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We develop a technique, denoted as the finite radius approximation (FRA), that uses a two-
dimensional version of the Shannon-Nyquist sampling theorem to determine transverse densities
and their uncertainties from experimental quantities. Uncertainties arising from experimental un-
certainties on the form factors and lack of measured data at high Q2 are treated. A key feature
of the FRA is that a form factor measured at a given value of Q2 is related to a definite region
in coordinate space. An exact relation between the FRA and the use of a Bessel series is derived.
The proton Dirac form factor is well enough known such that the transverse charge density is very
accurately known except for transverse separations b less than about 0.1 fm. The Pauli form factor
is well known to Q2 of about 10 GeV2, and this allows a reasonable, but improvable, determination
of the anomalous magnetic moment density.
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I. INTRODUCTION

A truly impressive level of experimental technique, ef-
fort and ingenuity has been applied to measuring the elec-
tromagnetic form factors of the proton, neutron (nucleon)
and pion [1–6]. These quantities are probability ampli-
tudes that a given hadron can absorb a specific amount of
momentum and remain in the ground state, and therefore
should supply information about charge and magnetiza-
tion spatial densities.

The text-book interpretation of these form factors is
that their Fourier transforms are measurements of the
charge and magnetization densities. This interpretation
is deeply buried in the thinking of nuclear physicists and
continues to guide intuition, as it has since the days of the
Nobel prize-winning work of Hofstadter[7]. Nevertheless,
the relativistic motion of the constituents of the system
causes the text-book interpretation to be incorrect[8].
The difficulty is that in electron-proton scattering the
initial and final nucleon states have different momenta
and therefore different wave functions. In general, these
different states are related by a boost operator that de-
pends on the full complexity of QCD. The use of trans-
verse densities [9, 10] avoids this difficulty by working in
the infinite momentum frame and taking the spacelike
momentum transfer to be in the direction transverse to
that of the infinite momentum. In this case, the differ-
ent momenta of the initial and final nucleon states are
accommodated by using two-dimensional Fourier trans-
forms. The transverse charge and magnetization densi-
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ties are constructed from density operators that are the
absolute square of quark-field operators, so they are cor-
rectly defined as densities.

It is useful to note that the transverse densities are
closely connected to generalized parton distributions
(GPDs) which describe the distribution of quark and
anti-quarks with respect to longitudinal momentum and
transverse position. The integral of the GPD H, evalu-
ated at 0 skewed-ness, over longitudinal momentum gives
the transverse charge density of interest here [11, 12].

This paper is concerned with extracting the spatial
information by developing and using a theoretical tech-
nique that is model-independent and also provides a prac-
tical way of dealing with both experimental uncertainties
and the lack of information on unmeasured regions, with
minimal assumptions. In the subsequent text we plan to
show how to construct bands of transverse densities that
are consistent with available experimental knowledge and
also take into account the possible effects of data taken
at momentum transfer Q2 higher than available in the
present data set. This allows one to consider the possi-
ble impact of future experiments.

But there also is a more general context, with the high
current interest in mapping the three-dimensional struc-
ture of the nucleon [13]. Therefore we also aim to pro-
vide a technique that can be easily extended determining
the spatial aspects of other quantities [11, 12] related to
transverse momentum distributions and generalized par-
ton distributions.

Next we present an overview of the remainder of this
paper. Sect. II concerns the following situation. Suppose
a form factor F (Q2) and transverse density ρ(b) are re-
lated by a two-dimensional Fourier transform, and that
ρ(b) is localized, ρ(b) = 0 for b greater than some fi-
nite distance. The function ρ(b) is band limited and can
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be written as a discrete Fourier series involving F (Q2).
This result, known as the Nyquist-Shannon [14] sampling
theorem, enables us to associate the density at a given
range of values of b with a discrete value of the momen-
tum transfer, see Eq. (3) below (which we denote as the
finite radius approximation FRA). The equivalence be-
tween the FRA and the Bessel series expansion technique
is also established. A general version of the FRA, appli-
cable to other observable quantities, is also presented.

Sect. III is concerned with exploring the the valid-
ity and utility (which depends on the number of terms
needed in the discrete Fourier series) of the FRA using
examples in which the form factor is given by a monopole
(M) or dipole (D) form. Sect. V is concerned with the
reality that the proton electromagnetic form factors are
not known as analytic functions. Instead, form factors
GE,M , F1,2 (with uncertainties) measured at discrete val-
ues of Q2 up to a finite maximum value Q2

max are known.
This means that ρ is known only within some uncertain-
ties, and a technique to determine the uncertainties in ρ
must be developed. This is accomplished by using the
values of Fi ±dFi in the FRA. Estimates of the effects of
incompleteness, arising from contributions in the unmea-
sured region, Q2 > Q2

max, are also provided. The paper
is concluded with a brief summary.

II. GENERAL CONSIDERATIONS

Intuitively, we expect particles to be localized. That
is, we expect densities associated with the particle to
be well approximated by functions that are zero outside
some maximum radius. This assumption, called the fi-
nite radius approximation (FRA), greatly simplifies the
relationship between form factors and their associated
densities.

Let ρ(b) be a two-dimensional transverse density func-
tion (we later take this to be charge or magnetization
density) and let F (Q2) be the associated form factor.
The transverse density is given by [9, 15]

ρ(b) =
1

(2π2)

∫
d2qe−iq·b F (Q2 = q2)

=
1

2π

∫
QdQJ0(Qb)F (Q2), (1)

with the azimuthal symmetry of ρ obtained from the
Lorentz invariant form of F in the space-like region with
q+ = 0. If one knows F (Q2) exactly for all values of Q2,
the transverse density is known immediately. However,
one only knows F (Q2) within experimental uncertainties
for a finite range of Q2. This means that ρ is known only
within some uncertainties, and it is necessary to develop
a technique to determine the uncertainties in ρ.

We proceed by assuming that ρ(b) ≈ 0 for b ≥ R,
where R is a finite distance. Since the functions ρ, F
are Fourier transforms, F is band-limited. We proceed
in the spirit of the Nyquist-Shannon sampling theorem.

The function ρ can be expanded as

ρ(b) =
∞∑

n=1

cnJ0(Xn
b

R
), (2)

where Xn is the n-th zero of J0, and cn is given approx-
imately by the formula

cn ≈ c̃n =
1

2π

2

R2J1(Xn)2
F (Q2

n), (3)

with

Qn ≡ Xn

R
. (4)

The above equation Eq. (3), which is the two-dimensional
version of [14], is the central formal result of this paper.
Using this in Eq. (2) yields the following expression for
ρ(b):

ρ(b) =
1

πR2

∞∑

n=1

J1(Xn)−2F (Q2
n)J0(Xn

b

R
), (5)

The result Eq. (5) is the central phenomenological result
because it tells us that measuring a form factor at Q2

n

provides information about the density mainly at values
of b < R/Xn. This is because Bessel functions are of the
order of unity only for values of arguments less than that
of its first zero.

A. Equivalence with the Bessel Series

Replacing cn by c̃n would be exact if the assumption
ρ(b ≥ R) = 0 is exactly true. This condition is clearly
approximately true, so we expect a near equality between
cn and c̃n. In fact, it turns out that the approximation is
amazingly accurate as we now demonstrate. Numerical
examples are provided in subsequent sections. The exact
values of cn are obtained from the orthogonality of the
cylindrical Bessel functions as

cn =
2

R2J1(Xn)2

∫ R

0

bρ(b)J0(Xn
b

R
) db. (6)

The use of this in Eq. (1) followed by integration over b
can be done using a standard identity to yield

cn =
Xn

πR2J1(Xn)

∫
∞

0

qF (q2)J0(qR)

(Xn

R )2 − q2
dq. (7)

We may use a dispersion relation for the form factor
[16] to establish the connection between c̃n and cn. First
recall that, for Q2 > 0,

F (Q2) =
1

π

∫
∞

4m2
π

dt
ImF (−t)

t + Q2
, (8)
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and that using this expression in Eq. (1) yields

ρ(b) =
1

2π2

∫
∞

4m2
π

dt K0(
√

tb)ImF (−t). (9)

Proceed by using the above in Eq. (6) and then integrate
over b using:

∫ R

0

bdbK0(
√

tb)J0(b
Xn

R
) =

1
X2

n

R2 + t
×

[
1 + XnJ1(Xn)K0(

√
tR)

]
. (10)

Then,

cn =
1

R2J1(Xn)2π2

∫
∞

4m2
π

dt
ImF (−t)

t +
X2

n

R2

×
[
1 + XnJ1(Xn)K0(

√
tR)

]
. (11)

Using only the first term within the brackets along with
Eq. (8) allows one to identify the integral over t as
πF (Q2

n). Thus (using Eq. (3)) one arrives at the result
that cn = c̃n plus a correction term, suppressed by a mod-
ified Bessel function evaluated at a large argument. For
example, a significant contribution to the Im F comes
from the region t ∼ m2

ρ = 0.5 GeV2, and using R = 3.3

fm (see Sec. III), then K0(mρR) = 10−6. The net result
is that

cn = c̃n + δn

δn ≡ XnR2J1(Xn)

J2
1 (Xn)π2

∫
∞

4m2
π

dt
ImF (−t)

t +
X2

n

R2

K0(
√

tR).

(12)

A reasonable estimate is that

cn − c̃n

c̃n
∼ XnJ1(Xn)10−6. (13)

The condition that δn be small is that R be chosen to
be large enough. We ensure that this condition is well-
satisfied for all of our examples and applications.

B. Preliminary Evaluations

It is worthwhile to perform some preliminary analy-
sis of the expression Eq. (5). For x ≫ 1, J0(x) is well
approximated [17] by

J0(x) ≈
√

2

πx
cos(x − π

4
) , (14)

so that the n’th zero of J0, Xn, is given approximately
by

Xn ≈ (n +
3

4
)π , (15)

and

J1(Xn) = −J ′

0(Xn)

≈ (−1)n21/2π−1((n +
3

4
))−1/2. (16)

It follows that for large n, the terms in the series Eq. (5)
for ρ(b) are of the form:

π

2R2
(n +

3

4
)F (Q2

n)J0(Xn
b

R
) ∼ n F ((

nπ

R
)2)

at b = 0. So for the series to converge everywhere, namely
at b=0, we need F to fall faster than Q−2 for large Q.
The oscillations of the cylindrical Bessel functions has-
tens the convergence for non-zero values of b.

Given this convergence, the function ρ(b) can be ap-
proximated by using a finite number of terms in the series
Eq. (5). Because Q2

n = (Xn/R)2 serves as the Q2 in the
argument of F , cutting off the series at N terms is equiv-
alent to taking F (Q2) = 0 for Q2 > (XN/R)2.

If the assumption that ρ(b) = 0 for b ≥ R holds for a
given value of R, then it also holds for larger values of
R. We can see from Eq. (5) that increasing R increases
the frequency with which F (Q2) is sampled and therefore
decreases the range that is sampled. As a consequence,
an increase in R demands an increase in the number of
terms in the approximation for ρ.

A quick result following from the fact that ρ is the
Fourier transform of F is that the mean-square-radius
〈b2〉 is given by

〈b2〉 ≡
∫

d2b b2ρ(b) = −4
d log F

dQ2

∣∣∣∣
Q2=0

. (17)

In this paper, we choose R ≈ 5
√
|〈b2〉| in determining the

number of terms in our expansion. Numerical studies
of the form factors considered in preparing this paper
have shown that this value of R is sufficiently large so
that perturbations to this value lead to the same density
functions and that R2ρ(R) is always small enough so that
the difference between cn and c̃n is minute.

C. Other transverse densities

We believe that the techniques used in this paper can
be exploited to image other quantities that depend on
transverse position. Suppose there is a transverse quan-
tity ρ(λ)(b) that is a two-dimensional Fourier transform
of an experimental observable F (λ)(Q2) such that

ρ(λ)(b) =
1

2π

∫
QdQJλ(Qb)F (λ)(Q2). (18)

An example, discussed in detail in Sect. VC, is the mag-
netization density ρm of the anomalous magnetic mo-
ment. We expect that the index (λ) is associated with
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a given number of units of orbital angular momentum.
Extracting ρ(λ)(b) is facilitated by using the expansion

ρ(λ)(b) =

∞∑

n=1

cnλJλ(Xλ,n
b

R
), (19)

where Xλ,n is the n’th zero of the Bessel function of order
λ. Then the sampling theorem leads immediately to the
result.

cn,λ ≈ c̃n,λ =
2

R2Jλ+1(Xλ,n)2
F (λ)(Q2

λ,n), (20)

Qλ,n =
Xλ,n

R

The difference between cn,λ and c̃n,λ can be shown to
be very small by using the arguments of Sect. II A. The
result Eq. (20) can be used to relate accessible kinematic
ranges with transverse regions.

III. EXAMPLES

To demonstrate our method and explore its limita-
tions, we now analyze two models of the form factor.
For the first model, let the form factor be given by the
monopole form

FM (Q2) =
1

1 + Q2

Ω2

(21)

where Ω = 0.77 GeV. This form factor is taken as a
caricature of the pion electromagnetic form factor. Then
the associated charge density is obtained from Eq. (1):

ρM (b) =
1

2π
Ω2K0(Ωb). (22)

This function diverges as log(1/b) for small values of b
and so provides a severe test of the method. With the
stated value of Ω we find 〈b2〉M = 4/Ω2 = 0.26 fm2, and

thus take R = 5
√
|〈b2〉| = 2.56 fm. We then find the

fractional difference between cn and c̃n of Eq. (12) is less
than 5×10−4 for small values of n, and the magnitude
decreases rapidly as n increases.

We compare to ρM to its approximation as an expan-
sion in N terms, with N = 10, 20, 50 in Fig. 1. We see
that our approximations differ from the exact result, but
the difference decreases with increasing value of N . The
50 term approximation works reasonably well for all value
of b for which the density differs appreciably from 0. Un-
fortunately the 10,20 and 50 term approximations would
require measurements at Q2 = 6, 23 and 144 GeV2. Only
the first value seems presently achievable.

We now examine the dipole form factor given by

FD(Q2) =
1

(1 + Q2

Λ2 )2
(23)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b @fmD

0.01

0.1

1

10

·MHbL @fm
-2D

FIG. 1: (Color Online) Plot of ρM (blue,solid), 10 term
approximation (red, long dash) and 20 term approximation
(green, medium dash) and 50 term (brown, short dash).

where Λ2 = 0.71 GeV2. This value is suggested by its his-
torically close relationship with the proton electromag-
netic form factors. The dipole transverse charge density
is obtained by from Eq. (1) to be

ρD(b) =
1

4π
bΛ3K1(bΛ). (24)

This form factor falls more rapidly with increasing Q2

than does FM , and also corresponds to the larger physical
extent of the proton as compared to the pion. Further-
more, ρD is not singular at the origin (∼ 1−0.058(bΛ)2).
Thus there are several reasons to expect to find better
convergence properties, and therefore a more accurate
representation of the transverse density for the proton.
With this value of Λ, 〈b2〉 = 8/Λ2 = 0.439 fm2, and R =
3.31 fm. Once again the fractional difference of Eq. (12)
is truly tiny for all values of n: the fractional differences
are less than about 10−5 for all values of n that corre-
spond to non-zero cn. We plot ρD and its approximations
in Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b @fmD

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ΡDHbL @fm
-2D

FIG. 2: (Color online) Plot of ρD (solid), 5 term approxima-
tion (red, long dash), 10 term approximation (green, medium
dash) and 15 term approximation (brown, short dash).

We can see how the approximations converge to the
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exact ρD. Even the 10 term approximation is reason-
ably good and the 15 term approximation is extremely
accurate except for b < 0.1 fm.

Another way of looking at convergence properties is to
examine properties of the transverse density. We display
upper limit dependence of 〈b2〉M,D for both the monopole
and dipole form factors. We compute these matrix ele-
ments for a range of values of b from 0 to 1.5 fm. This
covers the region up to where ρ is about 0.1% of its cen-
tral value. The results are shown in Table I. Despite the
relatively poor convergence obtained for the monopole
form factor (Fig. 1), reasonable convergence for the ex-
pectation value is obtained. However, the convergence is

TABLE I: Upper limit, N , dependence of 〈b2〉M,D computed
for values of b from 0 to 1.5 fm.

N 〈b2〉M (fm)2 〈b2〉D (fm)2

5 0.259 0.313

10 0.362 0.320

15 0.368 0.319

∞ 0.367 0.319

much better for the dipole form factors. The 5,10 and 15
term approximations correspond to values of Q2 = 0.9, 4
and 9 GeV2. These values and even higher have already
been achieved experimentally. Thus we reasonably ex-
pect that the proton transverse density is now known.
Indeed, this has already been suggested [9]. However,
now we can answer the question: “How well is the pro-
ton transverse charge density known?”.

IV. EXTRACTION OF PROTON FORM

FACTORS AND UNCERTAINTIES

The transverse densities we seek are given in terms of
the Dirac F1 and Pauli F2 form factors, which are ex-
pressed in terms of the Sachs electromagnetic form fac-
tors GE and GM as

F1(Q
2) =

GE + τGM

1 + τ
, F2(Q

2) =
GM − GE

1 + τ
, (25)

where τ = Q2

4M2
p

.

Elastic electron-proton scattering has been measured
up to Q2 of about 30 GeV2, with the separation of both
GE and GM extracted using a variety of techniques up
to 10 GeV2. There are two sources of uncertainty in the
extraction of the transverse densities. Experimental un-
certainties from the measurements of GE and GM yield
uncertainty in the extracted densities, and incomplete-
ness error arise from the lack of form factor measure-
ments at very high Q2 (above 30 GeV2). In this section,
we perform extractions of the transverse density and eval-
uate the the effects that two kinds of uncertainties on the
densities.

The form factors GE and GM have been extracted from
a global analysis of the world’s cross section and polariza-
tion data, including corrections for two-photon exchange
corrections from Ref. [18]. The analysis is largely identi-
cal to that that of Ref. [19], although additional high Q2

form factor results [20] have been included. In addition,
the slopes of GE and GM at Q2=0 were constrained in
the global fit based on a dedicated analysis of the low Q2

data. In the global fit, the large body of high Q2 data,
especially for GM , can constrain the fit well enough that
the low Q2 behavior is not primarily constrained by the
low Q2 data. Constraining the slope based on an analysis
of only the low Q2 data keeps the global fit from doing a
poor job at low Q2 simply to make a slight improvement
in the high Q2 data. In writing GE(Q2) = 1 − Q2R2

E/6,
the value of RE was constrained to be 0.878 fm and RM

was constrained to be 0.860 fm. This is important in the
extraction of the large scale structure of the density. The
fit is of the following form:

GM (Q2) = µp
1 + p6τ + p10τ

2 + p14τ
3

1 + p2τ + p4τ2 + p8τ3 + p12τ4 + p16τ5

GE(Q2) =
1 + q6τ + q10τ

2 + q14τ
3

1 + q2τ + q4τ2 + q8τ3 + q12τ4 + q16τ5

(26)

where the fitting constants p2, ..p16, q2, ..., q16 are given
in Table II and we use µp = 2.792782.

TABLE II: Fit parameters for GM (pi), GE (qi)

i pi qi

2 9.70703681 14.5187212

4 3.7357 × 10−4 40.88333

6 −1.43573 2.90966

8 6.0 × 10−8 99.999998

10 1.19052066 −1.11542229

12 9.9527277 4.579 × 10−5

14 2.5455841 × 10−1 3.866171 × 10−2

16 12.7977739 10.3580447

We also need a reliable estimate of the experimental
uncertainties in the form factors, in order to determine
the uncertainty in the extracted coefficients c̃n. In the
global analysis, there are two sources that can contribute
to the uncertainties in GE and GM : the uncertainty on
each individual cross section or polarization ratio, and
the normalization uncertainty associated with each cross
section data set. The normalization factors are allowed
to vary in the fit, as was the case in Ref. [19]. To esti-
mate the uncertainty in the fitted normalization factors,
we take the normalization factor from a single data set
and vary it around its best fit value (while allowing all
other parameters to vary) to map out the change in the
χ2 of the fit as a function of the normalization factor.
This yields uncertainties between 0.2% and 2.5% (typi-
cally 0.6%–1%), compared to the initally quoted uncer-
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tainties of 1.5% to 5%, for the data before the normal-
ization has been constrained by the fit. However, by
assuming that all uncertainties are entirely uncorrelated
or pure normalization factors, we neglect the possibil-
ity there may be some angle-dependent or Q2-dependent
correction that could bias the determination of the rel-
ative normalization coefficients. Thus, we assume that
the final uncertainty on each normalization factor is at
least 0.5%, even if the result of the χ2 analysis yields a
smaller result.

Having the uncorrelated uncertainties for each data
point and the constrained normalization uncertainties,
we then extract the uncertainties for GE and GM . For
the uncorrelated uncertainties, we randomly shift each
cross section and polarization ratio measurement within
its uncertainties, and then redo the fit for GE and GM .
We repeat this 1000 times, and look at the range of val-
ues for several Q2 values (55 Q2 values between 0.007
and 31.2 GeV2). This yields our uncorrelated uncer-
tainty at each of the Q2 points. To obtain the impact
of the normalization uncertainties, we repeat this pro-
cedure, varying the normalization of each cross section
data set according to its uncertainty, and determine the
range of GE , GM values for the same set of Q2 points. In
this procedure, the uncertainty obtained depends on the
fit function used, and a functional form with insufficient
flexibility will yield significant smoothing of the results
and thus unrealistically small uncertainties. We scale up
our uncertainties by a factor of two, which yields good
agreement with best direct measurements of the form
factors and uncertainties.

As mentioned above, we use the electric and magnetic
radii extracted from just the low Q2 data in as a con-
straint to the global fit, which can yield unrealisically
small uncertainties for below Q2=0.2 GeV2, especially
for GM , where the very low Q2 data is extremely lim-
ited. Thus, for these low Q2 values, we calculate the
uncertainty at each Q2 corresponding to the uncertainty
in the extracted radius, assuming the linear expansion.
We take this larger uncertainty, rather than the result
from the fit, until the uncertainties from direct extrac-
tions of the form factors are of comparable size, at which
point we take the direct extraction of the uncertainty. For
Q2 > 10 GeV2, there are no direct extractions of GE , and
thus we again have to be sure that we do not underesti-
mate the uncertainties. The global fit yields GE/GD ≈ 0
at high Q2, but it is difficult to tell if GE becomes zero,
or if GE/GM continues its linear decrease with Q2 [20].
Thus, for Q2 > 10 GeV2, we set the uncertainty to be
the difference between the best fit, which yields GE ≈ 0
and the fit where the linear falloff in GE/GM continues,
with GE changing sign and then increasing in absolute
value.

We then use the fit and uncertainties for GE and GM

to extract F1 and F2, treating the uncertainties in GE

and GM as uncorrelated, yielding:

(dF1)
2 = (

1

1 + τ
)2(dGE)2 + (

τ

1 + τ
)2(dGM )2 (27)

5 10 15 20 25 30 Q2 @GeV2D

0.2

0.4

0.6

0.8

1.0

Q4F1HQ
2L@GeV4D

5 10 15 20 25 30 Q2 @GeV2D

0.1

0.2

0.3

0.4

0.5

0.6

Q4F2HQ
2L@GeV4D

FIG. 3: (Color online) The electromagnetic form factors
F1(Q

2) and F2(Q
2) and their error bands, scaled by a fac-

tor of Q4.

(dF2)
2 = (

1

1 + τ
)2(dGE)2 + (

1

1 + τ
)2(dGM )2 , (28)

While the Rosenbluth extractions yield a strong anti-
correlation between the uncertainties on GE and GM ,
the polarization ratio yields a correlated uncertainty; in
the global fit, the combined result is fairly well approx-
imated by entirely uncorrelated uncertainties. Figure 3
shows the extracted values of F1 and F2 along with their
uncertainties. Because the elastic cross section is dom-
inated by the contribution from GM at large Q2, the
fractional uncertainties on GE are much larger, and the
uncertainty on GE dominates the uncertainty on both F1

and F2, even though its contribution to F1 is supressed
by a factor of τ relative to the GM contribution.

We note that for Q2 < 0.5, the uncertainty coming
from cross section normalizations can be the larger con-
tribution to the total uncertainty (and it’s dominant for
GE below 0.1 GeV2). While the normalization uncer-
tainty in the cross sections won’t give a normalization
style uncertainty on GE , the normalization of a given
experiment will tend to have a correlated effect on all
of the extractions within the Q2 covered by the experi-
ment. This effect is accounted for by using the procedure
discussed below in Sect. VA.

V. EXTRACTION OF REALISTIC PROTON

TRANSVERSE DENSITIES

The principle aim of this paper is to use data observed
in experiments to obtain the charge and magnetization
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densities. Recall that the transverse charge density ρch

is given by

ρch(b) =
1

2π

∫
QdQJ0(Qb)F1(Q

2). (29)

The two-dimensional Fourier transform of F2, ρ2 is sim-
ilarly given by

ρ2(b) =
1

2π

∫
QdQJ0(Qb)F2(Q

2). (30)

However the true magnetization density, obtained by
computing the expectation value of the transverse posi-
tion operator with the electromagnetic current operator
is given [10] by

ρm(b) = −b
d

db
ρ2(b)

=
b

2π

∫
Q2dQJ1(Qb)F2(Q

2). (31)

This quantity is the density related to the anomalous
magnetic moment. We begin by extracting ρch,2. The
starting point is to use the above expressions along with
the experimentally determined F1,2 obtained from the
fits of Sect. IV. But extracting realistic transverse den-
sities requires that a determination of the uncertainties
in the results. There are two sources of uncertainty. Ex-
perimental data have uncertainties in the region where
they are measured, and no direct information is available
above some maximum value of Q2 = Q2

max, where there
are no measurements. The experimental uncertainties
lead directly to uncertainties in the c̃n via Eq. (3), and
can be taken into account without further ado. However,
uncertainty must arise because of lack of knowledge of
form factors for Q2 > Q2

max, and these need to be esti-
mated. This error is called the incompleteness error.

A. Impact of Experimental Uncertainties on the

Extracted Transverse Densities

We first treat the experimental uncertainties. We only
use the series Eq. (5) for values of Q2

n for which form
factors have been extracted. The magnetic form factor
GM is well measured up to Q2 = 31 GeV2, but GE is
only known up to ∼10 GeV2. Based on the estimated
uncertainties on GE above 10 GeV2, we find that while
F1 is relatively well measured up to 30 GeV2, the un-
certainties on F2 grow rapidly above 10 GeV2, reaching
25% by 13 GeV2. These upper limits on Q2 are related
to limits on the summation index n (of Eq. (5)) through
Eq. (4) which requires values of Ri. Taking 〈b2〉 given
by ρch,2 from the fits presented above, we use Eq. (17)
to obtain R1 = 3.29 fm and R2 = 3.62 fm for F1,2.
This corresponds to upper limits N on the sum over
n n = 30, Q2

30 = 31 GeV2 for ρch(b), but only up to
n = 20, Q2

20 = 11 GeV2 for ρ2(b).
The transverse densities ρch,2 are plotted as the solid

curves in Fig. 4. The densities peak at b = 0 and that

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b @fmD

0.5

1.0

1.5

2.0

ΡchHbL @fm
-2D

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b @fmD

0.5

1.0

1.5

2.0

Ρ2HbL @fm
-2D

FIG. 4: (Color Online) The transverse densities ρch,ρ2 (blue,
solid) of the parameterizations and their approximates to 10
terms (red,long dash), 20 terms (green, medium dash), 30
terms (brown, short dash) and using the parameterization
of Eq. (26). The approximations converge as the number of
terms increases.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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0.005
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0.015

0.020
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0.030
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FIG. 5: (Color online) Uncertainties in transverse densities
∆expρch (solid, blue) and ∆expρ2(b) (dashed, red) due to ex-
perimental uncertainties on F1, F2.

the transverse density ρ2 has a slightly broader spatial
extent than that of ρch.

The next step is to extract c̃n from the fit to the form
factor using Eq. (3). The uncertainty on F1,2(Q

2) di-
rectly yields an uncertainty on c̃n, and thus its contribu-
tion to ρ(b) (Eq. (2)). Assuming the errors from each c̃n
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extraction add constructively, we obtain

∆expρch(b) =

30∑

n=1

∣∣∣∣
∂ρch(b)

∂F1

∣∣∣∣ dF1((
Xn

R1
)2)

=
1

πR2
1

30∑

n=1

J1(Xn)−2

∣∣∣∣J0(Xn
b

R1
)

∣∣∣∣ dF1((
Xn

R1
)2),

(32)

∆expρ2(b) =

20∑

n=1

∣∣∣∣
∂ρ2(b)

∂F2

∣∣∣∣ dF2((
Xn

R2
)2)

=
1

πR2
2

20∑

n=1

J1(Xn)−2

∣∣∣∣J0(Xn
b

R2
)

∣∣∣∣ dF2((
Xn

R2
)2).

(33)

Note that the errors are added linearly. This means that
we are taking the worst case possible by assuming a full
correlation. These uncertainties in densities are plotted
in Fig. 5. They are about 1.5% of the transverse density
at b = 0 and decrease (in absolute value) at increas-
ing distances. The fractional uncertainty is small (below
10%) until b ≈ 1 fm, where the density is only a few
percent of the peak density.

B. Incompleteness Error

We next study the uncertainties in the transverse den-
sity caused by lack of experimental knowledge at large
values of Q2. The first step is to understand the mean-
ing of the truncations made in Eq. (29) and Eq. (31).
Plots of these approximations are given in Fig. 4. We
see that for, ρ2, one achieves agreement with the param-
eterization for values of N as low as 20, with the largest
disagreement at b = 0. For ρch(b = 0), the difference
between the result from the parameterization and the
N = 30 approximation is -2%, while for ρ2(b = 0), the
N = 20 approximation is only 1% below the full result.
Even though fewer terms are included in the approxima-
tion for F2, the agreement is comparable, due to the more
rapid fall-off of F2 with increasing values of Q2.

Given this information, we can state our procedure.
Our basic transverse densities are obtained by using the
parameterization Eq. (26) to evaluate the expressions of
Eq. (29),Eq. (30), and Eq. (31). However, we are justi-
fied in using this parameterization for values of Q2 cor-
responding to N = 30, (20) for F1,(2). We assume a max-
imum error by taking the uncertainty in the form factor
to be ± the value given by the parameterization. There-
fore the estimated incompleteness uncertainty is given by
the expression

∆inc(b) ≡
∣∣∣∣∣

∞∑

N+1

cnJ0(Xn/R1)Fi(Q
2
n)

∣∣∣∣∣ , (34)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b @fmD

0.01

0.02

0.03

0.04

DincΡHbL @fm
-2D

FIG. 6: (Color online) Incompleteness error. The absolute
error in ρch (solid, blue) and ρ2 (dashed, red).

as a function of b, with i = 1, 2. The results are shown in
Fig. 6. It is necessary to realize that using this expression
for the incompleteness error overestimates the error be-
cause using this expression is equivalent to assuming that
the form factor vanishes for Q2 > Q2

N in Eq. (5). But the
form factor can not suddenly drop to 0. Fig. 3 shows a
fractional error bar for F1(31 GeV2) which is only about
0.2, a fractional error bar at 13 GeV2 which is only about
0.3 of the form factor F2. Thus using Eq. (34) amounts
to making an overestimate. To be conservative, we ob-
tain the total uncertainty by adding the contributions of
Eq. (32) (or Eq. (33)) to the estimated incompleteness
uncertainty given by Eq. (34).

We now have working expressions for the transverse
densities ρch,2, and their respective uncertainties. We
start with the basic term for ρch,2, obtained by using
the parameterization Eq. (26) to evaluate the expressions
of Eq. (29),Eq. (30), and Eq. (31), then add the two
separate errors ∆inc,exp to get a total error ∆ = ∆inc +
∆exp for ρch. A band is formed by considering the region
between the basic plus or minus the appropriate ∆ for
the two densities.

The transverse densities ρch,2(b) are plotted with their
error bands in Fig. 7 and Fig. 8. The errors are very
small except for values of b less than about 0.1 fm. The
results in this figure are the central numerical findings of
this paper. The transverse densities are known very well
indeed. The spatial extent of ρ2 is broader than that of
ρch as previously observed [21]. Note that the realistic
transverse densities differ substantially from the dipole
result of Eq. (24), shown in Fig. 2.

C. Extraction of ρm(b)

We now turn to the true transverse anomalous mag-
netic density of Eq. (31), defined by taking the ma-

trix element of 1
2

∫
d3rb ×~j in a transversely polarized

state,[10, 21]. This Fourier transform involves J1(Qb)
and therefore the FRA corresponds to that of Eq. (19)
and Eq. (20), with λ = 1. Using this expansion, instead
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FIG. 7: (Color online) ρch (solid, blue) (with error bands
(short dashed, red)).

of simply taking the derivative of ρ2, allows an expansion
in basis functions that explicitly vanish at b = R2. Then
the FRA gives the result:

ρm =
1

πR2
2

∞∑

n=1

J−2
2 (X1,n)bQ1,nF2(Q

2
1,n)J1(Q1,nb),

Q1,n ≡ X1,n

R2
. (35)

Once again we include the effects of the experimental
error and the incompleteness error. This latter error is
larger in this case than for ρ2 because of the explicit fac-
tor of X1,n. The result for ρm and its error bands are
plotted in Fig. 9. This quantity has a broader spatial
extent than ρ2, possibly resulting from the importance
of the pion cloud in causing the anomalous magnetic mo-
ment. The uncertainties on this quantity are greater than
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FIG. 8: (Color online) ρ2, with error bands

for the other densities. Future measurements extending
knowledge of F2 to higher values of Q2 would reduce these
higher uncertainties.

VI. SUMMARY

This paper is concerned with obtaining a general
method to determine information about densities in the
transverse plane. The use of Bessel series expansion,
augmented by the finite radius approximation FRA of
Eq. (2), Eq. (3), Eq. (19) and Eq. (20) allows us to de-
termine the effects of experimental uncertainties and also
allows us to estimate the effects of the incompleteness er-
ror caused by a lack of measurements at large values of
Q2. The method can be applied to the extraction of any
spatial quantity. One example, related to orbital angular
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FIG. 9: (Color online) The true magnetization density ρm.
The uncertainties are numerically negligible.

momentum, is shown in Eq. (19) and Eq. (20).
The method is applied here to analyze electromagnetic

form factors. We can see from Fig. 7 and Fig. 8 that
the errors associated with the transverse charge density
and the two-dimensional Fourier transform of F2 are very
small. The anomalous magnetization density ρM , Fig. 9,
is also reasonably well determined, but future measure-
ments extending our knowledge of F2 to higher values of
Q2 would reduce the existing uncertainties.
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