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Abstract 

The parametric resonance enhancement of the phase of neutrons due to non-

Newtonian anomalous gravitation is considered. The existence of such resonances is 

confirmed by numerical calculations. A possible experimental scheme for the 

observation of this effect is discussed based on an existing neutron interferometer 

design.  

 

03.75.Dg,  03.75.Be, 04.80.Cc, 28.20.-v  

 

 



 

Introduction 

Precision experimental tests of Newtonian gravity utilize a wide range of techniques 

to search for the existence of possible “anomalous” couplings between massive 

objects. (See Adelberger, et al.1 for a comprehensive review). Recently, these 

searches have been stimulated by theoretical models which consider the possible 

existence of “non-1/r2” gravitational forces at distances on the sub-millimeter scale.  

These models (see, for example  2 3 4 5  and references therein) propose mechanisms 

of gravitational unification based on the existence of extra dimensional space with 

compactified extra dimensions and/or with large extra dimensional bulk space.  Such 

forces may be viewed as arising from gravity being allowed to propagate in a whole 

space (bulk) with extra dimensions while particles and interactions of the Standard 

Models are confined inside of our three dimensional space (3-brane). Some 

approaches to resolve the cosmological constant paradox (hierarchy problem) also 

lead to modified gravity at short distances (see for example 6 7).  It has also been 

noted8 9 that the scale of the “dark energy” density (~10-3 eV)4  is close to the 

characteristic energy scale for very low energy neutrons and suggests the possible 

sensitivity of neutrons for tests of gravity at corresponding length scales (< 0.1 mm).  

A more exotic source of a possible modification of Newton’s gravity at short 

distances – “ungravity” 10 results from a nontrivial scale invariant sector of an 

effective field theory which cannot be described in terms of particles11.   For these, as 

well as other, perhaps even aesthetic reasons, it is desirable to test predictions of 

modified gravitational forces over the widest possible range. As a neutral, heavy, 

relatively non-polarizable and almost stable particle, the neutron provides an 

attractive probe for anomalous gravitational forces with ranges from nuclear sizes up 



to the macroscopic scale. As we shall discuss, the use of neutrons of extremely low 

energy can lead to enhanced sensitivities to possible interactions with a comparable 

(very small) characteristic energy scales.   Indeed, the scattering of cold and thermal 

neutrons as well as measurements with ultra cold neutron experiments have been used 

to set some of the best constraints on anomalous gravity at short range [1] 12 13 14 15.   

 

As is conventional in this field, we assume that a hypothetical, short range non-

Newtonian interaction is given by [1] (see also 16) 

 /( ) (1 ),r
G

GMmV r e
r

λα −= − +  (1) 

where G is the gravitational constant, m and M are the interacting masses, Gα is a 

dimensionless parameter reflecting the strength of the anomalous interaction and λ is 

its effective range. 

 

In a recent paper 17 a method to search for exotic gravitational interactions using 

neutron interferometry was proposed. In that work, it was observed that, under certain 

conditions, it might be possible to satisfy certain parametric resonance conditions that 

would provide a greatly enhanced sensitivity to anomalous forces. In this work we 

consider the case of very low energy neutrons (so called very cold and ultra cold 

neutrons with E<< 1 meV) to explore the conditions under which such resonant 

enhancement could be used to substantially improve constraints on “exotic” 

interactions.  

 

 

 



Parametric Resonance 

We consider the “two slab” interferometer setup suggested in [17]. The anomalous 

interaction of Eq. (1) leads to a potential for a neutron propagating over a plate of 

matter of uniform density ρ, as a function of x, the distance from the surface:  

2 /2 x
eff G nV G m e λπ α ρλ −=    outside the material; 

2 /2 (2 )x
eff G nV G m e λπ α ρλ −= −  inside the material. 

To calculate the phase shift due to this interaction we use the exact solution of 

Schrödinger’s equation for neutron propagation through two parallel plates of similar 

material separated by distance L under the assumption that the size of the plates are 

much larger than both the distance L and the range of the short gravitational 

interaction λ (for details see reference [17]).  It was noted [17] that the solution of this 

problem suggests the possible parametric resonance enhancement of the phase shift 

due to anomalous interactions during neutron propagation through the slabs. This 

suggestion is confirmed by an exact solution of Schrödinger’s equation. 

Unfortunately, while an analytic solution for this problem has been obtained, the 

expression for the neutron phase is rather complicated and is far too long to be 

presented here. As a consequence, while this solution implicitly includes parametric 

resonances, it does not do so in a transparent manner.  For a simple illustration of the 

existence of such parametric resonances, we will therefore first show the general 

conditions for the existence of the resonances using a “toy” theoretical model and 

then discuss why very low neutron energies are crucial. Finally we will confirm the 

suggestions of the “toy” model by numerical solution of the exact Schrödinger 

equation. 

 

Schrödinger’s equation for neutron propagation in between the slabs can be written as  



 2 2 2( ) / ( ) ( ) 0d x dx k x xψ ψ+ = , (2) 
where  

2 2
0( ) (1 cosh( / ))k x k xη λ= + ,  

2 2
02 exp( / 2 ) /a L kη λ= − , 

2 2 2 24 /G na G mπ α ρλ= = , 

and k0 is the neutron wave number in vacuum.  This is Mathieu’s modified differential 

equation and its general solution is represented in terms of Mathieu functions (instead 

of exponential functions in the case of the square-well potential). That the neutron 

transmission coefficient results from a solution of a Mathieu - type equation (often 

used to describe parametric resonances) suggests the possibility of observing an 

enhancement in neutron propagation provided the proper resonance conditions are 

satisfied. It should be noted that similar parametric resonances are a common 

phenomena in optics: see, for example, refs. 18 19 for parametric resonances in optical 

resonators and refs. 20 21 for resonances for light propagation through paraxial optical 

systems. A similar phenomenon has been discussed for the coherent propagation of 

neutrinos through materials with a variation of density profile (see, for example 

papers 22 and references therein). The parametric resonance (PR) enhancement of 

neutrino oscillations has been calculated for a variation of density of material over 

only “one and a half” periods of density modulation [22].   These calculations 

demonstrate that PR can exist in transmission processes without a requirement of 

“pure” periodic structure of density profile variations. 

 

A quantum PR in a process of one dimensional particle transmission is not a new 

phenomenon. To our knowledge, L. P. Pitaevsky (see 23 and references therein) first 

pointed out that the solution of the one-dimensional Schrödinger equation for the 



harmonic oscillator exactly coincides with the solution of the one-dimensional 

potential barrier propagation problem (provided that the transmitted particle 

momentum ( )k x , as a function of distance, is replaced by the frequency of the 

harmonic oscillator as a function of time in the Schrödinger equation).  The 

correspondence of the solutions for these two problems (harmonic oscillator and 

transmission) was studied [23] for the case of the exactly solvable Eckart’s potential 

24 which analytically exhibits the existence of quantum parametric resonance 

(quantum parametric amplifier [23]).  Using a similar approach, we analyze the 

conditions for the existence of PR in the case of neutron transmission in the “two 

slab” scenario in the presence of short range gravity. Unfortunately, even the simplest 

case for the calculation of the transmission amplitude involves at least three coupled 

Schrödinger equations which make analytic analysis practically impossible. 

Therefore, to be able to qualitatively understand the main features of the solution and 

to obtain a general feature of PR in the transmission amplitude we consider a very 

simple “toy” model (see Appendix A) which indicates the possibility of the existence 

of PR for long neutron wavelengths.   

 
We emphasize that we are dealing with a resonance enhancement of the phase of the 

transmission coefficient for neutron propagation. This particular subject has not been 

explicitly considered in the literature related to transmission in one dimensional 

barrier problems. Reconsideration of a number of well-known solutions of 

Schrödinger’s equation for the transmission problem does, however, indicate the 

possibility of resonance phase enhancement in the one-dimensional 

scattering/transmission process. For example, it has been shown 25  that the 

transmission amplitude for an exponentially decreasing potential has an infinite 

number of singularities in the complex momentum plane (for a general description of 



the phase in one dimensional scattering see refs. 26 27). The position of the singularity 

nearest to the real axis is defined only by the slope of the potential and not by its 

value. For a pure exponential potential, the nearest singularity lies on the imaginary 

axis. It was pointed out [25] that, for the case of two overlapping potentials, 

corresponding to the situation considered in this paper, the transmission amplitude has 

a second order pole at the same position defined only by the slope, 2 /k i λ= − . This 

implies that when the neutron wavelength, nλ  is comparable to the scale of the 

anomalous gravitational interaction, λ, the phase of the transmission amplitude is 

most sensitive to this interaction.  It is important that the minimal distance of the 

singularities from the real axis is not zero and that the poles are allowed to move off 

the imaginary axis for a non-pure exponential potential.  

 

It is notoriously difficult to prove the existence of PR for any system other than the 

simplest ones since PR is related to unstable solutions which cannot be treated by 

conventional methods of solution or by perturbation theory.  We do not have a proof 

for existence of PR for the phase of the transmission coefficient. Instead, as a 

plausibility argument, we explore a number of approaches to show the existence of 

unstable solutions of the phase of transmission coefficient (see Appendix B). The 

phase is unstable if it has a branch of exponentially growing (unstable) solution. One 

can see such solutions with a typical behavior 

 ( ) ~ exp( / )nx a xϕ λ λ  (3) 
in perturbation theory approach, for asymptotic solutions, and for available exact 

solutions of the problems with solvable  exponentially dependent potentials.  

The above proportionality to the neutron wavelength explains why PR could be seen 

only in the case of very cold neutrons.   It should be noted that unstable solutions 



were also observed for inverse power potentials, such as would result from anomalous 

gravitational interactions (see, for example [1] and references therein).  Thus the 

existcnce of PR (unstable solutions) for the phase of transmission through singular 

(exponential or  inverse power) potentials  in neutron interferometry is highly 

plausible. 

 

 To illustrate the sensitivity of the phase of the transmission amplitude to the slope of 

the potential, we consider a “toy” model for neutron transmission barrier which 

consists of two potentials: the first is a localized strong potential due to the nuclear 

interaction between the neutron and material and the second is a weak exponentially 

decreasing potential. The amplitude T for neutron transmission through the sum of 

these potentials is proportional to the product of the two transmission amplitudes for 

each potential separately, see 28,  

 s wT t t∼ . (4) 
If one potential is very weak compared to the other one, its transmission coefficient is, 

for all practical purposes, governed by the properties of the strong potential, 

2 2| | ~| |sT t . The phase of T, however, is sensitive to the total phase of both st and wt : 

 ( ) ( ) ( ) ...s wArg T Arg t Arg t= + + . (5) 
For the first order pole ( ~ 1 / ( 2 / )wt k i λ+ ), the weak amplitude phase could be as 

much as:  

 1( ) ~ tan ( / )w nArg t πλ λ− . (6) 
For the second order pole ( 2~ 1 / ( 2 / )wt k i λ+ ), 

 1
2

2( / )( ) ~ tan
( / ) 1

n
w

n

Arg t πλ λ
πλ λ

− ⎛ ⎞
⎜ ⎟−⎝ ⎠

. (7) 

This implies that, if the neutron wavelength is comparable to λ, the phase of neutron 

transmission coefficient will be very sensitive to small exponentially decreasing 



potentials.  This rather surprising observation is confirmed by cases with exact 

analytical solutions for transmission through potential barriers with exponentially 

dependent potentials (see, for example, Eckart’s potential [24], and a number of other 

solved problems 29 30).  For these cases, the transmission amplitudes are meromorphic 

functions with the positions of their poles dependent on the value of the exponential 

slopes, but not on the value of the potentials themselves (see also [27]).   

 

Consideration of such toy-models suggests that an enhanced sensitivity to the 

gravitational potential for the phase of the transmission coefficient will occur when 

the neutron wavelength is comparable to the scale of the anomalous gravitational 

interaction and to the spacing between the two slabs in the interferometric experiment. 

This condition is consistent with the requirements for the existence of parametric 

resonance and shows the particular sensitivity of ultra-cold neutrons to such 

hypothetical weak interactions. We reiterate that the formulae discussed above were 

obtained using a number of simplifications to allow compact analytical expressions.  

They can only be used to provide a qualitative understanding of the process. Realistic 

estimates of the magnitude of possible manifestations of the PR must follow from 

exact numerical calculations [17] in the low energy range where observable effects 

are anticipated. For example, a null result from the  “two slabs” experimental setup 

[17] with the neutron wavelength λn = 30 nm, a fixed slab separation L = λ, and a 

phase sensitivity of 10-3 radian, generates a very narrow resonance in the exclusion 

plot, see Fig.1.  



 

Fig. 1: (Color online)  Exclusion plot for λn = 30 nm the separation L = λ assuming 

an experimental sensitivity to the phase at the level 10-3 radian. The solid line shows 

current exclusion [1] and the dashed line a possible exclusion from Bragg-scattering 

experiment [21], the white area above the shaded regions can be excluded by the 

proposed experiment. 

As a demonstration of the sensitivity of the method, we calculated excluded regions 

(Fig. 2) for the discussed setup for λn = 30 nm with the same experimental sensitivity 

to the phase at the level 10-3 radian  by scanning  the distance between the slabs from 

L = 0.5 λ to L = 5 λ with a step 0.5 λ .   



 

Fig. 2: (Color online) Exclusion plot for λn = 30 nm and the experimental sensitivity 

to the phase at the level 10-3 radian by scanning the distance between the slabs from 

L = 0.5 λ to L = 5 λ with a step 0.5 λ. . The solid line shows current exclusion [1] and 

the dashed line a possible exclusion from Bragg-scattering experiment [17], the white 

area above the shaded regions can be excluded by the proposed experiment. 

 

It should be noted that the exclusion region (the white area above the shaded regions) 

in Figs. 1 and 2 can go below the bottom horizontal axis which is a typical feature for 

an ideal parametric resonance. In a real situation the depth of the excluded regions 

will be constrained by a number of factors such as energy resolution, roughness of the 

surface etc. Simple simulations show that it is unlikely to have a depth for the 

exclusion area lower than α=105.  However, the estimate of the possible depth is 

beyond of the scope of this paper because it essentially depends on the specific 

features of an apparatus.   



For  Figs. 1 and 2 we assumed monochromatic neutrons. To show how the parametric 

resonance is sensitive to the non-monochromaticity of the beam, we calculated the 

phase of the transmission amplitude for a small value of α=105.5  (where PR became 

extremely narrow), with L = 2 λ as a function of the range of “gravitational” 

interaction for monochromatic neutrons of λn = 30 nm (Fig. 3a), and for a 1% energy 

spread assuming a flat distribution (Fig.3b).  

 

Fig. 3: (Color online) “Gravitational” phase for α=105.5  and L = 2 λ as a function of 

the range of “gravitational” interaction for (a) monochromatic neutrons with 

λn = 30 nm,  and (b) for 1% of energy resolution for neutrons.  

One can see that the number of parametric resonances as well as their positions are 

changed. It is particularly notable that the phenomenon of parametric resonances 

exists even for a non-monochromatic beam.   A typical behavior of the “gravitational 



phase” as a function of separation, L, for two values of λ is shown in Fig. 4. Fig. 5 

shows the “gravitational phase” as a function of Gα  for a fixed L and λ. 

 

Fig. 4: (Color online) “Gravitational phase” as a function of separation, L,  for two 

values of λ=100nm and λ=50nm. ( λn = 30 nm and α=1019 ). 



 

Fig. 5: (Color online) “Gravitational phase” as a function of Gα  (a) L=639.55nm and 

λ=100nm, and (b) L=123nm and λ=12.3nm ( λn = 30 nm). 

 

 

It should be noted that when the neutron energy is very low, there are a number of 

“regular” Fabri-Perot type of resonances which exist for the given experimental setup 

without short-range “gravity.” This “Fabri-Perot” multiple reflection of the neutron 

beam in between the slabs is modulated by the short-range interaction resulting in the 

parametric resonance, provided the resonance conditions are satisfied.   

Such resonances can mimic the PR enhanced gravitational effects. Fortunately, these 

two types of resonances have essentially different dependences on the parameters 

(geometry, neutron wavelength, and 2αλ ) and can therefore be separated if the 

experiment is done with two or more different neutron wavelengths.  



 

 

 

These numerical results confirm the simplified “toy” analysis and provide the first 

detailed exploration of phase parametric resonance in neutron interferometry. We note 

that although the effects suggested by the above analysis are very small, they may be 

accessible by using a new type of neutron interferometer. In the next section we 

discuss a possible experimental approach which looks promising for observing 

parametric resonance enhancement of neutron transmission phase. 

 

Experimental Realization 

 

As noted above, the use of very low energy neutrons (with correspondingly long 

wavelengths) can provide an enhanced sensitivity to possible phase changes resulting 

from parametric resonances induced by anomalous gravity. However, in the most 

commonly used neutron interferometers, which are based on neutron diffraction by 

silicon single crystals 31, the accessible neutron wavelengths are limited to being 

shorter than twice the silicon lattice constant. In practice, this implies the use of 

thermal neutrons with wavelengths less than a few tenths of a nanometer.  

Interferometry that is not based upon perfect crystal diffraction is not so limited in 

and it is possible to increase the wavelength range of neutron interferometry through 

the use of mirror optics and/or artificial multilayers rather than perfect crystal lattices. 

The prospect of extending neutron interferometry to cold and very-cold wavelength 

regions has been demonstrated by Kitaguchi et al. 32, who used optical elements 



consisting of artificial multilayer mirrors. Their interferometer consisted of two pairs 

of mirrors deposited on precision air-gap etalons.  

 

The Kitaguchi et al. multilayer interferometer was a Jamin-type neutron spin 

interferometer that used λn = 0.88 nm neutrons as schematically shown in Fig. 6 and 

Fig. 7. Spin polarized neutrons were directed to the interferometer through a π /2-

flipper to define the phase relation between two magnetic substates. The relative 

phases of these states evolved during propagating in the external magnetic field 

applied parallel to the y-axis (equivalent to the spin rotation on zx-plane).  The 

neutrons then hit a magnetic mirror and a non-magnetic mirror deposited on the inner 

surfaces of an air-gap etalon. The magnetic mirror reflects only one magnetic substate 

while the non-magnetic mirror reflects both. The spin direction was then reversed by 

a π -flipper before reflected on the second etalon. The spin polarization after another 

π /2-flipper depends upon the integrated phase difference accumulated between the 

two magnetic substates. 

 

In the following we consider a possible experimental arrangement which would be 

sensitive to a parametric resonance enhanced phase due to anomalous gravity. We 

assume a Kitaguchi type interferometer, with minimal modification from that 

described in the reference [32], installed on the VCN port of the PF-2 beam line at the 

Institut Laue Langevin Research Reactor 33 34. In this paper, we do not discuss the 

VCN interferometer with grating plates reported in the reference [35], since it is not 

straightforward to spatially separate neutron paths with the grating-plate 

interferometer.  

 



 

The phase accuracy for an interferometer can be approximately given by, 

Δφ =
1

K N
,   (11) 

where K is the visibility of the interferometer and N is the number of neutrons 

contributing to the measurement. We use the experimental result of K=0.6 in Ref. [32] 

for the visibility. N can be estimated as 

N = Φ
ΔvxΔvy

ΔvzVXYTt .   (12) 

For the beamline under consideration, Φ =104  cm-2 s-1 (m/s)-1 is the VCN flux at a 

neutron wavelength of λn = 30 nm ( vz =13 m s-1)33,34. Δvx  and Δvy  are the beam 

divergences along x and y direction, respectively. We assume that the beam 

divergence is limited by natural nickel guide, which corresponds 

to Δvx = Δvy =14 m s-1. Δvz  is the width of the parametric resonance in terms of the 

neutron velocity, and VXY  is the acceptance of the interferometer. T  is the overall 

transmission of the interferometer and t  is the measurement time. We assume that 

Δλn /λn ≈ 0.01 following the assumption in the numerical calculations shown in Fig. 

3b which implies Δvz = vzΔλn /λn = 0.13 m s-1. 

 

We assume a sample as in Ref.  [17], that consists of two dense material slabs that are 

separated by a well-controlled thin gap L . The neutron phase change due to the 

exponential decaying potential resulting from the hypothesized anomalous 

gravitational interaction can be measured by adjusting the position of the material 

plate so that one beam path transmits through the gap region and the other through the 



“gap-less” region. We assume that we can obtain a surface roughness of the order of 

0.1 nm using precision machining and polishing techniques42.  

 

Two beam paths of the principal ray are P0P1P2P3P4P5P6P11P12P13 and 

P0P1P2P7P8P9P10P11P12P13 as shown in Fig.7. They must be spatially separated 

between the two etalon sets. The separation defines the acceptance VXY  of the 

interferometer. For simplicity, we assume that the etalons have a square shape. We 

assume that the dimension of etalon substrates is wE × wE × tE  and multilayer mirrors 

are deposited on the central square of wM × wM  as shown in the right top inset of Fig. 

6. We conserve the area of etalons and mirrors by taking the values of 

wE = 4.2 × π /2 cm = 3.7 cm and wM = 2.0 × π /2 cm =1.8 cm. We also assume the 

thickness of the etalon substrate is tE =1 cm. In the reference [32], the air-gap was 

gE = 9.75 ×10−4  cm and the distance between two etalon sets was D = 34 cm.  

The effective lattice constant of the multilayer mirror was d = 24 nm, which 

corresponded to sinθ = h /(2mvzd) = 0.63, where θ  is the grazing angle to the etalon 

surface, h is the Planck's constant and m is the neutron mass. In this estimate, the 

neutron refraction and the energy change on the material surface must be taken into 

account since the neutron kinetic energy E ~ 9.1×10−7 eV  is close to the Fermi 

potential of the etalon substrate U ~ 1.0 ×10−7 eV (SiO2). The grazing angle of the 

etalon substrate Θ is given as sinΘ = 0.56 through the relation 

sin2 θ = (1−
U
E

)sin2 Θ +
U
E

 . 

We take the effective lattice constants of non-magnetic and magnetic mirrors as 

d = 24 nm and d'= 28 nm, respectively.  



The spatial separation of individual beam paths between two etalon sets 

is wx = 2gE cosθ . We assume the spatial acceptance along y-axis is filled ( wy = wM ). 

Consequently, the hatched region in the left inset of Fig. 6 is the allowed region and 

the acceptance is given as 

VXY = wx
wxvz

D
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ × wM

wM vz

D
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , 

under the condition that the etalon size is small compared with the distance between 

two etalons. 

 

The overall transmittance for two beam paths is given as 

( )( )
4

2 2
1 2 abs abs

1 (1 ) (1 ) exp  exp
2 sin

E
P

tT R R n t nσ σ⎛ ⎞⎛ ⎞= − − − −⎜ ⎟⎜ ⎟Θ⎝ ⎠⎝ ⎠
, 

where the factor of 1/2 is the transmittance of the ideal polarizer, R1 = 7.3 ×10−3  and 

R2 =1.7 ×10−2 are the reflectivities on the etalon surface for neutrons entering into the  

and exiting from the substrate, tP  the thickness of the material plate, n  the number 

density and σ abs the absorption cross section of the SiO2 molecule. Here it is assumed 

that the coherent scattering is sufficiently suppressed and the small angle neutron 

scattering in etalon substrates is negligibly small (reasonable for a perfect crystal 

SiO2). We assumed that the reflectivity of the non-magnetic mirror is 100% and the 

reflectivity of the magnetic mirror is 0% and 100% for each spin state. The absorption 

cross section is estimated as σ abs = 29 b extrapolating the thermal absorption cross 

section assuming the absorption cross section is inversely proportional to neutron 

velocity. We take the thickness of the material plate as tP =1 mm. Consequently the 

transmittance of two beam paths of principal rays is estimated to be T = 5.0 ×10−3. 

 



For this arrangement a phase accuracy of Δφ =10−3 requires a measurement time of 

t = 4 ×1014  s which is obviously impractical. We must therefore consider how far the 

current experimental techniques need to be extended to provide an interesting result.  

If the air gap of the etalon were expanded to gE = 2 cm, the counting rate is 

remarkably increased and the measurement time becomes t = 9.4 ×106  s, which 

corresponds to t =110 days. We believe that such an increase in the air gap, while 

challenging, is feasible. 

 

A Jamin-type interferometer with large gap etalons is currently under development35 

and further improvements are expected by reducing the etalon dimension to better 

match the beam path separation requirement and by optimizing the effective lattice 

constant of multilayers, etc. Details of this work will be published elsewhere. 

 

Kitaguchi et al. reported that they observed a phase drift of unknown origin of ~10 

mrad min-1. However, their apparatus was opened to environmental changes in 

temperature, vibration, magnetic field, and so on. In order to observe the parametric 

resonance, it will be necessary to isolate the apparatus should or actively canceled 

these environmental changes as has been done at other facilities [35]. Monitoring or 

active feedback of the orientation and the gap of etalons using laser interferometers or 

other techniques could further suppress the phase drift level. 

 

A final concern is the fabrication of the material sample “slabs” with the adjustable 

gap. The effect of the deviation of the effective potential from the step-like function 

due to the surface roughness at the level of 0.1 nm remains to be examined. 

 



 

Fig. 6. (Color online) Schematic view of the proposed Kitaguchi-type interferometer. 

The interferometer comprises of (a) a neutron spin polarizer and neutron beam optics 

to match the phase space distribution shown in the left inset, (b) a π /2 flipper,   (c) an 

etalon set with multilayer mirrors deposited on the inner surface of the air-gap, (d) a 

π  flipper,  (e) a material plate with a thin gap,  (f) a neutron spin analyzer. The left 

inset shows the acceptance of the interferometer to avoid the beam path overlap 

between two etalon sets. Central and right insets are enlarged drawing of an etalon set 

and the material plate, respectively. 

 



 

Fig. 7. (Color online) Enlarged top view of the proposed interferometer. Two beam 

paths of a principal ray are shown in the figure. 
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Appendix  A 

For a qualitative understanding of  the main features of the solution and a general 

feature of PR  in the transmission amplitude we use a very simple “toy” model related 

to a solution of only one equation with a characteristic potential which appears in the 

two-slab interferometer. Then, like in the time-dependent solution of the harmonic 

oscillator with a solvable Eckart’s potential, one can, taking into account the identity,  



 2 2 2
1

sinh( / ) 2( 1) ( / )sinh( / )cosh( / ) cos
( / ) ( / )

n

n

L L L n xx
L L n L

λ λ λ πλ
λ λ π

∞

=

⎛ ⎞− ⎛ ⎞= + ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
∑ , (8) 

and rewrite Eq.(2) such that one can represent a factor 2( )k x in the front of the wave 

function as a constant (or slowly changing) term plus a periodic 

function 2 2( ) [1 2 cos(2 ) ]eff effk x k k xε δ= + + .  In this case, according to perturbation 

theory, with |ε|<<1 and |δ |<<1, the solution satisfies the parametric resonance 

condition. That is, the argument of the cosine is an integral fraction of the double 

value of the “frequency”: 02 /effk n  with n0 integral. A quantum parametric resonance 

appears for n0=1 when 

 0
sinh( / )2 / 1

( / )
L nk

L L
λ πη

λ
⎛ ⎞

+ =⎜ ⎟
⎝ ⎠

. (9) 

For very small η ,  ( sinh( / ) / ( / ) 1L Lη λ λ << ). This condition is satisfied for 

gravitational interactions. This can be simplified as 

 4 /n L nλ � , (10) 
where 02 /n kλ π= is neutron wavelength, and is not to be confused with the range of 

gravitational interaction λ.   It is important to note that while the PR resonance leads 

to a very noticeable enhancement, this enhancement occurs only within a very narrow 

parameter space. Since the width of the resonance γ (which is defined as a region of 

instability for the solution of Schrödinger’s equation) decreases with the order of the 

harmonic as 0nγ , it is probably only practical to observe resonance effects only for 

n0=1.  

 

To understand how the width of the resonance is related to the relevant parameters, 

one can use well the known result for the size of the region of instability for a 

differential equation with 2 2( ) [1 2 cos(2 ) ]eff effk x k k xε δ= + +  as 2 effkγ ε≈ (see, for 

example 36 and [23]) .   For our case, this gives 



 
2 2

/(2 )
2 2 2 2

( / )sinh( / )/
( / ) 16 ( / )

Ln
eff

n

a L Lk e
L L

λλ λ λγ
π λ π λ

−

+
� . (11) 

 

Recall that 2a is proportional to 2λ , as can be seen from the definition of 

2 2 2 24 /G na G mπ α ρλ= = . In the same way [23] one can show that the strength of the 

resonance is proportional to the characteristic parameter 2 2 4 ( )G nr λ α λ∼ . 

Therefore, one concludes that, to be able to observe this resonance in practice, one 

must work with rather long neutron wavelengths.  It should be noted again that the 

above formulas are related to the “toy” model and cannot be used for qualitative 

analysis of PR in neutron interferometry; for this case we provide numerical solutions 

of coupled Schrödinger’s equations. 

 

Appendix  B 

Then, Schrödinger’s equation for neutron propagation in between the slabs can be 

written as  

 2 2 2( ) / ( ) ( ) 0d x dx k x xψ ψ+ = , (12) 
where  

2 2
0( ) (1 cosh( / ))k x k xη λ= + ,  

2 2
02 exp( / 2 ) /a L kη λ= − , 

2 2 2 24 /G na G mπ α ρλ= = , 

and k0 is the neutron wave number in vacuum.  

For the left and right “semi-infinite” slabs  

2 2( ) (1 exp( / ))m Lk x k xη λ= + ,  

and 

2 2( ) (1 exp( / ))m Rk x k xη λ= + − , 



where 2 2(1 exp( / )) /L ma L kη λ= − − ,  2 2(exp( / ) 1) /R ma L kη λ= − , and km is the neutron 

wave number in material of the slab. 

Since we are interested in a special case of ,,   1L Rη η η � , the above equations could 

be written in a generic form as  

 2 2 2( ) / (1 cosh( )) ( ) 0d z dz k z zψ ε ψ+ + =  (13) 
and 

 2 2 2( ) / (1 exp( )) ( ) 0d z dz k z zψ ε ψ+ + = , (14) 
assuming that /z x λ=  and k is an appropriate constant ( 0k k λ=  for Eq.(13) and 

mk k λ= for Eq.(14)) with a corresponding (ε η=  or  ,R Lε η η= ) small parameter 

1ε � . 

First let us consider Eq.(13), which is a standard modified Mathieu equation. In our 

case, 2 0k > , which leads to oscillating type of solutions, rather than exponentially 

decaying solutions usually considering for a modified Mathieu equation (where 2k  is 

assumed to be a negative constant).  For the case of 0ε = the solution describes free 

particle propagation 

 0 ( ) exp( ) exp( ( ))z a ikz a i zψ ϕ= ± = ±  (15) 
with a phase 0( )z kz k xϕ = = .  

If 0ε > , using Liouville’s transformation one can see37 that Eq.(13) has a pair of 

solutions with the following asymptotics as z → ∞ : 

 
0

2 1/4( cosh( )) exp 1 cosh( ) (1 (1))
z

z

k z ik z dz oε ε−
⎞⎛

± + +⎟⎜⎜ ⎟
⎝ ⎠

∫ . (16) 

Therefore, the phase becomes 

 ( ) sinh( ) / 2z kz k zϕ ε→ + , (17) 
which leads to exponential enhancement of the contribution to the phase from the 

small parameter ε on the neutron propagation path L  

 0 0( ) ( )exp( / ) / 2L k L k Lϕ ε λ λ≈ + . (18) 



The same enhancement of the phase of the transmission coefficient can be obtained  

for a specific set of parameters nλ πλ=  of the Eq.(2), which transform it to a 

“standard” form of  modified Mathieu equation 

 2 2 2
0 0( ) / (1 cosh(2 )) ( ) 0d x dx k k x xψ η ψ+ + = . (19) 

By changing variables 0exp( )z k x=  and assuming ( ) ( ) /z y z zψ = , the above 

equation transforms into 

 
2

2 4 2

( ) 5 ( ) 0
2 4 2

d y z y z
dz z z

η η ⎞⎛+ + + =⎜ ⎟
⎝ ⎠

. (20) 

Thus, for large z, the asymptotic solution is ( ) ~ exp( / 2 )y z i zη±  which leads to the 

asymptotic phase for a solution of Eq.(19) 

 0 0( ) ~ exp exp( )
2

x ik k xηψ
⎞⎛

± ⎟⎜
⎝ ⎠

 (21) 

instead of the “expected” plane wave asymptotic 0exp( )ik x± . Thus, one can see that 

in the region of possible instability (PR), the phase related to the small interaction (η) 

is increasing exponentially (a characteristic behavior of PR), while the “regular” 

interaction leads to linear phase 0exp( )ik x± . It should be noted that more careful 

derivation (see, for example 38,39)  of the asymptotic solution of Eq.(19)  leads to the 

phase 

 0 0( ) ~ exp ( )
2

x ik sinh k xηψ
⎞⎛
⎟⎜

⎝ ⎠
. 

One can obtain an asymptotic solution for Eq.(13) by transforming it with 

{ }( ) exp ( )
z

z k w z dzψ = ∫ , where ( )w z is a differentiable function of z (see, for example 

[43]). Then, since 

 
2

2
2,       d d dwkw k kw

dz dz dz
ψ ψψ ψ ⎞⎛= = +⎜ ⎟

⎝ ⎠
 

one obtains a Riccati equation 

  



 2 21 0dw w
k dz

ρ+ + =  (22) 

where 2 (1 cosh( ))zρ ε= +  which gives for k>>1 

 ( )( ) ~ exp ( / 4)sinhz ikz ik zψ ε± ∓  (23) 
This is a different asymptotic regime but the exponentially growing phase is presented 

here as well. It should be noted that the presence of exponentially enhanced terms 

related to a small parameter ε in the solution of Eq.(13)  is clearly seen from a 

representation of the solution in terms of Bessel functions in the Appendix 1 of the 

book [40] (see also 40 for calculation of Bessel functions for imaginary order).   All 

these results are in agreement with detailed investigation of uniform asymptotic form 

of modified Mathieu functions in a complex domain 41. 

Now, one can obtain an equation for a phase of the solution of Eq.(13) using the Van 

der Pol variables (see, for example 42) for amplitude z and phase φ provided 

 
cos

sin
z

kz
ψ ϕ
ψ ϕ

=
′ = −  (24) 

 Then the phase satisfies the non-linear equation 

 2( ) cosh cos ( )z k z zϕ ε ϕ′ = +  (25) 
which, with the considered above the existence of exponentially growing phase, 

indicates the possibility of unstable solutions.  To show the existence of the 

exponentially grooving solution on can use perturbation theory expansion as 

2
0 1 2... ϕ ϕ εϕ ε ϕ= + + where 0 kzϕ = . And each term ~ (cosh )m

m zϕ  . For the case of 

extremely slow neutrons   ( 0k → ) this sum results in ( )1tan coshkz zϕ ε−= + ⋅  where 

2~ nε λ .   

One can observe that Eqs. (13) and (14) can be transformed into double-confluent 

Heun (DCHE) equation (see, for example 43 ,44 , 45), which is a subject of recent 

intensive studies due to important applications to gravitation and cosmology. The  

DCHE could be written [46] as 



 
2

2 2 3 4

( ) ( ) 0d y z B C D EA y z
dz z z z z

⎞⎛+ + + + + =⎜ ⎟
⎝ ⎠

 

with a set of parameters A, B ,C ,D, and E. One can see that it exactly match Eq.(20). 

Therefore, one can conclude that the enhancement of a phase which was discussed for 

exponential and hyperbolic cosine potential is a generic feature for the inverse forth-

power potential. In other words, one can expect that phase of the solution of Heun 

equation in vicinity of irregular points can be unstable, i.e. to lead to a parametric 

phase enhancement. This is exactly confirmed by the set of known applications of the 

Heun equations for the one-dimensional Schrodinger equation for exactly solvable 

potentials (see, i.e., 46, 47 and references therein). For example, for the potential 48 of 

Cho and Ho   

 
2 2

2 2( ) ( 1)
4 4

x x xb dV x e l de e− −= − − + +  (26) 

the wave function [48]  has an explicit phase factor ~ exp( / 2)xibe . More examples 

for exponentially grooving potentials are to be found in [48]. The study of the 

inversed power potential ~ λ (x0/x)n leads to a singular phase 49 in the vicinity of x=0 

 

 
1/22

02~
2

nx
n x

λ
− ⎞⎛ ⎞⎛
⎟⎜ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

For a detailed analysis for ~1/x4 potential see 50.   

It is worth to note that using 51 the expression 

 2 2 2
1

sinh( / ) 2( 1) ( / )sinh( / )cosh( / ) cos
( / ) ( / )

n

n

L L L n xx
L L n L

λ λ λ πλ
λ λ π

∞

=

⎛ ⎞− ⎛ ⎞= + ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
∑ , (27) 

 Eq.(13) can be re-written as a Hill’s equation for a specific value of L: 

 
2

2
1

( ) (2 ) ( ) 0n
n

d y z a a cos nz y z
dz

∞

=

⎞⎛+ + =⎟⎜
⎝ ⎠

∑  

which usually describes parametric excitations of complex systems.  



We conclude that one dimensional Schrodinger equation with exponential,  

hyperbolic and inversed power potentials belong to the class of Heun differential 

equations which have a regions of unstable (exponentially grooving) solutions. For a 

number of particular cases we observed that a phase of the solution of the Schrodinger 

equation has exponentially grooving part which could lead to an unstable solution, or 

a phase parametric resonance which was found numerically in [17] for the 

transmission coefficient for neutron propagation. 
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