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I. INTRODUCTION

The study of parity violating (PV) effects in low energy physics is a very sensitive tool

to test methods of calculations both of weak and strong interactions in the Standard model.

This also can be a way to search for a possible manifestations of new physics resulted in

deviations from unambiguous and precise calculations of PV effects and experimental mea-

surements. However, to use this approach, it is crucial to prove that implemented theoretical

techniques are sufficient to describe experimental data with high accuracy which exceeds ex-

perimental accuracy. There is a large amount of experimental data for different PV effects in

nuclear physics, each of which in general agrees with theoretical predictions. However, in the

last years it became clear (see, for example [1–4] and references therein) that the traditional

DDH [5] method for calculation of PV effects cannot reliably describe the whole available set

of experimental data within the same set of parameters. If this is not the manifestation of

new physics, which is very unlikely for the current accuracy of experimental measurements

and theoretical calculations, then this discrepancy could be blamed on systematic errors

in experimental data, theoretical uncertainties in calculations of strong interactions at low

energy, or it might be that DDH approach is not adequate for the description of the set of

precise experimental data because it is based on a number of models and assumptions. To

resolve this discrepancy and to eliminate nuclear model dependent factors in calculations, it

is necessary to focus on the analysis of new and existing experimental data for different PV

parameters in few-body systems, where calculations of nuclear related effects can be done

with a high precision. Recently new approach, based on the effective field theory (EFT),

has been introduced for a model independent parametrization of PV effects (see, papers

[1, 4] and references therein), and some calculations for two-body systems have been done

[6]. The power of the EFT approach for parametrization of all PV effects in terms of a small

number of constants could be utilized if we can analyze a large enough number of PV effects

to be able to constrain all free parameters of the theory which are usually called low energy

constants (LEC). Thus, one can guarantee the adequate description (parametrization) of

the strong interaction hadronic parts and weak interaction constants for symmetry violat-

ing observables. Unfortunately, the number of experimentally measured (and independent

in terms of unknown LECs) PV effects in two body systems is not enough to constrain all

LECs. In spite of the fact that five independent observable parameters in a two body system
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could fix five unknown PV LECs [7–10], it is impossible to measure all of them using exist-

ing experimental techniques. Therefore, one has to include into analysis few-body systems

and even heavier nuclei, the latter of which are actually preferable from the experimental

point of view, because as a rule, the measured effects in nuclei are much larger than in

nucleon-nucleon system due to nuclear enhancement factors [11–13].

The natural and unambiguous way to verify the applicability of the EFT for the calcula-

tion of symmetry violating effects in nuclear reactions requires a development of a regular

and self consistent approach for calculation of PV amplitudes in three-body (few-body) sys-

tems [14], with a hope to extend the formalism for the description of many body systems.

This systematic approach for the solution of three-body PV scattering problem in EFT

framework [14] requires additional numerical efforts and will be presented elsewhere. As a

first step for the clarification of the possible difference in contributions to PV effects from

DDH and EFT-type potentials, one can use a “hybrid” method (similar to the method used

in paper [15]) for the simplest process of neutron-deuteron scattering. We calculate three-

body wave functions with realistic Hamiltonians of strong interaction using exact Faddeev

equations in configuration space, and then, calculate PV effects in the first order of pertur-

bation with DDH potential and potentials derived in EFT formalism. In the next section,

we present our formalism for the calculation PV effects for elastic neutron-deuteron scatter-

ing with different set of nucleon weak potentials, with DDH and weak potentials obtained

from pionless and pionful EFTs. Then, we present results of numerical calculations and

discussions.

II. FORMALISM

We treat weak nucleon interactions as a perturbation and calculate three-body wave func-

tions exactly using Faddeev equations with phenomenological potentials for strong interac-

tions. Similar hybrid approach has been successfully applied to the weak and electromagnetic

processes involving three-body and four-body hadronic systems [16–21]. We consider three

types of parity violating potentials. The first one is the standard DDH potential which

is based on meson exchange mechanism of nucleon-nucleon interactions. The second and

third potentials are derived from pionless and pionful versions of effective field theory with

parity violating hadronic interactions. Instead of calculating parity violating amplitudes by
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summing PV diagrams in EFT, we use these potentials to calculate PV effects. This is a

simplification, which we call a “hybrid” approach.

A. Observables

Since PV effects in neutron-deuteron system are very small, we consider only coherent

processes which are related to the propagation of neutrons through unpolarized deuteron

target and, therefore, do not have an additional suppression in low energy region. Then, two

PV observable parameters are the angle φ of rotation of neutron polarization around neutron

momentum and the relative difference of total cross sections P = (σ+ − σ−)/(σ+ + σ−) for

neutrons with opposite helicities. The value of the angle of neutron spin rotation per unit

length of the target sample can be expressed in terms of elastic scattering amplitudes at

zero angle for opposite helicities f+ and f− as

dφ

dz
= −2πN

p
Re (f+ − f−) , (1)

where N is a number of target nuclei per unit volume and p is a relative neutron momentum.

Using optical theorem, one can write the relative difference of total cross sections P in terms

of these amplitudes as

P =
Im (f+ − f−)

Im (f+ + f−)
. (2)

It is convenient to represent the amplitudes in terms of matrix R̂ which is related to

scattering matrix Ŝ as R̂ = 1̂ − Ŝ. With partial waves decomposition for the case of

neutron-deuteron scattering

|p, mn, md〉 =
∑

ly lzy

∑

SM,JJz

|p, (lyS)JJz〉〈JJz|lylzy,SM〉〈SM |1
2
mn, 1md〉Y ∗

lylzy
(p̂), (3)

where ly is an orbital angular momentum between neutron and deuteron, S is a sum of

neutron spin and deuteron total angular momentum, and J is the total angular momentum

of the neutron-deuteron system, the above equations can be written at low energies as
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and

P =
1
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, (5)

where RJ
l′S′,lS = 〈l′S ′|RJ |lS〉, unprimed and primed parameters correspond to initial and

final states. Since we are interested in low energy neutron scattering, it would be sufficient

to include only s- and p-waves contributions to parity violating amplitudes; for the total

cross section (the denominator in the last equation), we keep only dominant contributions

from s-wave neutrons. It should be noted that time-reversal invariance leads to the relation

〈1S ′|RJ |0S〉 = 〈0S ′|RJ |1S ′〉 between matrix elements, therefore, only half of parity violating

amplitudes are independent.

Nucleon-nucleon interaction can be written as a sum V = Vpc + Vpv of the parity con-

serving (Vpc) and weak parity violating (Vpv) terms. Due to the weakness of parity violating

interaction, one can use Distorted Wave Born Approximation (DWBA) to calculate PV

amplitudes with a high level of accuracy as

RJ
l′yS′,lyS ≃ 4i−l′y+ly+1µp (−)

pc 〈Ψ, (l′yS ′)JJz|Vpv|Ψ, (lyS)JJz〉(+)
pc , (6)

where µ is a neutron-deuteron reduced mass and |Ψ, (l′yS ′)JJz〉(±)
pc are solutions of 3-body

Faddeev equations in configuration space for parity conserving strong interaction Hamilto-

nian, defined by VPC and normalized as described in section IIC. The factor i−l′y+ly in this

expression is introduced to match the R-matrix definition in the modified spherical harmon-

ics convention [22] with the wave functions which are calculated in this paper using spherical

harmonics convention.

In the rest of the paper, we use only wave functions calculated for parity conserving

potentials and, therefore, will omit subscript PC.

As will be explained in section IIC, we use jj-coupling scheme (with a basis states |lyjy〉)
when solving Faddeev equtions. One can transform jj-basis states into lyS-basis by means

of

|[ly ⊗ (sk ⊗ jx)S ]JJz〉 =
∑

jy

|[jx ⊗ (ly ⊗ sk)jy ]JJz〉

×(−1)jx+jy−J(−1)ly+sk+jx+J [(2jy + 1)(2S + 1)]
1

2





ly sk jy

jx J S




 ,(7)
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One interesting observation is that the neutron spin rotation, as well as parameter P, in

|lyjy〉 basis involves potential matrix elements only between jy = 1
2

states.

It should be noted that at low energy the Im(RJ
l′yS′,lyS) ∼ pl′y+ly+1, and thus the expres-

sion eq.(4) for the angle φ of neutron spin rotation is finite and well defined in the zero

energy limit of the n-d scattering. Numerically, it is calculated by evaluating expression

Im(RJ
l′yS′,lyS)/pl′y+ly+1 at zero energy. On the other hand, Re(RJ

l′yS′,lyS) ∼ p · Im(RJ
l′yS′,lyS) at

low energy, and thus the real part of this quantity vanishes in the zero energy limit. There-

fore, the parameter P is calculated at 15 KeV neutron kinetic energy in the laboratory

system, where both imaginary and real parts of the R-matrix elements become comparable

in magnitude and thus can be discerned numerically.

B. The parity violating potentials

To understand the possible difference in the description of parity violating effects by DDH

and EFT-type for potentials, we compare calculations with the DDH potential[5] and two

different choices of EFT potentials: the potential derived from pionless EFT lagrangian [1]

and the potential derived from pionful EFT Lagrangian [1]. It was shown [15] that all these

three potentials can be expanded in terms of a set of O
(n)
ij operators as

vα
ij =

∑

n

cαnO
(n)
ij , α = DDH or pionless EFT or pionful EFT (8)

with parameters cαn and operators O
(n)
ij given in the Table I.

One can see that operators O
(n)
ij are products of isospin, spin, and vector operators X

(n)
ij,±

defined as

X
(n)
ij,+ ≡ [pij , fn(rij)]+,

X
(n)
ij,− ≡ i[pij, fn(rij)]−, (9)

where pij ≡
(pi−pj)

2
.

For the DDH potential, radial functions fx(r), x = π, ρ, and ω are modified Yukawa

functions,

fx(r) =
1

4πr

{
e−mxr − e−Λxr

[
1 +

Λxr

2

(
1 − m2

x

Λ2
x

)]}
. (10)
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TABLE I: Parameters and operators of parity violating potentials. πNN coupling gπNN can be

represented by gA by using Goldberger-Treiman relation, gπ = gAmN/Fπ with Fπ = 92.4 MeV.

Tij ≡ (3τ z
i τ z

j − τi · τj). Scalar function L̃Λ(r) ≡ 3LΛ(r) − HΛ(r).

n cDDH
n fDDH

n (r) c6πn f 6π
n (r) cπ

n fπ
n (r) O

(n)
ij

1 + gπ

2
√

2mN
h1

π fπ(r) 2µ2

Λ3
χ

C 6π
6 f 6π

µ (r) + gπ

2
√

2mN
h1

π fπ(r) (τi × τj)
z(σi + σj) · X(1)

ij,−

2 − gρ

mN
h0

ρ fρ(r) 0 0 0 0 (τi · τj)(σi − σj) · X(2)
ij,+

3 − gρ(1+κρ)
mN

h0
ρ fρ(r) 0 0 0 0 (τi · τj)(σi × σj) · X(3)

ij,−

4 − gρ

2mN
h1

ρ fρ(r)
µ2

Λ3
χ
(C 6π

2 + C 6π
4 ) f 6π

µ (r) Λ2

Λ3
χ
(Cπ

2 + Cπ
4 ) fΛ(r) (τi + τj)

z(σi − σj) · X(4)
ij,+

5 − gρ(1+κρ)
2mN

h1
ρ fρ(r) 0 0

2
√

2πg3

AΛ2

Λ3
χ

h1
π LΛ(r) (τi + τj)

z(σi × σj) · X(5)
ij,−

6 − gρ

2
√

6mN
h2

ρ fρ(r) −2µ2

Λ3
χ

C 6π
5 f 6π

µ (r) −2Λ2

Λ3
χ

Cπ
5 fΛ(r) Tij(σi − σj) · X(6)

ij,+

7 − gρ(1+κρ)

2
√

6mN
h2

ρ fρ(r) 0 0 0 0 Tij(σi × σj) · X(7)
ij,−

8 − gω

mN
h0

ω fω(r) 2µ2

Λ3
χ

C 6π
1 f 6π

µ (r) 2Λ2

Λ3
χ

Cπ
1 fΛ(r) (σi − σj) · X(8)

ij,+

9 − gω(1+κω)
mN

h0
ω fω(r) 2µ2

Λ3
χ

C̃ 6π
1 f 6π

µ (r) 2Λ2

Λ3
χ

C̃π
1 fΛ(r) (σi × σj) · X(9)

ij,−

10 − gω

2mN
h1

ω fω(r) 0 0 0 0 (τi + τj)
z(σi − σj) · X(10)

ij,+

11 − gω(1+κω)
2mN

h1
ω fω(r) 0 0 0 0 (τi + τj)

z(σi × σj) · X(11)
ij,−

12 − gωh1
ω−gρh1

ρ

2mN
fρ(r) 0 0 0 0 (τi − τj)

z(σi + σj) · X(12)
ij,+

13 − gρ

2mN
h

′1
ρ fρ(r) 0 0 −

√
2πgAΛ2

Λ3
χ

h1
π LΛ(r) (τi × τj)

z(σi + σj) · X(13)
ij,−

14 0 0 0 0 2Λ2

Λ3
χ

Cπ
6 fΛ(r) (τi × τj)

z(σi + σj) · X(14)
ij,−

15 0 0 0 0
√

2πg3

AΛ2

Λ3
χ

h1
π L̃Λ(r) (τi × τj)

z(σi + σj) · X(15)
ij,−

For pionless EFT ( 6 πEFT) one, fn(r) are described by single function fµ(r),

fµ(r) =
1

4πr
e−µr, (11)

with µ ≃ mπ.

For the case of pionful EFT model (πEFT), there are long range interactions from one

pion exchange(V−1,LR) and from their corrections (V1,LR), middle range interactions due to

two pion exchange (V1,MR), and short range interactions (V1,SR) due to nucleon contact

terms. The radial part of the leading term of long range one pion exchange, V−1,LR , is

described by the function fπ(r). Since one-pion exchange contribution is dominated by long

range part, we do not use a regulator for it, i.e. we assume that the long range interactions

have the same radial functions fπ(r) as DDH potential with infinite cutoff. The short range
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interaction V1,SR in pionful theory has the same structure as for pionless EFT; however,

in spite of the structural similarity, their meanings are rather different. One can ignore

the higher order corrections of long range interactions, V1,LR, because they can either be

absorbed by renormalization of low energy constants [6] or suppressed. The middle range

interactions V1,MR are described by functions L(q) and H(q) in momentum space

L(q) ≡
√

4m2
π + q2

|q| ln

(√
4m2

π + q2 + |q|
2mπ

)
, H(q) ≡ 4m2

π

4m2
π + q2

L(q), (12)

where, qµ = (q0, q) = pµ
1−p

′µ
1 = p

′µ
2 −pµ

2 . To calculate two pion exchange functions (divergent

at large q) in spacial representation , we use regulators (Λ2−4m2
π)2

(Λ2+q2)2
. For the sake of simplicity,

we use only one cutoff parameter with the same regulator, both for middle range and for

short range interactions. Then, one can write

{LΛ(r), HΛ(r), fΛ(r)} =
1

Λ2

∫
d3q

(2π)3
e−iq·r (Λ2 − 4m2

π)2

(Λ2 + q2)2
{L(q), H(q), 1}. (13)

In the given representation, coefficients cαn have fm dimension and scalar functions fα
n (r) have

fm−1 dimension. One can see that only the new operator structure, which is not included

in DDH or pionless EFT, is due to V PV
1,LR. Therefore, pionful EFT does not introduce new

operator structure, provided we neglect V PV
1,LR term [6, 23].

To see a sensitivity to the choice of cutoffs for parity violating potentials, we used two

set of cutoff parameters for each models, which are listed in the Table II.

Using the discussed above three potentials, one can represent parity violating amplitudes

as a linear expansion in terms of given set of matrix elements for corresponding operators

O
(n)
ij . Thus, the angle of neutron spin rotation can be written as

1

N

dφ

dz
=

13∑

n=1

cαnI
α
n , (14)

and the parameter P as

P =

13∑

n=1

cαnĨ
α
n , (15)

in terms of coefficients Iα
n and Ĩα

n with α = DDH-I,II, 6 πEFT-I,II, πEFT-I,II for different

potentials and cutoff parameters.
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TABLE II: Parameter of parity violating potentials in GeV units. We used masses of mesons mπ,

mρ, and mω, respectively, as 0.138, 0.771, and 0.783 in DDH potential.

Λπ Λρ Λω µ Λ

DDH-I 1.72 1.31 1.50 6 πEFT-I 0.138 πEFT-I 0.8

DDH-II ∞ ∞ ∞ 6 πEFT-II 1.0 πEFT-II 1.0

C. Faddeev wave function

To obtain 3-body wave functions for neutron-deuteron scattering with parity conserving

interactions, we solve Faddeev equations (also often called Kowalski-Noyes equations) in

configuration space [24, 25]. For isospin invariant interactions (with nucleon masses fixed

to ~
2/m = 41.471 MeV·fm), three Faddeev equations become formally identical, having the

form

(E −H0 − Vij)ψk = Vij(ψi + ψj), (16)

where (ijk) are particle indices, H0 is kinetic energy operator, Vij is two body force between

particles i, and j, ψk = ψij,k is Faddeev component.

The wave function in Faddeev formalism is the sum of three Faddeev components,

Ψ(x,y) = ψ1(x1,y1) + ψ2(x2,y2) + ψ3(x3,y3). (17)

Using relative Jacobi coordinates xk = (rj − ri) and yk = 2√
3
(rk − ri+rj

2
), one can expand

these Faddeev components in bipolar harmonic basis:

ψk =
∑

α

Fα(xk, yk)

xkyk

∣∣∣
(
lx (sisj)sx

)
jx

(lysk)jy

〉
JM

⊗
∣∣(titj)tx

tk
〉

TTz
, (18)

where index α represents all allowed combinations of the quantum numbers presented in

the brackets: lx and ly are the partial angular momenta associated with respective Jacobi

coordinates, si and ti are the spins and isospins of the individual particles. Functions

Fα(xk, yk) are called partial Faddeev amplitudes. It should be noted that the total angular

momentum J as well as its projection M are conserved, but the total isospin T of the system

is not conserved due to the presence of charge dependent terms in nuclear interactions.

Boundary conditions for Eq. (16) can be written in the Dirichlet form. Thus, Faddeev

amplitudes satisfy the regularity conditions:

Fα(0, yk) = Fα(xk, 0) = 0. (19)
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For neutron-deuteron scattering with energies below the break-up threshold, Faddeev com-

ponents vanish for xk → ∞. If yk → ∞, then interactions between the particle k and the

cluster ij are negligible, and Faddeev components ψi and ψj vanish. Then, for the compo-

nent ψk, which describes the plane wave of the particle k with respect to the bound particle

pair ij,

lim
yk→∞

ψk(xk,yk)lnjn =
1√
3

∑

j′nl′n

∣∣∣{φd(xk)}jd
⊗
{
Yl′n

(ŷk) ⊗ sk

}
j′n

〉

JM
⊗
∣∣∣(titj)td

tk

〉
1

2
,− 1

2

× i

2

[
δl′nj′n,lnjnh

−
l′n

(prnd) − Sl′nj′n,lnjnh
+
l′n

(prnd)
]
, (20)

where deuteron, being formed from nucleons i and j, has quantum numbers sd = 1, jd = 1,

and td = 0, and its wave function φd(xk) is normalized to unity. Here, rnd = (
√

3/2)yk

is relative distance between neutron and deuteron target, and h±ln are the spherical Hankel

functions. The expression (20) is normalized to satisfy a condition of unit flux for nd

scattering wave function.

For the cases where Urbana type three-nucleon interaction (TNI) is included, we modify

the Faddeev equation (16) into

(E −H0 − Vij)ψk = Vij(ψi + ψj) +
1

2
(V i

jk + V j
ki)Ψ (21)

by noting that the TNI among particles ijk can be written as sum of three terms: Vijk =

V k
ij + V i

jk + V j
ki.

D. Evaluation of matrix elements

Due to anti-symmetry of the total wave function in isospin basis, one has 〈Ψ|V12 + V23 +

V31|Ψ〉 = 3〈Ψ|Vij|Ψ〉 for any pair i 6= j.

Using decomposition of momentum p,

p = −i∇x = −i
(
x̂
∂

∂x
+

1

x
∇̂Ω

)
, (22)

we can represent general matrix elements of local two-body parity violating potential oper-

ators as

(−)〈Ψf |O|Ψi〉(+) = (

√
3

2
)3
∑

αβ

[∫
dxx2dyy2

(
F̃

(+)
f,α (x, y)

xy

)
X̂(x)

(
F̃

(+)
i,β (x, y)

xy

)]
〈α|Ô(x̂)|β〉,(23)
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where (±) means outgoing and incoming boundary conditions and X̂(x) is derivative of

scalar function or derivative of wave function with respect to x. (Note that we have used

the fact that (F̃ (−))∗ = F̃ (+).) The partial amplitudes F̃i(f),α(x, y) represent the total systems

wave function in one selected basis set among three possible angular momentum coupling

sequences for three particle angular momenta:

Ψi(f)(x, y) =
∑

α

F̃i(f),α(x, y)

xy

∣∣∣
(
lx (sisj)sx

)
jx

(lysk)jy

〉
JM

⊗
∣∣(titj)tx

tk
〉

TTz
. (24)

The “angular” part of the matrix element is

〈α|Ô(x̂)|β〉 ≡
∫
dx̂

∫
dŷY†

α(x̂, ŷ)Ô(x̂)Yβ(x̂, ŷ), (25)

where Yα(x̂, ŷ) is a tensor bipolar spherical harmonic with a quantum number α. One can

see that operators for “angular” matrix elements have the following structure:

Ô(x̂) = (τ2 ⊙ τ3)(σ2 ⊚ σ3) · x̂, or (τ2 ⊙ τ3)(σ2 ⊚ σ3) · ∇Ω, (26)

where ⊙,⊚ = ±,×. The explicit values of these matrix elements are summarized in the

appendix.

III. RESULTS AND DISCUSSIONS

As it was mentioned in the previous section, because of low energy property of RJ
α′α, it

is convenient to present results for elements RJ
l′y ,ly

in terms of a ratio,

RJ
α′α(p)

4µi−l′y+ly+1pl′y+ly+1
=

1

pl′y+ly

(−)〈Ψ, (l′yS ′)JJz|V PV
n |Ψ, (lyS)JJz〉(+) (27)

For the case of parity violation, we fix l′y = 1 and ly = 0. To obtain the observable

parameters when neutron energies are larger than thermal ones (which correspond to zero

energy limit for neutron spin rotation), one can use a simple extrapolation based on the

above representation with a good accuracy up to hundreds KeV.

The contributions to parity violating matrix elements 2
π

1
cn

Im
[

RJ
α′α

(p)

4µp2

]
from different terms

of parity violating potentials (see Table I) are presented in the Table III. These matrix ele-

ments were calculated using strong AV18+UIX and weak DDH-II parity violating potentials

for the case of low neutron energies (up to thermal ones). From this table, one can see that

11



TABLE III: Contributions to 2
π
Im

[
RJ

1S′,0J
(p)

4µp2

]
at very low energy in fm2 units. We chose AV18+UIX

as strong potential and DDH-II as parity violating potential. Matrix elements of n = 6, 7 are zero

due to of isospin structure.

n S ′ = 1
2 , J = 1

2 S ′ = 3
2 , J = 1

2 S ′ = 1
2 , J = 3

2 S ′ = 3
2 , J = 3

2

1 0.253 × 10+00 0.131 × 10+00 −0.151 × 10−01 −0.522 × 10+00

2 −0.182 × 10−01 −0.105 × 10−01 0.882 × 10−02 0.480 × 10−03

3 0.339 × 10−02 0.231 × 10−01 −0.428 × 10−02 −0.284 × 10−03

4 0.410 × 10−02 −0.154 × 10−01 0.221 × 10−03 0.797 × 10−04

5 0.475 × 10−02 −0.178 × 10−01 0.313 × 10−03 0.664 × 10−04

8 0.190 × 10−02 0.180 × 10−01 −0.301 × 10−02 −0.228 × 10−03

9 −0.562 × 10−02 0.960 × 10−02 0.107 × 10−02 0.278 × 10−04

10 0.388 × 10−02 −0.146 × 10−01 0.209 × 10−03 0.755 × 10−04

11 0.453 × 10−02 −0.170 × 10−01 0.298 × 10−03 0.631 × 10−04

12 0.452 × 10−02 0.165 × 10−03 −0.223 × 10−03 −0.105 × 10−01

13 0.725 × 10−02 0.113 × 10−02 −0.377 × 10−03 −0.175 × 10−01

the main contribution to PV effects comes from J = 3/2 channel for the “best values” of

DDH coupling constants.

Our results for the angle of neutron spin rotation for DDH, pionless EFT, and pionful

EFT weak interaction potentials with different sets of parameters are summarized in Tables

IV,V, and VI. For these calculations, we used two types of strong interacting potentials:

Argonne two nucleon interaction AV18 and inclusion of Urbana IX three nucleon interaction,

AV18+UIX. One can see that these results practically do not depend on a choice of the strong

interaction potential. Also, it is clear that the matrix element related to pion-exchange

(n = 1) is dominant for DDH potential, slightly enhanced for pionfull potential, and about

equal to other ones for pionless potential.

The neutron spin asymmetry P was calculated for laboratory neutron energy E = 15

KeV. The results are summarized in tables VII, VIII, and IX for DDH, pionless EFT, and

pionful EFT weak interaction potentials with different sets of parameters, correspondingly.

These results provide a pattern similar to that of the results for the angle of neutron spin

12



TABLE IV: Coefficients IDDH
n for AV18 and AV18+UIX strong potentials, and DDH-I and DDH-II

parameter sets for parity violating potentials. IDDH
6,7 = 0.

n DDH-I/AV18 DDH-I/AV18+UIX DDH-II/AV18 DDH-II/AV18+UIX

1 0.612 × 10+02 0.596 × 10+02 0.616 × 10+02 0.600 × 10+02

2 0.666 × 10+00 0.726 × 10+00 0.114 × 10+01 0.124 × 10+01

3 −0.130 × 10+01 −0.133 × 10+01 −0.212 × 10+01 −0.217 × 10+01

4 0.911 × 10+00 0.934 × 10+00 0.131 × 10+01 0.134 × 10+01

5 0.980 × 10+00 0.992 × 10+00 0.153 × 10+01 0.156 × 10+01

8 −0.125 × 10+01 −0.130 × 10+01 −0.160 × 10+01 −0.167 × 10+01

9 −0.615 × 10+00 −0.622 × 10+00 −0.786 × 10+00 −0.796 × 10+00

10 0.998 × 10+00 0.102 × 10+01 0.124 × 10+01 0.127 × 10+01

11 0.111 × 10+01 0.113 × 10+01 0.146 × 10+01 0.149 × 10+01

12 0.991 × 10+00 0.983 × 10+00 0.141 × 10+01 0.140 × 10+01

13 0.144 × 10+01 0.144 × 10+01 0.226 × 10+01 0.225 × 10+01

TABLE V: Coefficients I 6πn for AV18 and AV18+UIX strong potentials, and 6 πEFT-I and 6 πEFT-II

parameter sets for parity violating potentials. I 6π2,3,5,6,7,10,11,12,13 = 0.

n 6 πEFT-I/AV18 6 πEFT-I/AV18+UIX 6 πEFT-II/AV18 6 πEFT-II/AV18+UIX

1 0.616 × 10+02 0.600 × 10+02 0.969 × 10+00 0.969 × 10+00

4 0.606 × 10+02 0.588 × 10+02 0.499 × 10+00 0.515 × 10+00

8 −0.761 × 10+02 −0.757 × 10+02 −0.677 × 10+00 −0.708 × 10+00

9 −0.946 × 10+01 −0.662 × 10+01 −0.341 × 10+00 −0.348 × 10+00

rotation. The parameter Jn in these tables is defined as

Jn ≡ 1

cn

2

π
Re

[
1

4µp2

(
R

1

2

1 1

2
,0 1

2

− 2
√

2R
1

2

1 3

2
,0 1

2

+ 4R
3

2

1 1

2
,0 3

2

− 2
√

5R
3

2

1 3

2
,0 3

2

)]
, (28)

and is related to the parameter Ĩn in the expression P =
∑
cnĨn by

Ĩn =
2
3
(2πµp2)Jn

Re
[
R

1

2

0 1

2
,0 1

2

+ 2R
3

2

0 3

2
,0 3

2

] =
8π2µ

9

Jn

σtot

, (29)
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TABLE VI: Coefficients Iπ
n for AV18 and AV18+UIX strong potentials, and πEFT-I and πEFT-II

parameter sets for parity violating potentials. Iπ
2,3,6,7,10,11,12 = 0.

n πEFT-I/AV18 πEFT-I/AV18+UIX πEFT-II/AV18 πEFT-II/AV18+UIX

1 0.616 × 10+02 0.600 × 10+02 0.616 × 10+02 0.600 × 10+02

4 0.152 × 10+01 0.142 × 10+01 0.549 × 10+00 0.488 × 10+00

5 0.435 × 10+01 0.185 × 10+01 0.123 × 10+01 0.664 × 10−01

8 −0.184 × 10+01 −0.179 × 10+01 −0.782 × 10+00 −0.748 × 10+00

9 −0.820 × 10+00 −0.730 × 10+00 −0.340 × 10+00 −0.288 × 10+00

13 0.226 × 10+02 0.218 × 10+02 0.970 × 10+01 0.936 × 10+01

14 0.339 × 10+01 0.333 × 10+01 0.177 × 10+01 0.174 × 10+01

15 0.654 × 10+02 0.631 × 10+02 0.273 × 10+02 0.264 × 10+02

where σtot is the total n− d cross section. The total cross section σtot can be calculated, or

one can use its known experimental value.

From the presented data, one can see that the results of our calculations are only slightly

different for the cases when we use AV18 and AV18+UIX strong Hamiltonians. This indi-

cates stability of the results with respect to the three nucleon forces. Indeed, by analyzing

the DDH one-pion exchange matrix element (see Table III), one can see that for DDH-I

with potentials AV18 and AV18+UIX, the contributions to the In=1 are −0.180×10+01 and

−0.333 × 10+01 for doublet channel (J = 1/2), and for the quartet channel (J = 3/2) they

are 0.630× 10+02 and 0.630× 10+02, correspondingly. The quartet channel is dominated by

the repulsive and long-range part of the strong interactions, but the doublet channel is de-

fined by attractive part. Therefore the quartet channel is less sensitive to the off-energy shell

structure of the strong interactions compared to the doublet channel. Then, due to the dom-

inant contribution from the quartet channel, the net result turns to be rather independent

on the contribution from three nucleon forces. This fact demonstrates the independence of

our results on models of strong interactions. However, further investigations with different

strong interaction potentials are desirable.

It should be noted, that the dependence on cutoff parameters for the contributions from

potentials with short and middle range interactions, even though it appears large, does not

lead to cutoff dependence for the observable parameters. Indeed, the renormalization of

14



TABLE VII: Coefficients JDDH
n for AV18 and AV18+UIX strong potentials, and DDH-I and DDH-

II parameter sets for parity violating potentials at E = 15 KeV in the laboratory frame. JDDH
6,7 = 0.

n DDH-I/AV18 DDH-I/AV18+UIX DDH-II/AV18 DDH-II/AV18+UIX

1 0.253 × 10+00 0.253 × 10+00 0.254 × 10+00 0.254 × 10+00

2 0.246 × 10−02 0.245 × 10−02 0.390 × 10−02 0.384 × 10−02

3 −0.190 × 10−02 −0.147 × 10−02 −0.313 × 10−02 −0.243 × 10−02

4 0.769 × 10−03 0.393 × 10−03 0.110 × 10−02 0.563 × 10−03

5 0.846 × 10−03 0.442 × 10−03 0.132 × 10−02 0.689 × 10−03

8 −0.176 × 10−02 −0.134 × 10−02 −0.228 × 10−02 −0.175 × 10−02

9 −0.235 × 10−03 0.567 × 10−04 −0.259 × 10−03 0.118 × 10−03

10 0.842 × 10−03 0.430 × 10−03 0.104 × 10−02 0.534 × 10−03

11 0.957 × 10−03 0.500 × 10−03 0.126 × 10−02 0.657 × 10−03

12 0.374 × 10−02 0.370 × 10−02 0.528 × 10−02 0.522 × 10−02

13 0.563 × 10−02 0.559 × 10−02 0.874 × 10−02 0.868 × 10−02

TABLE VIII: Coefficients J 6π
n for AV18 and AV18+UIX strong potentials, and 6 πEFT-I and 6 πEFT-

II parameter sets for parity violating potentials. J 6π
2,3,5,6,7,10,11,12,13 = 0.

n 6 πEFT-I/AV18 6 πEFT-I/AV18+UIX 6 πEFT-II/AV18 6 πEFT-II/AV18+UIX

1 0.254 × 10+00 0.254 × 10+00 0.372 × 10−02 0.369 × 10−02

4 0.503 × 10−01 0.240 × 10−01 0.421 × 10−03 0.215 × 10−03

8 −0.111 × 10+00 −0.854 × 10−01 −0.984 × 10−03 −0.763 × 10−03

9 −0.241 × 10−02 0.338 × 10−02 −0.904 × 10−04 0.750 × 10−04

low energy constants would cancel those cutoff dependencies by the cutoff dependencies of

LECs. Therefore, as a result, calculated PV observables are practically cutoff independent.

All these tables present information about contributions of different PV operators to PV

effects, provided we know corresponding weak coupling constants. Then, to calculate parity

violating effects, we can use either DDH potential or one of the considered EFT potentials.

However, for the case of EFT potentials, we need to know a set of LECs which cannot be

calculated in the given theoretical framework but must be obtained from a number of inde-
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TABLE IX: Coefficients Jπ
n for AV18 and AV18+UIX strong potentials, and πEFT-I and πEFT-II

parameter sets for parity violating potentials. Jπ
2,3,6,7,10,11,12 = 0.

n πEFT-I/AV18 πEFT-I/AV18+UIX πEFT-II/AV18 πEFT-II/AV18+UIX

1 0.254 × 10+00 0.254 × 10+00 0.254 × 10+00 0.254 × 10+00

4 0.106 × 10−02 0.352 × 10−03 0.309 × 10−03 0.333 × 10−04

5 0.741 × 10−02 0.512 × 10−02 0.292 × 10−02 0.221 × 10−02

8 −0.276 × 10−02 −0.212 × 10−02 −0.127 × 10−02 −0.100 × 10−02

9 −0.148 × 10−03 0.301 × 10−03 −0.278 × 10−04 0.168 × 10−03

13 0.976 × 10−01 0.981 × 10−01 0.421 × 10−01 0.423 × 10−01

14 0.137 × 10−01 0.136 × 10−01 0.714 × 10−02 0.712 × 10−02

15 0.283 × 10+00 0.284 × 10+00 0.119 × 10+00 0.120 × 10+00

pendent experiments. Unfortunately, currently available experimental data are not enough

to define the LECs with required precision. Even for pionless EFT, the estimated LECs

[1] have large uncertainties preventing us from predicting the values of PV effects. For the

pionful EFT, the situation with determination of LECs is even worse. Therefore, it is impos-

sible to make reliable predictions for PV effects using EFT-type potentials at this time, and

the only reasonable way to estimate magnitudes of PV effects is to use the DDH potential.

Taking into account the difficulty of the systematic description of PV effects using “stan-

dard” DDH potentials (see discussions in the introduction), we estimate PV effects using

the DDH potential for different sets of weak coupling constants: both for the “best value”

coupling constants and for two possible sets of the values of the coupling constants recently

obtained by Bowman [26] from the fit of reliable existing experimental data (see Table X).

The results for these three sets of weak coupling constants are summarized in Tables XI and

XII for the angle of spin rotation and for neutron spin asymmetry, correspondingly. One can

see that in contrast to the fact that the one-pion exchange dominates in the DDH-“best”

coupling parameter set, the rho meson exchange dominates in the case of Bowman’s coupling

parameter set. One can see that the angle of neutron spin rotation has almost the same

magnitude for all three sets of parameters, but it has opposite signs for the “best value”

set and for the Bowman’s fits. The neutron spin asymmetry does not only have opposite

signs but also essentially different values for these two choices of parameters. This allows
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TABLE X: DDH PV coupling constants in units of 10−7. Strong couplings are g2
π

4π
= 13.9,

g2
ρ

4π
= 0.84,

g2
ω

4π
= 20, κρ = 3.7, and κω = 0, h′

ρ contribution is neglected. 4-paramter fir and 3-parameter fit

uses the same h1
ρ and h1

ω with DDH ‘best’.

DDH Coupling DDH ‘best’ 4-parameter fit[26] 3-parameter fit[26]

h1
π +4.56 −0.456 −0.5

h0
ρ −11.4 −43.3 −33

h2
ρ −9.5 37.1 41

h0
ω −1.9 13.7 0

h1
ρ −0.19 −0.19 −0.19

h1
ω −1.14 −1.14 −1.14

TABLE XI: Neutron spin rotation in 10−7 rad-cm−1 for the case of DDH-II potential with

AV18+UIX strong potential for a liquid deuteron density N = 0.4 × 1023 atoms per cm3.

DDH ’best’ 4-parameter fit[26] 3-parameter fit[26]

1 0.108 × 10+00 −0.108 × 10−01 −0.118 × 10−01

2 0.386 × 10−02 0.147 × 10−01 0.112 × 10−01

3 −0.317 × 10−01 −0.120 × 10+00 −0.918 × 10−01

4 0.349 × 10−04 0.349 × 10−04 0.349 × 10−04

5 0.150 × 10−03 0.150 × 10−03 0.150 × 10−03

8 −0.423 × 10−02 0.305 × 10−01 0.000 × 10+00

9 −0.202 × 10−02 0.146 × 10−01 0.000 × 10+00

10 0.967 × 10−03 0.967 × 10−03 0.967 × 10−03

11 0.113 × 10−02 0.113 × 10−02 0.113 × 10−02

12 0.102 × 10−02 0.102 × 10−02 0.102 × 10−02

total 0.768 × 10−01 −0.682 × 10−01 −0.891 × 10−01

one to choose between two possible sets of DDH parameters and, as a consequence, to test

the dominance of pion-meson contribution in PV effects in n− d scattering.

Finally, we would like to mention that our results are quite different from the results

obtained in paper [15]. For example, in paper [15], the values of In for J = 1
2

and J = 3
2

have
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TABLE XII: Neutron spin asymmetry for the case of DDH-II potential with AV18+UIX strong

potential (the total cross section σtot = 3.35 b at E = 15 KeV ).

DDH ’best’ 4-parameter fit[26] 3-parameter fit[26]

1 0.947 × 10−08 −0.947 × 10−09 −0.104 × 10−08

2 0.248 × 10−09 0.943 × 10−09 0.719 × 10−09

3 −0.740 × 10−09 −0.281 × 10−08 −0.214 × 10−08

4 0.304 × 10−12 0.304 × 10−12 0.304 × 10−12

5 0.138 × 10−11 0.138 × 10−11 0.138 × 10−11

8 −0.922 × 10−10 0.665 × 10−09 0.000 × 10+00

9 0.620 × 10−11 −0.447 × 10−10 −0.000 × 10+00

10 0.843 × 10−11 0.843 × 10−11 0.843 × 10−11

11 0.104 × 10−10 0.104 × 10−10 0.104 × 10−10

12 0.797 × 10−10 0.797 × 10−10 0.797 × 10−10

total 0.899 × 10−08 −0.209 × 10−08 −0.236 × 10−08

the same signs for operator with n = 1, but our results show opposite signs for these matrix

elements. Another discrepancy is related to the systematic difference between the values of

matrix elements calculated [15] for AV18 and AV18+UIX potentials, which indicates a large

wave function difference for AV18 and AV18+UIX potentials. Contrary to those, our results

show that these matrix elements are insensitive to the presence of the three nucleon force. 1

IV. CONCLUSION

We have calculated parity violating angle of neutron spin rotation and asymmetry in

transmission of neutrons with opposite helicities for low energy neutron deuteron scattering.

Using Distorted Wave Born Approximation for weak interactions with realistic three-nucleon

wave functions from Faddeev equations in configuration space, we have parameterized PV

observables in terms of matrix elements presented in the DDH weak potential and in weak

potentials derived from pionless and pionful EFTs. It is shown that our results practically

1 We thank R. Schiavilla and M. Viviani for discussions which clarified that the reason for theses discrep-

ancies is related to numerical errors in paper [15].
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do not depend on the choice for strong interaction potentials and on cutoff parameters.

Based on the given analysis, one can see that for DDH potential, the dominant contri-

bution to observable PV effects comes from the pion-exchange matrix element with n = 1.

However, for pionless EFT potential, all types of matrix elements contribute almost equally,

and for pionful EFT potential the pion-exchange matrix element is sightly enhanced as

compared to the other ones. Therefore, it would be interesting to compare the estimation

of observable PV effects using appropriate LECs and coupling constants for DDH. Un-

fortunately, due to insufficient data for LECs this is impossible at this time. However, a

comparison of PV effects for two different sets of coupling constants shows that n−d scatter-

ing experimental results can be used to distinguish between different sets of DDH coupling

constants and to help in clarification of the issue about the importance of the contribution

of pion-exchange weak potential.

Appendix: Explicit results of angular part of Matrix elements

Explicit values of matrix elements of iso-spin operators for two-body states are

〈T ′T ′
z|τ1 · τ2|TTz〉 = δT ′

z ,TzδT ′,T [1δT,1 − 3δT,0],

〈T ′T ′
z|(τ1 + τ2)

z|TTz〉 = δT ′1δT1δT ′
zTz [2Tz],

〈T ′T ′
z|(τ1 − τ2)

z|TTz〉 = δT ′,T±1δTz ,T ′
z
δTz ,0[2],

〈T ′T ′
z|i(τ1 × τ2)

z|TTz〉 = δT ′
z ,TzδTz ,0δT ′,T±1[±2],

〈T ′T ′
z|T z

12|TTz〉 = δT ′,1δT,1δT ′
z ,Tz [2δTz ,1 − 4δTz ,0 + 2δTz ,−1], (A.1)

and matrix elements of orbital and spin operators for two-body states |(lxsx)jxj
z
x〉 are

〈(jx ± 1, 1)jxj
z
x|(σ1 + σ2) · x̂|(jx, 1)jxj

z
x〉

= 〈(jx, 1)jxj
z
x|(σ1 + σ2) · x̂|(jx ± 1, 1)jxj

z
x〉

= −2

√
jx + 1/2 ∓ 1/2

2jx + 1
(A.2)

〈(jx ± 1, 1)jxj
z
x|(σ1 − σ2) · x̂|(jx, 0)jxj

z
x〉

= 〈(jx, 0)jxj
z
x|(σ1 − σ2) · x̂|(jx ± 1, 1)jxj

z
x〉

= ∓2

√
jx + 1/2 ± 1/2

2jx + 1
(A.3)
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〈(jx, 0)jxj
z
x|i(σ1 × σ2) · x̂|(jx ± 1, 1)jxj

z
x〉

= (−)〈(jx ± 1, 1)jxj
z
x|i(σ1 × σ2) · x̂|(jx, 0)jxj

z
x〉

= ±2

√
jx + 1/2 ± 1/2

2jx + 1
(A.4)

〈(jx ± 11)jxj
z
x|(σ1 + σ2) · ∇̂Ωx|(jx1)jxj

z
x〉 = ±2

(jx + 1/2 ∓ 1/2)
√
jx + 1/2 ∓ 1/2√

2jx + 1

〈(jx1)jxj
z
x|(σ1 + σ2) · ∇̂Ωx|(jx ± 11)jxj

z
x〉 = ∓2

(jx + 1/2 ± 3/2)
√
jx + 1/2 ∓ 1/2√

2jx + 1
(A.5)

〈(jx ± 11)jxj
z
x|(σ1 − σ2) · ∇̂Ωx|(jx0)jxj

z
x〉 = 2

(jx + 1/2 ∓ 1/2)
√
jx + 1/2 ± 1/2√

2jx + 1

〈(jx0)jxj
z
x|(σ1 − σ2) · ∇̂Ωx|(jx ± 11)jxj

z
x〉 = −2

(jx + 1/2 ± 3/2)
√
jx + 1/2 ± 1/2√

2jx + 1
(A.6)
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