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Microscopic calculations of neutrino-nucleus scattering cross sections are critical for the success
of the neutrino-oscillation program. In addition to retaining nuclear correlations in the initial and
final state of the reaction, they are based on consistent nuclear interactions and transition current
operators, thereby enabling robust uncertainty quantification. In this work, we address a significant
limitation of these microscopic methods, which arises from their nonrelativistic nature. By perform-
ing the calculations in a reference frame that minimizes nucleon momenta and utilizing the so-called
“two-fragment” model, we extend the applicability of Green’s function Monte Carlo calculations of
neutrino-nucleus scattering to higher momenta than currently possible. To validate this approach,
we compare our theoretical predictions against inclusive data measured by the MiniBooNE, T2K,
and MINERνA experiments.

I. INTRODUCTION

Over the past decade, there has been tremendous
progress towards computing lepton-nucleus scattering
within the so-called ab initio nuclear many-body ap-
proaches, which provide a microscopic description of nu-
clear dynamics starting from the individual interaction
among the constituent neutrons and protons [1]. By
exploiting integral-transform techniques, both quantum
Monte Carlo (QMC) [2–4] and coupled-cluster [5] meth-
ods retain nuclear correlations in both the initial and
final states of the scattering process. Notably, the lat-
ter are generated by realistic nuclear Hamiltonians con-
sistent with the electroweak-current operators entering
the transition matrix element. Hence, in addition to
providing an accurate description of nuclear dynamics,
microscopic approaches allow one to estimate the the-
oretical uncertainties associated with modeling nuclear
dynamics. This aspect is particularly relevant for the
accelerator-neutrino program, as cross-section uncertain-
ties represent a significant component of the error budget
of neutrino-oscillation parameters [6–8].

Among QMC methods, Green’s function Monte Carlo
(GFMC) has been extensively employed to compute the
electroweak response functions of nuclei with up to A =
12 nucleons starting from imaginary-time propagators,
corresponding to their Laplace transforms. GFMC calcu-
lations of inclusive electron and neutrino cross sections of
4He and 12C are in excellent agreement with experimen-
tal data [9–11]. Coupled-cluster calculations can reach
larger systems due to its favorable polynomial scaling
with the number of nucleons. After its initial application
to low-energy nuclear dipole responses [12], the coupled-
cluster approach was extended to compute the Coulomb
sum rule of 4He and 16O [13]. Most recently, the Authors
of Ref. [14] have carried out coupled-cluster calculations
of the longitudinal electromagnetic response function of

40Ca, finding very good agreement with experiments in
the quasi-elastic region.
One of the main limitations of both QMC and coupled-

cluster approaches has to be ascribed to the nonrelativis-
tic formulation of the many-body problem. Although
the leading relativistic corrections are typically included
in the transition operators [15], the kinematics of the
reaction is nonrelativistic, thereby limiting the applica-
tion of these methods to moderate values of the momen-
tum transfer. This restriction is particularly relevant
when making predictions for inclusive neutrino-nucleus
cross sections since the incoming neutrino flux is not
monochromatic. Its tails extend to energies where rel-
ativistic effects cannot be neglected.
In a number of works [16–21], a method was pro-

posed to extend the applicability of manifestly nonrel-
ativistic hyperspherical-harmonics and QMC methods to
higher momentum transfer values than typically possi-
ble. This method reduces relativistic effects by perform-
ing the calculations in a reference frame that minimizes
nucleon momenta. Additional relativistic effects in the
kinematics are accounted for by employing the so-called
two-fragment model, which allows one to obtain, in a
relativistically-correct way, the kinematic inputs of the
nonrelativistic dynamical calculations.
In this work, we quantify the role of relativistic ef-

fects in the GFMC calculations of the electroweak re-
sponse function of 12C induced by charged-current tran-
sitions by analyzing their frame dependence with and
without the two-fragment model. Following the strat-
egy discussed in Ref. [21], we compute inclusive neutrino-
12C scattering cross sections choosing a reference frame
that minimizes these effects. We compare our theoreti-
cal calculations with experimental data measured by the
MiniBooNE [22], T2K [23], and MINERνA [24] experi-
ments. Note that their neutrino fluxes are characterized
by different energy distributions, whose high-energy tails
extend beyond the GeV region.
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This paper is organized as follows. In Section II,
we outline the connection between inclusive neutrino-
nucleus cross sections and electroweak response func-
tions, review the Lorentz transformations to different ref-
erence frames, and apply them to the GFMC electroweak
response functions. In Section III, we gauge the role of
relativistic effects in the charged-changing response func-
tions, while inclusive cross-section results are discussed in
Section IV. Finally, in Section V, we draw our conclusions
and outline future perspectives of this work.

II. IMPLICATIONS OF RELATIVITY FOR
NUCLEAR RESPONSES

A. Nuclear responses and charged-current cross
section

The differential cross section for inclusive charged-
current (CC) scattering of a neutrino with the nucleus
can be written as

dσ

dEldΩl
=

G2

4π2
klEl(vCCRCC − vCLRCL + vLLRLL

+ vTRT + vT ′RT
′), (1)

with G = GF cos θc, and El, kl denote the energy and
momentum of the final-state lepton, respectively. The
decomposition into factors vX that depend only on the
lepton kinematics, and nuclear responsesRX follows from
considering a single boson exchange. The expressions for
the lepton factors can be found in Refs. [25]. The inclu-
sive nuclear electroweak response functions correspond to
specific elements of the hadron tensor, defined as

Rµν =
∑
f

⟨Ψ0|Jµ†(ω,q)|Ψf ⟩⟨Ψf |Jν(ω,q)|Ψ0⟩

× δ (ω + E0 − Ef ) , (2)

where |Ψ0⟩ and |Ψf ⟩ denote the nuclear initial ground-
state, and final bound- or scattering-state of energies E0

and Ef . The nuclear electroweak current Jµ(ω,q) de-
pends upon the energy and momentum transferred to the
nuclear system ω = Eν − El, and q = kν − kl. Without
loss of generality, we take q to be parallel to the z-axis,
so that the five inclusive nuclear responses in Eq. (1) can
be expressed as

RCC(ω, q) = R00(ω, q),

RCL(ω, q) = 2ReR0z(ω, q),

RLL(ω, q) = Rzz(ω, q),

RT (ω, q) =
Rxx +Ryy

2
(ω, q),

RT ′(ω, q) = 2 ImRxy(ω, q) , (3)

where q = |q|. The longitudinal contribution to the cross
section can be written to make the dependence on lepton

mass explicit as

vCCRCC − vCLRCL + vLLRLL =

vCCRL − m2
l

qEl
RCL +

m2
l

q2

[
2
Eν

El
− vCC

]
RLL. (4)

Hence, the following combination of response functions

RL ≡ RCC − ω

q
RCL +

(
ω

q

)2

RLL, (5)

yields the leading longitudinal contribution when the mo-
mentum transfer and lepton energy are large compared
to the outgoing lepton mass.

B. Lorentz transformations to different reference
frames

The laboratory frame (LAB) is the reference frame in
which the initial nucleus is at rest, Pi = 0. In this work,
we evaluate the electroweak response functions in dif-
ferent reference frames which move with respect to the
LAB frame along the direction specified by the momen-
tum transfer q.
Since the inclusive electroweak currents transform as

four-vectors under a Lorentz-boost, the hadron tensor
elements transform as

Rµν
LAB(ω, q) = Bµ

α [β]Bν
β [β]R

αβ
fr (ω

fr,qfr) . (6)

In the last equation, B indicates a Lorentz boost, and
Rfr the response evaluated in a frame that moves with
relative velocity β with respect to the LAB frame. For
boosts along q, one can write B in matrix notation as

Bµ
ν =

 γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ

 , (7)

where β = |β| and γ = 1/
√

1− β2. Whilst the trans-
verse responses are unchanged by a boost along q, the
longitudinal responses transform as

RLAB
CC =γ2

[
Rfr

CC + β2Rfr
LL + βRfr

CL

]
(8)

RLAB
LL =γ2

[
Rfr

LL + β2Rfr
CC + βRfr

CL

]
(9)

RLAB
CL =γ2

[
2β

(
Rfr

CC +Rfr
LL

)
+ (1 + β2)Rfr

CL

]
. (10)

The energy and momentum transfer in the moving
frame are connected to the ones in the LAB frame by
the inverse boost

qfr = γ(q− βω), ωfr = γ(ω − βq), (11)

thus one can write the boost parameter as

γ =
ωq + ωfrqfr

ωqfr + ωfrq
, (12)
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where qfr = |qfr|.
When the nuclear current is conserved, as in the elec-

tromagnetic case and the vector contribution to the elec-
troweak current, one has ωJ0(ω,q) − q · J(ω,q) = 0,
which implies

Rfr
CC(ω

fr,qfr) =
qfr

2ωfr
Rfr

CL(ω
fr,qfr)

=

(
qfr

ωfr

)2

Rfr
LL(ω

fr,qfr) . (13)

Substituting the above relation in Eq. (8), and using
Eq. (12) one finds that

RCC(ω,q) =

(
q

qfr

)2

Rfr
CC

(
ωfr,qfr

)
. (14)

This is the relation used in Refs. [21] for electromagnetic
interactions. However, in this work, we consider elec-
troweak transitions in which the axial contribution is not
conserved. Therefore, we use the more general expres-
sions for the Lorentz-boosts between different frames of
Eqs. (8 - 10). Following Refs. [16], we introduce a phase-
space factor to account for the covariant normalization
of the initial target state; the full result for LAB frame
responses reads

Rµν
LAB(ω,q) =

Efr
i

MA
Bµ

αB
ν
β R

αβ
fr (ω

fr,qfr), (15)

with Efr
i =

√
(Pfr

i )2 +M2
A where MA is mass of the

nucleus.
Following Ref. [26], we introduce the active-nucleon ζ-

frame as the one in which Pfr
i = −(1 − ζ)Aqfr, where,

clearly, A = 12 for 12C. The Lorentz boost that connects
these momenta to the LAB frame energy reads

(1− ζ)qfr = −Pfr
i

A
= βγ

MA

A
. (16)

Using the inverse boost expression for qfr found in
Eq. (11), the relative velocity reads

β =
(1− ζ)q

MA/A+ (1− ζ)ω
. (17)

For ζ = 1 we recover the LAB frame, while different
values ζ parameterize other reference frames. In par-
ticular ζ = 1/2 corresponds to the active nucleon Breit
(ANB) frame with Pi = −AqANB/2. In the vicinity
of the quasielastic peak, the momentum is mostly ab-
sorbed by a single “active” nucleon, with a momentum

of approximately pA
i = Pfr

i /A. For the active-nucleon
ζ-frames, we thus have

pA
i = (ζ − 1)qfr, pA

f = ζqfr (18)

Hence, in the ANB the magnitude of the active nucleon
momentum in initial and final state is minimal. More-
over, the energy transfer at the quasielastic peak in the

ANB frame is zero and this holds true for both the rel-
ativistic and nonrelativistic case implying that the re-
sponses peak in the same position. As a consequence,
qfr at the quasielastic peak is also minimal in the ANB.
For these reasons, the ANB frame has been chosen in
Refs. [16, 17, 21] as the one that minimizes the effect of
relativistic corrections to the kinematics.
In addition to the LAB and ANB frames, in Ref. [16,

17, 21], the electromagnetic response functions of nuclei
with A=3, 4 are also evaluated in the anti-lab frame,
defined by Pi = −qAL, and in the Breit frame with Pi =
−qB/2. However, in the limit of large A these frames
tend to become indistinguishable from the LAB frame.
For this reason, since we are considering a heavier target
than those studies in Refs. [16, 17, 21], we will only focus
on the active-nucleon frames in which the momentum of
the nucleus scales with A.

C. Nuclear responses in different reference frames

Within the GFMC the responses are computed in the
“intrinsic system”, in which the total center of mass mo-
tion of the nuclear system is zero, e.g.

Rint(ω′,q′) =
∫∑
δ (ω′ + ϵ0 − ϵf )

×⟨Ψ0|Jµ†|Ψf ⟩⟨Ψf |Jν |Ψ0⟩ , (19)

where ϵ0 and ϵf are the intrinsic energies of the initial
and final states, respectively, which are assumed to be
frame independent. The nonrelativistic response in the
LAB frame can be recovered by setting q′ = q and ω′ =
w − q2/(2MA). While for a generic reference frame, the
response functions can be obtained by identifying q′ with
the boosted momentum transfer

q′ = qfr = γ (q− βω) . (20)

and including the center of mass energies of the initial
and final states in the energy transfer definition as ω′ =
ωfr − (Pfr

f )2/(2MA) + (Pfr
i )2/(2MA).

Note that the “intrinsic system” cannot be interpreted
as a reference frame. Hence, RCC and RLL can be recov-
ered from the single response RLL using current conser-
vation as in Eq. (13) only after the nonrelativistic RLL

in a given frame is computed.

1. Two Fragment model

The kinematics of quasielastic processes can be mod-
ified to account for relativistic corrections by employing
the two-fragment model introduced in Ref. [16]. This ap-
proach assumes that the dominant reaction mechanism
in the quasielastic region is the break-up of the nucleus
into two fragments, namely a knocked-out nucleon and
a remnant (A − 1) system. Under this assumption, the
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FIG. 1. Longitudinal and transverse electroweak response functions of 12C at a momentum transfer q = 700 MeV for different
active-nucleon frames, parametrized by different values of ζ = 1, 3/4, 1/2, 1/4. The top panels do not use the 2-fragment
model while the bottom panels do. The dashed black line in the bottom panels corresponds to the ANB result which does not
include the fragment model.

energy of the hadronic final system can be written in a
relativistically correct fashion as

Efr
f =

√
m2 + (pfr

f + (µ/MA−1)Pfr
f )

2

+
√
M2

A−1 + (pfr
f − (µ/m)Pfr

f )
2 ; (21)

where µ = mMA−1

m+MA−1
is the reduced mass, Pfr

f and pfr are

the center of mass and relative momentum, respectively.
Following the arguments of Ref. [16, 21], we assume that
both Pfr

f and pfr are directed along qfr. The value of pfr

can be obtained by solving this equation and it has to be
replaced in the definition of the intrinsic energy

ϵf =
(pfr

f )
2

2µ
+ ϵA−1

0 (22)

where ϵA−1
0 is the energy of the remnant nucleus. A de-

tailed discussion on how to rewrite the energy conserving
δ as a function of ϵf can be found in Ref. [16].

III. RESULTS FOR TRANSFORMED
RESPONSES

Figure 1 shows the CC electroweak response functions
of 12C at q = 700 MeV computed in different active nu-
cleon ζ-frames and boosted back to the LAB fram apply-
ing the Lorentz transformation of Eq. (15). The left pan-
els display the longitudinal responses defined in Eq. (5).
For momentum transfers where relativistic effects become
important, the mass terms in Eq. (4) are negligible even

for muon-neutrino interactions, and RL determines the
longitudinal cross section.

The results obtained in this work are consistent
with those reported in Ref. [21], which focused on the
electromagnetic response functions of 4He. The two-
fragment model is suitable to mitigate most of the frame-
dependence in the nonrelativistic calculations, as the re-
sponses computed in different frames collapse onto a sin-
gle curve. This behavior has to be confronted with the
top panels, in which the the two fragment model is not
applied. There, a significant frame dependence is visi-
ble, in both the logitudinal and transverse channel. As
expected, the longitudinal and transverse CC responses
obtained in the ANB-frame (ζ = 1/2) are largely unaf-
fected by the use of the two fragment model. To better
appreciate this behavior, the dashed black line in the bot-
tom panels of Fig. 1 corresponds to the results obtained
in the ANB frame without employing the two-fragment
model.

As shown in the rightmost panel of Fig. 1, displaying
the CC transverse response functions, the same behavior
persists even when two-body current contributions are
significant. Similarly to the one-body case, we observe
that applying the two-fragment model to the total trans-
verse response reduces the frame dependence of the cal-
culation, with all curves aligning on the ANB frame one.
Hence we can infer that the dominant reaction mecha-
nism is such that the transferred momentum is primarily
absorbed by a single nucleon. This is consistent with the
idea that the transverse enhancement in the quasielastic
peak in electromagnetic interactions is primarily due to
the interference between one- and two-body currents [27–
32].
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It is notable in this respect that the GFMC calcula-
tions do not show a distinctive peak near the delta reso-
nance, which is a feature observed in several calculations
of two-nucleon knockout [28, 33–36]. This can likely be
attributed to the static treatment of the delta in the
GFMC, which hence does not lead to an enhancement
near the delta pole. In the region of the QE-peak the
static treatment should be appropriate [37], but further
study which explicitly separates the delta in the GFMC
responses and includes a more complete treatment of the
propagator are required for the dip-region.

The results obtained in the ANB (with or without the
two fragment model), incorporate relativistic corrections
to the kinematics. This is shown explicitly in Fig. 2,
where we compare the energy-dependence of the response
in the LAB and ANB frames, for different values of q as a
function of the relativistic (left panel) and nonrelativistic
(right panel) scaling variable [38, 39], which is defined as

ψnr(ω, q) =
m

|q|kF

(
ω − q2

2m
− ϵnr

)
(23)

where the Fermi momentum for 12C is taken to be
kF = 225 MeV, and the energy shift ϵnr ≈ 40 MeV is
included to center the peaks at ψnr = 0. It is clear that
the LAB results, corresponding to the solid lines, exhibit
a universal energy-dependence in terms of ψnr for the
three different values of momentum transfer: q = 500,
700, and 900 MeV. On the other hand, the peaks of the
responses obtained using the two-fragment model (or the
ANB) are shifted to smaller ψnr, while the high-ψnr tail
shrinks more rapidly, as q increases. The same responses
are shown in the right-hand panel, as function of the rel-
ativistic scaling variable [38, 40]

ψ(ω, q) =
1

ξF

λ′ − τ[
τ(1 + λ′) + κ

√
τ(τ + 1)

]1/2 , (24)

with the dimensionless variables defined as

λ′ =
ω − ϵr
2MN

, κ =
|q|

2MN
, τ =

Q2

4M2
N

(25)

ξF =

√
1 +

(
kF
MN

)2

− 1. (26)

In the definition of ψ we set ϵr ≈ 30 MeV so as to aligh
the peak of the ANB responses at approximately ψ =
0. Comparing the different dashed lines, it emerges that
the ANB results are aligned when plotted as a function
of the relativistic scaling variable, thus confirming that
relativistic effects are properly accounted for in the ANB
frame. On the other hand, the nonrelativistic responses
evaluated in the LAB frame manifestly violate relativistic
scaling.
For benchmark purposes, we consider alternative

schemes that have been develop to account for relativistic
effects in nonrelativistic calculations. In Refs. [42], rela-
tivistic corrections for nucleon knockout in a nonrelativis-
tic shell model are implemented by shifting the outgoing
nucleon energy when solving the Shrödinger equation as

TN → T ′
N = TN

(
1 +

TN
2m

)
. (27)

Since the the nonrelativistic kinetic energy is p2 = 2mT ′
N ,

the above shift corresponds to using the relativistic mo-
mentum p2 = TN (2m + TN ), thereby effectively trans-
forming the nonrelativistic Shrödinger equation into a
form similar to a radial Dirac equation for the upper
components of the spinors [43]. The latter indeed uses
as “energy” p2/(2m), p being the relativistic momentum.
The effect of this substitution in a CRPA calculation of
the transverse response [44, 45] is shown in Fig. 3. In
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this figure, we compare the effect of shifting the kinetic
energy of the nucleon as in Eq. (27) with computing the
response in the ANB frame and then boosting it back
to the LAB frame. Both approaches lead to very simi-
lar ω dependence of the corrected responses. Note that
the shift of Eq. (27) cannot be readily implemented to
correct the GFMC responses. However, comparing with
Eq. (22), the shift of Eq. (27) resembles applying the two-
fragment model in the LAB frame in the limit of large A,
i.e. using the kinetic energy derived from the relativistic
momentum as discussed above. Note that in Ref. [46],
the CRPA results additionally includes the relativistic
correction to the electroweak currents of Ref. [47, 48].
We do not explicitly include these boost factors, as rela-
tivistic corrections to the currents are included in a differ-
ent expansion [15], and the procedure of computing the
response in a different frame includes such corrections.

IV. FLUX-AVERAGED CROSS SECTIONS

We compute the CC inclusive cross sections for differ-
ent kinematic setups, relevant for the MiniBooNE [22],

T2K [23], and MINERνA [24] experiments. Their in-
coming neutrino fluxes are characterized by average en-
ergies ranging from 700 MeV for T2K up to 6 GeV of the
medium-energy NuMI beam in MINERνA. Therefore,
the cross section receives contributions from the high mo-
mentum region of the phase space, where a proper treat-
ment of relativistic effects become relevant. We account
for the latter by evaluating the GFMC electroweak re-
sponses in the ANB frame and boosting them back to
the LAB fram. As argued above, since the ANB frame
minimizes relativistic effects, we find that applying the
two-fragment model brings about minimal differences.

A. MiniBooNE

Our theoretical calculations for the flux averaged dou-
ble differential cross section for the MiniBooNE kinemat-
ics are shown in Fig. 4. Both the nonrelativistic and
ANB results include one- and two-body current contri-
butions. The black squares correspond to the ‘CCQE-
like’ data reported in Ref. [41], whose extraction from
experimental measurements entails some model depen-
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FIG. 5. T2K flux folded GFMC results, nonrelativistic (nr), and in the ANB, both including one- and two-body current
contributions. The black data points are from Ref. [49], while the data from the analysis reported in Ref. [50] is shown by the
gray data points.

dence [51]. In particular, an irreducible ’non-CCQE’
background, mainly consisting of the production of a sin-
gle π+ which is either absorbed or remains otherwise un-
detected [8, 52, 53], is estimated using the NUANCE
generator [54], and subtracted from the data. This
background is partly constrained by their own measure-
ment [55], but inconsistencies in the description of the
MiniBooNE π+ production data and data from T2K [56]
and MINERνA [57] have been pointed out [51, 58–60].
Hence, to better gauge the uncertainties associated with
this procedure, it is best practice to add this background
back to the data points; we show the resulting distribu-
tion in Fig. 4 as empty circles. Finally, one should keep
in mind that the MiniBooNE collaboration reports an
overall 10% normalization error which is not taken into
account in the error-bars.

The effect of the relativistic corrections implemented
through the ANB response is a reduction of the peak
strength with a redistribution towards larger values of
Tµ. It is interesting to note that the calculations tend to
saturate the data at small Tµ, while leaving space at large
Tµ, as has been previously pointed out in Refs. [25, 44].
The present calculations use a dipole parametrization of

the axial form factor with a cut-off MA = 1GeV. How-
ever, recent Lattice-QCD calculations suggest a signif-
icantly larger axial form factor at Q2 = q2 − ω2 ≈ 1
GeV2 [62–64]. Including an axial form factors consistent
with these Lattice-QCD results in GFMC and spectral-
function calculations [65] increases the inclusive cross sec-
tions at high-Tµ, compared to a dipole withMA ≈ 1GeV.
This enhancement is consistent with earlier works [41]
based on simplified models of nuclear dynamics. On the
other hand, a number of neutrino event generators that
use a dipole form with MA ≈ 1 ∼ GeV provide a reason-
able description of the MiniBooNE data, once the model-
dependent background is added [51]. Notably, in this
latter comparison, the data points seem to be shifted to
smaller Tµ.

The relativistic corrections computed in this work
are critical to perform meaningful comparisons between
GFMC calculations and MiniBooNE data [25]. In partic-
ular, including relativistic effects is critical to test differ-
ent parameterizations of the axial form factor. However,
the uncertainties in the MiniBooNE analysis hamper a
firm conclusions in a theory-data comparison. In view
of the statistical significance of the MiniBooNE dataset,
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Ref. [61]

the unresolved tensions with other experiments, and the
possible importance for informing modeling in the SBN
program at Fermilab, a reanalysis of the MiniBooNE
dataset(s) would be immensely beneficial [51].

B. T2K

Fig. 5 displays our results for the T2K experiment
using the flux tabulated in Ref. [66]. The GFMC cal-
culations again include one and two-body terms in the
charged-current operator. The two sets of data corre-
spond to the original analysis of Ref. [50] and the more
recent one reported in Ref. [49]. As expected, the dif-
ference between the calculations carried out in the ANB
frame and the nonrelativistic ones is much smaller than
for MiniBooNE, owing to the lower average energy in the
T2K flux. Experimental data are well reproduced by the
one plus two-body current theoretical results, leaving lit-
tle room for higher-energy reaction mechanisms. In this
regard, for this kinematics using the Lattice-QCD axial

form factor brings about minor differences compared to
the dipole one with MA = 1 ∼ GeV Ref. [65]

C. MINERνA

In Figs. 6 and 7 we show the MINERνA CC cross sec-
tion results as a function of longitudinal and transverse
muon momentum. These are defined as

p∥ = |pµ| cos θµ (28)

and

p⊥ = |pµ| sin θµ =
√

p2
µ − p2∥, (29)

respectively, θµ being the scattering angle with respect
to the beam. The differential cross section is then

d2σ

dp⊥dp∥
=

p⊥
|pµ|Eµ

d2σ

dEµd cos θµ
. (30)
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The data is obtained by exposure to the medium-energy
NuMI beam; we use the flux of Ref. [67] and compare
with the cross section data of Ref. [61]. Both the data
and calculations include kinematics cuts in the scattering
angle θµ < 17◦ and the muon momentum 2 GeV < |pµ| <
20 GeV. Additionally we restrict all calculations to Eν <
20 GeV and momentum transfer |q| < 2 GeV.

The comparison of the purely nonrelativistic and the
ANB results are shown in Fig. 6. The inclusion of rela-
tivistic effects reduces the cross section by almost a fac-
tor of two for low-p∥, with the difference in magnitude
around the peak decreasing for larger p∥. We note that
the momentum transfer is limited as q > p⊥, and that
bins at small p∥ generally allow for higher energy, and
hence larger q contributions at small p⊥, which explains
this behavior. The appearance of the high-p⊥ (i.e. high-
q) tails can be understood by the narrowing of the re-
sponse in terms of the energy transfer compared to the
nonrelativistic results — see Fig. 2 — that redistributes
strength into the available phase space at large-q.

As calculations for MINERνA include large q, and the

effect of the relativistic corrections is significant, a con-
sistency check is in order. For this reason, in Fig. 7 we
compare the GFMC calculations that only include one-
body currents to other approaches, based on a mean-
field approximation of nuclear dynamics. Specifically, the
CRPA calculations [44–46], include the relativistic cor-
rection in the nucleon energy discussed above [42]. The
SuSAv2 results are based on the relativistic scaling for-
malism — for additional details see Ref. [68]. Finally the
“Hybrid” CRPA calculations introduce a blending of the
nuclear responses with SuSAv2 responses in the region
500 ≲ q ≲ 700 MeV. Above this region, the results are
purely SuSAv2, and below they are purely CRPA. In the
region in between, the SuSAv2 and CRPA results are
practically identical [69]. We find the different theoreti-
cal calculations to be in reasonably good agreement. The
strength of the GFMC one-body contribution is quenched
by a ∼ 10% with respect to the other curves, and the tail
of the CRPA calculations at high-pT drop faster. This
might be ascribed to the broadening of the CRPA re-
sponses at high-q compared to the SuSAv2 results, see
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e.g. discussion in Ref. [69].
Finally, we comment on the fact that the nonrelativis-

tic calculations seems to be in better agreement with ex-
perimental data than the ones in which relativistic effects
are accounted for. However, given the energy distribu-
tion of the medium-energy NuMI beam of the MINERνA
experiment, contributions beyond quasi-elastic scattering
are expected to be significant, even if the experimental
analysis rejects events with mesons visible in the detec-
tor. In particular, there are instances in which pions pro-
duced in the interactions vertex are is either absorbed or
remain undetected. Hence, theoretical calculations that
do not include pion-production mechanisms should re-
main below experimental data. This is indeed the case
when relativistic effects are accounted for, while neglect-
ing them yields unphysically large cross sections.

V. CONCLUSIONS

One of the main sources of systematic uncertainties
in neutrino-oscillation experiments comes from the lim-
ited accuracy in the prediction of neutrino-nucleus cross
sections. Using sophisticated QMC techniques, in par-
ticular the GFMC approach, has proven to be successful
in describing electroweak interactions for low to moder-
ate momentum transfer in the quasielastic region, where
the dominant reaction mechanisms are single- and multi-
nucleon knockout. The main shortcomings of the GFMC
lie in its nonrelativistic nature and being limited to in-
clusive predictions. The evaluation of the GFMC nuclear
electromagnetic responses in a reference frame that min-
imizes relativistic effects, namely, the ANB frame, has
been discussed in Ref. [21]. This strategy appeared to
be successful in accounting for relativistic corrections in
the kinematics for nuclei with A = 3, 4 nucleons. In
this work, we extend the approach to 12C and consider
charged-current interactions, in which the axial com-
ponent violates current conservation. Differently from
Refs. [16, 17, 21], to properly transform the axial term,
we adopt the general expression of the Lorentz-boost to
connect the responses evaluated in different frames. In
addition to working in the ANB frame, we consider dif-
ferent strategies to incorporate relativistic effects in the
kinematics. Following Refs. [16, 17, 21], we implement
the two-fragment model in which the kinematic inputs
of the nonrelativistic dynamical calculation are obtained
in a relativistically correct fashion. An alternative ap-
proach based based on shifting the outgoing nucleon en-
ergy when solving the Shrödinger equation in the CRPA
approach is also considered. We argue that these differ-
ent methods produce similar corrections in the GFMC
and CRPA calculations of the electroweak response at

q = 700 MeV.
We compute the CC flux-averaged neutrino cross-

section within GFMC including one- and two-body cur-
rent operators and compare it with experimental data
from the T2K, MiniBooNE, and MINERνA collabora-
tions. Since the average neutrino energy for the T2K
beam is around 700 MeV, we find that relativistic cor-
rections are in general very small, and only visible for
some values of the scattering angle. On the other hand,
while the average neutrino energy of the MiniBooNE ex-
periment is also of the order of 700 MeV, the tails of the
flux extend up to 3 GeV. In this case, we observe that the
inclusion of relativistic effects in the kinematics yields a
visible reduction in the strength at the quasielastic peak
for all the scattering angles considered. Hence, account-
ing for relativistic effects is critical for testing different
parametrizations of the nucleon axial form factor, includ-
ing those recently obtained within Lattice-QCD [62–64].
Finally, we gauge relativistic effects in GFMC calcula-

tions in the extreme case of MINERνA kinematics, where
the medium-energy NUMI beam peaks around 6 GeV.
Including relativistic corrections has a dramatic effect,
yielding a reduction of the strength up to 50% compared
to nonrelativistic calculations. Despite working in the
ANB frame has proven effective in accounting for rel-
ativistic corrections, we do not expect the GFMC to
be applicable in this high energy regime. For this rea-
son, we compare the results obtained from the GFMC
calculations in the ANB frame with other approaches
allowing for a fully relativistic treatment of the kine-
matics, such as SuSAv2. The good agreement between
the relativistically-corrected GFMC cross sections and
SuSaA2 results corroborates the validity of the procedure
we employ to include relativistic effects in the GFMC.
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