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We investigate the weak-interaction-driven bulk-viscous transport properties of npe matter in the
neutrino transparent regime. Previous works assumed that the induced bulk viscosity correction to
pressure, near beta equilibrium, is linear in deviations from the equilibrium charge fraction. We show
that this is not always true for (some) realistic equations of state at densities between one and three
times saturation density. This nonlinear nature of the perturbation around equilibrium motivates a
far-from-beta-equilibrium description of bulk-viscous transport in neutron star mergers, which can
be precisely achieved using a new Israel-Stewart formulation with resummed bulk and relaxation
time transport coefficients. The computation of these transport coefficients depends on out-of-beta-
equilibrium pressure corrections, which can be computed for a given equation of state. We calculate
these coefficients for equations of state that satisfy the latest constraints from multi-messenger
observations from LIGO/VIRGO and NICER. We show that varying the nuclear symmetry energy
J and its slope L can significantly affect the transport coefficients and the nonlinear behavior of
the out-of-equilibrium pressure corrections. Therefore, having better constraints on J and L will
directly impact our understanding of bulk-viscous processes in neutron star mergers.

I. INTRODUCTION

Binary neutron star collisions detected through gravitational waves [1, 2] offer exciting prospects for
constraining the dense matter equation of state (EoS) [3–11], both via the tidal deformability encoded in
the inspiral gravitational wave signal [12–19] and through its electromagnetic counterparts [20–24]. Neutron
star mergers give rise to extreme densities and temperatures of 80 MeV or more [25–28], being thus of great
interest for mapping out the equilibrium properties of hot and ultradense QCD matter [29–38].
Key to determining the EoS of dense and neutron-rich matter is the nuclear symmetry energy, which

characterizes the difference in energy between symmetric nuclear matter and pure neutron matter. The
symmetry energy Esym is often modeled with a series expansion in baryon density nB ,

Esym(nB) = J +
L

3

(
nB
nsat

− 1

)
+O

[(
1− nB

nsat

)2
]
, (1)

where J is the symmetry energy at the nuclear saturation density nsat = 0.148 fm−3 [39–41], and L is its
slope. Many efforts have been undertaken to constrain J and L [3–11, 42], though L still displays large
uncertainty [38]. The slope of the symmetry energy is expected to have a large impact on the star radius
and tidal deformability [16, 17, 43–45], but previous works indicate that changing L produces a small effect
on the post-merger dynamics and gravitational wave emission [46].
Neutron star collisions also offer new opportunities to learn about novel out-of-equilibrium properties of

dense matter [47]. The violent changes in temperature and density found in mergers can drive the system
away from beta equilibrium [46, 48] as the proton fraction evolves out of phase with variations of the baryon
density, which leads to dissipative work [49–51]. Hence, weak-interaction reaction processes that restore beta
equilibrium [49, 50, 52–55] can in principle damp density and temperature oscillations right after the merger,
which may lead to observable imprints in the gravitational waves emitted by the system [47, 56–59].
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It has been known for a long time that such dissipative effects associated with changing particle fractions
can be modeled (at least in the context of linear response theory) as an effective bulk-viscous correction
to the pressure [52, 53]. Bulk viscosity has also been investigated in the context of r-modes of isolated
neutron stars [60–62]. Recently, in Ref. [63] (see also [64–66]), it was shown that sufficiently close to beta
equilibrium, the correction to the beta-equilibrated pressure follows a dynamical equation of motion a la
Israel-Stewart [67], with transport coefficients determined by the dense matter equation of state in beta
equilibrium, as well as weak-interaction rates [63]. Surprisingly enough, in Ref. [68], this equivalence was
shown to hold also beyond the linear response regime. As a matter of fact, [68] demonstrated that the
dynamics of a two-component, reactive relativistic fluid mixture can be rigorously rewritten as a resummed
bulk-viscous Israel-Stewart theory even far from equilibrium. However, in this case, the bulk viscosity and
relaxation time transport coefficients must also depend on the out-of-beta-equilibrium pressure corrections.
Therefore, simulations of neutron star mergers describing dense matter in the presence of non-conserved
lepton currents due to weak decays, such as those performed in [57], inherently display the physics of bulk
viscosity, regardless of whether linear response arguments hold or not. In this sense, neutron star collisions
are, thus, expected to be intrinsically bulk-viscous systems.
In this work, following [68], we determine for the first time all the weak-interaction-driven bulk-viscous

transport properties of npe matter in the neutrino transparent regime using realistic equations of state.
Previous works assume that the induced bulk-viscous correction to the pressure, near beta equilibrium, is
linear in deviations from the equilibrium charge fraction. We show this is not the case for realistic EoSs
[69] at densities between one and three times saturation density. In general, the nonlinear nature of the
perturbation around equilibrium requires a far-from-beta-equilibrium description of bulk-viscous transport,
which is investigated here using the exact Israel-Stewart formulation with resummed bulk and relaxation
time transport coefficients derived in [68]. In addition, we systematically vary J and L (within current
constraints) to study their effects on the bulk-viscous transport coefficients. We find that the transport
coefficients are quite sensitive to variations in J and L. This implies that having better constraints on such
quantities will directly benefit our understanding of bulk-viscous effects in neutron star mergers.
This paper is organized as follows. In Section II, we show how weak interactions give rise to a bulk-viscous

description described by Israel-Stewart theory with resummed transport coefficients. In practice, given the
temperatures involved in the neutrino-transparent regime, we compute the resummed transport coefficients
under a zero-temperature approximation for the EoS (we leave temperature corrections to the EoS for future
work). In Section III, we show how to obtain realistic EoSs in the context of Walecka-like [70] relativistic
mean-field theory models that satisfy the latest constraints from LIGO/VIRGO [1, 15, 71] and NICER [72–
75], with varying J and L. In Section IV, we first present results for the bulk viscosity transport coefficient
near beta equilibrium, which are compatible with that found in previous works [49–51]. We then compute the
resummed transport coefficients and discuss how nonlinearities in the total out-of-equilibrium pressure can
impact the transport coefficients in the far-from-equilibrium regime. In particular, such nonlinearities can
be so significant that they may affect the interpretation of the system as a bulk-viscous fluid. In addition, we
show that by varying J and L, one can change the equilibrium charge fraction’s value, drastically affecting
the transport coefficients.
Our conclusions and outlook are presented in Section V. For the sake of completeness, we present the Urca

rates in Appendix A, while Appendices B, C, and D discuss further details concerning the Israel-Stewart
formulation of bulk viscosity. These appendices are included to facilitate the comparison between this work
and previous papers where the bulk viscosity coefficient is estimated from linear response theory applied to
periodic density oscillations. Finally, in Appendix E, we briefly review the thermal field theory calculations
needed to determine the equation of state.
Notation: We use natural units, ℏ = c = kB = 1, and gµν is the Minkowski metric with a mostly minus

signature.

II. RESUMMED ISRAEL-STEWART THEORY FROM CHEMICAL IMBALANCE

We consider a system composed of protons p, neutrons n, and electrons e. This provides a model description
of neutron star matter at temperatures that are low enough that the neutrino mean free path is larger than
the radius of the star [49]. In this system, flavor equilibration occurs via the direct and modified Urca
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processes,

n→ p+ e− + ν̄e, (2)

p+ e− → n+ νe, (3)

n+X → p+ e− + ν̄e +X, (4)

p+ e− +X → n+ νe +X, (5)

where X is a spectator nucleon, a neutron or a proton.
In the case that neutrinos are not trapped, the criterion for beta equilibrium is given by the following

detailed balance condition:

µn = µp + µe, (6)

where µn, µp, and µe are the chemical potentials for neutrons, protons, and electrons, respectively. We can
quantify violations of Eq. (6) with the difference δµ = µn − µp − µe, so that δµ = 0 characterizes beta
equilibrium1.
We now discuss how the above chemical reactions can produce bulk viscosity [63]. We consider a thermally

isolated system. There are two timescales associated with it: τhydro, defined as the timescale of perturbations
from the hydrodynamic processes such as baryon density oscillations, and τreac, defined as the timescale for
the system to equilibrate via chemical reactions. If τhydro ≫ τreac, the reaction happens so rapidly that
the system is instantaneously equilibrated. The system is in equilibrium at each time step, so there is
no dissipation. If τhydro ≪ τreac, the system has no time to respond to the perturbation. The system’s
composition is fixed, and the process is reversible, so there is no dissipation. Only when τhydro ≈ τreac the
chemical reactions can change the system’s composition, but they do not have enough time to keep the system
in equilibrium. Consequently, the process is irreversible, the system’s entropy grows, and dissipation occurs.
In binary neutron star mergers, density oscillations can happen at a timescale of milliseconds, similar to
those required by weak interactions to restore beta equilibrium [49, 50], which corresponds to the dissipative
case where τhydro ≈ τreac.

Because dissipation is induced by flavor-changing processes, one can measure the effect of the reaction-
induced bulk viscosity by keeping track of the change in the chemical composition of the system. We can
then write the first law of thermodynamics as

dε = Tds+ µndnn + µpdnp + µedne

= Tds+ µndnB − δµ dne,
(7)

where ε is the energy density, s is the entropy density, T is the temperature, nn, np and ne are the neutron,
proton, and electron densities, respectively, and nB = np + nn is the baryon density. In the second line of
Eq. (7) we used charge neutrality np = ne, which implies that we are left with three degrees of freedom to
describe the local thermodynamic state. In this work, we choose the energy density ε, the baryon density
nB , and the electron fraction Ye = ne/nB as the three original independent thermodynamic variables.
Let us now define the equations of motion of the hydrodynamic system. In this work, we follow the

derivation in Ref. [68] and assume the energy-momentum tensor to (formally) have the form of an ideal fluid,

Tµν = (ε+ P )uµuν − Pgµν , (8)

where P is the total pressure, which is not only a function of the equilibrium variables but also contains
nonequilibrium contributions.
Because neutrinos get out of the system, energy and momentum are not exactly conserved, and thus,

∇µT
µν = Qν , (9)

1 The δµ = 0 case we use here is a crude approximation valid only at very low temperatures (T ≪ 1 MeV). At sufficiently
large temperatures, beta equilibrium does not require δµ = 0, see [49, 50].
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where Qν represents the loss due to neutrinos. The equation for the energy density, obtained by contracting
(9) with uν , is given by

uµ∇µε+ (ε+ P )θ = uµQµ, (10)

where θ = ∇µu
µ is the expansion rate. The baryon current is given by Jµ = nBuµ, and its conservation

leads to

∇µJµ = nBθ + uµ∇µnB = 0. (11)

Due to the weak-interaction processes mentioned above, the electron current, Jµ
e = neu

µ, is not conserved,
namely

∇µJ
µ
e = uµ∇µne + neθ = Γe(ε, nB , Ye), (12)

where the reaction rate Γe is outlined in Appendix A. Substituting Eq. (11) and the charge/electron fraction
Ye = ne/nB into Eq. (12), we find

uµ∇µYe =
Γe

nB
. (13)

We are now ready to show how this system can be exactly described by a bulk-viscous Israel-Stewart [67]
theory with new resummed transport coefficients. The derivation follows the reasoning used in the recent
paper [68], and it works even for a system far from beta equilibrium. We define the bulk scalar Π to be the
off-beta equilibrium correction to the pressure,

P = Peq +Π. (14)

With the three degrees of freedom in our system, we choose ε and nB to be the variables that describe the
equilibrium state and Ye to be the variable that describes the out-of-equilibrium state. We can then consider
the evolution of Π,

uµ∇µΠ =
∂Π

∂ε

∣∣∣∣
nB ,Ye

uµ∇µε+
∂Π

∂nB

∣∣∣∣
ε,Ye

uµ∇µnB +
∂Π

∂Ye

∣∣∣∣
ε,nB

uµ∇µYe. (15)

Substituting Eq. (10) and Eq. (11) into the equation above, one finds

uµ∇µΠ = − ∂Π

∂ε

∣∣∣∣
nB ,Ye

(ε+ P )θ +
∂Π

∂ε

∣∣∣∣
nB ,Ye

uµQµ − ∂Π

∂nB

∣∣∣∣
ε,Ye

nBθ +
∂Π

∂Ye

∣∣∣∣
ε,nB

uµ∇µYe

= −

[
∂Π

∂ε

∣∣∣∣
nB ,Ye

(ε+ P ) +
∂Π

∂nB

∣∣∣∣
ε,Ye

nB

]
θ +

∂Π

∂ε

∣∣∣∣
nB ,Ye

uµQµ +
∂Π

∂Ye

∣∣∣∣
ε,nB

Γe

nB
.

(16)

Let us now define

F = − ∂Π

∂Ye

∣∣∣∣
ε,nB

Γe

nB
. (17)

At β-equilibrium, where Π = 0, F should vanish. Therefore, it must be possible to write it as F = ΠFΠ,
where the quantity FΠ remains finite when Π → 0. In other words, FΠ can depend on higher powers of Π,
but F must vanish when Π vanishes, which implies that FΠ must remain finite (i.e., non-divergent) in this
limit. One can now rewrite (16) in Israel-Stewart-like form

τΠu
µ∇µΠ+Π− τΠ

∂Π

∂ε

∣∣∣∣
nB ,Ye

uµQµ = −ζθ, (18)

where the relaxation time, τΠ, and bulk viscosity coefficient, ζ, are given by

τΠ =
1

FΠ
, (19)
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ζ =
1

FΠ

(
∂Π

∂ε

∣∣∣∣
nB ,Ye

(ε+ P ) +
∂Π

∂nB

∣∣∣∣
ε,Ye

nB

)
. (20)

We note that even though (18) is a relaxation-type equation similar to that found in Israel-Stewart theory,
there are new elements in (18). First, when Qµ ̸= 0, a new term is added to the equation; see the third
term on the left-hand side of (18). More importantly, we note that ζ and τΠ in (20) depend not only on
the standard thermodynamic variables, as it occurs in Israel-Stewart theory, but they also depend on the
deviation from equilibrium2 Π. Therefore, this provides an example of “resummation” in hydrodynamics
because the hydrodynamic theory maintains the same form even arbitrarily far from equilibrium. This
resummation is encoded in the explicit Π dependence of the transport coefficients ζ and τΠ, determined
by the properties of the original out-of-beta equilibrium equation of state, P (ε, nB , Ye ̸= Y eq

e ). Of course,
sufficiently near equilibrium, the Π dependence of these coefficients can be dropped, and their expressions
reduce to those found in approaches based on linear response; see Appendix B and D for details.
For the sake of simplicity, we will only consider here the case where Qµ = 0 (this is also used in [57]),

leaving a more detailed discussion of the Qµ ̸= 0 situation for future work. In this case, Eq. (18) reduces to

τΠu
µ∇µΠ+Π = −ζθ, (21)

where again we emphasize that, above, ζ = ζ(ε, nB ,Π) and τΠ = τΠ(ε, nB ,Π). Summarizing, the exact
equivalence uncovered in [68] establishes that a system described by

∇µ ((ε+ P )uµuν − Pgµν) = 0, (22)

∇µ(nBu
µ) = 0, (23)

uµ∇µYe =
Γe

nB
, (24)

is exactly equivalent to the bulk-viscous system described by

∇µ [(ε+ P )uµuν − (Peq +Π)gµν ] = 0, (25)

∇µ(nBu
µ) = 0, (26)

τΠu
µ∇µΠ+Π = −ζθ, (27)

where ζ and τΠ are given by (20). Therefore, any reactive mixture of this kind3 is inherently bulk viscous (no
matter how far from equilibrium the system is). Thus, simulations that use reactive mixtures, such as [57],
must display bulk-viscous features. In this specific sense, neutron star mergers are bulk-viscous systems.
It is possible to establish conditions for the far-from-equilibrium bulk viscosity theory to be causal (and

strong hyperbolic) using the results of [77]. In fact, the only condition that needs to be fulfilled is[
ζ

τΠ
+ nB

∂P

∂nB

∣∣∣∣
ε,Ye=Y eq

e

]
1

ε+ P
≤ 1− ∂P

∂ε

∣∣∣∣
nB ,Ye=Y eq

e

. (28)

When this condition holds, the far-from-equilibrium bulk-viscous theory considered here can be coupled
to Einstein’s equations and the initial-value problem of the full system of equations of motion in general
relativity is locally well-posed [77], which is crucial for numerical simulations. Additionally, we note that
under the equivalence, (28) corresponds to the natural statement that the speed of sound of the original
reactive mixture should be non-negative and smaller than unity [68].
Finally, we remark that the second law of thermodynamics is naturally implemented in this setup. Using

the Gibbs relation and charge neutrality, we find

P + ε = Ts+ npµp + nnµn + neµe

= nBµn − neδµ+ Ts.
(29)

2 The attentive reader will notice that the derivation of the Israel-Stewart equation done here is equivalent but not identical to
the original result in Ref. [68]. Here we started by deriving an equation for Π = Π(ε, nB , Ye), see (15). On the other hand,
[68] started from the equation for Ye = Ye(ε, nB ,Π) in (13), and then found the equation for Π (using Y eq

e = Ye(ε, nB , 0)).
These derivations are equivalent if the mapping between Π and Ye is invertible. We have chosen the alternative derivation
presented here because it is easier to numerically determine the resummed transport coefficients this way using our equations
of state.

3 This can be generalized to include the effects of other non-conserved currents, such as muons, see [76].
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We can write the above equation in differential form,

Tuµ∇µs = uµ∇µε− µnu
µ∇µnB + δµ uµ∇µne. (30)

Using the entropy current

sµ = suµ, (31)

one can see that the entropy production rate is then

∇µs
µ = uµ∇µs+ sθ

=
1

T
(uµ∇µε− µnu

µ∇µnB + δµ uµ∇µne) +
1

T
(P + ε− nBµn + δµne) θ.

(32)

Employing Eqs. (10), (11), and (12), the equation above can be simplified to

∇µs
µ =

δµΓe

T
, (33)

which should always be non-negative (see [68] for an explicit example where this can be shown analytically).

A. Cold dense matter equation of state

In the rest of the paper, for simplicity, we will use the zero-temperature approximation for the EoS. This
implies that we now only have two independent variables that we choose to be ε and Ye. Consequently, the
baryon density is a function of the independent variables, nB = nB(ε, Ye). To study dissipative effects, we
define the bulk scalar to be the difference between the total pressure and the equilibrium pressure,

Π = P (ε, Ye)− P (ε, Y eq
e (ε)), (34)

where Y eq
e (ε) is the equilibrium charge fraction. Since the equilibrium pressure is a function of ε only, the

equilibrium charge fraction will also be a function of ε. After the approximation (34), we obtain

uµ∇µΠ =
∂P

∂ε

∣∣∣∣
Ye

uµ∇µε+
∂P

∂Ye

∣∣∣∣
ε

uµ∇µYe −
∂P

∂ε

∣∣∣∣
Y eq
e

uµ∇µε−
∂P

∂Y eq
e

∣∣∣∣
ε

∂Y eq
e

∂ε
uµ∇µε

= −

(
∂P

∂ε

∣∣∣∣
Ye

− ∂P

∂ε

∣∣∣∣
Y eq
e

− ∂P

∂Y eq
e

∣∣∣∣
ε

∂Y eq
e

∂ε

)
(ε+ P (ε, Ye))θ +

∂P

∂Ye

∣∣∣∣
ε

Γe

nB
.

(35)

If we set

F = FΠΠ = − ∂P

∂Ye

∣∣∣∣
ε

Γe

nB
, (36)

we obtain once more

τΠu
µ∇µΠ+Π = −ζθ, (37)

where the resummed transport coefficients are given by

τΠ =
1

FΠ
, (38)

ζ =
1

FΠ

(
∂P

∂ε

∣∣∣∣
Ye

− ∂P

∂ε

∣∣∣∣
Y eq
e

− ∂P

∂Y eq
e

∣∣∣∣
ε

∂Y eq
e

∂ε

)
(ε+ P (ε, Ye)). (39)

The expressions above are used in this work to determine the transport coefficients, starting from a given
equation of state. Note that although no explicit temperature effects exist in the EoSs used in this work, the
transport coefficients will vary with the temperature. This happens because Γe depends on T ; see Appendix
A. This procedure can only provide a rough estimate of the actual temperature dependence of the resummed
transport coefficients, which requires the inclusion of T effects in the EoS. Furthermore, we note that a more
complete calculation of the rates, going beyond the Fermi surface approximation [49], would be needed to
make the results more realistic. This is left for future work.
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III. EQUILIBRIUM PROPERTIES OF NEUTRON STAR MATTER

A. Relativistic mean field model

The EoS of strongly interacting matter at very high densities is not amenable to first principle QCD
calculations [78]. Thus, in practice, the dense matter equation of state is determined using effective models
[38]. In this paper, we employ a relativistic mean field (RMF) model [69, 70] with nucleons, ρ, ω, and σ
mesons, and electrons. This provides a simple yet convenient tool to describe the properties of npe matter
relevant to this work (note that we only consider the EoS for cold nuclear matter, T → 0, in this work).
In our model, the Lagrangian is of the form

L = LN + LM + Ll. (40)

The nucleon contribution to the Lagrangian is

LN = ψ̄[iγµ∂
µ −mB + γ0µB + γ0

τ3
2
µI − gωω

µγµ − gργ
µρ⃗µ · τ⃗

2
+ gσσ]ψ, (41)

while the meson contribution is

LM =
1

2
∂µσ∂

µσ − 1

2
m2

σσ
2 − b

3
mB(gσσ)

3 − c

4
(gσσ)

4

+
1

2
m2

ωω
µωµ − 1

4
ωµνωµν +

1

2
m2

ρρ⃗
µρ⃗µ − 1

4
ρ⃗µν ρ⃗

µν +Gωρω
µωµρ⃗

µρ⃗µ,

(42)

where

ωµν = ∂µων − ∂νωµ, (43)

ρ⃗µν = ∂µρ⃗ν − ∂ν ρ⃗µ − gρ(ρ⃗µ × ρ⃗ν). (44)

We only have electrons as leptons in the system, which are introduced using the Dirac Lagrangian

Ll = ψ̄e(iγ
µ∂µ −me)ψe. (45)

For details on the calculation of the corresponding EoS, see Appendix E.
With this general form of the Lagrangian, we can find the coupling constants by comparing the resulting

EoS to different observational constraints. To obtain the EoSs used in this paper, we vary J and L while
holding all the other nuclear properties constant. We denote by J1 to J6 the EoSs with varying symmetry
energy. Their nuclear properties are listed in Table I, and the corresponding values of the parameters are
listed in Table II. Similarly, we denote by L1 to L5 the EoSs with different symmetry slopes. Their nuclear
properties are listed in Table III, and the corresponding values of the parameters are listed in Table IV.

Quantity J1 J2 J3 J4 J5 J6
Eb [MeV] -15.677 -15.677 -15.677 -15.677 -15.677 -15.677
K [MeV] 275 275 275 275 275 275
J [MeV] 29 30 31 32 33 34
L [MeV] 51.03 51.03 51.03 51.03 51.03 51.03

TABLE I. Nuclear properties of our EoSs J1 to J6. Eb is the binding energy. K is the nuclear compressibility. J is
the nuclear symmetry energy. L is the slope of the nuclear symmetry energy. See [38] for details on constraints on
nuclear-matter properties.

B. Effects of the symmetry energy and slope on mass-radius constraints

For all of the equations of state, we calculated the mass-radius relation using the Tolman–Oppenheimer–Volkoff
equation [70]. Our EoS only describes matter above one nuclear saturation density nsat, so we need to con-
nect our high-density EoS to a crust EoS. We take the sly EoS [80] for matter below the neutron drip line.
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Quantity J1 J2 J3 J4 J5 J6
gσ 7.55 7.55 7.55 7.55 7.55 7.55
gω 8.36 8.36 8.36 8.36 8.36 8.36
gρ 9.58 9.98 10.37 10.74 11.11 11.46
b 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048
c 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178

mσ [MeV] 500 500 500 500 500 500
mω [MeV] 782.65 782.65 782.65 782.65 782.65 782.65
mρ [MeV] 775.26 775.26 775.26 775.26 775.26 775.26
mB [MeV] 938.9 938.9 938.9 938.9 938.9 938.9
me [MeV] 0.511 0.511 0.511 0.511 0.511 0.511

Gωρ 534.62 566.68 595.99 622.88 647.65 670.53

TABLE II. Parameter values of our EoSs J1 to J6. We approximate the vacuum mass of the proton and the neutron
to be the same.

Quantity L1 L2 L3 L4 L5
Eb [MeV] -15.677 -15.677 -15.677 -15.677 -15.677
K [MeV] 275 275 275 275 275
J [MeV] 30.7 30.7 30.7 30.7 30.7
L [MeV] 35 45 55 65 75

TABLE III. Nuclear properties of our EoSs L1 to L5. Eb is the binding energy. K is the nuclear compressibility. J
is the nuclear symmetry energy. L is the slope of the nuclear symmetry energy. See [38] for details on constraints on
nuclear-matter properties.
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FIG. 1. Mass-radius relation of our EoS. (a) EoS with varying symmetry energy. (b) EoS with varying symmetry
slope. Observational constraints on the neutron star mass-radius plane from LIGO/Virgo [1, 15, 71] and NICER [72–
75] results. The yellow and brown regions correspond to 90% confidence regions obtained from the GW170817 event
by universal relations and spectral EoS approaches, respectively. The green and red regions correspond to 90%
confidence regions obtained from NICER data on PSR J0030+0451 and J0740+6620. The green regions are obtained
using the Illinois-Maryland analysis, and the red regions are obtained using the Amsterdam analysis.

.

For the region between the neutron drip line and nsat, we created a monotonically increasing polynomial for
p(ε) such that the polynomial is differentiable at the intersection points with sly and our EoS.

We plot the mass-radius relation along with all the observational constraints [1, 15, 29, 71–75]. The clouds
are the observational constraints, with different colors representing different analysis methods used to obtain
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Quantity L1 L2 L3 L4 L5
gσ 7.55 7.55 7.55 7.55 7.55
gω 8.36 8.36 8.36 8.36 8.36
gρ 11.70 10.73 9.97 9.35 8.83
b 0.0048 0.0048 0.0048 0.0048 0.0048
c 0.0178 0.0178 0.0178 0.0178 0.01788

mσ [MeV] 500 500 500 500 500
mω [MeV] 782.65 782.65 782.65 782.65 782.655
mρ [MeV] 775.26 775.26 775.26 775.26 775.26
mB [MeV] 938.9 938.9 938.9 938.9 938.9
me [MeV] 0.511 0.511 0.511 0.511 0.511

Gωρ 1143.21 763.30 487.50 278.16 113.86

TABLE IV. Parameter values of our EoSs L1 to L5. We approximate the vacuum mass of the proton and the neutron
to be the same.

the constraints. All of our EoSs pass these observational constraints. The left-hand side of Fig. 1 shows the
results for our EoSs with varying J . One can see that J does not significantly affect the mass-radius relation.
The right-hand side of Fig. 1 shows the results for our EoSs with varying L. In general, larger values of L
make the star’s radius larger.

IV. RESULTS FOR ISRAEL-STEWART TRANSPORT COEFFICIENTS

We now present results for the Israel-Stewart bulk-viscous transport coefficients for different equations
of state. As discussed in Sec. II, we can obtain not only these coefficients in beta equilibrium, that is, for
Ye − Y eq

e = 0, but also out of equilibrium, in which case these coefficients depend on the value of Ye − Y eq
e .

We start by presenting our results for the transport coefficients at Ye = Y eq
e (i.e., Π = 0) in Sec. IVA before

showing our full out-of-equilibrium results in Sec. IVB.

A. Bulk viscosity near beta equilibrium

3×10!"

5.5×10!"

2.2 2.4
0.1 0.5 1 5 10
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1035

1038

FIG. 2. Temperature dependence of the bulk viscosity ζ0 determined using parameters in beta equilibrium. (a)
Results for different EoSs corresponding to several values of the symmetry energy, with the inset showing the difference
between J1 and J6. (b) Similar plot for EoSs with different symmetry slopes.
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FIG. 3. Temperature dependence of the AC bulk viscosity determined using parameters in beta equilibrium. (a)
Results for different EoSs obtained by varying the symmetry energy. (b) Results for different EoSs obtained by
varying the symmetry slope. The oscillation frequency is fixed at 1 kHz.

In this section, we present the bulk viscosity results under various conditions. In this work, ζ is the
most general (out of equilibrium) bulk viscosity coefficient that depends on all chosen variables, i.e., ζ =
ζ(ε, nB ,Π). At zero temperature ζ = ζ(ε,Π). Additionally, ζ0 denotes the bulk viscosity transport coefficient
computed with parameters determined in beta equilibrium — i.e., at Π = 0. Equivalently, we may also write
ζ0 = ζ(ε,Π = 0). In the context of linear response, ζ0 enters as a parameter in the frequency-dependent AC
bulk viscosity ζAC = ζ0(1 + ω2τ2Π,0)

−1 (obtained from the analysis of periodic density oscillations [49, 52]),

where ω is the frequency and τΠ,0 = τΠ(ε,Π = 0) is the relaxation time computed at beta equilibrium, see
the derivation in Appendix C.

Figure 2 shows ζ0. Since we consider cold EoS, temperature effects only enter through the calculation of
the Urca rates, which is shown in Appendix A. Without any loss of generality, we have plotted three EoSs in
each figure by varying J and L separately. The left-hand side of Fig. 2 shows ζ0 for our EoSs with varying
J . The labels J1 to J6 denote EoSs with increasing J , J1 being the EoS with the lowest J , and J6 with the
highest. For the EoS at nsat, the bulk viscosity ζ0 decreases with increasing J across all temperatures. The
relation between J and ζ0, however, becomes non-monotonic as the density increases. In fact, as J increases,
ζ0 reaches a minimum and then increases again. The right-hand side of Fig. 2 shows ζ0 for our EoS with
varying L, L1 being the EoS with the lowest value of L, and L5 with the highest value of L. For the EoS at
nsat, ζ0 increases with L across all temperatures. However, at higher densities such as 3nsat, as L increases,
ζ0 decreases and then increases again. Overall, we see that varying J and L strongly affect ζ0, but the effects
depend on the density.

The bulk viscosity ζ0 for our EoS is compatible with those calculated from other EoSs, as shown in
Sec. IVC. As a consistency check of our analysis, we verified that the AC bulk viscosity ζAC is compatible
with the one found in previous works [82], as shown in Fig. 3. However, we remark that it is not guaranteed
that a linear approximation in deviations from beta equilibrium is applicable to all equations of state. In fact,
we show later in this section that there is a regime where deviations from equilibrium do not behave linearly
for realistic equations of state. This feature cannot be described using previous linear response approaches,
but it can be properly captured using the resummed transport coefficients investigated in this work.
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FIG. 4. Resummed ζ as a function of the deviation from the equilibrium charge fraction, at temperature T = 2 MeV,
for several symmetry energies. (a) Symmetry energy dependence of ζ evaluated at the energy density corresponding
to nuclear saturation density. (b) Same quantity, computed at twice the nuclear saturation density.
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FIG. 5. Resummed ζ as a function of the deviation from the equilibrium charge fraction, for several symmetry slopes
at temperature T = 2 MeV. (a) Symmetry slope dependence of the ζ evaluated at the energy density corresponding
to nuclear saturation density. (b) Same quantity, now computed at twice the nuclear saturation density.

B. Far-from-equilibrium transport coefficients

1. Energy-density dependence of transport coefficients

Variations in the equation of state become even more relevant when determining the transport coefficients
away from beta equilibrium. For the sake of definiteness, we set the temperature T = 2 MeV (small variations
around this temperature give similar results). Figures 4 and 5 show the full out-of-equilibrium resummed
ζ, computed using (39), against the deviation from the equilibrium charge fraction Y eq

e , for two different
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FIG. 6. Resummed τΠ as a function of the deviation from the equilibrium charge fraction, for several symmetry
energies, at temperature T = 2 MeV. (a) Symmetry energy dependence of the resummed τΠ for the energy density
corresponding to nuclear saturation density. (b) The same quantity is evaluated at twice the nuclear saturation
density.

energy densities. As shown in Fig. 4, the resummed ζ still decreases with increasing J at saturation density
(mirroring the behavior found in ζ0 before). However, one can see that at twice saturation density ζ displays
non-monotonic behavior with respect to variations in J . Furthermore, one can see that even negative values
of ζ are found (even though ζ0 is positive). This should not be a cause for concern, as this does not imply
that the system has an instability or displays acausal behavior. In fact, the negative values only appear away
from beta equilibrium, where the interpretation of ζ in the standard Navier-Stokes [83] sense is not valid. It
is ζ0 that matters for the stability of the equilibrium state, and this quantity is always non-negative in our
calculations. Finally, as discussed later in this section, causality is never violated for all EoSs we consider.
Fig. 5 shows that ζ increases with L, though one can see that the effect depends on the energy density.
Figures 6 and 7 show the resummed relaxation time τΠ, computed using (38), for the same EoSs. The

resummed relaxation time increases with density and also exhibits a nonlinear trend with respect to deviations
from the equilibrium charge fraction. We note that the relaxation time is on the order of tens of milliseconds,
so its effects will only become relevant later in the merger, potentially affecting the real-time dynamics of
gravitational collapse (if that occurs).
In order to better understand the subtleties concerning the near-equilibrium behavior of such systems, we

now focus on the properties of the bulk scalar Π. In general, as ε increases, Π(ε, Ye) ceases to be linear in
deviations from Y eq

e . Figures 8 and 9 show that this is the case for several values of J and L. This indicates
that this is a robust property of such systems.
Further insight into this nonlinear trend may be obtained by focusing on the results coming from a specific

EoS. Figure 10 shows the bulk scalar Π associated with the J4 EoS across three different energy densities.
The behavior of Π as a function of the deviation from the equilibrium charge fraction is very sensitive to
the energy density value. In fact, as one increases ε, the linear behavior turns nonlinear, and Π displays a
minimum as a function of the deviations from the equilibrium charge density for the J4 EoS at ε(2nsat) and
ε(3nsat).
When Π has a minimum with respect to Ye at a fixed energy density, both the relaxation time τΠ and bulk

viscosity ζ formally diverge, see Eqs. (38) and (39), but their ratio can remain finite. In this limit, which was
discussed in [68], the system is probably better understood as an inviscid elastic system with bulk modulus
equals ζ/τΠ rather than a bulk-viscous fluid.
The existence of a minimum for Π, and the nearly quadratic behavior displayed by Π versus (Ye−Y eq

e )/Y eq
e ,

implies that at that density the mapping between Π and Ye is not one to one. We will take this here as an
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FIG. 7. Resummed τΠ as a function of the deviation from the equilibrium charge fraction, for several symmetry
slopes, at temperature T = 2 Meb. (a) Resummed τΠ for the energy density corresponding to nuclear saturation
density. (b) The same quantity is evaluated at twice the nuclear saturation density.
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FIG. 8. Bulk scalar Π (normalized by the equilibrium pressure) as a function of the deviation from the equilibrium
charge fraction, for several symmetry energies, at temperature T = 2 MeV. (a) Π for the energy density corresponding
to nuclear saturation density. (b) The same quantity is evaluated at twice the nuclear saturation density.

indication that the description of the system as a fluid with bulk viscosity is not warranted at that point.
To further study this problem, we investigate additional properties of the system near the minimum. We

denote the charge fraction where Π is at its minimum as Y min
e . Fig. 11 shows the relative change in Y min

e ,
with respect to Y eq

e , for different symmetry energies, as a function of the density. One can see that the curve
crosses zero where Y min

e = Y eq
e . In that case, the standard bulk-viscous description has a vanishingly small

region of applicability.
In light of the equivalence put forward in [68], it is conceivable that this marks the transition from a

bulk-viscous fluid regime to an elastic regime. In that case, one may interpret that as the signature of
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FIG. 9. Bulk scalar Π (normalized by the equilibrium pressure) as a function of the deviation from the equilibrium
charge fraction for several symmetry slopes at temperature T = 2 MeV. (a) Π for the energy density corresponding
to nuclear saturation density. (b) The same quantity is evaluated at twice the nuclear saturation density.
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FIG. 10. Bulk scalar Π (normalized by the equilibrium pressure) of the J4 EoS as a function of the deviation from the
equilibrium charge fraction, at temperature T = 2 MeV. The different curves represent energy densities corresponding
to baryon densities ranging from one to three times saturation density. Note that Π displays a clear minimum for
the J4 EoS at twice the saturation density.

a far-from-equilibrium phase transition in the system. Further work is needed to better understand the
consequences of the presence of a minimum in the bulk scalar and how that affects the properties of the
system.

2. Additional effects from the variations of the symmetry energy and slope

We note that when J and L increase, Y eq
e increases, as shown in Fig. 12. This is intuitively reasonable,

as a larger proton fraction is required to achieve equilibrium for larger J or L.
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FIG. 11. The relative difference between the charge fraction at the point of minimum Π as a function of the density
for different values of the symmetry energy.
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FIG. 12. (a) Equilibrium electron fraction Y eq
e as a function of the symmetry energy for T = 2 MeV. (b) Y eq

e as a
function of the symmetry slope. Each point corresponds to an equation of state.

As Y eq
e increases, it becomes closer to the threshold for the direct Urca rate to be enabled, Ye = 1/9.

Fig. 13 shows that both τΠ and ζ are greatly suppressed by the onset of the direct Urca rate. Once this
threshold is surpassed, the direct Urca rate has a much larger magnitude than the modified Urca rate, and
the chemical reactions happen significantly faster. As equilibration becomes more efficient, the relaxation
time and bulk viscosity are significantly reduced.
Finally, we note that for all cases considered here, the entropy production is always non-negative, and

the system should be stable under perturbations around equilibrium. In addition, near equilibrium, the
transport coefficients for all of our EoS are always positive, so their physical interpretation in the resummed
Israel-Stewart is well-defined. Furthermore, we remark that we have checked that all of our EoSs satisfy the
causality constraint given by Eq. (28). In fact, for our zero temperature approximation of the EoS, Eq. (28)
reduces to

ζ

τΠ(ε+ P )
+
∂P

∂ε

∣∣∣∣
Ye=Y eq

e

≤ 1, (46)

which can be easily evaluated for our equations of state.
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FIG. 13. Transport coefficients for the L5 EoS against the deviation from the equilibrium charge fraction, at the
energy density corresponding to three times the saturation density, and temperature T = 2 MeV. (a) Resummed ζ
against the electron fraction Ye. (b) Resummed τΠ against Ye.

C. Comparison to other equations of state
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FIG. 14. Bulk viscosity ζ0 for the QMC-RMF1 EoS as a function of temperature.

To ensure the robustness of our findings, we have also investigated other EoSs, where we have also observed
the features described above.
As an example, we take the EoS QMC-RMF1 [81], which can be obtained from the CompOSE website

compose.obspm.fr/eos/275 [84–86].4 Figure 14 shows that QMC-RMF1 has an equilibrium bulk viscosity
ζ0 comparable to that found in our previous equations of state. However, while well defined, the quantity ζ0
cannot capture the bulk-viscous physics correctly when the linear response approximation is invalid. This
issue happens for this equation of state. Figure 15 shows that QMC-RMF1 displays a nonlinear trend as the

4 CompOSE, an acronym for CompStar Online Supernovae Equations of State, is an online repository that provides thermo-
dynamic and microphysical properties for different EoSs.

compose.obspm.fr/eos/275
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FIG. 15. Bulk scalar Π of the QMC-RMF1 EoS (normalized by the equilibrium pressure), as a function of the
deviation from the equilibrium charge fraction, at T = 2 MeV. We show the results evaluated at energy densities
corresponding to number densities one to three times the nuclear saturation density.

energy density increases, and at nB = 2nsat the bulk scalar displays a minimum. Correspondingly, Fig. 16
and 17 show the resummed ζ and τΠ of QMC-RMF1 at the energy density corresponding nB ≈ 2nsat.
As expected, because of this nonlinear behavior, these quantities diverge (and turn negative) at the point
where Π displays a minimum, which is at δYe/Y

eq
e ≈ 0.15 for that density. This shows that the resummed ζ,

which was obtained from the exact equivalence (or duality) between the reactive system and the bulk-viscous
system, can capture nuances present in the EoS that cannot be seen in the linear response quantity ζ0.
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FIG. 16. Resummed τΠ of the QMC-RMF1 EoS, as a function of the deviation from the equilibrium charge fraction,
evaluated at the energy density corresponding to a density twice the saturation density. The temperature is T = 2
MeV.
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FIG. 17. Resummed ζ of the QMC-RMF1 EoS, as a function of the deviation from the equilibrium charge fraction,
evaluated at the energy density corresponding to a density twice the saturation density. The temperature is T = 2
MeV.
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V. CONCLUSIONS

In this work, we investigated the weak-interaction-driven transport properties of npematter in the neutrino
transparent regime. Results for the bulk viscosity and bulk relaxation time were computed using realistic
equations of state that satisfy the latest constraints from multi-messenger observations (see Fig. 1). In our
calculations, we used the resummed Israel-Stewart formulation of Ref. [68], which allows one to rewrite
the reactive mixture commonly solved in numerical simulations as an exact bulk-viscous system. Different
versions of our EoS were presented, each corresponding to different values of the nuclear symmetry energy
and its slope at nuclear saturation density. In Figs. 2 and 3, we have shown the effect of these two properties
of nuclear matter on the bulk viscosity ζ0, computed using parameters in beta equilibrium, and the AC bulk
viscosity ζAC , which is relevant for the physics of small density oscillations. Both quantities characterize linear
response behavior, and we find that varying J and L significantly affect these coefficients. We computed the
full resummed transport coefficients for each EoS, checking again how changes in J and L affect the results.
Overall, we find that these basic properties of the EoS greatly affect the resummed transport coefficients.
Therefore, our results indicate that having better constraints on J and L is crucial not only for determining
the nuclear equation of state but also for unveiling novel bulk-viscous phenomena in neutron star mergers.
Previous works in the literature have assumed that the induced bulk-viscous correction to the pressure,

near beta equilibrium, is linear in deviations from the equilibrium charge fraction5. However, in Fig. 8,
we showed that for realistic EoSs, at densities between one and three times saturation density, the out-of-
equilibrium correction to the pressure becomes nonlinear in Ye − Y eq

e . This result limits the applicability of
a linear approximation in deviations from equilibrium and requires a bulk-viscous description that can be
meaningful even far from equilibrium, such as the one derived in [68]. Figures 4 through 7 show, for the first
time, how the bulk-viscous transport coefficients change out of equilibrium for realistic equations of state.
Furthermore, we showed that there are regions in density where the description of the reactive system

as a standard bulk-viscous fluid ceases to hold. This occurs when Π displays a minimum as a function of
Ye − Y eq

e , which was shown to happen in realistic equations of state. In that case, following [68], the system
may be closer to an elastic regime where ζ/τΠ gives the corresponding bulk modulus. This shows how rich
the dynamics encoded in the simple npe reactive mixture can be, opening the door for investigating new
transport phenomena in neutron star mergers.
The far-from-equilibrium bulk-viscous effects investigated here stem from particle-number changing pro-

cesses, which depend on the microscopic excitations of the system. Therefore, the far-from-equilibrium effects
considered here should be sensitive to the presence of deconfined degrees of freedom in the dense matter
equation of state. Finally, one may also investigate the interplay between far-from-equilibrium bulk viscosity
and superfluid/superconducting pairing patterns in ultradense matter [87].
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Appendix A: Urca rates

We use the Fermi surface approximation to calculate the Urca rates; see [49, 50, 88]. The total rate is the
sum of the individual rates,

Γe = ΓdU + ΓmU,n + ΓmU,p, (A1)

which are then found to be,

ΓdU =
G2(1 + 3g2A)

240π5
E∗

FnE
∗
FppFeϑdUδµ(17π

4T 4 + 10π2δµ2T 2 + δµ4), (A2)

ΓmU,n =
1

5760π9
G2g2Af

4
(E∗

Fn)
3E∗

Fp

m4
π

p4FnpFp

(p2Fn +m2
π)

2
ϑnδµ(1835π

6T 6 + 945π4δµ2T 4 + 105π2δµ4T 2 + 3δµ6),

(A3)

ΓmU,p =
1

40320π9
G2g2Af

4
E∗

Fn(E
∗
Fp)

3

m4
π

pFn(pFn − pFp)
4

((pFn − pFp)2 +m2
π)

2
ϑpδµ(1835π

6T 6 + 945π4δµ2T 4 + 105π2δµ4T 2 + 3δµ6),

(A4)

where the pion-nucleon couling constant f ≈ 1, G2 = G2
F cos

2θc = 1.1 × 10−22MeV −4 with GF being the
Fermi coupling constant and θc the Cabibbo angle, the axial vector coupling constant is gA = 1.26, pFN is
the nucleon Fermi momentum, and E∗

FN =
√
p2FN +m∗2

N is the nucleon energy.
In the Fermi surface approximation, the direct Urca rate only operates above a threshold density, where

ϑdU =

{
1 if pFn < pFp + pFe

0 if pFn > pFp + pFe,
(A5)

The modified Urca rate is also affected by the density, for which we have introduced

ϑn =

{
1 if pFn > pFp + pFe

1− 3
8
(pFp+pFe−pFn)

2

pFppFe
if pFn < pFp + pFe,

(A6)

ϑp =



0 if pFn > 3pFp + pFe

(3pFp+pFe−pFn)
2

pFnpFe
if

{
pFn > 3pFp − pFe

pFn < 3pFp + pFe

4
3pFp−pFn

pFn
if

{
3pFp − pFe > pFn

pFn > pFp + pFe

2 + 3
2pFp−pFn

pFe
− 3

(pFp−pFe)
2

pFnpFe
if pFn < pFp + pFe.

(A7)
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Appendix B: Israel-Stewart formalism in the linear δµ regime

Assuming a linear perturbation around the chemical equilibrium, one can also derive an Israel-Stewart
equation for the bulk scalar, see [63]. For the sake of completeness, here we briefly go through the derivation
of this result.
For a system that is close to equilibrium in terms of δµ, one can expand the pressure with respect to δµ

around beta equilibrium,

P (ε, nB , δµ) = P |δµ=0 + P1δµ, (B1)

where P1 = ∂P
∂δµ

∣∣∣
ε,nB ,δµ=0

. If we assume isotropy of the fluid and ignore second-order terms in δµ, the

stress-energy tensor takes the form of a perfect fluid,

Tµν = εuµuν + P (gµν + uµuν)

≈ εuµuν + (P |δµ=0 +Π)(gµν + uµuν),
(B2)

where Π = P1δµ and is the bulk scalar induced by the chemical reactions.
We can define partial equilibrium states with all non-conserved variables. Writing δµ = δµ(ε, nB , Ye) for

one such state, one finds

uµ∇µδµ =
∂δµ

∂ε

∣∣∣∣
nB ,Ye

uµ∇µε+
∂δµ

∂nB

∣∣∣∣
ε,Ye

uµ∇µnB +
∂δµ

∂Ye

∣∣∣∣
ϵ,nB

uµ∇µYe. (B3)

Substituting Eq. (10), Eq. (11), and Eq. (13) into Eq. (B3), we find

uµ∇µδµ =
∂δµ

∂Ye

∣∣∣∣
ϵ,nB

Γe

nB
− nBθ

(
∂δµ

∂nB

∣∣∣∣
ε,Ye

+
ε+ P

nB

∂δµ

∂ε

∣∣∣∣
nB ,Ye

)
. (B4)

Furthermore, approximating the rate of weak processes to first order in δµ, one can write

Γe = λδµ. (B5)

Here, one can see that both the out-of-equilibrium correction to the pressure and the change in charge
fraction are approximated to be linear in δµ.
Using Eq. (B5), we find that Eq. (B4) becomes

uµ∇µδµ = −Aδµ− nBθB, (B6)

where A = − λ
nB

∂δµ
∂Ye

∣∣∣
ε,nB

and B = ∂δµ
∂nB

∣∣∣
ε,Ye

+ ε+P
nB

∂δµ
∂ε

∣∣∣
nB ,Ye

.

Because we want to derive an equation of motion for Π, we also need to consider the expansion of P1. In

this case, since P1 is determined at δµ = 0, we can write P1 = ∂P
∂δµ

∣∣∣∣
ε,nB ,δµ=0

as

P1 = P1(ε, nB). (B7)

Then

uµ∇µP1 =
∂P1

∂ε

∣∣∣∣
nB

uµ∇µε+
∂P1

∂nB

∣∣∣∣
ε

uµ∇µnB . (B8)

Substituting Eq. (10) and Eq. (11) into the equation above one finds

uµ∇µP1 = −∂P1

∂ε

∣∣∣∣
nB

[(ε+ P |δµ=0)θ]−
∂P1

∂nB

∣∣∣∣
ε

nBθ. (B9)
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Now, we multiply Eq. (B6) by P1

A and add δµ
A u

µ∇µP1 to both sides, which gives

1

A
uµ∇µΠ+Π = −P1

A
nBBθ +

δµ

A
uµ∇µP1, (B10)

where we wrote Π = δµP1.
Finally, one can substitute Eq. (B9) into Eq. (B10) to find

1

A
uµ∇µΠ+Π+ θ

δµ

A

[
∂P1

∂ε

∣∣∣∣
nB

(ε+ P |δµ=0) +
∂P1

∂nB

∣∣∣∣
ε

nB

]
= −θP1

A
nBB. (B11)

Defining

τΠ,0 =
1

A
, (B12)

ζ0 =
P1

A
nBB, (B13)

δΠΠ =
τΠ,0

P1

[
∂P1

∂ε

∣∣∣∣
nB

(ε+ P |δµ=0) +
∂P1

∂nB

∣∣∣∣
ε

nB

]
, (B14)

one can see that Eq. (B11) becomes

τΠ,0u
µ∇µΠ+ δΠΠθΠ+Π = −ζ0θ. (B15)

which is the Israel-Stewart equation with coefficients determined by parameters computed in beta equilib-
rium.
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Appendix C: AC bulk viscosity from Israel-Stewart theory

Previous works have considered bulk viscosity to be an emerging, effective phenomenon associated with
periodic density perturbations. In that context, the bulk viscosity has a frequency dependence [52, 88, 89],
which here we call ζAC.

One can derive the AC bulk viscosity from Israel-Stewart theory using perturbation of the spacetime
metric. In fact, one can define the corresponding Green’s function from the linear correction to Tµν in
response to a metric perturbation δgµν ∝ e−iωt. This allows us to extract the transport coefficients from the
retarded Green’s function in Fourier space, using Kubo formulas [90].
The metric perturbation induces the following expansion rate

θ =
∂0
√

−det(ηµν + δgµν)√
−det(ηµν)

=
∂0
√
1− 2 ηαβδgαβ

1
= −iω ηαβδgαβ . (C1)

Substituting this result into Eq. (B15), we find

−iω τΠ,0 Π+ δΠΠΠ(−iω ηαβδgαβ) + Π = iω ζ0 η
αβδgαβ . (C2)

But Π is a correction to the pressure Π = δp = δT i
i /3, which, to linear order in δgαβ , becomes

1

3
δT i

i =
iω ζ0

1− iω τΠ,0
ηαβδgαβ . (C3)

From Eq. (C3), one can then extract the retarded Green’s function:

Gθ
R(ω) =

iω

1− iωτΠ,0
ζ0 . (C4)

Note that one can obtain ζ0 from the Kubo formula

ζ0 = lim
ω→0

1

ω
Im Gθ

R(ω). (C5)

The AC bulk viscosity is defined by extending the Kubo formula to nonzero frequencies

ζAC(ω) =
1

ω
Im Gθ

R(ω) =
1

1 + ω2τ2Π,0

ζ0 , (C6)

which correctly recovers the DC bulk viscosity in the limit ω → 0. Replacing Eqs. (B12) and (B13) in
Eq. (C6), one finds

ζAC(ω) =
nB P1 AB
A2 + ω2

. (C7)

This expression matches the AC bulk viscosity usually employed in the analysis of small-density oscillations,
as we show in the next section. Finally, we note that in the high-frequency limit ω ≫ A, weak interactions
become irrelevant, and the electron fraction Ye becomes an independent variable. For that reason, weak
processes no longer contribute to dissipation and ζAC → 0.
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Appendix D: AC bulk viscosity from periodic density oscillations and the equivalence to
Israel-Stewart bulk viscosity

It is interesting to note that another way to derive the AC bulk viscosity was used in [52, 88, 89]. We
sketch the derivation here as follows. First, one considers a periodic perturbation to the baryon density
nB(t) = n0 +Re(δn0e

iωt), which leads to a deviation from β equilibrium characterized by δµ.
If one excludes the effects of strong interactions, i.e. the system is never out of thermal equilibrium, the

quasi-equilibrium state can be characterized by nB and Ye,

nB = np + nn, Ye = ne/nB , (D1)

Of course, we note that there is also the constraint of charge neutrality,

np = ne, (D2)

and all the number densities can be found in terms of nB and Ye,

ne = YenB , np = YenB , nn = (1− Ye)nB . (D3)

These number densities can be expressed in terms of the corresponding chemical potentials, ni = ni(µi). In
beta equilibrium, the three chemical potentials are related as µn = µp+µe, so the deviation from equilibrium
can be calculated as

δµ = δµn − δµp − δµe

=
∂µn

∂nn
δnn − ∂µp

∂np
δnp −

∂µe

∂ne
δne.

(D4)

One can use Eq. (D3) for Eq. (D4) to obtain,

δµ =
C

nB
δnB +BδYe, (D5)

where C and B are given by

C = (nB − ne)
∂µn

∂nn
− ne

∂µp

∂np
− ne

∂µe

∂ne
,

B = −nB
(
∂µn

∂nn
+
∂µp

∂np
+
∂µe

∂ne

)
.

(D6)

When δµ is nonzero, the two Urca processes would have slightly different rates, and this net effect can be
characterized by the change of Ye,

Γe = Γν − Γν = λδµ,

nB
d(δYe)

dt
= λδµ.

(D7)

Thus, we obtain the differential equation,

nB
d(δYe)

dt
= λ

(
C
δnB
nB

+BδYe

)
. (D8)

Assuming a similar periodic perturbation for Ye, i.e. Ye = Ye,0 +Re(δYe,0e
iωt), one can solve the differential

equation to find

δYe,0 =
δnB
nB

C

i
(
nBω
λ

)
−B

. (D9)
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If we assume the Navier-Stokes equation for a periodic process, the bulk viscosity ζAC is defined as the
coefficient in the expression for dissipation of Helmholtz’s free energy density averaged over one period,
τ = 2π/ω,

⟨Ėdiss⟩ = −ζAC

τ

∫ τ

0

dt(∇ · v⃗)2, (D10)

where v⃗ is the hydrodynamic velocity associated with density oscillations. Substituting the baryon continuity
equation,

∂nB
∂t

+ nB∇ · v⃗ = 0, (D11)

into the energy-density dissipation equation, we obtain

⟨Ėdiss⟩ = −ζACω
2

2

(
δn0
nB

)2

. (D12)

To calculate the energy density dissipation, one needs to consider the PdV work done on the system

⟨Ėdiss⟩ =
nB
τ

∫ τ

0

P V̇dt, (D13)

where V ≡ 1/nB is the specific volume. Notice that the variations in pressure P can be written as

δP =
∂P

∂µp
δµp +

∂P

∂µn
δµn +

∂P

∂µe
δµe

=
∂P

∂nB
δnB − nBCδYe.

(D14)

The energy-density dissipation is then

⟨Ėdiss⟩ =
nB
τ

∫ τ

0

(P + δP )
d

dt
(V + δV )dt

= −1

2

(
δn0
nB

)2
λω2C2

ω2 + (λB/nB)2
.

(D15)

We can now compare the two equations for the energy-density dissipation found above, which determines

ζAC =
λC2

ω2 + (λB/nB)2
. (D16)

Thus, one can see that this bulk viscosity depends on the frequency of the periodic perturbation.
By comparing this result for the bulk viscosity with the one derived from Israel-Stewart formalism, one

can see that this derivation only allows two independent variables, nB and Ye. With these simplifications to
the Israel-Stewart formalism, one can show that

A = − λ

nB

∂δµ

∂Ye

∣∣∣∣
ε,nB

= − λ

nB
B,

(D17)

and

nBP1AB = nB
∂P

∂δµ

∣∣∣∣
nB ,δµ=0

(
− λ

nB
B

)
∂δµ

∂nB

∣∣∣∣
Ye

= λC2.

(D18)
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Therefore, we finally arrived at

ζAC =
λC2

ω2 + (λB/nB)2
=
nB P1 AB
A2 + ω2

, (D19)

which demonstrates that the two methods to derive the frequency-dependent bulk viscosity discussed in this
work agree with each other.
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Appendix E: Procedure to obtain our EoS from thermal field theory

In this appendix, we review the calculation of the EoS in a relativistic mean-field model.
To obtain our EoS from thermal field theory, for convenience, we momentarily consider a small temperature

T , which will be later taken to zero. In that case, the partition function can be rewritten as an Euclidean
path integral [79]

Z =

∫
[dϕ] exp

[∫ 1/T

0

dτ

∫
d3x (L+ µi Ni)

]
, (E1)

where ϕ represents all the fields under consideration,6 µi is the chemical potential for particle species i, and
Ni is the charge density corresponding to µi.
For all of our RMF EoSs, the Lagrangian is of the following form,

L = LN + LM + Ll, (E2)

where LM , LN , and Ll are the Lagrangians of mesons, nucleons (including interactions), and leptons,
respectively.
We are interested in uniform matter in its ground state, so we replace the meson fields by their mean

values in this state such that

σ → σ̄, (E3)

ω0 → ω̄, (E4)

ρ0i → ρ̄ δi3. (E5)

We can assume isotropy of space, so the spatial part of vector mesons vanishes:

ωi → 0, (E6)

ρij → 0. (E7)

Under these approximations, the nucleons behave as a free gas with effective mass and chemical potentials
given by

m∗
B = mB − gσσ̄, (E8)

µ∗
B = µB − gωω̄, (E9)

µ∗
I = µI − gρρ̄, (E10)

where mB = mN is the baryon/nucleon mass, and µB and µI are chemical potentials for baryon and isospin,
respectively.
At zero temperature, or in the Fermi surface approximation, the effective chemical potentials for proton

and neutron can be found from their respective densities, np = nB/2 + nI and nn = nB/2− nI , where nI is
the isospin density.
The Fermi momenta kFp.n and the effective chemical potentials µ∗

p.n are given by

kFp.n = 2π

(
3

8π
np,n

)1/3

, (E11)

µ∗
p.n =

√
kF 2
p.n +m∗ 2

B . (E12)

6 The boundary conditions in the compactified imaginary time direction τ are periodic for bosons and anti-periodic for fermions.
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One can then find the effective baryon and isospin chemical potentials, respectively,

µ∗
B =

µ∗
p + µ∗

n

2
, (E13)

µ∗
I = µ∗

p − µ∗
n. (E14)

In the mean-field approximation, the meson part LM = LM (σ̄, ω̄, ρ̄) (excluding interaction with nucleons)
is constant, and we can write

Z =

∫
[dϕ] exp

[∫ 1/T

0

dτ

∫
d3x (LN + Ll + µi Ni)

]
exp

[
V

T
LM

]
. (E15)

The pressure is obtained as follows

P =
∂(T lnZ)

∂V

=
∂

∂V

(
T ln

∫
[dϕ] exp

[∫ β

0

dτ

∫
d3x (LN + Ll + µi Ni)

])
+ LM ,

(E16)

where V is the volume of the system. We can now take the T → 0 limit, in which case we can analytically
compute the fermionic contribution to the pressure. In practice, the EoS takes the form

P = Pfree(µ
∗
p.n,m

∗
B) + Pfree(µe,me) + LM (σ̄, ω̄, ρ̄), (E17)

where Pfree(µ
∗
p.n,m

∗
B) is the pressure of a free gas of nucleons with the effective parameters, and Pfree(µe,me)

is the pressure of a free gas of electrons, both computed at zero temperature. The values of the condensates
are found by maximizing the pressure with respect to σ̄, ω̄, and ρ̄.
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