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Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy
density, entropy density, and pressure as well as the azimuthal and space-time rapidity components
of the shear tensor are uniform in the direction transversal to the reaction plane, we derive a set
of schematic equations from the Isreal-Stewart causal viscous hydrodynamics. These equations are
then used to describe the evolution dynamics of relativistic heavy-ion collisions by taking the shear
viscosity to entropy density ratio of 1/4π for the initial quark-gluon plasma (QGP) phase and of
ten times this value for the later hadron-gas (HG) phase. Using the production rate evaluated
with particle distributions that take into account the viscous effect, we study dilepton production
in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that
although the dilepton invariant mass spectra from the two approaches are similar, the transverse
momentum spectra are significantly enhanced at high transverse momenta by the viscous effect.
We also study the transverse momentum dependence of dileptons produced from QGP for a fixed
transverse mass which is essentially absent in the ideal hydrodynamics, and find that this so-called
transverse mass scaling is violated in the viscous hydrodynamics, particularly at high transverse
momenta.

PACS numbers:

I. INTRODUCTION

The ideal hydrodynamics without shear viscosity has
been quite successful in describing the anisotropic flow of
particles in heavy-ion collisions at the Relativistic Heavy
Ion Collider (RHIC) [1, 2]. Since the viscosity is inversely
proportional to the scattering cross section between con-
stituent particles, the applicability of the ideal hydro-
dynamics at RHIC provides a strong evidence that the
quark-gluon plasma formed at RHIC is a strongly coupled
one (sQGP). The study based on the Ads/CFT gauge-
gravity duality has, however, suggested that the shear
viscosity to entropy density in the QGP cannot be smaller
than 1/4π. Small viscosities of QGP have also been ob-
tained in studies based on either the quasi-particle model
that fits the equation of state from the lattice gauge cal-
culations [4] or the pQCD including both gluon elastic
and radiative scatterings that gives a good description of
measured elliptic flows at RHIC [5]. On the other hand,
the viscosity of hadronic matter has been found to be
much larger in theoretical studies [6–8], about an order
of magnitude larger than the lower bound predicted by
the Ads/CFT gauge-gravity duality.

Including a small viscosity in the hydrodynamics has
led to an improved description of measured anisotropic
flows of hadrons at large transverse momenta [9]. A
nonzero viscosity also affects particle momentum distri-
butions in the hot dense matter produced in heavy-ion
collisions, resulting in a deviation from thermal equilib-
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rium during its expansion, and this is particularly so for
particles of high transverse momenta. Moreover, the vis-
cosity can change the evolution dynamics of produced
hot matter in relativistic heavy-ion collisions. Because of
the heat generated by viscosity, cooling of the hot mat-
ter becomes slower, leading to a slower decrease of its
temperature and thus a larger transversal but a slower
longitudinal expansion compared to the case of the ideal
hydrodynamics [10].

The viscous effect can further affect dilepton produc-
tion in relativistic heavy-ion collisions, which has been
suggested as a possible tool to probe the properties of
quark-gluon plasma [11–16] as well as those of hot dense
hadronic matter [17–23]. As shown in Ref. [24], the vis-
cosity modifies significantly the transverse momentum
spectrum of dileptons produced in relativistic heavy-ion
collisions, although not much the invariance mass spec-
trum. This study was based on the non-causal Navier-
Stokes viscous hydrodynamics, which is known to have
instabilities in numerical simulations [25], and only in-
cluded the viscous effect on dilepton production due to
the leading order correction from modified particle distri-
butions. In the present paper, we extend the study by us-
ing the causal Israel-Stewart viscous hydrodynamics and
including also the effect of the second-order correction
from modified particle distributions on dilepton produc-
tion. To simplify calculations, we assume that in the hot
dense matter produced in relativistic heavy-ion collisions,
the energy density, entropy density, and pressure as well
as the azimuthal and space-time rapidity components of
the shear tensor are uniform in the direction transversal
to the reaction plane and derive a set of schematic equa-
tions as in Refs. [30, 31] for the ideal hydrodynamics.
Results from our study will be relevant to the physics of
dilepton transverse momentum spectra [26–28] that have
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been intensively discussed during the past few years fol-
lowing the publication of experimental data from heavy
ion collisions at the SPS by the NA60 Collaboration [29].

This paper is organized as follows: In Sec. II, general
causal viscous hydrodynamic equations are introduced.
These equations are simplified in Sec. III by assuming
that all thermal quantities as well as the azimuthal and
space-time rapidity components of the shear tensor are
uniform in the transversal direction. In Sec. IV, the
quasi-particle model of massive quarks and gluons for
the quark-gluon plasma and the resonance gas model for
the hadronic matter are introduced for describing the
equation of state of the hot dense matter produced in
relativistic heavy-ion collisions. The schematic viscous
hydrodynamic equations are then solved in Sec. V for
heavy ion collisions at RHIC energies to show the viscous
effect on the evolution dynamics and the distribution of
particle transverse momentum spectra. In Sec. VI, dilep-
ton production is studied in the viscous hydrodynamics
to find out the effect of viscosity on the dilepton invariant
mass and transverse momentum spectra. Finally, discus-
sions and summary are given in Sec. VII. Details on
the method used to solve the viscous hydrodynamics is
given in Appendix A, while those on the derivation of
the dilepton production rate using the modified particle
distributions from the viscous hydrodynamics is given in
Appendix B.

II. THE VISCOUS HYDRODYNAMICS

In hydrodynamic description of relativistic heavy-ion
collisions, the hot dense matter is characterized by its
net charge currents and energy-momentum tensor. Since
particles at midrapidities are largely produced ones, their
net charge currents are essentially zero and can be safely
neglected. In the Landau and Lifshitz frame, which as-
sumes that the four-vector velocity uµ = γ(1, ~v) is par-
allel to the energy flow and the heat conductivity is
zero [32], the energy-momentum tensor can be written
as [33]

T µν = (e + p)uµuν − pgµν + πµν , (1)

where e and p are the energy density and pressure, re-
spectively, and πµν is the traceless symmetric shear ten-
sor. At midrapidity particles follow essentially the boost-
invariant expansion along the longitudinal direction [34],
i.e., the longitudinal flow velocity is equal to z/t, if it
starts at z = t = 0. Furthermore, the transverse flow ve-
locity is independent of the azimuthal angle φ in central
heavy-ion collisions. In the (τ, r, φ, η) coordinate system
defined by

τ =
√

t2 − z2, η =
1

2
ln

t + z

t − z
,

r =
√

x2 + y2, φ = tan−1(y/x), (2)

only T ττ , T rr, T τr, T ηη and T φφ components of the
energy-momentum tensor, and πττ , πrr, πτr, πηη and

πφφ of the shear tensor are non-zero in central heavy-ion
collisions. For the energy-momentum tensor, they are
given by

T ττ = (e + Pr)u
2
τ − Pr

T τr = (e + Pr)uτur

T rr = (e + Pr)u
2
r + Pr (3)

where Pr ≡ p− τ2πηη − r2πφφ is the effective radial pres-
sure. The azimuthal and space-time components of the
shear tensor r2πφφ and τ2πηη are the only independent
ones as the others can be related to them according to

πτr = vrπ
rr

πττ = vrπ
τr = v2

rπrr

πrr = −γ2
r (r2πφφ + τ2πηη), (4)

where the first two equations are derived from uµπµν = 0
and the last one from the traceless property πµ

µ = 0. The

shear tensor components πφφ and πηη are boost-invariant
in the radial direction and satisfy following simplified
Israel-Stewart equations: [33]

(∂τ + vr∂r)π
ηη = −

1

γrτπ

[

πηη −
2ηs

τ2

(

θ

3
−

γr

τ

)]

, (5)

(∂τ + vr∂r)π
φφ = −

1

γrτπ

[

πφφ −
2ηs

r2

(

θ

3
−

γrvr

r

)]

, (6)

where

θ = ∂ · u =
1

τ
∂τ (τγr) +

1

r
∂r(rvrγr)

with ηs and τπ being the shear viscosity and the relax-
ation time for the particle distributions, respectively.

From the energy-momentum conservation conditions
∂µT µν = 0, we then obtain following viscous hydrody-
namic equations for the produced fire-cylinder:

1

τ
∂τ (τT ττ ) +

1

r
∂r(rT

rτ ) = −
1

τ
(p + τ2πηη), (7)

1

τ
∂τ (τT τr) +

1

r
∂r(rT

rr) =
1

r
(p + r2πφφ). (8)

Furthermore, the condition uµ(T νµ
;ν ) = 0, where the flow

velocity (uτ , ur, uφ, uη) = (γ/ coshη, γvr, 0, 0) reduces to

(γr, γrvr, 0, 0) with γr = 1/
√

1 − v2
r in midrapidities,

leads to

1

τ
∂τ (τsγr) +

1

r
∂r(rsγrvr) = −

1

T

[

uτ

τ
τ2πηη

+
ur

r
r2πφφ − (∂τuτ + ∂rur)(r

2πφφ + τ2πηη)

]

, (9)

where s = (e + p)/T is the local entropy density in the
hot dense matter. Eq. (9) shows that a nonzero shear
tensor affects the entropy density of the matter.
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III. A SCHEMATIC VISCOUS

HYDRODYNAMICS

If all thermal quantities like energy density, temper-
ature, entropy density, and pressure as well as the az-
imuthal and space-time components of the shear tensor
are uniform along the transverse direction in the hot
dense matter produced in heavy-ion collisions, we can
then simplify the causal viscous hydrodynamic equations
by integrating them over the transverse area [30, 31].
Specifically, we integrate Eqs. (7) and (9) as well as
Eqs. (5) and (6) multiplied by γrτ

2 and γrr
2, respec-

tively, over the transverse area. In terms of πη
η = τ2πηη

and πη
η = τ2πηη, this leads to

∂τ (Aτ〈T ττ 〉) = −(p + πη
η )A, (10)

T

τ
∂τ (Aτs〈γr〉) = −A

〈

γrvr

r

〉

πφ
φ −

A〈γr〉

τ
πη

η

+

{

∂τ (A〈γr〉) −
γRṘ

R
A

}

(πφ
φ + πη

η ), (11)

∂τ (A〈γr〉π
η
η ) −

{

∂τ (A〈γr〉) + 2
A〈γr〉

τ

}

πη
η

= −
A

τπ

[

πη
η − 2ηs

{

〈θ〉

3
−

〈γr〉

τ

}]

, (12)

∂τ (A〈γr〉 πφ
φ) −

{

∂τ (A〈γr〉) + 2A

〈

γrvr

r

〉}

πφ
φ

= −
A

τπ

[

πφ
φ − 2ηs

{

〈θ〉

3
−

〈

γrvr

r

〉}]

, (13)

where A = πR2 with R being the transverse radius of
the uniform matter and 〈· · ·〉 denotes average over the
transverse area. Assuming that the radial flow velocity
is a linear function of the radial distance from the center,
i.e., γrvr = γRṘ(r/R), where Ṙ = ∂R/∂τ and γR =

1/
√

1 − Ṙ2, we then have

〈γ2
r 〉 = 1 +

γ2
RṘ2

2

〈γ2
r v2

r〉 =
γ2

RṘ2

2

〈γr〉 =
2

3γ2
RṘ2

(

γ3
R − 1

)

〈

γrvr

r

〉

=
γRṘ

R
. (14)

Since the energy density e and pressure p are related by
the equation of state of the matter through its temper-
ature T , Eqs.(10)-(13) are thus four simultaneous equa-

tions for T , Ṙ, πφ
φ and πη

η .

IV. THE EQUATION OF STATE

For the equation of state of QGP, we use the quasi-
particle model of Ref. [35], which assumes that the QGP
is composed of noninteractig massive quarks and gluons.
In terms of the temperature T of QGP, their masses are
given by

m2
g =

(

Nc

3
+

Nf

6

)

g2(T )T 2

2
,

m2
q =

g2(T )T 2

3
, (15)

where the strong coupling constant g(T ) is given by

g2(T ) =
48π2

(11Nc − 2Nf ) lnF 2(T, Tc, Λ)
,

F (T, Tc, Λ) =
18

18.4e(T/Tc)2/2 + 1

T

Tc

Tc

Λ
,

with Tc = 170 MeV, Tc/Λ = 1.05, Nc = 3 and Nf =
3. The pressure, energy density, and entropy density of
QGP are then given, respectively, by

p(T ) =
∑

i

gi

6π2

∫ ∞

0

dkfi(T )
k4

Ei
− B(T )

≡ p0(T ) − B(T )

e(T ) =
∑

i

gi

2π2

∫ ∞

0

dkk2fi(T )Ei + B(T )

s(T ) =
∑

i

gi

2π2T

∫ ∞

0

dkfi(T )
4
3k2 + m2

i (T )

Ei
, (16)

with mi(T ) and gi being, respectively, the thermal mass
and degeneracy factor of parton species i. The parton
distribution function is denoted by

fi(T ) =
1

eEi/T ± 1
(17)

with the plus and minus signs in the denominator for
quarks and gluons, respectively, and Ei =

√

m2
i + k2.

For the bag pressure B(T ), it is determined from the
relation s = ∂p/∂T such that

B(T ) = B0 +
∑

i

∫ T

Tc

dT
∂p0

∂m2
i (T )

∂m2
i (T )

∂T
, (18)

where B0 is the bag pressure at Tc and is taken to be 0.095
times the energy density at this temperature in order to
keep the pressure continuous at Tc. A similar value of
B0 has been used in Ref. [36] for the case of nozero but
small baryon chemical potential.

For the HG phase, we use the resonance gas model that
includes both stable hadrons and their resonances up to
1.5 GeV for mesons and 2.0 GeV for baryons. Its pres-
sure, energy density and entropy density can be similarly
evaluated as those in Eq. (16) for the QGP, except that
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the bag constant is not present and the hadron masses
are taken to be their values in free space.

Because of the larger entropy density in QGP than
in HG at Tc, a mixed phase of constant temperature Tc

is introduced during the transition between these two
phases of matter. In terms of the fraction f of HG in the
mixed phase, the entropy of the mixed phase is

s = fsH + (1 − f)sQ, (19)

where sH and sQ are, respectively, the entropy density of
HG and QGP at Tc. Similar relations hold for the energy
density and pressure.

We refer the reader to Ref. [37] for details of the above
equations of state for QGP and HG.

For the shear viscosity, we take its ratio with respect
to the entropy density to be 1/4π for QGP as given by
the Ads/CFT gauge-gravity duality [3] and ten times this
value for HG as determined from the hadronic transport
model [7]. For the relaxation time τπ in Eqs. (5) and (6),
we use the assumption η/τπ = sT/3 [10] for both QGP
and HG.

V. HEAVY-ION COLLISION DYNAMICS IN

THE SCHEMATIC VISCOUS HYDRODYNAMICS

The schematic viscous hydrodynamic equations, Eqs.
(10)-(13), can be solved by dividing the time into in-
finitesimal intervals as shown in Appendix A. In the
following, we show results obtained from the schematic
viscous hydrodynamics with the initial conditions of τ0 =
0.6 fm/c for the thermalization time, T0 = 319 MeV for
the initial temperature, and V0 = 0.01 c for the initial
radial flow velocity [37], which are appropriate for heavy-
ion collisions at the top RHIC energy. In the top panel
of Fig. 1, the time evolution of the temperature T of the
fire-cylinder is given by the solid line. It is seen that the
QGP, mixed, and HG phases last for about 5.1 fm/c, 1.4
fm/c, and 10.0 fm/c, respectively, which are similar to
those in the ideal hydrodynamics with zero viscosities in
both QGP and HG as shown by the dashed line in the
top panel of Fig. 1. The latter is obtained with a higher
initial temperature of T0 = 338 MeV in order to ensure
the same total entropy per unit midrapidity at thermal
freeze out as that in the viscous hydrodynamics. For
the time evolutions of the radial flow velocity VR = Ṙ
and transverse radius R of the fire-cylinder in viscous
hydrodynamics, they are shown by solid lines in the mid-
dle and bottom panels of Fig. 1, respectively, and both
are slightly above those in ideal hydrodynamics (dashed
lines).

Fig. 2(a) shows the change of entropy per unit rapidity
in time. Because of non-zero viscosity, the entropy per
unit rapidity (solid line) increase with time in the vis-
cous hydrodynamics, reaching a value at thermal freeze
out which is similar to that in the ideal hydrodynamics
(dashed line). Fig. 2(b) shows the time evolution of the

shear tensor components πφ
φ (solid line) and πη

η (dashed
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FIG. 1: Time evolutions of temperature T (top panel), radial
flow velocity dR/dτ (middle panel), and transverse radius R
(bottom panel) of the fire-cyclinder in viscous (solid lines) and
ideal (dashed lines) hydrodynamics.

line). The two are seen to satisfy approximately the re-

lation πφ
φ ≈ −πη

η/2. Using this result in πφ
φ +πη

η = −πrr,
which is due to traceless of the shear tensor, leads to

πφ
φ ≈ πrr. Since the two are equal in the absence of radial

flow [38], our results thus indicate that the assumption

of uniform πφ
φ and πη

η in central heavy-ion collisions is
reasonable.

For comparisons, we also show in Fig. 2(b) the shear

tensor components πφ
φ (dash-dotted line) and πη

η (dotted

line) obtained in the Navier-Stokes limit, i.e.,

πη
η = 2ηs

[

1

3τA
∂τ (τA〈γr〉) −

〈γr〉

τ

]

, (20)

πφ
φ = 2ηs

[

1

3τA
∂τ (τA〈γr〉) −

〈

γrvr

r

〉]

. (21)

It is seen that they only differ appreciably from those in
the Israel-Stewart causal viscous hydrodynamics at early
times.
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FIG. 2: (a) Entropy per unit rapidity in viscous (solid line)
and ideal (dashed line) hydrodynamics. (b) Shear tensor com-

ponents πφ

φ (solid line) and πη
η (dashed line) in the viscous

hydrodynamics. Dash-dotted and dotted lines are πφ

φ and πη
η

in the Navier-Stokes limit.

Although the evolution dynamics in the viscous hy-
drodynamics does not differ very much from that in the
ideal hydrodynamics, the transverse momentum spectra
of particles can differ significantly. According to Ref. [40],
a microscopical model for the particle interactions in the
medium is needed to determine the momentum depen-
dence of the viscous correction to the particle momentum
distributions. In the present study, we use the one from
Ref. [39], i.e.,

f(k) = f0(k) + δf(k) = f0(k)

[

1 +
pµpνπµν

2T 2(e + p)

]

, (22)

where f0(k) is the equilibrium thermal distribution of
particles in the ideal hydrodynamics and δf(k) is the vis-
cous correction. This quadratic momentum-dependent
viscous correction corresponds to a relaxation time of the
particle momentum distributions that is linearly propor-
tional to the particle momentum [40].

In Fig. 3, we show the quark (left panel), pion (mid-
dle panel), and ρ meson (right panel) transverse mo-
mentum spectra in local frame from the viscous (solid
lines) and ideal (dashed lines) hydrodynamics at tem-
peratures of 300, 150, and 120 MeV, respectively. It is
seen that the transverse momentum spectra from the vis-
cous hydrodynamics are enhanced at high transverse mo-
menta compared to those from the ideal hydrodynamics.
The inverse slope parameters of the quark, pion, and ρ
meson transverse momentum spectra are 340, 170, and
130 MeV, respectively, which are significantly larger than
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FIG. 3: Quark (left panel), pion (middle panel), and ρ me-
son (right panel) transverse momentum spectra from the vis-
cous (solid lines) and ideal (dashed lines) hydrodynamics at
T=300, 150, and 120 MeV, respectively.

those in the ideal hydrodynamics. The total particle den-
sity is, however, not much affected by the viscosity. These
results can be understood as follows. In the (τ, r, φ, η)
coordinate system, the factor pµpνπµν can be written
as [41],

pµpνπµν = m2
T cosh2(y − η)πττ + p2

T cos2(φp − φ)πrr

+p2
T sin2(φp − φ)πφ

φ + m2
T sinh2(y − η)πη

η

−2mT pT cosh(y − η) cos(φp − φ)πτr, (23)

where mT =
√

m2 + p2
T with pT being the transverse

momentum, and y and φp are the energy-momentum ra-
pidity and the azimuthal angle of the momentum, respec-
tively. In the absence of radial flow, Eq. (23) reduces to

pµpνπµν = p2
T πrr + p2

Lπη
η . (24)

Since πrr is positive, the particle transverse momentum
distribution is thus enhanced at high pT . On the other
hand, the particle number density is not much affected by
the viscosity as all components of the shear tensor have
similar magnitude due to its traceless property. We note
that the viscous correction is larger for ρ mesons than for
quarks and pions as a result of their larger masses. Fur-
thermore, the ρ meson transverse momentum spectrum
at low transverse momenta can be negative as the shear
tensor component πη

η , which contribution is more impor-
tant at low transverse momenta, is negative. In Fig. 3,
the part of ρ meson transverse momentum spectrum that
is negative is not shown.
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If the relaxation time for the particle momentum dis-
tribution is independent of momentum, then the viscous
correction to the particle momentum distribution would
depend linearly on the particle momentum [40]. In this
case, the viscous effect would be reduced, bringing the
results from the viscous hydrodynamics closer to those
from the ideal hydrodynamics. In Ref. [40], this effect
has been explicitly demonstrated for the particle elliptic
flow in non-central heavy ion collisions.

VI. DILEPTON PRODUCTION IN THE

VISCOUS HYDRODYNAMICS

A. In-medium dilepton emission

The dilepton production rate from the scattering of
two particles in hot dense matter is given by

dN

d4x
=

∫

d3
k1

(2π)3
d3

k2

(2π)3
f(k1)f(k2)vrelσ, (25)

where k1 and k2 are momenta of the two particles; vrel

is their relative velocity; and σ is the cross section for
dilepton production from their scattering. For QGP, we
consider the dominant quark-antiquark annihilation pro-
cess for dilepton production, and its cross section is

σ(M2) =
4πα2

3Nc

∑

i=u,d,s

e2
i

e2

1 + 2m2
q/M

2

M2
√

1 − 4m2
q/M

2
, (26)

where mq is the quark mass, ei is the charge of quark
species i, and M2 = (k1 + k2)

2 is the squared invariant
mass. For HG, the dominant pion-pion annihilation is
considered, and the cross section is

σ(M2) =
4πα2

3

|F (M2)|2

M2

√

1 −
4m2

π

M2
, (27)

with the electromagnetic form factor of pion

|Fπ(M2)|2 =
∑

i=ρ,ρ′,ρ′′

Nim
4
i

(m2
i − M2)2 + m2

i Γ
2
i

, (28)

where ρ, ρ′, and ρ′′ denote ρ(770), ρ′(1450), and
ρ′′(1700), respectively with their respective width of
Γρ =153 MeV, Γρ′ =237 MeV, and Γρ′′ =235 MeV and
respective strength Nρ = 1, Nρ′ = 8.02 × 10−3, and
Nρ′′ = 5.93 × 10−3 [13]. We have used in the above
the vacuum widths of ρ mesons for dilepton emission to
illustrate the viscous effect. In nature, there is strong ev-
idence for in-medium modification of ρ mesons (see, e.g,
Ref. [29] for a summary.). Expressing the relative veloc-
ity as vrel = |k1/E1 −k2/E2|, Eq. (25) can be written in
Lorentz-invariant form as

dN

d4x
=

1

(2π)6

∫

d3
k1

E1

d3
k1

E2
f(k1)f(k2)

×
M2

2

√

1 −
4m2

i

M2
σ(M2), (29)

where mi is the mass of colliding particles. Changing
variables into Pµ = k1µ +k2µ and kµ = (k1µ −k2µ)/2, we
can rewrite the Lorentz-invariant phase space as

d3
k1

E1

d3
k2

E2
=

d3
Pd3

k

E1E2
=

d3
P

E

Ed3
k

E1E2
, (30)

with E = E1 + E2. Because d3
P/E is Lorentz invariant,

Ed3
k/(E1E2) also should be Lorentz invariant. Boost-

ing to the center-of-mass frame of the two particles, we
obtain

d3
P

E

Ed3
k

E1E2
=

d3
P

E

E′d3
k
′

E′
1E

′
2

=
d3

P

E

4d3
k
′

M
, (31)

where k
′ is the momentum, and E′

1, E′
2 and E′ are ener-

gies of particles 1 and 2, and their total energy in their
center-of-mass frame, respectively.

Using Eq.(22), the product of particle distribution
functions becomes

f(k1)f(k2) = f0(k1)f0(k2) + f0(k1)δf(k2)

+ f0(k2)δf(k1) + δf(k1)δf(k2)

= g1g2e
−P ·u/T

[

1 +
kµ
2 kν

2πµν

2T 2(e + p)
+

kµ
1 kν

1πµν

2T 2(e + p)

+
kµ
1 kν

1kσ
2 kλ

2 πµνπσλ

4T 4(e + p)2

]

, (32)

where g1 and g2 are degeneracies of particle 1 and 2,
respectively. Substituting Eqs. (31) and (32) into Eq.
(29), we obtain

dN

d4x
=

2g1g2

(2π)6

∫

d3
P

E

∫

d3
k
′e−P ·u/T

[

1 +
kµ′

kν′

π
′

µν

T 2(e + p)

+
kµ′

kν′

kσ′′

kλ′′

π′
µνπ′

σλ

4T 4(e + p)2

]

M

√

1 −
4m2

i

M2
σ(M2), (33)

where kµ′

= (k′
0,

~k′), kµ′′

= (k′
0,−

~k′) and π
′

µν are
momenta of particles 1 and 2, and the shear tensor
in their center of mass frame, respectively. By using
d4x = τdτrdrdηdφ and d3

P/E = πdydP 2
T and integrat-

ing over the solid angle of k
′ in the right hand side of

Eq. (33), the differential yield of dileptons in heavy-ion
collisions is then given by

dN

dydM2dP 2
T

=
g1g2

4(2π)3
XM2σ(M2)

×

∫

dττ

∫

drr

[

I0(α)K0(β)

+
M2(1 + X/3)

4T 2(e + p)

(i+j=0,2)
∑

i,j=0,1,2

AijIi(α)Kj(β)

+
M4

64T 4(e + p)2

(i+j=0,2,4)
∑

i,j=0,1,2,3,4

BijIi(α)Kj(β)

]

. (34)
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In the above, X = 1 − 4m2
i /M

2, and Ii(α) and Kj(β)
are modified Bessel functions with α = PT sinh ρ/T and
β = MT cosh ρ/T , where ρ = tanh−1 vr. The coefficients
Aij , Bij and details on the derivation of above expression
are given in Appendix B.

B. Dilepton emission from vacuum decay of ρ
mesons

Although the contribution from the vacuum decay of ρ
mesons at thermal freeze out to the total dilpeton yield
is small compared with that from the in-medium decay,
which is included in the present study via the pion-pion
annihilation, it can become important for dileptons of
high transverse momenta as a result of the large radial
flow at thermal freeze out [28]. This contribution to the
differential yield of dilepton is given by [28]

dN

dydM2d2pT
=

1

Γρ

dΓρ→e+e−

dM2

dNρ

dyd2PT
, (35)

where

dΓρ→e+e−

dM2
= Γρ→e+e−

1

π

mρΓρ

(M2 − m2
ρ)

2 + (mρΓρ)2
, (36)

with Γρ→e+e− = 7.04 keV, is the differential decay width
of ρ meson to dileptons and

dNρ

dydM2dP 2
T

=
3τMT

2π2

∫ R

0

rdr

[

I0(α)K1(β)

+
1

8T 2(e + p)

(i+j=1,3)
∑

i=0,1,2

CijIi(α)Kj(β)

]

(37)

is the differential yield of ρ mesons at freeze out. In
the above, R, T , α, and β are all evaluated at thermal
freeze out. Details on the derivation of Eq.(37) and the
coefficients Cij are given in Appendix C.

In Fig. 4, we show by solid lines the transverse mo-
mentum (pT ) spectrum of dileptons from the viscous hy-
drodynamics for various dilepton invariant masses. Com-
pared with those from the ideal hydrodynamics given by
the first term of Eq.(34) and shown by dashed lines, the
dilepton spectra in the viscous hydrodynamics are en-
hanced at high pT as in Ref. [24]. The viscous effect on
the dilepton transverse momentum spectra is thus simi-
lar to that on the particle transverse momentum spectra
as a result of enhanced density of quarks in QGP or pi-
ons in HG at high pT . Since dileptons of small invariant
masses are mainly produced from pion-pion annihilations
in HG, in which the viscosity is large, the viscous effect
is thus particularly large for dileptons of small invariant
masses. Too large a viscous correction makes, however,
the results from the viscous hydrodynamics unreliable.
In fact, negative values can appear for the dilepton yield
from pion-pion annihilation in integrating Eq. (34) over
the radial variable r if the dilepton invariant mass is large.

0 1 2 3 4 5
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 viscous
 ideal

M=2.5 GeV
M=1.5 GeV

p
T
 (GeV)

 

 

dN
/d

yd
M

2 dp
2 T (G

eV
-4
)

M=0.5 GeV

FIG. 4: (color online) Transverse momentum spectra of dilep-
tons of various invariant masses in viscous (solid lines) and
ideal (dashed lines) hydrodynamics.

In this case, we have set the negative value to zero. This
has, however, a negligible effect on the final result as the
contribution of pion-pion annihilations in HG to dilep-
tons of large invariant masses is insignificant compared
to that from quark-antiquark annihilations in QGP.

0.5 1.0 1.5 2.0 2.5 3.0
10-6

10-5

10-4

10-3

10-2

10-1

 viscous
 ideal

 

 

dN
/d

yd
M

 (G
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-1
)
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FIG. 5: Dilepton spectra from viscous (solid line) and ideal
hydrodynamics (dashed line).

Figure 5 shows the dilepton invariant mass spectra
from the viscous (solid line) and the ideal (dashed line)
hydrodynamics. It is seen that less high mass dileptons
are produced in viscous hydrodynamics than in ideal hy-
drodynamics as a result of the lower initial temperature.

In Ref. [13], it has been shown in the ideal hydrody-
namics that the differential yield of thermal dileptons
with a fixed value of transverse mass MT is essentially



8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10-7

10-6

10-5

10-4

10-3

10-2

 viscous
 ideal

 

 

dN
/d

yd
p T2  (G

eV
-2
)

pT (GeV)

FIG. 6: Transverse momentum spectra of dileptons from QGP
with transverse mass MT =1, 1.5, 2, 2.5 and 3 GeV from top
to bottom. Dashed and solid lines are, respectively, from ideal
and viscous hydrodynamics.

independent of their transverse momenta if they are pro-
duced from QGP [13], although this so-called MT -scaling
is violated for dileptons produced from HG. In Fig. 6, we
show by dashed lines the transverse momentum spectra
of dileptons with MT =1, 1.5, 2, 2.5 and 3 GeV from
QGP in the ideal hydrodynamics. It is seen that the MT

scaling still holds approximately, although we have used
massive quarks and gluons in our study while massless
ones were used in Ref. [13]. The results from the viscous
hydrodynamics are shown by solid lines and it shows that
including viscosity leads to a violation of the MT scaling
of dileptons from QGP at high PT .

VII. DISCUSSIONS AND SUMMARY

We have derived a set of schematic equations from
the causal viscous hydrodynamics of Israel-Stewart for
central relativistic heavy-ion collisions by assuming that
not only the energy density, pressure and entropy den-
sity are uniform in the produced fire-cylinder but also
the azimuthal and space-time rapidity components of the
shear tensor. Solving these equations using the massive
quasi-particle model for the equation of state of QGP
and the resonance gas model for that of HG, we have
found that the shear viscosity slightly delays the cool-
ing of produced hot matter and enhances somewhat its

transverse expansion. It also increases significantly the
particle distributions at high pT , compared with those
in the ideal hydrodynamics. Using this model, we have
investigated thermal dilepton production in relativistic
heavy-ion collisions by including contributions from the
dominant quark-antiquark, pion-pion annihilations, and
ρ meson decay after freeze-out. Because of the viscous
effect, the dilepton pT spectrum is enhanced at high pT ,
which is similar to those found in Ref. [24] based on the
non-causal Navier-Stokes viscous hydrodynamics and the
first-order viscous correction from the modified particle
transverse momentum distributions. For the invariant
mass spectrum of dileptons, it is found to differ very
little from that in the ideal hydrodynamics. We have
also studied the effect of viscosity on the MT scaling of
thermal dileptons from QGP, i.e., the yield is indepen-
dent of pT for fixed dilepton transverse mass MT , that
has been previously predicted in the ideal hydrodynam-
ics with massless quarks and gluons, and it is found that
the MT scaling still holds in the ideal hydrodynamics
even if QGP is composed of massive quarks and gluons
as a result of their strong couplings. The MT scaling
of dileptons is, however, broken in the viscous hydrody-
namics due to the enhancement in the number density
of quarks and antiquarks at high pT by the viscous ef-
fect. These results have been obtained by assuming that
the viscous correction to the particle transverse momen-
tum distributions depends on the particle momentum
quadratically. Studies based on microscopic models for
the particle interactions in medium have indicated that
the realistic momentum dependence is weaker than the
quadratic one [40]. The true viscous effects on the dilep-
ton spectra from heavy ion collisions are thus somewhat
smaller than those obtained in the present study.

Acknowledgements

This work was supported in part by the U.S. National
Science Foundation under Grant No. PHY-0758115 and
the Welch Foundation under Grant No. A-1358.

Appendix A: Solving the viscous hydrodynamics

To apply the schematic viscous hydrodynamic equa-
tions, Eqs. (10)-(13), to heavy-ion collisions, we divide
the time into infinitesimal intervals. These equations
then become

〈γ2
r 〉n+1en+1 + 〈γ2

rv2
r 〉n+1

[

pn+1 − (πη
η )n+1 − (πφ

φ)n+1

]
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=
R2

nτn

R2
n+1τn+1

[

〈γ2
r 〉nen +

{

〈γ2
rv2

r〉n −
∆τ

τn

}

pn −

{

〈γ2
rv2

r 〉n +
∆τ

τn

}

(πη
η )n − 〈γ2

rv2
r〉n(πφ

φ)n

]

, (A1)

〈γr〉n+1

[

τn+1

τn
Tnsn+1 − (πφ

φ)n − (πη
η )n

]

=
R2

n

R2
n+1

〈γr〉n

[

Tnsn −

{

1 +
2(γRṘ)n∆τ

〈γr〉nRn

}

(πφ
φ)n −

{

1 +
(γRṘ)n∆τ

〈γr〉nRn
+

∆τ

τn

}

(πη
η )n

]

, (A2)

〈γr〉n+1

[

(πη
η )n+1 − (πη

η )n −
2

3

(

ηs

τπ

)

n

]

=
R2

n∆τ

R2
n+1

[{

2〈γr〉n
τn

−
1

(τπ)n

}

(πη
η )n −

2

3

(

ηs

τπ

)

n

(

1

∆τ
+

2

τn

)

〈γr〉n

]

, (A3)

〈γr〉n+1

[

(πφ
φ)n+1 − (πφ

φ)n −
2

3

(

ηs

τπ

)

n

]

=
R2

n∆τ

R2
n+1

[{

2

〈

γrvr

r

〉

n

−
1

(τπ)n

}

(πφ
φ)n −

2

3

(

ηs

τπ

)

n

{(

1

∆τ
−

1

τn

)

〈γr〉n + 3

〈

γrvr

r

〉

n

}]

, (A4)

where ∆τ = τn+1 − τn with the subscript denoting the
time step and (∂O/∂τ)n = (On+1 − On)/∆τ .

Eqs. (A1)-(A4) are solved by using following relations
between the (n + 1)th and nth time steps in the energy
density, pressure and entropy:

en+1 = en +
∂e

∂T

∣

∣

∣

∣

n

(Tn+1 − Tn),

pn+1 = pn +
∂p

∂T

∣

∣

∣

∣

n

(Tn+1 − Tn),

sn+1 = sn +
∂s

∂T

∣

∣

∣

∣

n

(Tn+1 − Tn), (A5)

where

∂s

∂T
= −

s

T
+

∑

i

gi

2π2T

∫

dk

[

∂fi

∂T

(4/3)k2 + m2
i

Ei

+ fi
(4/3)k2 + ∂m2

i /∂T

Ei

]

∂e

∂T
=

∑

i

gi

2π2

∫

dkk2

[

∂fi

∂T
Ei +

fi

2Ei

∂m2
i

∂T

]

+
∂p0

∂m2
i

∂m2
i

∂T

∂p

∂T
=

∑

i

gi

6π2

∫

dk
k4

Ei

[

∂fi

∂T
−

fi

2E2
i

∂m2
i

∂T

]

−
∂p0

∂m2
i

∂m2
i

∂T
.

Appendix B: Dilpeton production rate with the

viscous correction

In this Appendix, we give the details on the derivation
from Eq. (33) to (34). Keeping the non-vanishing terms
in the integration with respect to k

′ in the right hand
side of Eq. (33) leads to

dN

d4x
=

2g1g2

(2π)6

∫

d3
P

E

∫

d3
k
′M

√

1 −
4m2

i

M2
σ(M2)e−P ·u/T

[

1 +
k′2

0π
′
00 + k′2

1π
′
11 + k′2

2π
′
22 + k′2

3π
′
33

T 2(e + p)

+
1

4T 4(e + p)2

{

k′4
0π

′
00

2
+ k′4

1π
′
11

2
+ k′4

2π
′
22

2
+ k′4

3π
′
33

2

+ 4(−k′2
0k

′2
1π

′
01

2
− k′2

0k
′2
2π

′
02

2
− k′2

0k
′2
3π

′
03

2
+ k′2

1k
′2
2π

′
12

2
+ k′2

2k
′2
3π

′
23

2
+ k′2

3k
′2
1π

′
31

2
)

+2(k′2
0k

′2
1π

′
00π

′
11 + k′2

0k
′2
2π

′
00π

′
22 + k′2

0k
′2
3π

′
00π

′
33 + k′2

1k
′2
2π

′
11π

′
22 + k′2

2k
′2
3π

′
22π

′
33 + k′2

3k
′2
1π

′
33π

′
11)

}]

. (B1)

Splitting the integral d3
k
′ into the radial and angular parts according to

d3
k
′ = k′2dk′dΩ =

M

16

√

1 −
4m2

i

M2
dM2dΩ, (B2)
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and integrating with respect to the solid angle dΩ, we obtain

dN

d4x
=

g1g2

4(2π)5

∫

d3
P

E

∫

dM2XM2σ(M2)e−P ·u/T

[

1 +

(

M2

4

)

π′
00 + (X/3)(π′

11 + π′
22 + π′

33)

T 2(e + p)

+
1

4T 4(e + p)2

(

M2

4

)2{

π′
00

2
+

2X

3

(

π′
00π

′
11 + π′

00π
′
22 + π′

00π
′
33 − 2(π′

01
2

+ π′
02

2
+ π′

03
2
)

)

+
X2

15

(

3(π′
11

2
+ π′

22
2

+ π′
33

2
) + 4(π′

12
2
+ π′

23
2

+ π′
31

2
) + 2(π′

11π
′
22 + π′

22π
′
33 + π′

33π
′
11)

)}]

, (B3)

where X = 1 − 4m2
i /M

2. Using the traceless property of the shear tensor πµ
µ = 0, Eq. (B3) can be rewritten as

dN

dydM2dP 2
T

=
g1g2

8(2π)4
XM2σ(M2)

∫

dττ drr

∫

dη dφ e−P ·u/T

[

1 +
M2(1 + X/3)

4T 2(e + p)
π′

00

+
M4

64T 4(e + p)2

{

π′
00

2
+

2X

3

(

π′
00

2
− 2(π′

01
2

+ π′
02

2
+ π′

03
2
)

)

+
X2

15

(

π′
00

2
+ 2(π′

11
2
+ π′

22
2

+ π′
33

2
) + 4(π′

12
2
+ π′

23
2

+ π′
31

2
)

)}]

. (B4)

The above integrals can be evaluated by transforming
the shear tensor in the center of mass frame π′

µν to the
shear tensor in the fire-cylinder frame πµν through the
Lorentz transformation, i.e.,

π′
µν =

(

aµ0
∂t

∂τ
+ aµ3

∂z

∂τ

)(

aν0
∂t

∂τ
+ aν3

∂z

∂τ

)

πττ

+

(

aµ0
∂t

∂η
+ aµ3

∂z

∂η

)(

aν0
∂t

∂η
+ aν3

∂z

∂η

)

πηη

+

(

aµ1
∂x

∂r
+ aµ2

∂y

∂r

)(

aν1
∂x

∂r
+ aν2

∂y

∂r

)

πrr

+

(

aµ1
∂x

∂φ
+ aµ2

∂y

∂φ

)(

aν1
∂x

∂φ
+ aν2

∂y

∂φ

)

πφφ

+

[(

aµ0
∂t

∂τ
+ aµ3

∂z

∂τ

)(

aν1
∂x

∂r
+ aν2

∂y

∂r

)

+

(

aν0
∂t

∂τ
+ aν3

∂z

∂τ

)(

aµ1
∂x

∂r
+ aµ2

∂y

∂r

)]

πτr

= (aµ0 cosh η + aµ3 sinh η)(aν0 cosh η + aν3 sinh η)πττ

+(aµ0 sinh η + aµ3 cosh η)(aν0 sinh η + aν3 cosh η)τ2πηη

+(aµ1 cosφ + aµ2 sin φ)(aν1 cosφ + aν2 sin φ)πrr

+(aµ1 sin φ − aµ2 cosφ)(aν1 sin φ − aν2 cosφ)r2πφφ

+[(aµ0 cosh η + aµ3 sinh η)(aν1 cosφ + aν2 sin φ)

+(aν0 cosh η + aν3 sinh η)(aµ1 cosφ + aµ2 sin φ)]πτr,

(B5)

where aµν are components of the Lorentz transformation
matrix,

a00 = (MT /M) cosh y

a01 = a10 = −(PT /M) cosφp

a02 = a20 = −(PT /M) sinφp

a03 = a30 = −(MT /M) sinh y

a11 = 1 +
(PT /M)2 cos2 φp

(MT /M) coshy + 1

a22 = 1 +
(PT /M)2 sin2 φp

(MT /M) coshy + 1

a33 = 1 +
(MT /M)2 sinh2 y

(MT /M) coshy + 1

a12 = a21 =
(PT /M)2 cosφp sin φp

(MT /M) coshy + 1

a23 = a32 =
(PT /M) cosφp(MT /M) sinh y

(MT /M) cosh y + 1

a31 = a13 =
(PT /M) sin φp(MT /M) sinh y

(MT /M) cosh y + 1
, (B6)

with η, y, φ and φp being the space-time rapidity,
energy-momentum rapidity, azimuthal angle in configu-
ration space and in momentum space, respectively. It is
straightforward to show that the square brackets in Eq.
(B4) is a function of y − η and φ− φp and leads to mod-
ified Bessel functions after integration over η and φp as
given by Eq.(34), where the coefficients Aij and Bij are

A00 =
x2

2
(πττ − πη

η) +
x2 − 1

2
(πrr + πφ

φ), (B7)

A02 =
x2

2
(πττ + πη

η), (B8)

A11 = −2x
√

x2 − 1 πτr, (B9)

A20 =
x2 − 1

2
(πrr − πφ

φ), (B10)
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B00 =
1

8

[

3x4 − x2(3x2 − 8)
2X

3
+ (9x4 − 16x2 + 16)

X2

15

]

(π2
ττ + πη

η
2)

+
1

8

[

3(x2 − 1)2 − (x2 − 1)(3x2 + 5)
2X

3
+ (9x4 − 2x2 + 9)

X2

15

]

(π2
rr + πφ

φ

2
)

+

[

x2(x2 − 1) − (x4 − x2 + 1)
2X

3
+ (3x4 − 3x2 − 2)

X2

15

]

π2
τr

+
1

4

(

1 −
2X

3
+

X2

5

)[

− x4πττπη
η + (x2 − 1)2πrrπ

φ
φ + 2x2(x2 − 1)(πττ − πη

η)(πrr + πφ
φ)

]

, (B11)

B02 =
x2

2

[

x2 − (x2 − 2)
2X

3
+ (3x2 − 4)

X2

15

]

(π2
ττ − πη

η
2)

+x2

[

x2 − 1 − x2 2X

3
+ (3x2 − 1)

X2

15

]

π2
τr

+
1

2

(

1 −
2X

3
+

X2

5

)

x2(x2 − 1)(πττ + πη
η )(πrr + πφ

φ), (B12)

B11 = x
√

x2 − 1

[

− 3x2 + (3x2 − 4)
2X

3
− (9x2 − 8)

X2

15

]

πτrπττ

+x
√

x2 − 1

[

− 3(x2 − 1) + (3x2 + 1)
2X

3
− (9x2 − 1)

X2

15

]

πτrπrr

+

(

1 −
2X

3
+

X2

5

)

x
√

x2 − 1 [x2πη
η − (x2 − 1)πφ

φ ]πτr, (B13)

B20 =
x2 − 1

2

[

x2 − 1 − (x2 + 2)
2X

3
+ (3x2 + 1)

X2

15

]

(π2
rr − πφ

φ

2
)

+(x2 − 1)

[

x2 − (x2 − 1)
2X

3
+ (3x2 − 2)

X2

15

]

π2
τr

+
1

2

(

1 −
2X

3
+

X2

5

)

x2(x2 − 1)(πττ − πη
η )(πrr − πφ

φ), (B14)

B04 =
1

8

(

1 −
2X

3
+

X2

5

)

x4(πττ + πη
η )2, (B15)

B13 = −

(

1 −
2X

3
+

X2

5

)

x3
√

x2 − 1(πττ + πη
η )πτr, (B16)

B22 =
1

2

(

1 −
2X

3
+

X2

5

)

x2(x2 − 1)

[

2π2
τr + (πττ + πη

η )(πrr − πφ
φ)

]

, (B17)

B31 = −

(

1 −
2X

3
+

X2

5

)

x(x2 − 1)3/2(πrr − πφ
φ)πτr, (B18)

B40 =
1

8

(

1 −
2X

3
+

X2

5

)

(x2 − 1)2(πrr − πφ
φ)2 (B19)

with x = MT /M .

Appendix C: Differential yield of ρ mesons

The differential yield of ρ mesons is given by

dNρ

dyd2PT
=

3

(2π)3

∫

dσ · pf(p) (C1)

with dσ denoting the hypersurface of the fire-cylinder. In
the τ, r, φ, η coordinate system, it can be written as

dNρ

dyd2PT
=

3

(2π)3

∫ R

0

rdr

∫ 2π

0

dφ

∫ ∞

−∞

τdη

× MT cosh(η − y)e−p·u/T

[

1 +
pµpνπµν

2T 2(e + p)

]

. (C2)
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Carrying out the φ and η integrations leads to

dNρ

dyd2PT
=

3τMT

π2

∫ R

0

rdr

[

I0(α)K1(β)

+
1

8T 2(e + p)

(i+j=1,3)
∑

i=0,1,2

CijIi(α)Kj(β)

]

, (C3)

with

C01 = M2
T (3πττ − πη

η ) + 2p2
T (πrr + πφ

φ), (C4)

C03 = M2
T (πττ + πη

η ), (C5)

C10 = −4MT pT πτr, (C6)

C12 = −4MT pT πτr, (C7)

C21 = 2p2
T (πrr − πφ

φ). (C8)

[1] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen
and S. A. Voloshin, Phys. Lett. B 503, 58 (2001)

[2] U. W. Heinz, AIP Conf. Proc. 739, 163 (2005)
[3] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev.

Lett. 94, 111601 (2005)
[4] A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301

(2005)
[5] Z. Xu, C. Greiner and H. Stocker, Phys. Rev. Lett. 101,

082302 (2008)
[6] J. W. Chen and E. Nakano, Phys. Lett. B 647, 371 (2007)
[7] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302

(2009)
[8] S. Pal, Phys. Lett. B 684, 211 (2010)
[9] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,

172301 (2007)
[10] H. Song, arXiv:0908.3656 [nucl-th].
[11] E. L. Feinberg, Nuovo Cim. A 34, 391 (1976).
[12] E. V. Shuryak, Phys. Lett. B 78, 150 (1978) [Sov. J. Nucl.

Phys. 28, 408 (1978)] [Yad. Fiz. 28, 796 (1978)].
[13] M. Asakawa, C. M. Ko and P. Levai, Phys. Rev. Lett.

70, 398 (1993).
[14] C. M. Ko and L. H. Xia, Phys. Rev. Lett. 62, 1595 (1989).
[15] L. H. Xia, C. M. Ko and C. T. Li, Phys. Rev. C 41, 572

(1990).
[16] M. Asakawa and C. M. Ko, Phys. Lett. B 322, 33 (1994)
[17] L. H. Xia, C. M. Ko, L. Xiong and J. Q. Wu, Nucl. Phys.

A 485, 721 (1988).
[18] G. Q. Li, C. M. Ko and G. E. Brown, Phys. Rev. Lett.

75, 4007 (1995)
[19] G. Q. Li and C. M. Ko, Nucl. Phys. A 582, 731 (1995)
[20] G. Q. Li, C. M. Ko and G. E. Brown, Nucl. Phys. A 606,

568 (1996)
[21] W. S. Chung, C. M. Ko and G. Q. Li, Nucl. Phys. A 641,

357 (1998)

[22] R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)
[23] W. Cassing and E. L. Bratkovskaya, Phys. Rept. 308, 65

(1999).
[24] K. Dusling and S. Lin, Nucl. Phys. A 809, 246 (2008)
[25] W. A. Hiscock and L. Lindblom, Annals Phys. 151, 466

(1983).
[26] H. van Hees and R. Rapp, Nucl. Phys. A 806, 339 (2008)
[27] K. Dusling and D. Teaney, Phys. Rev. C 77, 034905

(2008)
[28] K. Dusling and I. Zahed, Phys. Rev. C 80, 014902 (2009)
[29] H.J. Specht for the NA60 Collaboration, arXiv:1011.0615

[nucl-ex].
[30] T. Biro, H. W. Barz, B. Lukacs and J. Zimanyi, Phys.

Rev. C 27, 2695 (1983).
[31] C. M. Ko and L. H. Xia, Phys. Rev. C 38, 179 (1988).
[32] D. H. Rishke, arXiv:nucl-th/9809044.
[33] U. W. Heinz, H. Song and A. K. Chaudhuri, Phys. Rev.

C 73, 034904 (2006)
[34] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[35] P. Levai and U. W. Heinz, Phys. Rev. C 57, 1879 (1998).
[36] T. Song, C. M. Ko, S. H. Lee and J. Xu, arXiv:1008.2730

[hep-ph].
[37] T. Song, W. Park and S. H. Lee, Phys. Rev. C 81, 034914

(2010)
[38] R. J. Fries, B. Muller and A. Schafer, Phys. Rev. C 78,

034913 (2008)
[39] R. Baier, P. Romatschke and U. A. Wiedemann, Phys.

Rev. C 73, 064903 (2006)
[40] K. Dusling, G. D. Moore and D. Teaney, Phys. Rev. C

81, 034907 (2010)
[41] R. Baier and P. Romatschke, Eur. Phys. J. C 51, 677

(2007)


