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We report on microscopic model calculations of the first step of direct pre-equilibrium (n,xn)
emission in neutron interaction with 90Zr and 208Pb below 20 MeV. Our model is based on both
an accurate description of the target excited states, provided by the self-consistent RPA method
implemented with the Gogny D1S force, and well established in-medium two-body forces to represent
the residual nucleon-nucleon interaction for the inelastic processes. Two goals have been achieved
for the first time: the present microscopic approach provides a unified description of collective state
excitations and pre-equilibrium one-step process, and our reaction model reproduces fairly well
available data without any parameter adjustment.

I. INTRODUCTION

Over the past two decades, quantum mechanical pre-
equilibrium models extensively used to analyze nucleon
induced reaction have reached maturity. Two main pre-
equilibrium mechanisms are usually considered. The
first, known as the multistep direct (MSD) process as-
sumes that the projectile collides one or several times
with the target nucleus but at least one nucleon remains
in the continuum. In the second, the multistep compound
(MSC) process, the projectile is first absorbed by the
nucleus and re-emitted rather rapidly, before the com-
posite system reaches the statistic equilibrium state of a
compound nucleus. The original MSC and MSD models
developed by Feshbach, Kerman and Koonin (FKK) [1]
have been extended to account for reaction mechanisms,
such as transfer of flux between the MSD and MSC chains
[2], multiple particles emission during the MSD process
[3], and interference effects in the second step of the MSD
[4], which were not considered in the early days of pre-
equilibrium reaction modeling.

It was shown [2] that the MSD mechanism dominates
the pre-equilibrium emission for nuclear induced reac-
tion at incident neutron energy as low as 14 MeV [2],
and that below ∼ 25 MeV, second and higher orders di-
rect processes are weak. A MSD calculation thus re-
duced to a one-step direct process, which is equivalent
to treating excitation of the target nucleus after one in-
teraction has taken place with the projectile. This pro-
cess may be modeled in the distorted wave born approx-
imation (DWBA) for inelastic transitions to the contin-
uum. Although the one-step process is relatively sim-
ple compared to other pre-equilibrium mechanisms that
have been studied so far, its modeling still requires several
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phenomenological ingredients, such as state densities and
optical model potentials. So far, its implementation also
systematically uses a very simple representation of the
residual two-body interaction, the parameters of which
are directly adjusted to fit experimental spectra. Koning
and Chadwick [5] reduced the part of phenomenology
in MSD calculations, as these authors computed cross
sections for each particle-hole (p-h) state built from a
pertinent Nilsson scheme, so their model did not require
phenomenological state densities.

Moreover, in medium energy nucleon induced reaction
analyses typically covering the 10 MeV to 200 MeV range,
the so called direct (collective) reactions are usually dis-
tinguished from the pre-equilibrium MSD process [5, 6].
We note that this distinction is also made in studies based
on the exciton pre-equilibrium model [7]. The direct re-
actions correspond to the excitation of sharp states at
low excitation energies such as low-lying collective states,
or to giant resonances which are embedded in the con-
tinuum. On the other hand, the MSD pre-equilibrium
model so far relies on statistical assumptions, such as the
leading particle statistics or the residual system statis-
tics [8], and uses incoherent p-h excitations to account
for target states at excitation energy higher than a few
MeV. Besides the inconsistency in the modeling, the dis-
tinction between direct reactions with collective excita-
tions and the MSD process applied with statistical as-
sumptions leads to a double counting between coherent
p-h excitations (i.e. collective modes) and incoherent p-
h excitations, that has been partially cured using phe-
nomenological means [5, 9]. Direct collective contribu-
tions are usually calculated within a phenomenological
collective model which takes as input the multipole de-
formation parameters βL extracted from high precision
proton inelastic scattering studies [6]. However, while
reliable information about collective low-lying states are
available, the collectivity in nuclear spectra above the
few low-lying collective states is not experimentally well
known in general. Consequently, contribution of this por-
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tion of collective spectra is either ignored [5] or included
using the assumption that the βL values for collective
states are determined from an assumed fraction of the
energy weighted sum rule (EWSR) [7, 9]. As the distri-
bution over excitation energy of these strengths is not
always well established, even for giant resonances, calcu-
lated cross section for collective states above the low-
lying excitations strongly depends on the prescription
adopted for distributing the βL strengths over excitation
energy.

In the quantum mechanical pre-equilibrium formalism
of Tamura, Udagawa, and Lenske (TUL) [10], the col-
lective and non-collective excitations are accounted for
by transition strength functions provided by the Ran-
dom Phase Approximation (RPA). The one-step cross
section in TUL, although based on a microscopic descrip-
tion of the nuclear excitation, is factorized into the RPA
strength and inelastic scattering DWBA cross section av-
eraged over the different p-h components, in which the
detailed connection between the scattering and residual
states inevitably gets lost.

In this study, we propose new quantum mechanical cal-
culations of the one-step direct contribution to the pre-
equilibrium process, which use reliable residual two-body
interactions as well as a microscopic description of target
states. The self-consistent RPA (SCRPA) method imple-
mented with the Gogny D1S interaction [11] is used to
provide our description of the target excitations. This
allows us to calculate simultaneously the direct and the
one-step contributions in a unified way. Moreover, our
model does not contain any adjustable parameter, so that
the results of calculations can directly be compared with
experimental data.

In Sec. II we briefly review the quantum mechani-
cal formulation of the one-step direct process. We detail
the different ingredients which are used in our calcula-
tions, namely the structure of target state excitations,
two-body residual interactions, and distorted waves. In
Sec. III we compare our model predictions with experi-
mental data for (n,xn) double differential cross sections
calculated for 10–20 MeV neutron induced reactions on
the spherical 90Zr and 208Pb target nuclei. Sensitivity of
the calculated cross sections to the choice of the resid-
ual two-body interaction and to the collectivity content
of target state excitations will be examined. Decompo-
sition of cross sections over the spin and parity of target
excitations will also be detailed, and we will discuss fig-
ures of merit of the present model. Finally, conclusion
and outlook are provided in Sec. IV.

II. METHOD

In this section we first provide a brief account for the
well-known quantum mechanical pre-equilibrium model
of the one-step emission process. Next, we provide a
detailed description of RPA excitations and residual in-
teractions used in the modeling of the 90Zr(n,n’) and

208Pb(n,n’) reactions to be studied later on in Sec. III.

A. Reaction theory

The quantum pre-equilibrium model for the multistep
direct (MSD) process is based on the Born series of the
probability amplitude TF←0 corresponding to the tran-
sition between an initial state made up of an incident
nucleon of momentum ki and target in its ground state
|0〉, and a final state made up of an outgoing nucleon of
momentum kf and target in excited state |F 〉 [1], namely

TF←0 = 〈χ(−)(kf ), F |Vres

∞
∑

n=1
(

1

PHP − E + iǫ
Vres

)n−1

|χ(+)(ki), 0〉 =

∞
∑

n=1

T
(n)
F←0 ,

(1)

where Vres is the residual interaction responsible for the
inelastic process, E the total energy of the system, H =
HA+H1 the unperturbed Hamiltonian (i.e. target Hamil-
tonian plus projectile Hamiltonian), P the projector on
the space spanned by scattering states, and χ(+/−)(ki/f )
the distorted wave in the entrance/exit channel. The

nth term is associated with the n- step component of the
pre-equilibrium MSD process.

The MSD double differential cross section reads

d2σ(ki,kf )

dΩfdEkf

=
1

2e

∫ Ekf
+e

Ekf
−e

dEk
µ2

(2π~2)2
k

ki

∑

F

|TF←0|
2
δ(Eki−Ek−EF) , (2)

where Eki/kf
is the energy of the nucleon in the en-

trance/exit channel and EF = 〈F |HA|F 〉−〈0|HA|0〉 the
target excitation energy. The sum over F includes all
target states with EF fulfilling energy conservation. In
Eq. (2), the average over the outgoing nucleon energy
Ekf

within a 2e width accounts for both the energy bins
in measurements and the energy resolution of the exper-
imental devices. This expression should also be averaged
over the incoming nucleon energy if the beam is only
quasi mono-energetic, which often happens in neutron
scattering experiments at medium energies.

The lowest order of the MSD mechanism corresponds
to the one-step process. In that case, the transition am-
plitude TF←0 reduces to the first term of Eq. (1), namely

T
(1)
F←0 = 〈χ(−)(kf ), NJMΠ|Vres|χ

(+)(ki), 0〉 , (3)

and the one-step double differential cross section reads

d2σ(1)(ki,kf )

dΩfdEkf

=
1

2e

∫

Ekf
+e

Ekf
−e

dEk
µ2

(2π~2)2
k

ki

∑

N

|〈χ(−)(kf ), NJMΠ|Vres|χ
(+)(ki), 0〉|

2
δ(Eki−Ek−EN) .

(4)
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The state |F 〉 = |NJMΠ〉 represents an excitation of
total angular momentum J , projection M , parity Π and
excitation energy EN . The ground state |0〉 has zero
angular momentum and positive parity, because we only
consider spherical even-even nuclei in this study. In the
case of non-zero target, the angular momentum coupling
between the initial and final states can be dealt with.
However, the effect of the target spin might not be that
large, when the final state configuration phase-space is
large enough.

We introduce the one body density transition matrix
elements (OBDTMEs) associated with the transition be-
tween the target ground state |0〉 and one excited state
|NJMΠ〉. They read

ρ0,F
β,α = 〈NJMΠ|a†

α × aβ |0〉 , (5)

where the single particle (s.p.) operators a†
α and aβ cor-

respond to the creation and annihilation of a particle in a
s.p. state belonging to the basis {α}, respectively. This
s.p. basis can be defined as the set of the target nucleus
Hartree-Fock (HF) mean field solutions. The transition
amplitude, Eq. (3), is expressed as a combination of OB-
DTMEs and two body matrix elements of the residual
interaction Vres, namely

T
(1)
F←0 =

∑

α,β

〈χ(−)(kf ), α|Vres|χ
(+)(ki), β〉A ρ0,F

β,α , (6)

where the A symbol attached to matrix elements in-
dicates antisymmetrization. More details about this
derivation can be found in [12]. The OBDTMEs, Eq. (5),
are the spectroscopic information that must be known
prior to calculating all the one-step process components.

B. Target states in SCRPA

Structure properties for both ground and excited
states are described by the SCRPA method [13] im-
plemented with the Gogny D1S force [11]. For 208Pb,
this nuclear structure model, hence from now labelled as
SCRPA+D1S, provides a good description of the proper-
ties for low-lying collective states and giant multipole res-
onances [14, 15], for many other states that have weaker
but non negligible collectivity [16], and for high spin and
non natural parity states [16, 17]. Spectroscopic proper-
ties for 90Zr are less accurately described than those for
208Pb by the present model as: i) the weak pairing con-
tent of the Z = 40 proton sub-shell is here neglected, and
ii) 2 particle-2 hole excitations required to form the yrast
2+ and 4+ states are outside the RPA model space [18].
Nevertheless, for 90Zr, the SCRPA+D1S approach accu-
rately reproduces the properties of most low-lying collec-
tive states as well as giant resonances, both of which will
be showed to be of prime importance in reaction model
analyses presented in the next section.

All details on the SCRPA+D1S method can be found
in [13, 14, 17], so we only remind here that, in the

RPA approximation, an excited state |NJMΠ〉, Eqs.(3-
5), reads

|NJMΠ〉 = Θ†
NJMΠ|0̃〉 , (7)

where the ket |0̃〉 represents the RPA correlated ground
state. The operator Θ† stands for a creation of a boson
and reads

Θ+
NJMΠ =

∑

ph

XNJΠ
ph A†

JMΠ(ph̃)− Y NJΠ
ph AJM̄Π(ph̃) ,

(8)

where A†
JMΠ and AJM̄Π are the angular momentum cou-

pled creation and annihilation operators of a p-h pair,
respectively, defined in Ref. [12]. The particle and hole
single particle states are defined with respect to the HF
mean field. We remind that in Eq. (8) the sum runs sepa-
rately over proton and neutron p-h states. The transition
operator contains both isoscalar, T = 0, and isovector,
T = 1, components, where T is the isospin. The total
angular momentum J corresponds to the coupling of the
orbital angular momentum L to the intrinsic spin S.

The amplitudes XNJΠ
ph and Y NJΠ

ph are related to OB-

DTMEs, Eq. (5), as follows

XNJΠ
ph = 〈NJMΠ|A†

JMΠ(ph̃)|0̃〉 ,

Y NJΠ
ph = 〈NJMΠ|A†

JMΠ(h̃p)|0̃〉 . (9)

The double differential cross section, Eq. (4), is obtained
by calculating the transition amplitudes, Eq. (6), for all
possible transitions which are specified by the RPA am-
plitudes, Eq. (9).

Although the SCRPA+D1S method provides a good
overall description of the spectroscopic properties of the
two nuclei under study, couplings to two or more p-h
states and to continuum states are neglected. These
couplings impact as a redistribution of strengths and
shift positions of the RPA eigenstates [19, 20]. To first
order approximation, couplings to states that are out-
side the RPA model space can be handled by assign-
ing a finite width ΓN and an energy shift ∆N to each
RPA state. A microscopic calculation of these correc-
tions is out of scope of the present study. We use a
phenomenological estimate for the damping plus escape
width ΓN = 0.026E1.9

N MeV [21] to which we add a
width stemming from the energy resolution of the neu-
tron beam. This last term is represented using a Gaus-
sian distribution of width Γ ≃ 0.5–1.3 MeV depending
upon incident energy, which corresponds to the spread-
ing of the elastic peaks displayed in the neutron emission
spectra analyzed in Sec. III.

The energy shift ∆N is chosen to approximately com-
pensate for differences between SCRPA+D1S and exper-
imental energies of well know excitations, since the pre-
dicted EN values tend to be higher. Experimental excita-
tion energies of the first 3−, 5−, 2+, 4+, 6+, 8+ and 10+

excitations for 208Pb [22] , the first 3− and 5− excitations
in 90Zr [23], and systematic energies of giant resonances
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[21] for both nuclei are used as references to calculate the
∆N values. For giant resonances, we use the reference ex-
citation energies Ex ≃ αA−1/3 with α = 31 MeV for the
low energy octupole resonances (LEOR), α = 80 MeV
for the isovector giant dipole resonance (IVGDR), and
α = 80 and 63 MeV for the isoscalar giant monopole
and quadrupole resonances (ISGMR and ISGQR) [21],
respectively. The ∆N corrections for all the states which
are not directly anchored to an experimental value, or
to a value from systematics, have been determined using
a simple interpolation. For 90Zr , the RPA energies are
shifted by a ∆N value smaller than 200 keV for low-lying
states and by ∆N ’s in the range 0.7–1.5 MeV for giant
resonances. For 208Pb, the ∆N ’s reach approximatively
1 MeV for low-lying states and 1–2 MeV for giant reso-
nances.

For our applications, the SCRPA+D1S equations were
solved expanding solutions on a harmonic oscillator basis
including 14 major shells and assuming no space trunca-
tion. Note that all RPA excited states with spin J up to
J = 14 (~ units) with natural (Π = (−)J , i.e. J = L)
and non natural (Π = (−)J+1, i.e. J = L ± 1) parities
are considered. Transition amplitudes, Eq. (6), are cal-
culated with the computer code DWBA98 [24]. The full
expression of the transition amplitudes, Eq. (6), which
includes angular momentum coupling details and differ-
ent components of the two-body interaction, Vres, for
direct and exchange terms can be found in [24, 25]. Note
that the present one-step direct model, which uses the
SCRPA+D1S nuclear structure approach, has been es-
tablished and employed in the previous microscopic pre-
equilibrium study of Ref. [26].

C. Transition probabilities

We perform here an analysis of reduced transition
probabilities for the excitation of natural parity states
that characterizes the collectivity content of the two tar-
gets spectra. This will be useful in the later interpreta-
tion of the calculated one-step cross section, Eq.(4).

We remind that, for any natural parity JΠ → 0+ tran-
sition, the reduced electric transition probability is de-
fined as

B(EJ, 0+ ← JΠ) =
∑

M

|〈NJMΠ|rJY J
M |0〉|

2 , (10)

where rJY J
M is the transition operator. The B(EJ) val-

ues, Eq. (10), are calculated with the RPA wave func-
tions, Eq. (7), or with p-h excitations of the uncorrelated
HF mean field, defined as

|NJMΠ〉ph = A†
JMΠ(ph̃)|0〉 , |0〉 = |HF 〉 . (11)

We remind that collective states generate much stronger
transition densities than do those for single p-h states.
The comparison between p-h and RPA transition proba-
bilities provides a measure of the collectivity content of
the nuclei spectra.
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FIG. 1: Strength functions, Eq. (IIC), for E3 and E5 exci-
tations in 90Zr as described with one p-h or RPA operator.
Vertical bars are for the strengths at discrete energies Ex.
Full curves are obtained from folding the strength functions
with a Gaussian distribution (curves are scaled by a factor
0.5).

By performing this comparison for all transitions with
a total angular momentum transfer in the range J =
0 − 14, it is shown that the nuclear spectrum contains
non negligible collectivity for natural parity transitions
up to J = 6 in 90Zr, and up to J = 8 in 208Pb. In each
nucleus, the RPA and p-h strengths become very similar
for higher J values. To be more specific, we focus on the
3− and 5− excitations which are the most relevant to this
study. The E3 and E5 strength functions, Eq. (10), are
displayed in Figs. 1 and 2 for 90Zr and 208Pb, respectively.
The excitation energies Ex in the plots correspond to the
corrected energies EN −∆N defined in Sec. II B.

For 90Zr, the RPA E3 strength in Fig. 1(b) has signifi-
cant contributions below Ex = 9 MeV, and it mainly con-
tains a very collective low-lying state at Ex = 2.7 MeV
as well as the LEOR centered at Ex = 6.9 MeV.
The RPA E5 strength in Fig. 1(d) is mainly concen-
trated in two states: a low-lying state located at Ex =
2.2 MeV, and a state which displays strong collectivity
located at Ex =9.8 MeV. The E3 and E5 p-h strengths
seen Figs. 1(a) and (b), respectively, are significantly
lower that those for RPA and mainly contribute above
Ex ≃ 8 MeV. These differences characterize the collec-
tive content of the spectrum of present interest.

In 208Pb, the RPA E3 strength in Fig. 2(b) is mostly
concentrated below Ex = 7 MeV, with a very collective
low-lying state at Ex = 2.6 MeV and the LEOR centered
at Ex = 5.2 MeV. The RPA E5 strength in Fig. 2(d)
displays large collectivity below Ex = 7 MeV. The p-h
strengths in Figs. 2(a) and (b) are significantly smaller
than those for RPA solutions and are concentrated at
higher energy.
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FIG. 2: Same as Fig. 1 for 208Pb.

D. Residual interaction for inelastic transitions

We now provide some details about the effective two-
body interactions, Vres in Eq. (6), that are used in our
one-step direct calculations. In all previous quantum
pre-equilibrium calculations, this residual interaction was
represented by a simple central interaction with a Yukawa
form factor (see [5] as an example) for which the strength
was adjusted to reproduce experimental cross sections.
As our goal is to perform calculations which can be di-
rectly compared to experimental data without any ad-
justment being made, we will consider reliable interac-
tions for which the parameters are fixed and not adjusted
to match nucleon scattering experimental data.

However, for the reactions under study here, this re-
quirement can only be partially fulfilled. Indeed, while
at higher incident energy (above approximately 50 MeV),
the Melbourne g-matrix [27] used as effective interaction
in microscopic folding model calculation provides very ac-
curate predictions for proton elastic [12, 27] and inelastic
scattering [16, 28], a good representation of the effective
interaction to be used in direct reaction model at lower
energy is still lacking as more complicated reaction mech-
anism should be considered as well [12]. Nonetheless, we
consider that g-matrices could still provide a reasonable
description of the residual interaction but we do not ex-
pect the same degree of accuracy below ∼ 50 MeV as
that reached in proton scattering studies at higher inci-
dent energy.

Accordingly, we will use the density-dependent exten-
sions CDM3Yn [29] (n ranges from 1 to 6) of the ef-
fective interaction M3Y [30] based on the g-matrix el-
ements of the Paris NN potentials. For comparison,
we will also consider the original M3Y interaction [30].
Other density-dependent extensions of M3Y, such as the
DDM3Y and BDM3Y interactions [29], have also been
tested in our one-step MSD calculations but as these
lead to predictions very close to those obtained with the
CDM3Yn parameterizations, these will not be discussed

here. These interactions all contain central (in the four
spin-isospin S = 0, 1 and T = 0, 1 channels), spin-orbit
(T = 0, 1) and tensor (T = 0, 1) components [30]. The
density dependence originally was introduced in the cen-
tral term of the M3Y force to ensure the reproduction of
saturation properties of nuclear matter. An additional
energy dependence was also introduced to simulate the
energy dependence of the nucleon optical potential [31].

Finally, we indicate that the distorted waves entering
the transition amplitudes, Eq. (3), have been obtained
in both incoming and outgoing channels using the phe-
nomenological Koning-Delaroche optical potential [32] .

III. RESULTS AND DISCUSSIONS

In this section we present the results of our (n,n’) one-
step calculations for the scattering of 14 and 18 MeV neu-
trons from the 90Zr and 208Pb targets. We first investi-
gate the effect of the residual two-body interaction on the
calculated cross sections. Next we compare our predic-
tions with (n,xn) experimental data and emphasize how
a precise description of the excited states impacts pre-
dictions. Finally, we explain how our calculation avoids
some of the deficiencies met in previous analyses, and we
discuss approximations we made to assess uncertainties
in present model predictions.

A. Sensitivity to effective interaction

As explained in the previous section, the effective two-
body residual interaction Vres, Eq.(6), to be used at rel-
atively low energies should be considered carefully be-
fore making any comparison with the data. We compare
the calculated cross sections, Eq. (4), using the M3Y,
CDM3Y1 and CDM3Y6 effective interactions. These
three sets of calculations are performed with the RPA ex-
citation, Eq.(7). The result for the 18 MeV neutron scat-
tering from 90Zr are displayed in Fig. 3(a) for the angle
integrated double-differential cross-section in Eq. (4) for
outgoing energies Eout in the range 0–18 MeV (the con-
tribution from elastic scattering is not included), and in
Fig. 3(b) for the angular distribution of emitted neutrons
at the outgoing energy Eout = 11 MeV. In both figures,
the two cross sections calculated with CDM3Y1 (dashed
curves) and CDM3Y6 (dotted curves) are almost identi-
cal in shape, and their magnitudes approximately differ
by 5%. Results based on CDM3Yn with n ranging from 2
to 5, lie in between those for CDM3Y6 and CDM3Y1 so
they are not displayed. We notice that results obtained
with the two CDM3Y interaction (full curves) are up to
30% larger than those obtained with M3Y (full curves).
This difference stems from a combination of two effects.
First, the energy dependence included in CDM3Yn in-
teractions leads to a reduction in the cross sections by
3–7%. However, the explicit density dependence greatly
increases the cross sections. This enhancement is under-
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stood as follows. First, we remind that a density depen-
dence in a nuclear interaction usually acts as a repulsive
interaction. However, the original M3Y interaction [30]
corresponds to a g-matrix calculation which is an aver-
age over some range of densities [33]. Since low energy
projectiles mainly probe the surface, low density part of
the target, repulsion effects are most likely overestimated
in the present calculation performed with M3Y. The ex-
plicit density dependence in CDM3Yn corrects for this
effect.

The comparison between the two-body interactions
used in our calculations provides us with estimates for
uncertainty on predictions. From the present study, this
uncertainty can be represented by a global normalization
factor of approximately 30%. While we do not expect any
greater variations related to the choice between different
effective interactions, a more systematic study should be
performed to evaluate this uncertainty with a better pre-
cision that presently achieved. Using a microscopic resid-
ual interaction which is fixed for all the reactions under
study is nonetheless a significant progress. Indeed, previ-
ous MSD calculations used a simple central phenomeno-
logical interactions with parameters directly adjusted to
fit experimental distributions. The strengths of these in-
teraction thus displayed strong variations between dif-
ferent studies as they may depend on: i) projectile and
target, ii) adopted prescriptions for the phenomenolog-
ical level densities and the optical potential, as well as
iii) relative contributions of other reaction mechanisms
(i.e. two-step direct, MSC, direct collective reaction and
evaporation processes) to (n,xn) emission.

B. Comparison to experimental data

Next, we compare the calculated one-step double dif-
ferential cross sections, Eq. (4), to experimental (n,xn)
data for 90Zr and 208Pb in Figs. 4 to 9. All calculations
(full curves) were performed with the CDM3Y3 interac-
tion and the RPA states of Eq. (7) including those with
natural and non-natural parities. Cross sections are dis-
played in two representations, i.e. as a function of the
emission energy Eout at selected outgoing angles θc.m.

(spectra), and as a function of θc.m. at selected Eout val-
ues (angular distributions). Note that neither calculated
elastic scattering nor non direct interaction contributions
to the neutron emission spectra are displayed in Figs 4
to 9.

1. 90 Zr target

Comparisons of calculated spectra with data are dis-
played for the incident energies Ein = 14.1 MeV and
18 MeV in Figs. 4 and 5, respectively. The calculations
at Ein = 14.1 MeV are in good agreement with the data
for Eout > 6.5 MeV at θc.m. = 30◦, 60◦ and 100◦, and
for Eout > 10 MeV at θc.m. = 150◦. The discrepancy
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FIG. 3: 18 MeV neutrons incident on 90Zr. One-step cross
sections calculated with the M3Y (full curves), CDM3Y1
(dashed curves) and CDM3Y6 (dotted curves) interactions:
(a) Angle integrated neutron emission spectra; (b) Angular
distributions at Eout = 11 MeV.

observed at θc.m. = 30◦ for Eout ≃ 12 MeV will be dis-
cussed below. For Ein = 18 MeV (see Fig. 5), a good
agreement is also found for Eout > 8 MeV at θc.m. = 30◦,
60◦ and 90◦, and for Eout > 10 MeV at θc.m. = 150◦. As
expected, emission at low energy, and more particularly
at large angles, is underestimated as it should be dom-
inated by the compound nucleus evaporation, and most
likely by the MSC process, both of which are not consid-
ered in the present analysis.

For Ein = 14.1 MeV in Fig. 4(a), the experimental
neutron emission at θc.m. = 30◦ and Eout ≃ 12 MeV
is clearly underestimated. A possible explanation is
that the first 2+ state located at Eexp = 2.186 MeV in
the experimental 90Zr spectrum [23], which could pro-
vide a large contribution to the neutron emission at
Eout = Ein − Eexp = 11.9 MeV, is not taken into ac-
count in our calculation as such a low-lying 2+ excitation
is not predicted by the present RPA structure model (see
Sec. II B). The same Ein = 14.1 MeV data were analyzed
in [6] where the contribution of this 2+ state to the neu-
tron emission was taken into account using a collective
phenomenological model. While this 2+ level provided an
important contribution, its excitation was not sufficient
to fully explain the emission observed at Eout ≃ 12 MeV.
Besides, the broadening of the elastic peak is quite large,
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FIG. 4: 14.1 MeV neutron incident on 90Zr. Calculated one-
step contributions to the neutron emission spectra compared
to experimental (n,xn) data [34] (open circles). Full and
dashed curves are for cross sections calculated using the RPA
and p-h excitations, respectively. Outgoing angles are indi-
cated on panels (a), (b), (c) and (d)

and the discrepancy between data and calculations al-
most disappears at Ein = 18 MeV, see Fig. 5(a). Further
work is thus required to establish the genuine origin of
the observed underestimation.

Angular distributions are displayed in Figs. 6 and 7
for Ein = 14.1 MeV and 18 MeV, respectively. Cal-
culations are in global agreement with the data. How-
ever, the mismatch is seen between calculated angular
distributions and experimental data for θc.m. > 45◦ and
Eout = 8.6 MeV, and for Ein = 14.1 MeV and 18 MeV in
Figs. 6(b) and 7(d), respectively. This could be easily ex-
plained by evaporation and MSC contributions that are
not included in our calculations. Indeed isotropic angular
distribution components could be added to present cal-
culations to better reproduce the general trend observed
in the data.

2. 208Pb target

A similar analysis was performed for 14.1 MeV neutron
scattering from 208Pb. Comparisons between predictions
and data for spectra and angular distributions are dis-
played in Figs. 8 and 9, respectively. The experimental
cross sections are fairly well reproduced by our calcula-
tions. Note that the calculated one-step cross section
for 208Pb at 14.1 MeV is higher than that for 90Zr as
seen in Fig. 4 for the same incident energy . This dif-
ference is not only due to the higher level density but
also to stronger collectivity present in the 208Pb excited
states. A good illustration is the angular distribution
at Eout = 8.5 − 8.6 MeV which needs multistep com-
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FIG. 5: Same as Fig. 4 for 18 MeV incident energy.
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FIG. 6: 14.1 MeV neutrons incident on 90Zr. Angular distri-
butions calculated with the CDM3Y3 interaction (full curves),
compared to experimental data [34] (open circles). The neu-
tron outgoing energies Eout are indicated on panels (a) and
(b).

pound and/or evaporation components in the 90Zr case,
see Fig. 6(b), while the one-step direct cross section still
dominates the distribution for 208Pb as seen in Fig. 9(a).

3. Reaction cross sections

Ratios of the total one-step direct process contribution
to the reaction cross section (σR) are provided in Tab.I
for 90Zr and 208Pb at three different incident neutron
energies, namely 10, 14.1 and 18 MeV. The σR values
have been obtained using the Koning-Delaroche optical
potential [32]. The total cross section for the one-step
process σ(1) corresponds to the double differential cross-
section, Eq.(4), integrated over outgoing angles and ener-
gies. The σ(1)’s have been calculated with the CDM3Y3
interaction. As seen on Tab.I, the ratio σ(1)/σR increases
with increasing incident energies and reaches 21 % and
33 % at Ein =18 MeV for 90Zr and 208Pb, respectively.
This ratio is stronger in 208Pb as the level density and
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FIG. 8: Same as Fig. 4 for 14.1 MeV neutrons incident on
208Pb. Data are from [35].

collectivity content are higher than in 90Zr.

C. RPA versus particle-hole excitations

The cross sections calculated with the RPA description
of the excited states, Eq. (7), are next compared to those
obtained with p-h excitations, Eq. (11), in Figs. 4 and 5
for 90Zr and in Fig. 8 for 208Pb.
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FIG. 9: Same as Fig. 7 for 14.1 MeV neutrons incident on
208Pb. Data are from [35]

Ein (MeV) σR (b) σ(1)/σR (%)

10 1.819 10.45
90Zr 14.1 1.743 15.90

18 1.707 20.70

10 2.545 21.85
208Pb 14.1 2.527 26.65

18 2.498 32.87

TABLE I: Reaction cross sections σR and ratios of the total
one step cross-section σ(1) to σR for neutron scattering off
90Zr and 208Pb at 10, 14 and 18 MeV incident energies.

In general, cross sections calculated with p-h excita-
tions (dashed curves) are significantly lower than those
obtained with the RPA ones (full curves) and underes-
timate data at high emission energy. These differences
can be directly related to those observed between p-h
and RPA B(EJ) values, discussed in Sec. II C for the E3
and E5 transitions. The relation between the magnitude
of the cross section and B(EJ) value can be understood
taking as example that of the simple collective model
for inelastic scattering [6, 36]. In this model, differential
cross sections are directly proportional to the square of
the deformation parameter βL [6] for any natural par-
ity transition (J = L). In that case, the quantity β2

L

can be simply related to the reduced transition probabil-
ities B(EJ) in Eq. (10) for electric multipole [36], and
DWBA inelastic scattering cross sections thus exactly
scale as B(EJ)’s. While in the present paper, inelas-
tic cross-sections are obtained using the microscopic ap-
proach depicted in Sec. II A, which requires using the full
transition density matrices [16], we can assume that the
magnitude of the calculated cross section roughly scales
as the associated B(EJ) value.

Changes between p-h and RPA based cross sections in
Figs. 4, 5 and 8 qualitatively follow those for the E3 and
E5 reduced transition probabilities displayed in Figs. 1
and 2. However, cross section variations are not exactly
similar to variations of E3 and E5 strengths as excitations
with other multipolarities significantly contribute, as dis-
cussed in the next section. This comparison provides a
measure of impact of collectivity content of excited states
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on scattering properties and illustrates how a good de-
scription of this collectivity, provided by an accurate well
established nuclear structure model, is of key importance
to perform reliable calculations of direct pre-equilibrium
emission cross sections.

However, the relation between the magnitude of
DWBA cross-sections and B(EJ)’s does not hold for:
i) non-natural parity transitions, which would require an
analysis of other spectroscopic quantities such as mag-
netic transition probabilities B(MJ), and ii) isovector
transitions. But as for excitation energies below 15 MeV
which are relevant for the present study, the isoscalar
transitions to natural parity states provide the main con-
tributions to the one-step cross section, their analysis is
sufficient to understand the impact of collectivity on cal-
culated spectra. An exception is the IVGDR, which is
mainly isovector in nature, but in the present analysis
conducted below 20 MeV the transition to this state does
not provide a large contribution to the one-step cross sec-
tions (see Sec. III D).

D. Spin and parity components

Our model analysis is next focussing on the spin and
parity content of transitions feeding excited states. For
convenience a distinction is made between natural [Π =
(−)J ] and non-natural [Π = (−)J+1] parity transitions.

Spectra tied with natural parity (NP) transitions are
discussed at first place for θc.m. = 30◦ in the interac-
tion between 18 and 14.1 MeV neutrons incident on 90Zr
(Fig. 10) and 208Pb (Fig. 11), respectively. Inelastic scat-
tering cross sections for ground state to excited state
transitions with J growing from J = 1 to J = 3 are
shown as dashed, dot, and dot-dashed curves, respec-
tively, in Figs. 10(a) and 11(a). Similar analyses are
shown in Figs. 10(b) and 11(b) were the dashed, dot,
and dot-dashed curves are now for J = 4 and 5, and
for J ≥ 6, respectively. The full curves in Figs. 10(a)
and 11(a) are for the total one-step emission, i.e. with
J = 0 to 14, and Π = + and Π = −.

As can be seen in Fig. 10(a) for 90Zr, the 3− excita-
tions (dot-dashed curve) provide the main contribution
to the one-step process. These excitations are responsi-
ble for the high emission energy peak and most portion
of spectrum emission at Eout ∼ 11 MeV that is for the
LEOR energy (Ex ∼ 6.9 MeV). Another key contribution
to the spectrum, which originates from the 2+ level exci-
tations, displays a maximum for Eout ∼ 13.5 MeV. Tran-
sitions with higher multipolarities (i.e. with J > 3) also
contribute significantly to neutron emission, as shown in
Fig. 10(b). A quite strong JΠ = 5− component is ob-
served for the outgoing energy Eout ∼ 8 MeV, stemming
from collective transitions predicted in SCRPA+D1S cal-
culations at an excitation energy near Ex ∼ 9.8 MeV.

The multi-polarity decomposition of spectra is next
extended to the 14.1 MeV data shown in Figs. 11(a)
and 11(b) for the 208Pb target. At Eout . 9 MeV, the

cross section components arising from excitation of low-
lying 2+ and 3− states [Fig. 11(a)] and from 4+, 5− and
6+ levels [Fig. 11(b)], sum up to form broad peaks shown
as solid curves. At lower outgoing energies, all depicted
spin and parity contributions are required to describe
neutron emission. We notice that the J ≥ 6 compo-
nent is quite strong, as shown as the dot-dashed curve in
Fig. 11(b). This arises from J ≥ 6 collective strength, es-
pecially that for JΠ = 6+ excitations below Ex ∼ 7 MeV
(details not shown).

Excitation of giant resonances also contributes to the
calculated spectra. For example, contributions from IS-
GQR excitations are shown as dotted curves with max-
ima at Eout ≃ 4 MeV in Fig. 10(a) and at Eout ≃ 3 MeV
in Fig. 11(a). For both targets, the components arising
from the ISGQR and IVGDR excitations are too weak
to be seen on the present spectra as they both are cal-
culated at Ex ∼ 13.5 MeV (208Pb) and Ex ∼ 17.8 MeV
(90Zr). At incident energies as low as 14.1 and 18 MeV,
their excitation is small as compared to compound nu-
clear emission. However ISGQR and IVGDR excitations
will become of key importance in the interpretation of
spectra measured at higher incident energies.

The contribution of the non-natural parity transitions
to calculated spectrum is shown as full curve in Fig. 10(b)
for 18 MeV neutrons incident on 90Zr, where this com-
ponent amounts to approximately 30% of the total one-
step emission for Eout . 13 MeV, i.e. for Ex & 5 MeV
. Another example of non-natural parity transitions con-
tributions to differential spectra at Eout = 10 MeV is
shown as dotted curve in Fig. 7(c). Dashed curve is for
natural-parity transitions. This latter component is 30%
smaller than the angular distribution for full emission
spectrum (full curve) The same analysis for 208Pb leads
to similar conclusions, as suggested considering the spec-
trum in Fig. 11(b) and the angular distribution in Fig. 9.
These specific examples illustrate in a quantitative way
what is the typical portion of the emission spectra orig-
inating from non-natural parity excitations. Their rela-
tive amount remains stable with outgoing energies corre-
sponding to Ex = Ein−Eout, with Ex & 5 MeV for both
targets.

E. Consistent treatment of p-h and collective

excitations

We now provide a detailed discussion on the approxi-
mations adopted in the previous MSD model implemen-
tations [5–7] which we contrast to the present model
approach.

Analyses of the 14 and 18 MeV neutrons induced re-
actions on 90Zr and 208Pb were performed previously in
[5–7]. In these works, it was assumed that direct re-
actions can proceed following two distinct mechanisms,
namely inelastic scattering to discrete collective states
and direct pre-equilibrium emission. Collective discrete
cross sections for isoscalar natural parity transitions were
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FIG. 10: 18 MeV neutrons incident on 90Zr. Contributions of
the different spin-parity JΠ transitions to the one-step cross
section for the neutron emission at θc.m. = 30◦ and at Eout

in the range 3-17 MeV. Circles are for experimental data. In
panel (a), full, dashed, dotted and dot-dashed curves are for
calculations using excitations with all multipolarities (total),
JΠ = 1−, JΠ = 2+, and JΠ = 3−, respectively. In panel (b),
full, dashed, dotted and dot-dashed curves are for calculations
using excitations with non-natural parity (n.n.p.), JΠ = 4+,
JΠ = 5−, and natural parity and J ≥ 6, respectively.

calculated within the macroscopic collective model using
deformation parameters βL deduced from proton inelas-
tic scattering data analyses. These discrete contributions
were then incoherently added to the pre-equilibrium com-
ponent, calculated within the MSD model implemented
with incoherent p-h excitations [5, 6], or within the exci-
ton model [7].

Applying this procedure raises two main concerns.
First, an accurate calculation of the direct cross section
with the macroscopic collective model relies on a very

100

101

102

 4  8  12

d2 σ/
(d

Ω
 d

E
) 

[m
b/

(M
eV

 s
r)

]

Eout (MeV)

(a)

14.1 MeV 208Pb (n,xn)
Total

1-

2+

3-

100

101

102

 4  8  12

d2 σ/
(d

Ω
 d

E
) 

[m
b/

(M
eV

 s
r)

]

Eout (MeV)

(b)

n.n.p.
4+

5-

J ≥ 6

FIG. 11: Same as in Fig. 10 for 14.1 MeV incident neutrons
on 208Pb and for Eout in the range 2-12 MeV.

precise knowledge of the βL values for all collective ex-
citations of levels lower than incident energies. This re-
quirement can hardly be fulfilled in general as many col-
lective states above the first few low-lying states which
significantly contribute to emission spectra are not exper-
imentally well known, even for closed and near closed-
shell nuclei. Phenomenological procedures have been
used so far to take into account this collectivity for mul-
tipoles L ≤ 4, and possible collective contributions for
higher multipoles have not been considered. For instance
the LEOR contribution has been included in [5–7] con-
sidering a βL value based on an assumed fraction of the
EWSR, the amount of which greatly varies between the
different analyses. In [6], collectivity at excitation en-
ergy above a few MeV for multipoles other than L = 3
is neglected. In the works of [7, 9], collective contribu-
tions with multipoles up to L = 4 are considered using
an approximate procedure to fully exhaust the EWSRs,
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but these are neglected for L > 4 transitions.
A second concern is that the incoherent sum of di-

rect collective and MSD cross sections can lead to dou-
ble counting for the collective and incoherent p-h exci-
tations. This problem has only been dealt with differ-
ent phenomenological procedures. In Ref. [5], the pre-
equilibrium contribution was gradually introduced from
excitation energies above which collective contributions
were assumed to vanish. Double counting was more pre-
cisely analyzed in [9], where the EWSR corresponding to
both collective and incoherent p-h excitations was cal-
culated for each multipole L, and showed to exceed the
EWSR limit for transitions with L ≤ 4. Double counting
was then prevented assuming that: i) for L ≤ 4 tran-
sitions, contributions to the direct emission process is
exclusively attributed to collective excitations, with cor-
responding EWSR’s within theoretical bounds, and ii)
for L > 4, collectivity is small and smeared out enough
so the direct emission can be calculated with the MSD
model using incoherent p-h excitations.

The present microscopic reaction model overcomes
these deficiencies by construction. First, it consistently
describes the so-called collective direct and the one-step
contributions to neutron emission. As a consequence, the
double counting is not an issue as all the target states
excited in the one-step mechanism are described within
a unique structure model which properly exhausts the
EWSRs [15]. Moreover, the SCRPA+D1S model ensures
that the collectivity content of the target spectrum is
accurately accounted for in the one-step cross-section.
For instance, the sums of the predicted fractions of the
JΠ = 3− EWSR for low-lying states and the LEOR are
34% and 36% for 90Zr and 208Pb, respectively, values
which are in good agreement with estimates based on pre-
vious hadron scattering data analyses [37, 38]. Finally,
quite large collectivity for multipoles as high as L = 6 is
also predicted by the SCRPA+D1S model as discussed
in Secs. III C and III D, and their contributions to the
neutron emission are here automatically included as well.

F. Model uncertainties

Our calculations with no adjustable parameter are in
good overall agreement with experimental data. We con-
sider that an uncertainty of the order of 30 % can be asso-
ciated to the normalization of the calculated cross section
as due to limited knowledge of the residual two-body in-
teraction. However, different approximations used in our
model may further increase this uncertainty.

First, we used the ansatz of local optical potential to
generate the distorted waves. But it was demonstrated
[39] that, compared to the result obtained with a non-
local optical potential, an equivalent local potential in-
creases the probability amplitude of the distorted wave
inside the nucleus (Perey effect). This leads to overesti-
mate probability transition amplitudes of Eq. (3). Non-
locality corrections were introduced [39] to correct for

this effect and used in MSD pre-equilibrium calculations
[40]. As a result, one-step cross sections decreased by
35%. Here, the phenomenological optical potential used
in our calculations is energy-dependent which partly ac-
counts for non-local properties. For this reason, and con-
sidering that the non-local potential to which the phe-
nomenological local potential should be equivalent re-
mains unknown, any estimation of the genuine non lo-
cality corrections becomes uncertain. Consequently, this
correction was not included in our calculation but we may
consider that it could significantly affect the normaliza-
tion of the calculated cross sections.

Another source of uncertainty is tied with the many-
body description of the target excitations. While the
RPA method provides a good representation of both co-
herent (collective) and incoherent p-h excitations, it is
not appropriate for the description of excitations with
more complicated structure. Nuclear structure model
that explicitly treats couplings to two or more p-h com-
ponents and continuum states should be used, as these
couplings will change spectroscopic properties of the tar-
gets excitations, thus the associated inelastic cross sec-
tions, beyond the simple spreading and shifting described
in Sec. II B and used in the present calculation. Pairing
correlations, which are neglected in the HF and RPA ap-
proaches, should also be taken into account for single-
closed shell nuclei, as they would most likely impact
on both excitation energies and strength functions. In-
cluding pairing in the description could improve the de-
scription of low-lying positive parity states in 90Zr, thus
the predictions for associated pre-equilibrium emission at
high energy.

Finally, other components of pre-equilibrium emission,
namely the two-step direct and the multistep compound
processes, may have some contributions even at emission
energies where the one-step process seems to dominate.
Although we believe their impact to the current anal-
ysis could be small, these contributions should be con-
sider to better assess the quality of our one-step calcu-
lation during comparison with data. However, as these
components have so far only been calculated with phe-
nomenological ingredients and adjusted together with the
one-step direct component to match experimental cross
sections, their exact individual contributions to the pre-
equilibrium emission remain difficult to assess.

IV. CONCLUSION AND OUTLOOK

We have performed quantum mechanical calculation
of the one-step direct component of the pre-equilibrium
(n,n’) emission using an effective two-body residual inter-
action and a microscopic description of the target states
based on RPA calculations implemented with the D1S
force. Density-dependent M3Y forces have been consid-
ered for the residual two-body interaction between pro-
jectile and target nucleons. Our reaction model does
not contain any adjustable parameter and the calculated
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cross sections have been directly compared to the data.
For 14 and 18 MeV neutron induced reaction on 90Zr and
208Pb targets, the predicted neutron spectra and angu-
lar distributions are in overall good agreement with the
data.

The collective content of the target spectra described
within the RPA approach is shown to be appropriate to
correctly describe the measured neutron emission. Cal-
culations performed with incoherent particle-hole excita-
tions, which neglect collectivity, underestimate the data
at high emission energy. The present one-step calcu-
lation automatically accounts for contributions of col-
lective and non collective states, giant resonances and
non-natural parity excitations. Consequently, our model
does not consider any arbitrary distinction between pre-
equilibrium one-step process and direct excitation of col-
lective states. This removes some modeling ambigui-
ties present in previous more phenomenological analyses,
such as: i) double counting between collective states and
incoherent p-h excitations, and ii) incomplete and/or in-
accurate evaluation of the collective states contributions
to the neutron emission. Our model also shows that col-
lective transitions with multipolarity as high as L = 5
(90Zr) and L = 6 (208Pb) are required to fully account
for calculated spectra. It was also found that non natu-
ral parity excitations contribute up to 30 % of the double
differential one-step cross section.

We have discussed uncertainties inherent to our model
prescription, namely those tied with residual interac-
tions. Indeed this discussion is far from being closed
as we are still using phenomenological potentials in the
incoming and outgoing reaction channels.

These concerns could be alleviated if one considers mi-

croscopic one-step calculations for proton induced reac-
tions at higher energy (E > 50 MeV) since microscopic
non local optical potentials can be built [12, 27], and the
effective two-body force to be used as a residual inter-
action is more precisely known [27]. Calculated spectra
at incident energies higher than 20 MeV will reveal the
growing importance of exciting giant resonances which lie
in the spectra of targets between approximately 10 MeV
and 40 MeV. These excitations are expected to signifi-
cantly contribute to the direct pre-equilibrium emission
in this energy regime.

The present study will be extended in the near fu-
ture to spherical open-shell nuclei using the self consis-
tent Quasi-particle RPA (QRPA) nuclear structure ap-
proach implemented with the Gogny force [41]. The im-
pact of collectivity predicted by this QRPA model on pre-
equilibrium cross sections will also be studied for open-
shell nuclei like 238U [42, 43].
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[17] J. Dechargé, L. Šips et D. Gogny, Phys. Lett. B98, 229

(1981).
[18] J. Heisenberg, J. Dawson, T. Milliman, O. Schwentker,

J. Lichtenstadt, C. N. Papanicolas, J. Wise, J. S. Mc-
Carthy, N. Hintz, and H. P. Blok, Phys. Rev. C 29, 97
(1984).

[19] G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev.
Mod. Phys. 55, 287 (1983).

[20] D. Gambacurta, M. Grasso, and F. Catara, Phys. Rev.
C 81, 054312 (2010).

[21] M. Harakeh and A. van der Woude, Giant Resonances

(Oxford University Press, New York, 2001).
[22] M. Martin, Nucl. Data Sheets 108, 1583 (2007).
[23] L. Ekström and J. Lyttkens-Linden, Nucl. Data Sheets

67, 579 (1992).



13

[24] J. Raynal, computer code DWBA98, 1998, (NEA
1209/05).

[25] J. Raynal, Nucl. Phys. A97, 572 (1967).
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