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Neutron-rich isotopes in the sdpf space with Z ≤ 14 require modifications to derived effective
interactions to agree with experimental data away from stability. A quantitative justification is given
for these modifications due to the weakly bound nature of model space orbits via a procedure using
realistic radial wavefunctions and realistic NN interactions. The long tail of the radial wavefunction
for loosely bound single particle orbits causes a reduction in the size of matrix elements involving
those orbits, most notably for pairing matrix elements, resulting in a more condensed level spacing
in shell model calculations. Example calculations are shown for 36Si and 38Si.

PACS numbers: 21.60.Cs, 21.60.Jz

I. INTRODUCTION

New facilities for rare isotope beams will push the ex-
perimental capabilities of nuclear physics with radioac-
tive beams to more unstable, shorter-lived nuclei. Prop-
erties of these nuclei exhibiting different behavior than
stable nuclei, like the evolution of shell structure, are of
significant interest for the next decades of research. A
new theoretical technique and its behavior for stable and
exotic nuclei has been studied to examine the importance
of refining theoretical approaches for the production of
model space interactions for unstable nuclei.

Much research has been done using renormalization
methods to convert a realistic interaction fit to nucleon-
nucleon (NN) scattering data into an interaction in the
nuclear medium. The goal has been to renormalize the in-
teraction to valence orbits outside of a stable, semi-magic
or doubly magic nucleus treated as a vacuum in further
calculations. A typical example would use 16O as the core
and renormalize the NN interaction into the sd model
space. For such an application, the harmonic oscillator
basis of the form Ψnlml

(~r) = RHO
nl (r) Ylml

(θ,φ) is gen-
erally used, where all the valence orbits are bound. For
more exotic closed-subshell nuclei, loosely bound orbits
often play a role. Loosely bound orbits particularly devi-
ate from the oscillator basis, as they exhibit a “long-tail”
behavior with a larger spread in the radial wavefunctions.
The harmonic oscillator basis is therefore less applicable
further from stability. However, few calculations have
been done with a realistic radial basis for unstable nuclei
with renormalized NN interactions.

Experimental interest in neutron-rich silicon isotopes
and the failure of some shell model Hamiltonians to re-
produce data in the region have led to modifications in
the SDPF-NR interaction [1], which had been the stan-
dard for shell model calculations in the sdpf model space.
The new SDPF-U interaction has different neutron-
neutron pairing matrix elements for Z ≥ 15 and Z ≤ 14
to account for the behavior of pf neutron orbits relative
to the number of valence protons. The Z ≤ 14 version of
the interaction treats neutron-rich unstable nuclei that

exhibit different shell behavior than the less exotic nu-
clei in the Z ≥ 15 nuclei. The interest in silicon isotopes
and the nature of the SDPF-U interaction make 34Si a
suitable choice for the renormalization procedure with a
realistic basis. A similar effect occurs for the neutron-
rich carbon isotopes around the N = 14 closed subshell,
requiring a 25% reduction in the neutron-neutron two-
body matrix elements from the effective interactions de-
rived for the oxygen isotopes [2].

II. RENORMALIZATION PROCEDURE

We begin with the realistic charge-dependent NN in-
teraction N3LO derived at fourth order of chiral pertur-
bation theory with a 500 MeV cutoff and fit to experi-
mental NN scattering data [3]. The N3LO interaction
is renormalized using a similarity transformation in mo-
mentum space with a sharp cutoff of Λ = 2.2 fm−1 to
obtain the relevant low momentum interaction [4]. We
will refer to this technique as a vlowk renormalization.
Skyrme Hartree-Fock calculations are performed with the
Skxtb interaction [5] for a chosen closed sub-shell target
nucleus to determine the binding energy, single particle
radial wavefunctions, and single particle energy spectra
for neutrons and protons of the target nucleus. While the
low momentum interaction could be used in a Hartree
Fock calculation, it would not include the essential effec-
tive one-body component of the three-body (and higher)
terms of the interaction. The low momentum interaction
is then renormalized into a model space of interest us-
ing Rayleigh-Schrödinger perturbation theory [6] to sec-
ond order including excitations up to 6h̄ω, summing over
folded diagrams to infinite order. We will compare three
options for the renormalization to produce an effective in-
teraction: harmonic oscillator single particle energies and
wavefunctions (HO), Skyrme Hartree-Fock single particle
energies and wavefunctions (SHF), and Skyrme Hartree-
Fock single particle energies and harmonic oscillator sin-
gle particle wavefunctions (CP).

The CP basis and HO basis give identical results to
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TABLE I: Single-particle energies for 34Si and 40Ca using the
Skxtb interaction. Values in bold are in the model space.

nlj
34Si 34Si 40Ca 40Ca

proton neutron proton neutron

0s1/2 -37.73 -32.79 -30.49 -38.18

0p3/2 -27.60 -23.10 -22.14 -29.70

0p1/2 -22.39 -21.74 -19.03 -26.67

0d5/2 -17.29 -13.07 -12.79 -20.20

0d3/2 -9.08 -9.03 -7.23 -14.65

1s1/2 -13.49 -10.04 -8.31 -15.75

0f7/2 -5.97 -2.62 -2.68 -9.89

0f5/2 3.70 3.33 4.81 -2.43

1p3/2 -1.06 -0.40 1.44 -5.48

1p1/2 1.49 -0.27 3.27 -3.66

0g9/2 6.39 9.22 8.63 1.15

0g7/2 18.26 18.23 18.76 10.28

first order in perturbation theory since they use identi-
cal wavefunctions. The energies, which are different in
the two procedures, come into higher order diagrams via
energy denominators, as discussed in [6]. Therefore, the
last option is a core-polarization basis (CP basis) since
the core-polarization diagrams are affected to leading or-
der even though the result at first order is unchanged.

Skyrme Hartree-Fock radial wavefunctions, once
solved, are implemented in the renormalization by using
an expansion in terms of the harmonic oscillator basis
via:

ψSHF
nlj (~r) =

∑

n

anR
HO
nl (r)[Yl(θ, φ) ⊗ χs]j , (1)

where a2
n gives the percentage of a specific harmonic os-

cillator wavefunction component in the Skyrme Hartree-
Fock wavefunction. The Skyrme Hartree-Fock wavefunc-
tions and single particle energies can only be determined
for bound states. For unbound orbits, the harmonic os-
cillator basis remains in use, but the Gram-Schmidt pro-
cess is used to ensure orthonormality of the single par-
ticle wavefunctions. The effective interaction, consisting
of the derived two-body matrix elements and the Skyrme
Hartree-Fock single particle energies, can then be used in
a shell model program directly.

III. APPLICATION TO SDPF MODEL SPACE

Neutron-rich silicon isotopes present an interesting ap-
plication of the procedure outlined in the last section. A
deeper understanding of the need for multiple interac-
tions in the sdpf model space, as seen by the form of
SDPF-U, can be gained by performing the renormaliza-
tion for the same model space in multiple ways. The
model space chosen is the sd proton orbits and pf neu-
tron orbits. The renormalization procedure is done using

TABLE II: Single-particle energies for 34Si and 40Ca in the
harmonic oscillator basis. The energy shift is chosen so that
the valence energy is identical in both bases. Values in bold
are in the model space.

nlj
34Si 34Si 40Ca 40Ca

proton neutron proton neutron

0s1/2 -36.93 -34.59 -32.22 -39.21

0p3/2 -25.42 -23.09 -21.20 -28.19

0p1/2 -25.42 -23.09 -21.20 -28.19

0d5/2 -13.91 -11.58 -10.18 -17.17

0d3/2 -13.91 -11.58 -10.18 -17.17

1s1/2 -13.91 -11.58 -10.18 -17.17

0f7/2 -2.40 -0.07 0.84 -6.15

0f5/2 -2.40 -0.07 0.84 -6.15

1p3/2 -2.40 -0.07 0.84 -6.15

1p1/2 -2.40 -0.07 0.84 -6.15

0g9/2 9.11 11.44 11.86 4.87

0g7/2 9.11 11.44 11.86 4.87

all three options for two different target nuclei, produc-
ing a total of six interactions. The two target nuclei cho-
sen are the stable 40Ca doubly magic nucleus, and the
neutron-rich 34Si semi-magic nucleus. Single particle en-
ergies of the SHF basis, using the Skxtb interaction, are
presented in Table I for both target nuclei. For an SHF
state that is unbound, the radial wavefunction is approx-
imated by a state bound by 200 keV that is obtained by
multiplying the SHF central potential by a factor larger
than unity. The energy of the unbound state is estimated
by taking the expectation value of this bound state wave-
function in the original SHF potential.

In the SHF basis, the calculation of single particle en-
ergies shows that the proton orbits are shifted down in
energy for 34Si relative to 40Ca, while the neutron or-
bits are shifted up. For the valence neutrons, this shift
results in a switch from four orbits for 40Ca bound by
5.4 Mev on average to four orbits for 34Si centered at
0.0 MeV. This change, specifically the loosely bound en-
ergies of the p3/2 and p1/2, has a significant effect on
the wavefunctions, which will be discussed in more detail
later. For comparison, the single particle energies used
in the HO basis are given in Table II. The Blomqvist-
Molinari formula [7] h̄ω = (45A−1/3 − 25A−2/3) MeV
gives 11.508 MeV for A =34 and 11.021 MeV for A =
40. The absolute value of the harmonic oscillator basis is
irrelevant, as only energy differences come into the dia-
grams in Rayleigh-Schrödinger perturbation theory. For
a better comparison to the SHF basis, the absolute value
is chosen separately for protons and neutrons such that
nval∑

1

(2J+1)ǫα is identical in the HO and SHF bases, where

nval, the number of valence orbits, is three for protons
and four for neutrons and ǫα is the energy of the single
particle orbit given by the α = n, l, j quantum numbers.
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FIG. 1: Comparison of pf neutron-neutron matrix elements
(in MeV) for the renormalization procedure in the HO basis
for the two target nuclei. The solid line y = x denotes where
the matrix elements would be identical.
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FIG. 2: Comparison of pf neutron-neutron matrix elements
(in MeV) for the renormalization procedure in the SHF ba-
sis for the two target nuclei. The solid line y = x denotes
where the matrix elements would be identical. Black dots
correspond to matrix elements with J > 0, while the J = 0
matrix elements are split into three groups: ff−ff (crosses),
ff − pp (diamonds), and pp − pp (plus signs).

In order to avoid divergences from the calculation of en-
ergy denominators, all model space orbits are set to the
same valence energy such that the starting energy [6] of
each diagram is constant.

Fig. 1 shows a comparison of the pf matrix elements
in MeV for both target nuclei with the HO basis used
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FIG. 3: Comparison of the single particle radial wavefunctions
for 34Si in the HO and SHF bases.

in the renormalization procedure. The values deviate
slightly from the line of equality but agree well with each
other. Therefore, the choice of target nucleus, whether
34Si or 40Ca, has little effect on the matrix elements in
the HO basis. However, in Fig. 2, where the comparison
is for both target nuclei in the SHF basis, a reduction in
the strength of the interaction for 34Si is observed. This
reduction with 34Si as the target nucleus is due to the
weakly bound nature of the pf neutron orbits.

In the SHF basis, the f7/2 orbit is bound by 2.6 MeV,
and its radial wavefunction agrees reasonably well with
the harmonic oscillator wavefunction as seen in Fig. 3.
The Skyrme wavefunction is expanded in the harmonic
oscillator basis up to n = nmax and the an coefficients

are renormalized to ensure that
nmax∑
n=0

a2
n = 1. For our

renormalization procedure, orbits up to (2n+ l) = 9 are
included, which gives nmax = 3 for the f7/2 and f5/2

orbits and nmax = 4 for the p3/2 and p1/2 orbits. This
includes over 99% of the strength for the f orbits, but
only 93% and 92% for the p3/2 and p1/2 orbits respec-
tively. A first order calculation can be done to nmax = 6
for all orbits, which gives 100%, 98%, and 97% for the f ,
p3/2, and p1/2 expansions respectively.

With this procedure, 99% of the f7/2 orbit is repre-

sented by the RHO
03 wavefunction, but the 1% represented

by RHO
23 and RHO

33 has a significant effect at large radii.
The p3/2 and p1/2 orbits are only bound by 400 and 269
keV, respectively. The expected harmonic oscillator com-
ponent RHO

11 only makes up 80% and 78% of the respec-
tive radial wavefunctions. Higher n orbits which extend
farther away from the center of the nucleus contribute the
remaining strength. The f5/2 orbit is unbound by three
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MeV, but the solution for the Skyrme radial wavefunc-
tion is determined by assuming that the orbit is bound
by 200 keV. With this method, 97% of the realistic radial
wavefunction is given by the RHO

03 wavefunction. Single
particle radial wavefunctions of valence space neutron or-
bits are shown in Fig. 3 in both the HO and SHF basis.
The long tail behavior of the realistic basis is evident,
as the wavefunctions have significant strength beyond 8
fm unlike the oscillator wavefunctions, especially for the
loosely bound p orbits.

The J = 0 matrix elements in Fig. 2 deviate more
from the line of equality, i.e. the pairing matrix ele-
ments are reduced for 34Si when the N3LO interaction
is renormalized in the SHF basis. The SDPF-U inter-
action has different neutron-neutron pairing matrix ele-
ments for Z ≥ 15 and for Z ≤ 14 to account for 2p-2h ex-
citations of the core correctly, depending on whether 34Si
or 40Ca should be considered the core [1]. The SDPF-U
neutron-neutron pairing matrix elements are reduced by
300 keV for Z ≤ 14 in order to produce results in better
agreement with experimental data. The pairing matrix
elements in Fig. 2 are reduced for the 34Si target by 214
keV on average, relative to the case with 40Ca as the tar-
get. While the connection here to the Z-dependence in
SDPF-U is only suggestive, the change in target mim-
ics the change in core for calculations in the sdpf region,
cited by Nowacki and Poves as the cause of their 300 keV
reduction [1]. The reduction of 214 keV is due solely to
the change in occupation of the d5/2 proton orbit, which
can affect the single particle energies and radial wave-
functions, as well as the available orbits in second-order
diagrams. We find that the change in single particle ra-
dial wavefunctions plays the most significant role, but are
also able to analyze the other effects.

Table III isolates a few matrix elements and compares
the total matrix elements and their various components
for both target nuclei in all three bases. Three diagrams
contribute at second order, denoted as core polarization,
particle particle ladder, and four particle two hole [6].
The total matrix element is not a simple summation of
the first and second order diagrams, as we include the
folded diagram procedure [6]. The reduction for total
matrix elements involving p orbits in the SHF basis with
34Si as the core is dramatic (≈ 30%) and is primarily
due to the extension of wavefunction strength to large
distances. Kuo et al. [8] noted a reduction of core polar-
ization in the harmonic oscillator basis and used different
oscillator parameters to account for the core nucleons and
valence nucleons separately in halo nuclei. While 34Si is
not a halo nucleus, the loosely bound p orbits behave
in much the same way as the valence nucleons in a halo
nucleus. The reduction in core polarization is seen go-
ing from the 40Ca target to the 34Si target in any basis
in Table III, although the size of the polarization is re-
duced for nucleons far from the core. As noted in [8],
the core interacts less with nucleons far away, so the ex-
citations of the core are reduced. The core polarization
for matrix elements solely involving p orbits is under 100

TABLE III: First order, particle particle ladder, core polar-
ization, four particle two hole, and total matrix elements in
MeV of the form 〈aa V bb〉J=0 for different renormalization
procedures.

34Si 40Ca

a b HO CP SHF HO CP SHF

first -0.906 -0.906 -0.807 -0.938 -0.938 -0.870

2p-ladder -0.409 -0.414 -0.422 -0.409 -0.418 -0.450

f7/2 f7/2 core pol. -0.449 -0.377 -0.417 -0.637 -0.649 -0.768

4p2h -0.376 -0.442 -0.435 -0.374 -0.434 -0.499

total -1.855 -1.869 -1.824 -1.957 -1.982 -2.084

first -0.518 -0.518 -0.322 -0.518 -0.518 -0.368

2p-ladder -0.148 -0.157 -0.119 -0.152 -0.164 -0.138

f7/2 p3/2 core pol. -0.121 -0.118 -0.074 -0.282 -0.309 -0.283

4p2h -0.123 -0.141 -0.104 -0.126 -0.142 -0.143

total -0.800 -0.822 -0.552 -0.903 -0.926 -0.749

first -0.585 -0.585 -0.421 -0.572 -0.572 -0.452

2p-ladder -0.042 -0.050 -0.039 -0.049 -0.062 -0.038

f7/2 p1/2 core pol. -0.055 -0.041 -0.043 -0.212 -0.236 -0.231

4p2h -0.057 -0.058 -0.037 -0.062 -0.060 -0.052

total -0.665 -0.663 -0.492 -0.767 -0.779 -0.642

first -1.109 -1.109 -0.776 -1.096 -1.096 -1.082

2p-ladder -0.233 -0.242 -0.165 -0.233 -0.237 -0.242

p3/2 p3/2 core pol. -0.037 0.001 0.000 -0.021 -0.005 -0.037

4p2h -0.085 -0.093 -0.057 -0.090 -0.098 -0.109

total -1.319 -1.313 -0.931 -1.267 -1.252 -1.278

first -1.540 -1.540 -0.857 -1.478 -1.478 -1.382

2p-ladder -0.060 -0.069 -0.078 -0.068 -0.081 -0.077

p3/2 p1/2 core pol. 0.068 0.082 0.045 -0.038 -0.069 -0.080

4p2h -0.048 -0.051 -0.026 -0.053 -0.054 -0.056

total -1.456 -1.462 -0.863 -1.469 -1.488 -1.409

keV. Nowacki and Poves [1] attributed the reduction in
neutron-neutron pairing matrix elements for the empiri-
cal SDPF-U interaction to a decrease in core polarization
for the 34Si target. We observe that the core polarization
can be reduced significantly without the total matrix ele-
ment changing in the same proportion. For instance, the
〈f7/2f7/2 V f7/2f7/2〉 matrix element is only reduced by

5% from 40Ca to 34Si in the HO basis even though the
core polarization is reduced by 30%. In the SHF basis,
which takes into account the realistic wavefunction, the
total matrix element is reduced by 13% while the core
polarization is reduced by 46%. We would prefer to com-
pare matrix elements involving the p3/2 or p1/2 orbits,
but the core polarization becomes very small for loosely
bound orbits, skewing percentage comparisons. Ogawa
et al. [9] produce results which seem to be consistent
with ours, identifying a 10%-30% reduction in nuclear in-
teraction matrix elements involving loosely bound orbits
using a realistic Woods-Saxon basis. However, they were
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FIG. 4: Calculations of the lowest energy states for J =
0, 2, 4, 6 in 36Si relative to 34Si from the renormalization pro-
cedure for 34Si and 40Ca, in the HO, CP, and SHF bases for
both target nuclei. Crosses are used for calculations with 40Ca
as the target nucleus.

limited to comparisons of ratios of matrix elements and
did not include core polarization. We show that core po-
larization suppression and reduction due to spread of the
wavefunctions are both important effects which should be
included, as well as the other diagrams which contribute
at second order. The full treatment of the renormaliza-
tion in a realistic basis, as developed here, is necessary for
accurate results. Our improvements enable us to perform
calculations for neutron-rich silicon isotopes directly.

IV. CALCULATIONS FOR
36

SI AND
38

SI

The effect of the different interactions on nuclear struc-
ture calculations has been studied as neutrons are added
to 34Si. In order to obtain a consistent starting point,
the proton-proton and proton-neutron matrix elements
of SDPF-U have been used, with proton single particle
energies (SPEs) chosen to reproduce those obtained by
SDPF-U. Because SDPF-U does not reproduce the bind-
ing energy of 35Si, the SDPF-U neutron SPEs have been
increased by 660 keV. The six interactions use neutron
SPEs that reproduce the values of this modified SDPF-U
interaction.

The only difference in the six interactions used in the
calculations are the neutron-neutron matrix elements.
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FIG. 5: Calculations of the lowest energy states for J =
0, 2, 4, 6 in 36Si relative to 34Si using the empirical SDPF-U
interaction and the renormalization procedure for both 34Si
and 40Ca as target nuclei, using the SHF and HO bases. Ex-
perimental data is shown for comparison, with a new mass
from [11]. Crosses are used for calculations with 40Ca as the
target nucleus.

Calculations have been done in the model space discussed
in the last section with the shell model code NuShellx
[10]. Fig. 4 shows the lowest J = 0, 2, 4, 6 states in
36Si, relative to 34Si. The HO basis and the CP basis
for the same target nucleus deviate by no more than 20
keV. However, the SHF basis noticeably shifts the states,
with the largest effect being 300 keV less binding in the
ground state with 34Si as the target nucleus. The binding
energy of 36Si changes by nearly 500 keV depending on
which renormalization procedure is used. Furthermore,
the level schemes for 36Si are more spread out for the
crosses where 40Ca is chosen as the target nucleus.

Fig. 5 shows the same states in 36Si relative to 34Si,
but now the comparison includes the SDPF-U calcula-
tions and experimental data. The CP basis results are
not included since they are so similar to the HO basis cal-
culations. We see that the level scheme for 36Si is more
spread out for the Z ≥ 15 SDPF-U calculation than for
the Z ≤ 14 calculation, in agreement with our results
discussed above. Our calculations for each method are in
reasonable agreement with the comparable SDPF-U cal-
culation; the 0+ state differs most with about 300 keV
more binding compared to the respective empirical inter-
action for each core. The experimental binding energy
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FIG. 6: Calculations for the lowest energy states for J = 0 and
J = 2 in 38Si relative to 34Si using neutron-neutron matrix
elements from SDPF-U and the renormalization procedure
for both 34Si and 40Ca as target nuclei, using the SHF and
HO bases. Crosses are used for calculations with 40Ca as the
target nucleus.

relative to 34Si is taken from a new mass measurement
of 36Si which is 140 keV higher in energy than previously
measured [11]. The excitation energies of the Z ≤ 14
SDPF-U calculation are comparable to experiment, as
expected from an interaction fit specifically to neutron-
rich silicon isotopes. While no interaction reproduces the
experimental data very well, general trends can be seen.
The calculations with 40Ca as the target nucleus depicted
by crosses result in level schemes that are too spread out
in comparison to the experimental data. The reduction
in the strength of the interaction for 34Si using the SHF
basis results in a reduction of the energy of the states in
36Si, especially for the ground state (the pairing matrix
elements were most reduced). The rms deviation between
experiment and theory with 34Si as the target nucleus in
the SHF basis is 223 keV for the four states shown. One
reason for this deviation is the lack of three body forces
in the procedure. The inclusion of the NNN interaction,
at least via the effective two-body part, is important for
a higher level of accuracy. Additionally, the chosen SPEs
may contribute to the deviation, which would be better
constrained if all the single particle states in 35Si were
known experimentally. For exotic nuclei, the calculated
single particle state is often above the neutron separa-

tion energy and determination of the experimental single
particle states may not be possible with current facilities.
Thus it is essential to improve energy density functionals
such that they provide reliable single particle energies.

As more nucleons are added, the disagreement between
the various models increases as seen in Fig. 6, which plots
the level scheme of 38Si relative to 34Si. Only the 0+ and
2+ states are shown since the 4+ and 6+ states are not
known experimentally, but the binding energy is best re-
produced by the calculations with 34Si in the SHF basis.
As noted in the 36Si case, the excitation energy of the
2+ state is too high in the SHF basis but is reproduced
well by the Z ≤ 14 SDPF-U calculation for 38Si. While
the theoretical calculations of the binding energy vary
by more than 750 keV for 36Si, the effect gets magnified
as more particles are added. The binding energy of 38Si
varies by 1.8 MeV for twice the number of valence nucle-
ons. Accurately accounting for the two-body interaction
in the exotic medium is essential for calculations of exotic
nuclei. The renormalization of a microscopic nucleon-
nucleon interaction into the nuclear medium with a re-
alistic basis and an appropriate target nucleus offers an
improvement in our description of exotic nuclei, resulting
in a decrease in the strength of the interaction and less
binding in exotic nuclear systems.

V. SUMMARY AND CONCLUSIONS

The microscopic nucleon-nucleon interaction N3LO
was renormalized using vlowk and many-body perturba-
tion theory in order to produce an effective interaction in
the nuclear medium that could be used in a shell model
code. The renormalization was performed in three dif-
ferent bases: harmonic oscillator, core polarization, and
Skyrme Hartree-Fock. The choice of basis can signifi-
cantly affect the value of matrix elements, as shown in
the comparisons of pf neutron-neutron matrix elements
for the stable 40Ca and the neutron-rich 34Si nuclei. The
difference primarily results from the long tail of the radial
wavefunctions relative to the harmonic oscillator wave-
function, especially for valence orbits bound by only a
few hundred keV. The loosely bound orbits cause a re-
duction in the overall strength of the interaction, an effect
that becomes magnified as full scale shell model calcula-
tions are performed. Accounting for the properties of the
orbits by using a realistic basis is essential for an accu-
rate description of the nuclear interaction in exotic nuclei
as determined by the renormalization of an NN interac-
tion, but NNN forces must be included for accuracy at
the level of 100 keV.
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