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An interpretation of the ridge phenomenon found in pp collisions at 7 TeV is given in terms of
enhancement of soft partons due to energy loss of semihard jets. A description of ridge formation
in nuclear collisions can directly be extended to pp collisions, since hydrodynamics is not used,
and azimuthal anisotropy is generated by semihard scattering. The observed ridge structure is
then understood as a manifestation of soft-soft transverse correlation induced by semihard partons
without long-range longitudinal correlation. Both the pT and multiplicity dependencies are well
reproduced. Some predictions are made about other observables.

PACS numbers:

I. INTRODUCTION

The observation of ridge structure in two-particle correlation in pp collisions at 7 TeV by the CMS Collaboration
at Large Hadron Collider (LHC) [1] has opened up the question of whether it has a similar origin as that already
found at Relativistic Heavy-Ion Collider (RHIC) in Au-Au collisions at 0.2 TeV [2–6]. A great deal is known about
the ridge in heavy-ion collisions, since various experiments have studied two-particle (with or without trigger) and
three-particle correlations. The dominant theme is that the ridge exhibits the effect of high or intermediate-pT jets on
a dense medium. If the phenomenon seen at LHC reveals similar features upon further investigation, it would imply
that soft partons of high density can be created in pp collisions and can affect the passage of hard partons through
them. If not, a new mechanism needs to be found. Various theoretical speculations have been advanced with varying
degrees of attention to the specifics of the CMS data [7–9]. In this article we propose a model that is an extension
of our past interpretation of the ridge phenomena in the RHIC data, but is particularly suitable for pp collisions at
LHC, since the dynamical origin is jet production rather than hydrodynamics. We have a simple formula that can
reproduce the CMS data quantitatively with the use of two parameters that can clearly describe the physics involved.

The most direct approach to the study of ridges is to consider only events selected by triggers with ptrig
T in an

intermediate pT range, as first reported by Putschke [3, 10]. The dependence of the ridge yield on centrality in
nuclear collisions indicates that the ridge is formed when there is a jet in a dense medium. Having an exponential
behavior in passoc

T at values less than ptrig
T suggests that the ridge particles are related to the soft partons, but they

have an inverse slope larger than that of the inclusive distribution, implying an enhancement effect of the jet [3, 11]. If
triggers are not used as in the study of autocorrelation, ridges are also observed at |∆η| > 1 in central collisions [2, 6].
For pp collisions at LHC we cannot presume the existence of a dense medium of partons, which is a possibility we
leave open. However, we can and shall assume that ridge formation is due to high- or intermediate-pT jets, whether
or not the jets are detected by triggers. Our goal is to study the properties of correlation generated by semihard jets.
It should be noted that there are models in which the ridge phenomenon can occur without jets, such as in Refs.
[9, 12–15].

In the hadronization model based on Refs. [11, 16] the ridge component (due to the recombination of thermal
partons) manifests the effect of the semihard parton on the medium. The soft partons have exponential dependence
on the transverse momentum kT , whose inverse slope is T in the absence of semihard partons. For the ridge component
the inverse slope is increased to T ′ > T due to the enhancement of the thermal motion of the soft partons caused by
the energy loss of the semihard parton that passes through the medium in the vicinity [17]. That is soft-semihard
correlation, which we shall apply to even pp collisions where the notion of thermal partons may be questionable. It is
known empirically that there exists an exponential peak at small pT at LHC [18–20]; that is sufficient for us to refer
to the underlying partons as soft, the recombination of which gives the low-pT hadrons.

In Sec. II we give a short summary of our past work on ridges with emphasis on the distinction between transverse
and longitudinal correlations. It is significant to note that the data on ridge reported by PHOBOS [4] do not imply
the existence of long-range longitudinal correlation upon closer examination. In Sec. III the transverse correlation is
extended to |∆η| > 1 appropriate for CMS measurement. Quantitative analysis of the ridge yield in pp collisions is
then carried out in Sec. IV. In the last section we give the conclusion along with some predictions.



2

II. TRANSVERSE AND LONGITUDINAL CORRELATIONS

Longitudinal correlation has been the primary concern of most theoretical studies on ridges [12–14, 21–23]. The
observation by PHOBOS [4] that |∆η| can be as large as 4 has led to the conclusion that there is empirical evidence
for long-range correlation, which is an inherent property of flux-tube models. There are, however, two other aspects
about the ridge structure that one should also consider in addition to the large-∆η aspect of the PHOBOS data. One
is A: the property of ridge in the small ∆η limit, and the other is B: the question of how large should ∆η be in order
for the correlation to be regarded as long-range. We comment on them in the context of what have been observed at
RHIC as a prelude to our discussion about the ridge found at LHC.
A. Transverse Correlation. At midrapidity dihadron correlations in the azimuthal angles have been studied in detail at
RHIC; in particular, the dependence of the azimuthal correlation on the trigger angle φs relative to the reaction plane
reveals features that are important about ridge formation [24–27]. Any model on the origin of ridges at |∆η| > 1 should
contain properties that are consistent with the azimuthal behavior at |∆η| < 1, since all observed ridge structure have
common behavior in ∆φ throughout the ∆η range. The ridge yield as a function of φs has been studied in a model
where the angular correlation between the trigger and local flow direction is limited [28]. It is found that a Gaussian
width of σ ∼ 0.34 can reproduce the data [24, 26, 27]. The model suggests that thermal activities of the soft partons
in the vicinity of the trajectory of the semihard parton (i.e., within a cone of angular range of σ) are enhanced by the
energy loss of the latter to the medium. Those enhanced thermal partons hadronize into the ridge particles that rise
above the background. That is transverse correlation between the soft and semihard partons, the only type that can
be studied when |∆η| is restricted to < 1. After finding satisfactory explanation of the azimuthal correlation in the
data this way for triggered events, the natural question to follow is how such correlation influences the single-particle
distribution when triggers are not used. Semihard partons can be pervasive if their kT is around 3 GeV/c or lower.
It is found that the semihard-soft transverse correlation can give rise to a significant azimuthal anisotropy [17, 29],
and that v2(pT , Npart) can be quantitatively reproduced as a consequence of the ridge effect in inclusive distribution
[30]. This will become a key input in our discussion below where the nature of the transverse correlation will be made
explicit.
B. Longitudinal Correlation. At first sight of the PHOBOS data on the ∆η range of the ridge distribution [4], anyone
having some familiarity with multiparticle production is likely to regard |η2 − η1| ∼ 4 as indicative of long-range
correlation between the trigger at η1 and ridge particle at η2. However, to quantify the notion of correlation range
it is important to compare it to the η-range of the single-particle distribution. A recent study shows that the ridge
distribution in ∆η, denoted by dN ch

R /d∆η, can be related empirically to the single-particle distribution, dN ch/dη, by
using the two relevant sets of PHOBOS data only [4, 31] without any theoretical input [32]. That phenomenological
relationship

dN ch
R

d∆η
∝

∫ 1.5

0

dη1
dN ch

dη2

∣

∣

∣

∣

η2=η1+∆η

(1)

involves a shift in η2 of the charge hadron and an integration over the trigger η1, and shows that the range of correlation
in ∆η is no more than the range of the inclusive distribution apart from the smearing of the trigger acceptance,
which lengthens the ∆η range by 1.5. The implication is that there is no long-range longitudinal correlation. Any
successful model of ridge formation should be able to explain the simple relationship shown in Eq. (1). In Ref. [32]
an interpretation of that relationship is given in terms of transverse correlation that we discuss in more detail in the
next section.

III. RIDGE AT |∆η| > 1

The phenomenological verification of Eq. (1) directs one’s attention to the origin of ridge formation without intrinsic
longitudinal correlation at large ∆η. From all that have been learned experimentally about the ridges, there is no
indication that such structure can be found in the absence of any jet. Even in autocorrelation studies where no
triggers are used, ridges are found in the kinematical region where minijets are detected [2]. Our approach is therefore
to start with jet-induced transverse correlation at |∆η| < 1 and to extend it to larger η separation, in contrast to
other studies where long-range longitudinal correlation at low pT exists without jets and then a large-pT parton is
introduced to define the ∆η range. The approach we adopt was actually advocated even before the discovery of ridge
was reported by Putschke [10] at a time when the phenomenon was regarded as the pedestal lying under the jet peak
[33, 34]. Now, with more data and model analyses of the transverse correlation at hand, the extension to large ∆η
can be done with more definiteness.

To be more specific, let us consider the ridge found by CMS at LHC, where only charged particles with |η| < 2.4 and
pT < 4 GeV/c are used in the analysis. In that acceptance region the hadron pL is less than 22 GeV/c, so Feynman
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xF is < 6.3 × 10−3 at
√

s = 7 TeV, and the corresponding partons that recombine have even lower x values. Those
are soft wee partons deep in the sea, whose correlations can be strongly influenced by fluctuations. Suppose that a
semihard scattering occurs in a pp collision at 7 TeV and sends a parton to the η ≈ 0 region with a parton momentum
kT in the 5-10 GeV/c range, which we shall regard as intermediate at LHC. Whatever the medium effect on it may
be, it can lead to a cluster of hadrons with limited range in η and φ [1]. It cannot directly cause the production
of an associated particle at η = 2.4 since the pL of that particle can exceed 20 GeV/c, hence forbidden by energy
conservation. Any particle produced outside the jet peak carries longitudinal momentum that is driven by the initial
partons (right- or left-movers) of the incident protons. In the conventional parton model it is assumed that there
are no significant longitudinal constraints on those initial partons [35, 36]. We add, however, that their transverse
momentum distribution can be affected by the semihard scattering before they recede from one another. At early time
the right- and left-movers need not be arranged as in Hubble expansion, i.e., a right-moving parton may be located
on the left side of the region of uncertainty, and vice-versa; hence, those initial partons can be sensitive the passage of
the semi-hard parton across their ways. The quantum fluctuations that generate the transverse kT distribution of the
forward (or backward) moving partons may be enhanced by the energy loss of the semihard parton. More specifically,
let exp(−kT /T ) represent the kT distribution in the absence of semihard scattering; then our assertion is that the
distribution changes to exp(−kT /T ′) with T ′ > T in the presence of semihard scattering, provided that the affected
partons are in the vicinity of the semihard parton trajectory in the transverse plane, i.e., ∆φ is limited on the near
side. Furthermore, such a change occurs for all partons independent of their longitudinal momenta up to x ∼ 10−2,
say. This enhancement is in essence the transverse correlation discussed in Sec. II.A, but now the semihard parton
at η ≈ 0 induces a change in the transverse distribution of the soft partons from T to T ′ at all η in the limited region
|η| < 2.4 under study.

The CMS experiment does not identify any particle as the trigger, so the pseudorapidity of the semihard parton
cannot be specified. All charged particles accepted in the window |η| < 2.4 are used for the analysis of the two-
particle correlation. Thus the correlated particles may be at η1,2 = ±2.4, resulting in |∆η| = |η1 − η2| as large as
4.8. Hereafter, η1 and η2 do not refer to trigger and associated particles, respectively, but to any two particles whose
correlation is measured by CMS. The semihard parton may be anywhere in between ±2.4. The huge jet peak observed
in Ref. [1] corresponds to particles that are produced by thermal-shower recombination and therefore must be close
in η to the semihard parton, but the peak distribution in ∆η does not indicate where it is. The flat ridge distribution
that lies below the jet peak only reveals the response of the medium in terms of enhanced thermal partons without
any information about the locations of the shower partons. The ridge particles have transverse distribution that is
characterized by the same inverse slope T ′ as for the enhanced soft partons. That is a property of recombination
[16, 30]. No explicit longitudinal correlation has been put in.

In order to describe pion and proton production in the same formalism of recombination of thermal partons at
low pT , it is shown that the replacement of pT by ET , where E(pT ) = (m2

h + p2
T )1/2 − mh, h = π or p, is sufficient

to account for the mass effect and that the inclusive ridge distribution can reproduce vh
2 (ET , Npart) at low ET [30].

Being the difference between the enhanced distribution and the background, that ridge distribution is

R(pT ) = R0(e
−ET /T ′ − e−ET /T ) (2)

for nuclear collisions. It is the soft response to the semihard partons. We will apply the same description to pp
collision below. The difference ∆T = T ′ − T is a measure of the magnitude of the influence by semihard scattering
without which there is no ridge.

IV. RIDGE YIELD IN pp COLLISION AT LHC

We now focus on the ridge yield measured by CMS. Let the single-particle distribution be ρ(pT , η) = dN/pT dηdpT ,
which will be abbreviated by ρ1(i) for the ith particle, so that two-particle distribution is denoted by ρ2(1, 2). Define
two-particle correlation by C2(1, 2) = ρ2(1, 2) − ρ1(1)ρ1(2). The measure for ridge used by CMS is

RCMS(1, 2) = NC2(1, 2)/ρ1(1)ρ1(2), (3)

where N is the number of charged particles in a multiplicity bin. In more detail the quantities in Eq. (3) are averaged
over bins of pT , so Ref. [1] exhibits

RCMS(pT , ∆η, ∆φ) = N

∏

i=1,2

[

∫

[pT ] dpTipTi

]

C2(1, 2)

∏

i=1,2

[

∫

[pT ]
dpTipTiρ1(i)

] (4)
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where [pT ] denotes the range of integration from pT −0.5 to pT +0.5 (GeV/c). A ridge then appears in the 2D ∆η-∆φ
distribution. A projection of it onto ∆φ is done by integrating |∆η| over the range 2.0 to 4.8. The associated yield in
the ridge is then determined by integrating over a range of ∆φ around 0 where RCMS is above its minimum, i.e.,

YR(pT , N) =

∫

R

d∆φ

∫ ±4.8

±2

d∆η RCMS(pT , ∆η, ∆φ). (5)

This measure of the ridge yield is given for 4 bins of pT and N each [1]. The data points are shown in Fig. 1.
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FIG. 1: Ridge yield vs multiplicity N for 4 bins of pT . Data are from Ref. [1], and lines are from model calculation.

What is remarkable about the data is that YR is very small for both 0.1 < pT < 1 and 3 < pT < 4 GeV/c, but
jumps up by nearly an order of magnitude in the 1 < pT < 2 GeV/c bin. It is very unusual in high-energy physics
where the pT behavior is so drastically different on the two sides of 1 GeV/c. The increase of YR with N is not
surprising, especially if one has in mind that jets are connected with the ridge phenomenon.

Our explanation of the pT and N dependencies of YR is very simple, based on what has already been discussed. We
assume no longitudinal correlation, as in [32], which can explain the PHOBOS data [4]. Thus the only contribution
to C2(1, 2) is from transverse correlation that gives rise to the ridge distribution given in Eq. (2) as an η-independent
response to the semihard jet at any ηjet. We therefore write

C2(1, 2) = R(1)R(2). (6)

This is a very unconventional description of correlation that we are proposing, since one usually expects an unfac-
torizable form for correlation. The two particles at η1 and η2 are correlated because their pT distributions are both
enhanced by the jet. R(1) and R(2) are independent responses, so they enter into C2(1, 2) as factorized products.
We emphasize that Eq. (6) is a correlation between two soft particles, each of which being correlated transversely to
the unobserved jet as described by Eq. (2). An analogy for this is the adage that rising tide raises all boats — even
though, we add, there are no intrinsic horizontal correlations among the boats. Putting Eq. (6) in (4) and (5) we
obtain

YR(pT , N) = cN

2
∏

i=1

[∫

[pT ]
dpTipTiR(pTi, N)

∫

[pT ] dpTipTiρ1(pTi)

]

, (7)

where c is an adjustable parameter that depends on the experiment. This is an explicit formula that enables us to do
phenomenological analysis.

The single-particle distribution for |η| < 2.4 at 7 TeV is given by CMS in the Tsallis parametrization [19]

ρ1(pT ) = ρ0(1 +
ET

nT0
)−n (8)

with T0 = 0.145 GeV/c and n = 6.6. The average pT found from the above fit is 〈pT 〉 = 0.545 GeV/c.
We use Eq. (8) in (7) and fit the data in Fig. 1 with two parameters (apart from normalization), which we choose

to be T and β, where

∆T

T
= β lnN, ∆T = T ′ − T. (9)
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This dependence on N is reasonable, since at higher N there is higher probability for jet production and hence larger
∆T , which is in the exponent in Eq. (2). The result of the fit is shown by the solid lines in Fig. 1 for

T = 0.294 GeV and β = 0.0175. (10)

Evidently, our model reproduces the data very well for all pT and N bins. YR(pT , N) is small at small pT because
R(pT ) in Eq. (2) is suppressed as pT → 0. The reason for that is discussed below. YR(pT , N) is also small at large
pT ; that is due both to the exponential suppression of R(pT ) and the power-law decrease of ρ1(pT ) at high pT . The
increase with N that is most pronounced in the 1 < pT < 2 GeV/c bin, where R(pT ) is maximum, is clearly due to
the enhancement of T when jet production is more likely in accordance to Eq. (9). At N = 100, ∆T/T is about 8%,
which is slightly lower than that observed in nuclear collisions at RHIC where T = 355± 6 MeV/c and T ′ = 416± 22

MeV/c for 4 < ptrig
T < 6 GeV/c [3].

The reason why R(pT ) must vanish as pT → 0 is related to azimuthal anisotropy in nuclear collisions. We have
advocated the view that the ridge component before being averaged over φ contains all the φ dependence of the
inclusive distribution [17, 37]. In that approach which has been worked out in more detail recently in [30], it is
shown without using hydrodynamics that v2 (referred to as elliptic flow in hydro description) can be reproduced
at all centralities, provided that R(pT ) → 0 at vanishing pT because v2(pT ) → 0. Since the azimuthal behavior
is determined primarily by the initial geometry of the collision system [17, 29, 37], such an approach may well be
applicable to pp collisions, for which the validity of hydrodynamics used for nuclear collisions is doubtful. The origin
of the φ dependence in the geometrical approach is the anisotropy of semihard emission when the initial configuration
is almond-shaped. Similarly, it is reasonable to consider the initial configuration in pp collisions also, when the impact
parameter is non-zero, and we expect significant φ anisotropy in the produced particles.

The Tsallis distribution in Eq. (8) has the property of a power-law behavior at large pT , but an exponential behavior,
exp(−ET /T0), at low pT . It is then of interest to note the difference between the values of T0 and T , the latter being
twice larger than the former. It may appear as being inconsistent; however, the average 〈pT 〉 of exp(−ET /T ) is 0.6
GeV/c, only 10% higher than that for Eq. (8). Thus different parametrizations of the ET distribution give essentially
the same physical quantity. Eq. (8) is a fit of the CMS data [19] that emphasizes the p−n

T behavior at high pT , while
Eq. (2) is a theoretical model of the ridge distribution at low pT .

V. CONCLUSION

We have given an interpretation of the ridge phenomenon in pp collisions in terms of soft partons on which very
little is known. By drawing on what we do know about the soft partons in nuclear collisions, we are led to the
implication that a dense medium can be created even in pp collisions at 7 TeV. The primary input in our approach
to explaining the observed ridge yield is the assertion that the correlation is of the factorizable form R(1)R(2), where
R(i) is the response of the ith soft particle to the unobserved jet, so that two independent transverse correlations of
the semihard-soft type can lead to a net soft-soft correlation in C2(1, 2).

The success of our approach applied to pp collisions at 7 TeV suggests that (a) the medium can be responsive to
semihard jets, (b) there can be azimuthal anisotropy, (c) the pT spectrum in the ridge is harder than that of the
inclusive, and (d) that hadronization is by recombination. None of the above rely on the validity of hydrodynamics
for pp collisions, or the existence of intrinsic long-range longitudinal correlation, and all of them can be checked by
further experimental measurements. The last item cannot be checked directly, but one of its consequences is that the
p/π ratio can be large, which is a property of all recombination/coalescence models [39]. We expect the p/π ratio in
the ridge to increase with pT at low pT in pp collisions at 7 TeV, although the rate of that increase depends on the
soft parton density, on which we have insufficient knowledge to predict. A ratio larger than 0.2 cannot be explained
by fragmentation. Thus the experimental determination of the p/π ratio in the ridge will be very interesting and
should provide further insight on the structure and origin of the ridge.

The basic issue that the observation of a ridge by CMS has opened up is whether a system of high density soft
partons can be created in pp collisions. The system may be too small for the applicability of hydrodynamics, but
azimuthal anisotropy can nevertheless exist for small systems in non-central collisions, so consequences on φ asymmetry
should be measurable, as the ridge structure on the near side demonstrates. Our consideration of ridge formation as
being generated by semihard jets applies to both hadronic and nuclear collisions. Thus we go further to suggest that
even in single-particle distribution in pp collisions at LHC there may exist a ridge component that contains all the φ
dependence, as found in Au-Au collisions [17, 29, 30].

This work was supported in part, by the U. S. Department of Energy under Grant No. DE-FG02-96ER40972 and
by the National Natural Science Foundation of China under Grant No. 10775057 and 11075061.
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