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We compute gD∗Dπ and gB∗Bπ using a framework in which all elements are constrained by Dyson-
Schwinger equation studies of QCD, and therefore incorporates a consistent, direct and simultaneous
description of light- and heavy-quarks and the states they may constitute. We link these couplings
with the heavy-light-meson leptonic decay constants, and thereby obtain gD∗Dπ = 15.9+2.1

−1.0 and

gB∗Bπ = 30.0+3.2
−1.4. From the latter we infer ĝB = 0.37+0.04

−0.02 . A comparison between gD∗Dπ and
gB∗Bπ indicates that when the c-quark is a system’s heaviest constituent, ΛQCD/mc-corrections are
not under good control.

PACS numbers: 13.25.Ft, 14.40.Nd, 11.15.Tk, 24.85.+p

Introduction. Non-perturbative QCD effects in
heavy flavor physics are a persistent challenge to an accu-
rate determination of the Cabibbo-Kobayashi-Maskawa
matrix elements, to which the BaBar, Belle, CDF, CLEO
and FOCUS collaborations have dedicated significant ef-
fort in the past decade. Besides improvements in the
determination of these Standard Model parameters, the
CLEO collaboration also performed a first measurement
of the width of the D meson’s nearest resonance. Their
reported value for the charged vector meson, Γ(D∗+) =
96 ± 4 ± 22 keV [1], is of great interest because it opens
a window on nonperturbative strong physics involving
heavy quarks. More specifically, it allows an extraction
of the coupling gD∗Dπ , which some relate to a putative
universal strong coupling, ĝ, between heavy-light-vector
and -pseudoscalar mesons and a low-momentum pion in a
heavy-meson chiral Lagrangian [2]. The step from gD∗Dπ

to ĝ is contentious, however, because the c-quark is not
truly heavy and hence corrections to the heavy-quark
limit are not necessarily under good control.

In attempting to compute ĝ, one may work with the
matrix element

〈H(p2)π(q)|H∗(p1, λ)〉 = gH∗Hπ ǫλ · q , (1)

which defines the dimensionless coupling of a heavy-light
vector meson, H∗, characterized by a polarization state
λ, and a heavy-light pseudoscalar meson, H , to a soft
pion with momentum q = p1 − p2. This matrix element
describes the physical processes D∗ → Dπ, with both
the final pseudoscalar mesons on-shell. It also serves
in computing the unphysical soft-pion emission ampli-
tude B∗ → Bπ in the chiral limit, which defines gB∗Bπ.
A theoretically consistent comparison between these two
couplings can provide a quantitative indication of the de-
gree to which notions of heavy-quark symmetry may be
applied in the charm sector.

gD∗Dπ ĝD gB∗Bπ ĝB

This work 15.8+2.1
−1.0 0.53+0.07

−0.03 30.0+3.2
−1.4 0.37+0.04

−0.02

CLEO [1] 17.9 ± 1.9 0.61 ± 0.06

LQCD98
0 [4] 0.42 ± 0.09

LQCD02
0 [5] 18.8 +2.5

−3.0 0.67 +0.09
−0.10

LQCD08
2 [6] 0.52 ± 0.03

LQCD09
2 [7] 20 ± 2 0.71 ± 0.07

LQCD09
2 [8] 0.44 +0.08

−0.03

SR00 [9] 11 ± 3 0.36 ± 0.10 22 ± 7 0.27 ± 0.09

SR01 [10] 14 ± 1.5 0.47 ± 0.05 42.5 ± 2.6 0.52 ± 0.03

SR06 [11] 17.5 ± 1.5 0.59 ± 0.05 44.7 ± 1.0 0.55 ± 0.01

DQM02 [12] 18 ± 3 0.61 ± 0.10 32 ± 5 0.40 ± 0.06

TABLE I. Calculated values of H∗

→ Hπ couplings com-
pared with experiment and other estimates. For the lattice-
QCD results: the subscript indicates the number of dynam-
ical light-fermions employed in the computation; the valence
c-quark is treated directly but its dynamics is quenched in all
simulations; and the B-meson simulations treat the heavy-
quark as static. NB. Where useful, we have combined errors
in quadrature in order to simplify presentation. Experimen-
tally [3] (in GeV): mD0 = 1.865, mD∗+ = 2.010, mB0 = 5.280,
mB∗ = 5.325, mπ+ = 0.1396, fπ+ = 0.1307.

Selected results for gH∗Hπ and the associated value of

ĝH :=
gH∗Hπ

2
√

mHmH∗

fπ (2)

are listed in Table I. As we explain below, no entirely ab
initio approach to such decays is available. This might
explain the convergence of modern theory for gD∗Dπ in
the presence of an experimental result but the disagree-
ment over gB∗Bπ, which is kinematically forbidden.

Present-day simulations of lattice-regularized QCD
treat the valence c-quark directly as a propagating mode
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but its dynamics is quenched, whereas the b-quark is con-
sidered as static. Beyond statistical, there are errors
associated with chiral extrapolation, discretization and
perturbative renormalization of the currents involved. It
is apparent from Table I that results obtained within this
approach exhibit a significant difference between ĝD and
ĝB. This is probably because c-quark physics is not well-
approximated by the heavy-quark limit and hence related
observables contain significant ΛQCD/mc corrections.

QCD sum-rules, too, have been used to estimate
gH∗Hπ . In advance of the CLEO measurement, there
were numerous results, which differed amongst them-
selves by as much as a factor of two; and all of which
were more than 25% below the experimental value deter-
mined subsequently [9]. The value obtained in this ap-
proach depends heavily on the functional forms used for
extrapolation to the mesons’ on-shell momenta from the
domains upon which the calculations are actually valid
[10]. Based on Ref. [10], loop corrections in D-meson ef-
fective field theory have been used to constrain extrapo-
lation of the D∗Dπ coupling to physical momenta [11].

The simultaneous computation of both couplings has
been completed in a dispersive quark model [12]. How-
ever, this approach makes no qualitative distinction be-
tween light- and heavy-quarks. Hence it cannot ve-
raciously describe dynamical chiral symmetry breaking
(DCSB), which makes problematic its treatment of the
structure and interactions of pions.

Symmetry-preserving models built upon predictions of
QCD’s Dyson-Schwinger equations (DSEs) [13–15] pro-
vide a sound framework for examining heavy-meson ob-
servables [16–19]. Such studies describe quark propaga-
tion by dressed Schwinger functions. This has a big im-
pact on light-quark characteristics [15]. Constrained by
experimental and theoretical heavy-light-meson informa-
tion available at the time, Ref. [18] obtained gD∗Dπ = 11,
ĝD = 0.37 and gB∗Bπ = 23, ĝB = 0.29. These values com-
pare well with a representative average of theoretical esti-
mates then available; viz., gD∗Dπ = 12±4, gB∗Bπ = 25±7
[20]. However, gD∗Dπ = 11 is not consistent with the
subsequent CLEO measurement [1]. Many advances in
experiment and theory have lately been made. We there-
fore reassess the DSE study [18], implement improve-
ments detailed in Ref. [19] and add more; namely, a more
realistic representation of heavy-light mesons, which in-
cludes an improved understanding of approximations to
their Bethe-Salpeter amplitudes and an expression of the
probable difference in size between the vector and pseu-
doscalar heavy-light mesons.

Framework and tools. At leading-order in a system-
atic, nonperturbative, symmetry-preserving DSE trunca-
tion scheme [21, 22], the H∗ → Hπ decay amplitude is
given by

gH∗Hπ ǫ
λ · q = trCD

∫

d4k

(2π)4
ǫ

λ · ΓH∗(k; p1)SQ(kQ)

× Γ̄H(k;−p2)Sf (k′

f )Γ̄π(k;−q)Sf (kf ) , (3)

where: the trace is over color and spinor indices; kQ =

k + w1p1

H∗(p1)

k − w2p1

d̄

H(p2)

h

k + w1p1 − p2

π(q)

FIG. 1. (Color online) Pictorial representation of Eq. (3), our
impulse approximation to the H∗

→ Hπ decay: solid lines

– dressed-quark propagators [Eqs. (9), (10), (12)]; and filled

ellipses – meson Bethe-Salpeter amplitudes [Eqs. (13) – (15)].

k + w1p1, k′

f = k + w1p1 − p2, kf = k − w2p1, and the
relative-momentum partitioning parameters satisfy w1 +
w2 = 1; ǫ

λ
µ describes the vector-meson polarization; and

S and Γ, described below, are dressed-quark propagators
and meson Bethe-Salpeter amplitudes, respectively. The
approximation represented by Fig. 1 has been widely used
successfully [13, 14, 23–25]. It is reasonable to expect
that corrections associated with final-state interactions
are small owing to the large c-quark mass.

Along with the radiative-pion couplings, we simulta-
neously calculate the H∗- and H-meson leptonic decay
constants, which are determined via [18, 26, 27]:

PµfH = trCD

∫

d4k

(2π)4
γ5γµ χH(k; P ) , (4)

MH∗fH∗ =
1

3
trCD

∫

d4k

(2π)4
γµ χµH∗(k; P ) , (5)

where χ(k; P ) = Sf1(k +w1P )Γ(k; P )Sf2(k−w2P ). The
Bethe-Salpeter amplitudes are canonically normalized;
i.e.,

2 Pµ =

[

∂

∂Kµ

Π(P, K)

]P 2=−m2
0−

K=P

, (6)

Π(P, K) = trCD

∫

d4k

(2π)4
Γ̄0−(k;−P )Sf1(k + w1K)

× Γ0−(k; P )Sf2(k − w2K) , (7)

with an analogous expression for the H∗.
The dressed-quark propagator has the general form

S(p) = −iγ ·p σV (p2)+σS(p2) = 1/[iγ ·p A(p2)+B(p2)],
(8)

for any quark flavor, and can be obtained from QCD’s
gap equation [13]. In connection with light-quarks, it
is a longstanding prediction of DSE studies that both
the wave function renormalization, Z(p2) = 1/A(p2),
and dressed-quark mass, M(p2) = B(p2)/A(p2), receive
strong momentum-dependent corrections at infrared mo-
menta: Z(p2) is suppressed and M(p2) enhanced. These
features are an expression of DCSB and, plausibly, of
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confinement.1 The enhancement of M(p2) is central to
the appearance of a constituent-quark mass-scale and
an existential prerequisite for Goldstone modes. These
DSE predictions are confirmed in numerical simulations
of lattice-QCD [28].

The impact of this infrared dressing on hadron phe-
nomena has long been emphasized [23] and, while nu-
merical solutions of the quark DSE are now readily ob-
tained, the utility of an algebraic form for S(p) when
calculations require the evaluation of multi-dimensional
integrals is self-evident. An efficacious parametrization,
which exhibits the features described above, has been
used extensively; e.g., [18, 19, 29, 30]. It is expressed via

σ̄S(x) = 2 m̄F(2(x + m̄2))

+F(b1x)F(b3x) [b0 + b2F(ǫx)] , (9)

σ̄V (x) =
1

x + m̄2

[

1 −F(2(x + m̄2))
]

, (10)

with x = p2/λ2, m̄ = m/λ, F(x) = [1 − exp(−x)]/x,
σ̄S(x) = λσS(p2) and σ̄V (x) = λ2 σV (p2). The param-
eter values were fixed in Ref. [18] by requiring a least-
squares fit to a wide range of light- and heavy-meson
observables, and take the values:2

f m̄f bf
0 bf

1 bf
2 bf

3

u = d 0.00948 0.131 2.94 0.733 0.185
. (11)

The mass-scale λ = 0.566 GeV, with which value the
current-quark mass is md = 5.4 MeV. In addition one
obtains the following Euclidean constituent-quark mass,
defined as M̂2 = {s|s + M2(s) = 0}: M̂d = 0.36 GeV.

As noted elsewhere [31, 32], studies which do not
or cannot implement light-quark dressing in this QCD-
consistent manner, invariably encounter problems be-
cause of the need to employ rather large constituent-
quark masses and the associated poles in the light-quark
propagators. This translates into considerable model-
sensitivity in the results for any heavy-light form factors,
such as B- to light-meson transition form factors [33].

Whilst the impact of DCSB on light-quark propagators
is significant, it is less so for heavier quarks. This is plain
in Fig. 1 of Ref. [18]. It can also be seen by considering
the renormalization-point-invariant ratio ςf := σf/ME

f ,

where σf is a constituent-quark σ-term [14]. This ratio
measures the effect of explicit chiral symmetry break-
ing on the dressed- quark mass-function compared with
the sum of the effects of explicit and dynamical chiral
symmetry breaking. Calculation reveals [14] ςd = 0.02,
ςs = 0.23, ςc = 0.65, ςb = 0.8, results which are read-
ily understood. Naturally, ςf vanishes in the chiral limit

1 Equations (9), (10) represent S(p) as an entire function. This
entails the absence of a Lehmann representation, which is a suf-
ficient condition for confinement [15].

2 ǫ = 10−4 in Eq. (9) acts only to decouple the large- and
intermediate-p2 domains [23].

and must be small for light-quarks because the magni-
tude of their constituent-mass owes primarily to DCSB.
For heavy-quarks, ςf approaches unity because explicit
chiral symmetry breaking becomes the dominant source
of their mass. We therefore use a constituent-quark-like
propagator for c- and b-quarks; viz.,

SQ(k) =
1

iγ · k + M̂Q

, Q = c, b, (12)

where [18]: M̂c = 1.32 GeV, M̂b = 4.65 GeV.
The meson Bethe-Salpeter amplitudes, which appear

in Fig. 1 and are consistent with the generalized impulse
approximation, are properly obtained from an improved-
ladder Bethe-Salpeter equation [13]. The solution of this
equation requires a simultaneous solution of the quark
DSE. However, since we have already chosen to sim-
plify the calculations by parametrizing S(p), we follow
Ref. [18] and also employ that expedient with Γ. The
axial-vector Ward-Takahashi identity and DCSB have
an enormous impact on the structure and properties
of light pseudoscalar mesons. Indeed, the quark-level
Goldberger-Treiman relations derived in Ref. [26] moti-
vate and support the following efficacious parametriza-
tion of the pion’s Bethe-Salpeter amplitude:

Γπ(k; P ) = iγ5

√
2

fπ

Bπ(k2) , (13)

where Bπ := Bu|bu

0→bπ

0
is obtained from Eqs. (8) –

(10) through the replacement bu
0 → bπ

0 = 0.204 [18].
Equation (13) expresses an intimate connection between
the leading covariant in a pseudoscalar meson’s Bethe-
Salpeter amplitude and the scalar piece of the dressed-
quark self-energy [26].

Whilst the renormalization-group-improved rainbow-
ladder DSE kernel is appropriate for the study of mesons
constituted from equal-mass constituents [13, 35], this is
not so for heavy-light mesons. In such systems cancela-
tions, which largely mask the effect of dressing the quark-
gluon vertices, are blocked by the dressed-propagator
asymmetry; e.g., a recent analysis [36] obtained a fair de-
scription of D- and B-meson masses but underestimated
their leptonic decay constants by 30-50%. (The approach
introduced in Ref. [37] might be the advance needed
to make progress with heavy-light systems.) Moreover,
as we have already chosen to simplify the calculations
by parametrizing S(p) and Γπ, it is rational to fol-
low Refs. [18, 19] and employ that expedient, too, with
ΓH∗,H :

ΓH(k; P ) = iγ5

exp(−k2/ω2
H)

NH

, (14)

ǫ
λ · ΓH∗(k; P ) = ǫ

λ · γ exp(−k2/ω2
H∗)

NH∗

. (15)

The normalization, NH(∗) , is fixed by Eqs. (6) and (7).
Herein, however, we depart from Refs. [18, 19] and do
not assume heavy-quark symmetry to be realized exactly;
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namely, we eschew the spin-independent Ansatz and fit
each of the parameters ωH and ωH∗ to their respective
leptonic decay constants, either known from experiment
or estimated via lattice-simulations. [NB. Our results
are not materially affected by the pointwise form of the
functions in Eqs. (14), (15).]

Poincaré invariance is a feature of the direct applica-
tion of DSEs to the calculation of hadron properties.
However, that is compromised if one does not retain
the complete structure of hadron bound-state amplitudes
[27]. This applies herein because we use one-covariant
models for the amplitudes. To proceed we must there-
fore specify the relative momenta.

As indicated in Fig. 1, in computing gH∗Hπ : we al-
locate a fraction w1 of the heavy-light-meson’s momen-
tum to the heavy-quark; w2 to the light-quark; and
momentum-conservation specifies the remaining momen-
tum. An analogous procedure is followed for the lep-
tonic decays and normalization, Eqs. (4) – (7). The
relative-momentum partitioning parameter is defined via
a center-of-mass prescription; viz.,

wh
1 =

M̂h

M̂h + M̂d

, (16)

which yields wc
1 = 0.79, wb

1 = 0.93. In addition, we
interpret the amplitudes Γ in Eqs. (13) – (15) as the
zeroth Chebyshev moment of the leading-covariant in
the relevant meson’s Bethe-Salpeter amplitude. We em-
phasize that any sensitivity to a definition of the rel-
ative momenta is an artifact owing to our simplifica-
tions. Every study that fails to retain the full struc-
ture of the Bethe-Salpeter amplitude shares this compli-
cation, which is never encountered in complete studies;
e.g., Refs. [27, 35, 36].

Results. In Ref. [18] it was noted that it is a poor
approximation to assume heavy-quark symmetry for c-
quark systems because corrections can be as large as a
factor of two in semileptonic c → d transitions. This is
also seen in Ref. [19], wherein the assumption ωD∗ = ωD

yields fD∗ − fD = 321 − 223 = 98 MeV, whereas lattice-
QCD combined with experiment suggests a smaller differ-
ence: 39± 29 MeV. In relation to b-quark mesons, whilst
ωB∗ = ωB is more likely to be a good approximation,
it cannot be exact and hence it is worth exploring the
impact of relaxing this constraint.

We therefore have four parameters: ωD, ωD∗ , ωB and
ωB∗ , which we determine via a least-squares fit to the
leptonic decay constants [in MeV]: fD = 205.8± 8.9 [38];
fD∗ = 245 ± 20 [39]; fB = 229+51

−48 [40]; fB∗ = 196+46
−24

[39], using Eqs. (4) and (5). A perfect fit is possible, and
is obtained with [in GeV]:

ωD = 1.26 ± 0.10 , ωD∗ = 1.21 ± 0.14 ,

ωB = 2.26 +0.76
−0.68 , ωB∗ = 1.58 +0.52

−0.27 .
(17)

It is notable that, in contrast to Ref. [19], the
width parameters are all consistent with intuition:

8 10 12 14 16 18 20 22

CLEO [1]
This work
LQCD [8]
QCDSR [10]
QCDSR [11]
QCDSR [12]
DQM [13]

FIG. 2. (Color online) Dimensionless coupling gD∗Dπ: com-
parison between experiment and recent estimates, with their
associated errors added in quadrature. (See Legend and Ta-
ble I for details.)

ℓωB
:= 1/ωB = 0.09 fm < ℓω∗

B
= 0.12 fm < ℓωD

=
0.157 fm < ℓω∗

D
= 0.163 fm; namely, by this rudimen-

tary gauge, pseudoscalar mesons are smaller than vec-
tor mesons and systems containing a single b-quark are
smaller than those containing a c-quark.

Using the width parameters in Eq. (17), we computed
the strong H∗+H0π+ couplings

gD∗Dπ = lim
q2

→−m2
π

gD∗Dπ(q2) , gB∗Bπ = lim
q2

→0
gB∗Bπ(q2) ,

(18)
where the latter serves as a definition since the process
B∗ → Bπ is kinematically forbidden. We list our results
in Table I and, for gD∗Dπ, present a pictorial comparison
with experiment and other studies in Fig. 2. Importantly,
in our approach one can directly calculate the amplitude
at the fully on-shell point and with the physical light-
quark current-mass: no extrapolations are necessary.

There are two obvious sources of uncertainty in our re-
sults for gH∗Hπ . The errors in the values of the leptonic
decay constants translate into the uncertainties quoted
on the width parameters in Eq. (17) and produce a range
of values for gH∗Hπ . In addition, a change of ±20% in

wc,b
2 gives variations in gD∗Dπ and gB∗Bπ of ∼ 10% and

∼ 5%, respectively. We treat these variations as inde-
pendent uncertainties on each coupling and add them in
quadrature to produce the errors quoted in Table I.

Our results are significantly different to those re-
ported in Ref. [18] because, as noted above, there are two
material differences between this calculation and that.
Namely, we allow: ωD∗ 6= ωD and ωB∗ 6= ωB; and the
light-quark to carry a fraction of the H∗-meson’s mo-
mentum. In connection with gB∗Bπ, since the b-quark is
genuinely heavy and should therefore carry most of the
B∗-meson’s momentum, the improvement arises primar-
ily because ωB∗ 6= ωB. On the other hand, the c-quark
is neither light nor truly heavy and thus gD∗Dπ is quite
sensitive to the amount of the D∗-meson’s momentum
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carried by the light-quark. If we require wc
2 = 0, as in

Ref. [18], then one finds gD∗Dπ < 13, even allowing for
ωD∗ 6= ωD. A less important factor is our use of updated
D, D∗, B and B∗ masses. These values influence the nor-
malization constants, Eq. (7), but not to an extent which
requires the effect of experimental mass uncertainties to
be included in our error estimate for gH∗Hπ .

Summary and Conclusions. We presented a cal-
culation of gD∗Dπ and gB∗Bπ based upon QCD’s Dyson-
Schwinger equations (DSEs). By implementing a more
realistic representation of heavy-light mesons; e.g., al-
lowing the light-quark in the heavy-light-meson to carry
some of the meson’s momentum and for a difference be-
tween the sizes of pseudoscalar and vector mesons, our
analysis improves significantly upon earlier DSE-based
studies. Furthermore, we step beyond other models be-
cause, by expressing confinement and dynamical chiral
symmetry breaking (DCSB) in a manner compatible with
the predictions of QCD’s DSEs, our approach incorpo-
rates a consistent, direct and simultaneous description
of light- and heavy-quarks and the states they may con-
stitute. Finally, even with respect to modern numerical
simulations of lattice-QCD, our approach has merits; e.g.,

direct access to the chiral limit, a veracious expression of
DCSB and the reliable treatment of light-quarks, and a
dynamical treatment of all quarks.

Quantitatively, our study links the leptonic decay con-
stants of heavy-light-mesons and their radiative-pion de-
cays. This connection provides a natural explanation of
the experimental value for gD∗Dπ and a prediction for
the putative universal strong coupling, ĝ, between heavy-
light-vector and -pseudoscalar mesons. In this connec-
tion our results emphasize that when the c-quark is a
system’s heaviest constituent, ΛQCD/mc-corrections are
not under good control. One should be mindful of this
when estimating, e.g., the kinematically forbidden cou-
plings between D- and light-vector-mesons that are used
in phenomenological models of charmonium production.

Acknowledgments. B. El-Bennich acknowledges the
hospitality of staff at the Bogoliubov Laboratory of The-
oretical Physics where this work was initiated. Work sup-
ported by: Fundação de Amparo à Pesquisa do Estado
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