the relevant ERPs should be considered much less reliable than the σ

obtained with a nuclear interaction that does reproduce the relevant ERPs. Based on this

viewpoint, we adopt here the results obtained with AV18+UIX and I-N3LO+UIX* as the

most reliable theoretical values for σ. For these two cases, the calculated hen cross sections

are:

σ = 49.4± 8.5 µb (AV18 + UIX), σ = 44.4± 6.7 µb (I−N3LO+UIX∗). (22)

These values are in good agreement with the data within experimental errors.

B. Comparison of our results with previous studies

Making comparison of our calculation with the other related studies is not straightforward

due to differences in the employed current operators and the nuclear wave functions; here we
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limit ourselves to discussion of the 1B:LO contribution. Let σ1B:LO be the hen cross section

arising from the 1B:LO term. In our calculation, σ1B:LO varies from 4 µb (for INOY) to ∼16

µb (for AV18), which agrees well with the range of values (2 ∼ 14) µb obtained by Towner

and Khanna [11] using rather schematic wave functions.

It seems more significant to compare our results with those of Ref. [14], where the au-

thors used the variational Monte-Carlo (VMC) method with the AV14+UVII potentials and

obtained σ1B:LO = 5.65 µb. Our calculation with AV18+UIX gives σ1B:LO = 14.9 µb, which

is about 2.6 times larger than the result of Ref. [14]. Since the 1B:LO M1 operator is the

same for both cases, the discrepancy should be traced to the difference in the nuclear wave

functions. Part of the discrepancy can be attributed to the fact that the calculated values

of the ERPs vary for different realistic nuclear interactions used. For the n-3He scattering

length anHe3, Ref.[14] reports ℜ(anHe3) = 3.5 fm for AV14+UVII, and that σ1B:LO is in-

creased by about 40 % if anHe3 is reduced from 3.5 fm to 3.25 fm, which is close to 3.23 fm

for AV18+UIX. However this feature can explain only small part of the discrepancy.

An explanation for the remaining discrepancy may lie in the fact that the large-r bound-

ary condition for the initial scattering state adopted in Ref. [14] does not take into account

coupling between the n-3He and the p-3H states. Such a simplification may be considered

rather unwarranted for the following reasons. First, the presence of the diverging factor
√

pp/pn in eq.(18) enhances the coupling in the asymptotic region. Secondly, ignoring the

coupling between n-3He and p-3H states breaks orthogonality between the incoming and

outgoing wave functions. Since, as mentioned, the 1B:LO contribution undergoes a huge

suppression due to the pseudo-orthogonality, even a small breaking of the orthogonality

can have very strong influence on the 1B:LO contribution. Finally, the variational calcu-

lation in [6] involves too few correlation operators to accurately describe the non S-wave

components (the ones coupled by the IA operator) in the variational wave function.

It is noteworthy that a very similar feature occurs in hep calculations. That is, the

correlated-hyperspherical harmonics method [49] with AV18+UIX leads to a 1B S-factor

that is about four times larger than that obtained in the VMC calculation [6] with the

AV14+UVIII; this additional example seems to render support to our above argument.

As mentioned in section I, after the submission of this work, there has appeared an

elaborate calculation of hen [13], in which both the potential and current operators are

derived from chiral effective field theory using time ordered perturbation theory. Ref. [13]
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TABLE IV: Cutoff-dependence of the hen matrix elementM calculated with the AV18+UIX wave

functions. The hen cross section σ is in units of µb; for other explanations, see the caption for

Table III.

Λ [MeV] g4s g4v ℜM ℑM σ

500 0.8366 1.9068 −0.0915 + 0.0246 g4s − 0.0471 g4v = −0.1608 0.0166 40.9

600 0.6990 0.5886 −0.1593 + 0.0231 g4s − 0.0433 g4v = −0.1686 0.0173 44.9

700 0.5810 −0.4615 −0.2049 + 0.0205 g4s − 0.0377 g4v = −0.1756 0.0179 48.7

800 0.4517 −1.3622 −0.2346 + 0.0176 g4s − 0.0319 g4v = −0.1832 0.0186 52.9

900 0.3169 −2.2069 −0.2547 + 0.0149 g4s − 0.0265 g4v = −0.1915 0.0195 57.9

gives 50 ± 6 µb for the total hen cross section. Despite the differences in the details of

the formulation, the general features of the calculation and the numerical results are in

agreement between our work and Ref. [13].

C. Cutoff dependence

We now turn our attention to the cutoff dependence. Table IV shows to what extent

the hen matrix elementM calculated for the AV18+UIX wave functions changes when the

cutoff parameter Λ is varied over a range Λ = 500 ∼ 900 MeV.

Table IV indicates that the renormalization procedure of the LECs, g4s and g4v, plays an

essential role in reducing the cutoff-dependence. As a way of quantifying this feature, we

define the quantity

R ≡ Mtotal(Λ2)−Mtotal(Λ1)

Mfinite(Λ2)−Mfinite(Λ1)
, (23)

where the subscript “finite” stands for “finite-range term contributions”, andMfinite corre-

sponds to a case where all the terms other than the contact term (CT) contributions are

included. Perfect renormalization invariance would correspond to R = 0. It turns out that

Rhen = 0.189 for (Λ1, Λ2) = (500, 900) MeV. Thus the renormalization procedure of LECs

has removed a major part of cutoff-dependence; the cutoff-dependence of Mtotal is about

one-fifth of that of Mfinite. It is interesting to compare the above value of Rhen with the

corresponding quantity Rhep obtained in a hep calculation in [7]. The hep calculation in
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TABLE V: The magnetic moments, µ(3H) and µ(3He), and the real and imaginary parts of the

hen matrix element, M, calculated for the AV18+UIX wave functions and for Λ = 700 MeV. The

values of µ(3H) and µ(3He) given in the row labeled “Total” are experimental values, which are

used to fix the LECs. The LECs corresponding to this case are: (g4s, g4v) = (0.581, −0.4615) [fm3].

µ(3H) µ(3He) ℜM ℑM

1B: LO 2.5727 −1.7632 0.0964 −0.0136

1B: RC −0.0171 0.0037 0.0554 −0.0075

1B-total 2.5556 −1.7595 0.1518 −0.0211

2B: 1π (NLO) 0.2292 −0.2258 −0.1657 0.0195

2B: 1πC (N3LO) 0.1578 −0.1289 −0.1465 0.0172

2B: 2π (N3LO) 0.0419 −0.0408 −0.0445 0.0052

finite (total w/o CT) 2.9845 −2.1550 −0.2049 0.0208

0.0193 g4s 0.0190 g4s 0.0205 g4s −0.0014 g4s

+0.0363 g4v −0.0354 g4v −0.0377 g4v +0.0044 g4v

2B: CT (N3LO) = −0.0055 = 0.0274 = 0.0293 = −0.0029

Total 2.9790 −2.1276 −0.1756 0.0179

[7] is based on the same MEEFT strategy (but uses a different method for obtaining ex-

act solutions to the nuclear Schröedinger equations). Ref. [7] reports Rhep = 0.137 for the

slightly smaller window, (Λ1, Λ2) = (500, 800) MeV. Thus the previous hep calculation [7]

is consistent with the hen calculation in the present work, and this consistency provides

further support to the hep results in [7].

D. Convergence of chiral expansion

Table V shows the individual contributions of the various 1B and 2B terms to µ(3H),

µ(3He) and the hen matrix element M, calculated at Λ = 700 MeV for the AV18+UIX

potential. We can see that the 1B contribution to hen is highly suppressed due to the

aforementioned orthogonality between the initial and final wave functions. The NLO contri-

bution, which comes from the soft one-pion-exchange, is also suppressed for the M1 channel,
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due to the accidental cancelation between the pion-pole and pion-seagull diagram contri-

butions [21]. These suppression mechanisms make chiral convergence rather unclear. For

example, one might worry about the fact that the 1πC and 2π contributions, both of which

are N3LO, turn out to be comparable in size to the NLO 1π contribution. It should be noted,

however, that most of the 1πC and 2π contributions are to be absorbed in the renormaliza-

tion of the LECs, leaving very small net effects on the observable quantities. To demonstrate

this point, we define the effective matrix element, 〈O〉effective, of a given operator O by

〈O〉effective ≡Mtotal − (Mtotal but without 〈O〉) . (24)

Thus 〈O〉effective represents a net change in the amplitude that would occur if we omit the

operator O. In evaluating the parenthesized quantity, the LECs should be readjusted so as

to reproduce the experimental values of the A = 3 magnetic moments without 〈O〉; because

of this readjustment we should expect 〈O〉effective 6= 〈O〉. We find

〈1π〉effective = 0.0749− 0.0087i, (g4s, g4v) = (0.5223, 5.8848) fm3,

〈1πC〉effective = −0.0093 + 0.0004i, (g4s, g4v) = (1.2433, 3.53455) fm3,

〈2π〉effective = −0.0010 + 0.0001i, (g4s, g4v) = (0.5843, 0.6921) fm3, (25)

where we have also listed the corresponding values of the LECs, which should be compared

with (g4s, g4v)=(0.581, −0.4615) fm3 that correspond to the full calculation up to N3LO.

Eq.(25) demonstrates that the effective contributions of 1πC and 2π are very small, only

about 6 % and 2 %, respectively, relative to the values one would naively expect. This is in

sharp contrast with the NLO soft one-pion-exchange, whose contribution cannot be absorbed

in the LECs. A rigorous examination of chiral convergence would require a calculation that

goes one order higher than considered in the present work (i.e., we need to go up to N4LO),

but we relegate this task to future studies.

There can also be a fully consistent EFT approach where both nuclear interactions and

transition operators are obtained in the same EFT framework. This approach requires much

more involved calculations than MEEFT, but recent significant progress in constructing EFT

Hamiltonians makes it more attractive. Also available is a pionless EFT approach [47] where

the matrix elements are evaluated perturbatively, but, unless it is capable of reproducing all

the relevant ERPs of the nuclear systems involved, its usefulness is limited.

23



IV. DISCUSSION AND CONCLUSIONS

In this work we have performed an ab initio parameter-free calculation for the hen cross

section σ, with the use of the EM currents that have been derived from HBChPT up to N3LO.

The exact nuclear wave functions for the initial and final states have been obtained by solving

the Faddeev-Yakubovsky equations for realistic nuclear interactions. The calculated value

of σ shows a high degree of stability as the cutoff parameter Λ is varied over a wide range,

Λ = (500 ∼ 900) MeV, and we obtain as the best estimate σ = 49.4± 8.5 µb for AV18+UIX

and 44.4 ± 6.7 µb for I-N3LO+UIX*. These values are in good agreement with the data,

54± 6 µb [9] and 55± 3 µb [10].

The successful application of MEEFT to hen renders strong support to the previous

MEEFT calculation of hep in Ref. [7]; furthermore, it demonstrates the basic soundness

of the MEEFT approach in general. The present treatment is open to several improve-

ments such as: the inclusion of the next order terms in chiral perturbation, in particular

the incorporation of the three-nucleon currents; a more stringent control of mismatch in the

chiral counting between SNPA and a formally accurate chiral expansion that enters in the

currents; a better understanding of the role the counter terms play in the renormalization

group property. It is reasonable, however, to expect that the effects of these improvements

are essentially accommodated in the above-quoted error estimate based on the cutoff de-

pendence. A robust estimation of the hep S-factor has been a long-standing challenge in

nuclear physics [46]. We believe that our MEEFT calculations of hep and hen have solved

this problem to a satisfactory degree.
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