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We study entanglement entropies between the single-particle states of the hole space and its
complement in nuclear systems. Analytical results based on the coupled-cluster method show that
entanglement entropies are proportional to the particle number fluctuation and the depletion num-
ber of the hole space for sufficiently weak interactions. General arguments also suggest that the
entanglement entropy in nuclear systems fulfills a volume instead of an area law. We test and con-
firm these results by computing entanglement entropies of the pairing model and neutron matter,
and the depletion number of finite nuclei.

I. INTRODUCTION

Entanglement is a key property in quantum mechan-
ics [1]. It refers to non-local aspects of a wave function
and usually makes it hard to numerically solve a quan-
tum many-body problem. Expressions such as “wave-
function correlations” or “fluctuations” are often used as
synonyms for entanglement. However, the latter has the
advantage that it can be quantified using entropies. In
this article, we are interested in entanglement entropies
of ground states in neutron matter and nuclear models
that arise when the single-particle basis is partitioned
into two complementary sets.

Entanglement is widely studied in different areas of
physics [2]. In shell-model calculations, understanding
entanglement helps when applying the density-matrix
renormalization group [3, 4]. Recently, advances in quan-
tum information science and quantum computing also
renewed an interest in exploring entanglement in nuclear
systems [5–13]. A better understanding of entanglement
might thus benefit both classical and quantum computa-
tions of atomic nuclei.

Let us define those metrics that quantify the entangle-
ment of quantum systems. We assume that the Hilbert
spaceH is decomposed as aH = HA⊗HB in terms of the
Hilbert spaces of two subsystems A and B. The density
matrix of the ground state |Φ⟩ is

ρ = |Φ⟩⟨Φ| , (1)

and the reduced density matrix of the subsystem A is
obtained by tracing over the subsystem B, i.e.

ρA = TrB ρ . (2)

The density matrices ρA and ρ are Hermitian, non-
negative (i.e. they have non-negative eigenvalues), and
fulfill Tr ρ = 1. And we say ρA is entangled with B when
it can not be represented by a pure state, i.e., Tr ρ2A < 1.
Measures such as entropy or mutual information can be
used to quantify the entanglement. In this paper, we
consider the Rényi entropy [14]

Sα =
1

1− α
lnTr ραA . (3)

Here α ∈ (0, 1) ∪ (1,∞), and the von Neumann entropy
arises as the limiting case of the Rényi entropy for α → 1,
i.e.

S1 = lim
α→1

Sα = −Tr(ρA ln ρA) . (4)

In lattice systems with local interactions, one often
finds that the entanglement entropy grows proportional
with the area (times some logarithmic corrections) when
the system is partitioned into two subsystems [2]. Fig-
ure 1 shows how this meets expectations. The red-colored
sites within the blue subsystem have links to the white
complement, and their number is proportional to the size
of the boundary. This leads to an area law for entangle-
ment entropy in three dimensions.

FIG. 1. Lattice system (sites and links) partitioned into two
regions (colored blue and white). The red sites in the blue
region have links to sites in the white region. Taken from
Ref. [15] with permission of the authors; see also Ref. [2].

Wolf [16] and Gioev and Klich [17] showed that the
von Neumann entanglement entropy for fermionic tight-
binding Hamiltonians and free fermions in d dimensions,
respectively, scales as S1 ∼ Ld−1 logL, where L is a linear
dimension of subsystemA. Thus, these fermionic systems
fulfill area laws with logarithmic factors. Gioev and Klich
[17] and Klich [18] also showed that the particle-number
variation (∆N)2 gives upper and lower bounds of the
von Neumann entropy via

4(∆N)2 ≤ S1 ≤ O(logL)(∆N)2 . (5)
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Leschke et al. [19] extended the proof to general Rényi en-
tanglement entropies Sα. Extensions to interacting (and
exactly solvable systems) can be found in Refs. [20, 21].
Masanes [22] pointed out that area laws with logarith-
mic factors hold for a fermionic state if “(i) the state
has sufficient decay of correlations and (ii) the number
of eigenstates with vanishing energy density is not expo-
nential in the volume.”

While the first condition is expected to be fulfilled for
atomic nuclei, the second seems not. After all, nuclei
are open quantum systems and resonant and scattering
states are abundant. A question also arises about how
to partition the Hilbert space when dealing with a finite
system. We will see that a partition in Fock space, based
on the orbitals that are occupied and unoccupied in the
Hartree-Fock state, respectively, is most useful and nat-
ural.

This paper is organized as follows. In Sec. II we give ar-
guments that entanglement entropies in nuclear systems
fulfill a volume law. In Sec. III, we present analytical
results for the entanglement entropy in finite interacting
systems. As we will see, model-independent results can
only be derived in the limit of sufficiently weak interac-
tions. In particular, we are able to generalize analyti-
cal results valid in non-interacting systems to the case
of weak interactions. This allows us to relate entangle-
ment entropies (which are difficult to compute) to other
observables such as the occupation number variation or
the depletion number. These can then serve as entangle-
ment witnesses that are easier to compute. In Sec. IV we
test our predictions and present results for the pairing
model, neutron matter, and finite nuclei. The pairing
model serves to verify our analytical arguments. Using a
simple model for neutron matter we see that the entan-
glement entropies fulfill volume laws. Finally, we turn
to nuclei computed within chiral effective field theory.
There we use the depletion as an entanglement witness
and confirm a volume law. We summarize our results in
Sec. V.

II. ARGUMENTS FOR A VOLUME LAW

We partition the system into the single-particle states
of the reference state (the hole space) and its comple-
ment (the particle space). This partition results, e.g.,
from a Hartree-Fock computation or from a naive filling
of the spherical shell model. The single particle states in
both subspaces are usually delocalized in position space.
Hartree-Fock orbitals, for instance, are localized on an
energy surface in phase space but spread out in position
space. One can now imagine using unitary basis transfor-
mations in the hole and particle spaces such that single-
particle states become localized in both partitions [23–
25]. (Orthogonality requirements might lead to some-
what less localized single-particle states, though.) The
ideal situation is depicted in Fig. 2. Here, the red points
are the hole states in position space. Their nearest neigh-

bor distance is about π/kF where kF is the Fermi mo-
mentum. The “volume” occupied by the reference state
is depicted in light blue. The region outside the nuclear
volume is depicted in light gray. The black points denote
the states of the particle space. Their nearest-neighbor
distance is about π/Λ where Λ denotes the momentum
cutoff. Thus, their density in position space is larger than
the density of the red hole states and the resolution of the
finite-Hilbert-space identity also demands that there is a
considerable number of particle states “inside” the vol-
ume occupied by the nucleus. (The density of localized
states in the grey and light blue areas is equal.) Even for
a short-ranged (and possibly local) nuclear interaction,
we see that every hole state is correlated with particle
states. Thus, we expect a volume law for the entangle-
ment entropy between particle and hole space.

FIG. 2. Position-space sketch of the nuclear volume (depicted
in light blue) and its complement (depicted in gray) for a
finite spherical basis. The red points represent (localized)
hole states while the black points symbolize localized particle
states. The former (latter) exhibits a nearest neighbor dis-
tance that is inversely proportional to the Fermi momentum
(momentum cutoff). Thus, one expects a volume law for the
entanglement entropy between particle and hole states.

This expectation also holds in momentum space.
There, the hole states occupy the Fermi sphere (evenly
distributed) while the particle states occupy the comple-
ment. As the nuclear interaction is short-ranged in posi-
tion space, it becomes long-ranged in momentum space
and thereby also leads to a volume law for entanglement
entropy.
Similar expectations also hold for lattice computations

of atomic nuclei [26] where the single-particle basis con-
sists of a cubic lattice in position space. Let us consider
a nucleus with an average density n0 ≈ 0.16 fm−3. The
nucleus with mass number A occupies a volume A/n0
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and the number of available single-particle states inside
this volume

Ω = gst
A

a3n0
, (6)

where a is the lattice spacing and gst = 4 the spin/isospin
degeneracy. The reference state of the nucleus consists
of A single-particle states (also occupying the volume
A/n0). We have

Ω−A = Ω

(
gst
a3n0

− 1

)
(7)

and for typical lattice spacing a = 1.3 fm or a = 2 fm [27,
28], we find Ω−A ≈ 10A and 2A, respectively. Thus we
expect a volume law for the entanglement entropy. We
also note that Ω ∼ a−3 for a → 0 and recall that the
ultraviolet cutoff is Λ = π/a. Thus, entanglement is
expected to increase with increasing cutoff of the nuclear
interaction.

The arguments given in favor of a volume law for the
entanglement entropies are somewhat surprising at first
glance. Pazy [9] employed the nuclear contact [29–31]
and argued that short-range correlations yield a volume
law for the entanglement entropy between momentum
modes below and above the Fermi energy. Here, we
find a similar volume dependence but employ the full
fermionic many-body wave function and a partition be-
tween a generalized hole space (taking the set of orbitals
that comprise the reference state, e.g. the Hartree-Fock
reference) and particle space (its complement). This ap-
proach will allow us to relate the analytical results (made
in Sec. III to the exact results from Refs. [16–22]; those
works also consider a partition of two regions consisting
each of many single-particle sites.

III. ANALYTICAL RESULTS

In this Section, we utilize coupled-cluster theory [32–
35] to derive analytical results for the Rényi entropy, the
particle fluctuation of the hole space, and their mutual
relation.

A. Coupled-cluster theory

Following the standard coupled-cluster formulations,
for a many-body system with N fermions, we express
the ground state wavefunction |Ψ⟩ as

|Ψ⟩ = eT̂ |Φ⟩ , (8)

using the reference state

|Φ⟩ =
N∏
i=1

â†i |0⟩ . (9)

The cluster operator T̂ = T̂1 + T̂2 + · · ·+ T̂N contains all
possible k-particle–k-hole excitations

T̂k =
1

(k!)2

∑
i1,...,ik;
a1,...,ak

ta1...ak
i1...ik

â†a1
. . . â†ak

âik . . . âi1 . (10)

Here the indices ik and ak represent occupied (hole) and
unoccupied (particle) orbitals respectively. We use the
convention that indices i, j and a, b refer to hole and par-
ticle states, respectively. To obtain the coupled-cluster
amplitudes ta1...ak

i1...ik
, we solve the amplitude equations〈

Φa1a2...
i1i2...

|e−T̂ ĤeT̂ |Φ0

〉
= 0 (11)

where ∣∣Φa1a2...
i1i2...

〉
≡ â†a1

â†a2
· · · âi2 âi1 |Φ0⟩ (12)

and then compute the energy via

E =
〈
Φ|e−T̂ ĤeT̂ |Φ

〉
. (13)

For the purpose of analyzing results of the pairing
model and neutron matter, we use the coupled cluster
doubles (CCD) approximation. Here the cluster opera-

tor is T̂ = T̂2, and the ground state becomes

|ΨCCD⟩ = exp(T2)|Φ⟩ . (14)

The omission of singles (i.e. 1-particle–1-hole excita-
tions) is valid because the pairing-model Hamiltonian
only changes the occupation of pairs and because neu-
tron matter is formulated in momentum space where the
conservation of momentum forbids single-particle exci-
tations. For other finite systems, the contributions of
singles are small in the Hartree-Fock basis. The N -body
density matrix associated with the ground state is

ρ̂ =
|ΨCCD⟩⟨ΨCCD|
⟨ΨCCD|ΨCCD⟩

. (15)

Since we separate particles and holes we can express
states as the following products,∣∣Φa1a2...

i1i2...

〉
= |a1a2 · · · ⟩ ⊗ |i−1

1 i−1
2 · · · ⟩ . (16)

The hole-space reduced density matrix ρH is obtained by
tracing the density matrix ρ over the particle states. The
matrix elements of ρH are

⟨|ρH|⟩ = ⟨Φ|ρ̂|Φ⟩ ,

⟨i−1
1 i−1

2 |ρH|j−1
1 j−1

2 ⟩ =
∑

a1<a2

⟨Φa1a2
i1i2

|ρ̂|Φa1a2
j1j2

⟩ ,

...

⟨i−1
1 · · · i−1

N |ρH|j−1
1 · · · j−1

N ⟩ =∑
a1<···<aN

⟨Φa1···aN
i1···iN |ρ̂|Φa1···aN

j1···jN ⟩ . (17)
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The first line in Eq. (17) is obtained by tracing over the
vacuum state in the particle space, and the second line
results from tracing over two-particle states; for the last
two lines the trace is over N -particle states. As we use
the CCD approximation, all traces over odd-numbered
particle states vanish. We can easily check that Tr ρH =
1.

B. Approximate entropies

The exact evaluation of all matrix elements is challeng-
ing and we make the approximation

|ΨCCD⟩ ≈
(
1 + T̂2

)
|Φ⟩

= |Φ⟩+ 1

4

∑
abij

tabij |Φab
ij ⟩ .

(18)

assuming that T̂2 is small in a sense we specify below.
Thus, we obtain the T̂2 amplitudes from the solution of
the coupled-cluster equations but only employ the lin-
earized approximation of the wave function for the com-
putation of the density matrix. Then,

ρ̂ = C−1 |ΨCCD⟩⟨ΨCCD| , (19)

with the normalization coefficient

C ≡ ⟨ΨCCD|ΨCCD⟩
= 1 + t2 . (20)

Here we used the shorthand

t2 ≡ 1

4

∑
ijab

tabij t
ab
ij . (21)

The approximation (18) is valid for t2 ≪ 1, and this

quantifies in what sense T̂2 is small. Tracing over the
particle space yields the reduced density matrix

ρ̂H =
1

C

(
|⟩⟨|+

∑
a<b

tabij t
ab
kl

∣∣k−1l−1
〉 〈

j−1i−1
∣∣) . (22)

Here, |⟩ denotes the vacuum state in the hole space. It is
useful to rewrite this expression as the block matrix

ρ̂H =
1

1 + t2

[
1 0
0 ρ̂2

]
. (23)

Here, the two-hole–two-hole matrix ρ̂2 has elements

ρklij =
∑
a<b

tabij t
ab
kl . (24)

We have i < j and k < l and the matrix ρ̂2 has dimension
D ≡ N(N − 1)/2 for a system with N fermions. As a
check, we see that

Tr ρ̂2 =
∑
i<j

ρijij = t2 , (25)

and we indeed have Tr ρ̂H = 1. The expression (23)
is exact and can be used to numerically compute the
entropies of the state (18) using Eqs. (3) and (4).
For what follows, we rewrite

ρ̂2 = t2σ̂ , (26)

where σ̂ is a density matrix, i.e. Tr σ̂ = 1.
To compute the Rényi entropies (3) we use

Tr ρ̂αH = (1 + t2)−α
(
1 + t2α Tr σ̂α

)
. (27)

From here on, we restrict ourselves to α ≥ 1. We seek
further analytical insights and use t2 ≪ 1. Then,

Sα =
t2α Tr σ̂α − αt2

1− α
+O(t4) +O(t4α) . (28)

For α → 1 we employ the rule by L’Hospital and find

S1 = t2
[
1− Tr (σ̂ log σ̂)− log t2

]
+O(t4) . (29)

The matrix σ̂ has dimension D. Thus, 0 ≤
−Tr(σ̂ log σ̂) ≤ logD. Here, the minimum arises when
all but one eigenvalue of σ̂ vanish, while the maximum
arises when all eigenvalues are equal. Equations (28) and
(29) are the main results of this Section. As we have as-
sumed that t2 ≪ 1,

Sα =
α

α− 1
t2 +O(t2α) +O(t4) for α > 1, (30)

i.e. the Rényi entropies become independent of the eigen-
values of the matrix (26) for sufficiently large index α.
The entropies (28) and (29) further simplify for arbi-

trarily weak interactions (i.e. for t2 → 0), and we find
the asymptotic behavior

Sα →


−t2 log t2 for α = 1 and t2 → 0 ,

α

α− 1
t2 for α > 1 and t2 → 0 .

(31)

Note that the asymptotic results are independent of the
matrix σ̂ in Eq. (26). The derivation of these results also
makes clear that the limits α → 1 and t2 → 0 do not
commute.

C. Particle numbers in the hole space

The number operator for the particles in the hole space
is

N̂H =

N∑
i=1

â†i âi . (32)

Its matrix representation (limiting the basis to up to two
holes) is

N̂H =

[
N 0
0 N − 2

]
. (33)
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This matrix has the same block structure (and dimen-
sions) as ρ̂H in Eq. (23). Thus,

⟨NH⟩ ≡ Tr(ρ̂HN̂H)

= N − 2t2 +O(t4) , (34)

and

⟨N2
H⟩ ≡ Tr(ρ̂HN̂

2
H)

= N2 − 4t2(N − 1) +O(t4) , (35)

and the particle-number fluctuation is

(∆NH)
2 ≡ ⟨N2

H⟩ − ⟨NH⟩2

= 4t2 +O(t4) . (36)

Thus, t2 ≈ (∆NH)
2/4, and substituting this expression

into Eqs. (28) and (29) shows that the Rényi entropies
[and their asymptotic expressions (31)] are functions of
the particle-number fluctuation. These expressions ex-
tend the pioneering results [18] to finite systems of inter-
acting fermions.

As it will turn out below, calculations of the expec-
tation value (34) are much simpler than computations
of the particle-number fluctuation (36) or the entangle-
ment entropy. In particular, the depletion number of the
reference state [36]

δNH ≡ N − ⟨NH⟩
= 2t2 +O(t4) (37)

is simple to compute in interacting many-body systems,
and this also allows us to express the entanglement en-
tropy as a function of this quantity. Thus,

1

4
(∆NH)

2 ≈ 1

2
(δNH) ≈ t2 (38)

and corrections to this relation are higher powers of δNH

or (∆NH)
2 or t2.

The proportionality between the entropy and the
particle-number fluctuation breaks down when one in-
cludes higher powers of T2 in the approximation of the
CCD ground state (18). Our analytical results (28), (29),
and (31), combined with (38) generalize the result [18] to
weakly interacting finite Fermi systems.

IV. NUCLEAR SYSTEMS

A. Pairing model

The exactly solvable pairing model [37] is useful for
studying entanglement entropy. The model consists of
Ω/2 doubly degenerate and equally spaced orbitals with
two possible spin states σ = ±1. The Hamiltonian is

Ĥ =δ
∑
pσ

(p− 1)a†pσapσ

− 1

2
g
∑
pq

a†p+a
†
p−aq−aq+ .

(39)

10 6 10 5 10 4 10 3 10 2 10 1 100

( NH)2

10 7
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10 5
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10 3

10 2

10 1
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= 1, ( NH)2 0
= 2, ( NH)2 1

g/ = 10 3

g/ = 0.01
g/ = 0.1
g/ = 0.2
g/ = 0.5

FIG. 3. Rényi entropy S1 (full markers) and S2 (hollow mark-
ers) of the reduced hole-space density matrix ρH versus the
particle-number fluctuation (∆NH)2 of the hole space for the
half-filled pairing model, with δ = 1.0 and different couplings
g as indicated. The dash-dotted and dashed lines show an-
alytical results for α = 1 and α = 2, respectively, and they
are valid for values of t2 as indicated. The color and shape
of the markers indicate the coupling strength, and for a given
coupling, identical markers show the results for one to twelve
pairs. The entropy increases with the number of pairs and
with increasing coupling strength.

with p, q = 1, 2, . . . ,Ω/2. We set orbital spacing δ = 1
without losing generality, i.e. all energies (and the cou-
pling g) are measured in units of δ.
We consider the model at half filling with orbitals being

either empty or doubly occupied. For sufficiently small
coupling strengths, the CCD approximation accurately
solves the pairing model [38].
We solve the doubles amplitudes tabij using Eq. (11)

with ⟨Φab
ij | as the bra state. We then compute the re-

duced density matrix (23) and the Rényi entropy (3).
For the computation of the von Neumann entropy (4)
we diagonalize the reduced density matrix. The results
are shown in Fig. 3. The full and hollow markers are
results for α = 1 and α = 2, respectively, and the dash-
dotted and dashed line are the analytical results (30)
and (31), respectively, combined with Eq. (38). The dif-
ferent coupling strengths g are identified by the colors
and shapes of the markers. Identical markers show the
results of systems containing one to twelve pairs. En-
tropies (and particle-number fluctuations) increase with
coupling strengths and with an increasing number of
pairs. Overall we see that our analytical results agree
with data for sufficiently weak interactions, i.e. suffi-
ciently small values of (∆NH)

2.
The agreement between numerical and analytical re-

sults can be examined closer when plotting the absolute
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FIG. 4. Absolute differences between numerical and analyti-
cal Rényi entropy for S1 (full markers) and S2 (hollow mark-
ers), normalized by the numerical entropy, versus the particle-
number fluctuation (∆NH)2 of the hole space for the half-filled
pairing model, with δ = 1.0 and different couplings g as in-
dicated. The color and shape of the markers indicate the
coupling strength, and for a given coupling, identical markers
show the results for one to twelve pairs.

differences between them, normalized by the numerical
results. This is shown in Fig. 4. We see that the analyti-
cal result for S1 is probably only reached asymptotically
for (∆NH)

2 → 0; this is expected also from Fig. 3. We
also see that the difference ∆S2 between the numerical
and analytical results is as predicted of order S2

2 . We
attribute the visible deviations from this behavior for
g/δ = 10−3 to numerical precision limits, noting that
∆S is close to machine precision.

A key question is, of course, how the entanglement en-
tropy scales with increasing system size. We can answer
that question analytically for small interaction strengths
g/δ by using second-order perturbation theory. We write
the cluster amplitudes tabij as

tabij ≈ ⟨ab|v̂|ij⟩
εabij

, (40)

where εabij = εi + εj − εa − εb and εp ≡ (p − 1)δ for the

5 10 15 20 25
N

0.0

0.2

0.4

0.6

0.8

1.0

g/ = 10 3

g/ = 0.01
g/ = 0.1
g/ = 0.2
g/ = 0.5

FIG. 5. Error of the approximation over number of particles,
with δ = 1.0 and g = 1e−4, 1e−3, 1e−2, 1e−1, 2e−1, 5e−1.

pairing model. Thus,

t2 =
1

4

N
2∑

i=1

Ω
2∑

a=N
2 +1

g2

4δ2(i− a)2

≈ g2

16δ2

N
2∑

i=1

[∫ Ω
2

N
2 +1

1

(i− a)2
da

]

≈ g2

16δ2

∫ N
2

1

[
1

i− Ω
2

− 1

i− N
2 − 1

]
di

=
g2

16δ2
log

N(Ω−N)

2(Ω− 2)

≈ g2

16δ2
log

N

4

(41)

where N = Ω/2 at half filling. Here the last step is valid
when N ≫ 1, and we approximated the sums by integrals
using the Euler–Maclaurin formula. This approximation
introduces an error of order O(N0).
To see this, we compute the relative error at half filling

(Ω = 2N)

ε =

∣∣∣t2 − g2

16δ2 log
N2

4(N−1)

∣∣∣
t2

, (42)

and show the result in Fig. 5. We can see that for small
enough g, Eq. (40) is valid, and t2 ∝ log(N) is the leading
approximation. Thus for α ≥ 2 we have Sα ∝ log(N).
This agrees with expectations for a Fermi system in one
dimension [19].

B. Neutron matter

Neutron matter is relevant to understand neutron-rich
nuclei and neutron stars. Here, we consider a simple yet
non-trivial model of neutron matter based on the Min-
nesota potential [39]. This is a simplification from more
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realistic descriptions, e.g. within chiral effective field the-
ory, and only employs two-body forces. The Hamiltonian
consists of the kinetic energy t̂0 and the Minnesota po-
tential v̂

Ĥ = Ĥ0 + ĤI =

A∑
i=1

t̂0 (xi) +

A∑
i<j

v̂ (rij) . (43)

The Minnesota potential consists of a repulsive core and
a short-range attraction employing the exponential func-
tions exp(−αir

2) of the two-particle distance r. We com-
pute neutron matter using a basis consisting of discrete
momentum states |kx, ky, kz⟩ in a cubic box with periodic
boundary conditions. This follows the coupled-cluster
calculations of Ref. [38], with the Python notebook [40].

The number of cubic momentum states is (2Nmax +
1)3. The spin degeneracy for each momentum state is
gst = 2. We limit our calculation to neutron matter with
density n ≈ 0.08 fm−3; this is about half of the saturation
density of nuclear matter. Using N neutrons, the volume
is L3 with L = (N/n)1/3, and we employ closed-shell
configurations of N = 14, 38, 54, 66, 114 particles in our
calculation. Details about the basis space are presented
in Refs. [40, 41].

We use a simplified version of the coupled-cluster
with doubles approximation based on ladder diagrams
only. This is sufficiently accurate for the Minnesota
potential [41] and agrees with virtually exact results
from the auxiliary field diffusion Monte Carlo (AFDMC)
method [42].

The relevant matrix elements of the similarity trans-
formed Hamiltonian e−T2HeT2 are

H̄ab
ij =

〈
k⃗ak⃗b|v|k⃗ik⃗j

〉
+ P (ab)

∑
c

f b
c t

ac
ij

− P (ij)
∑
k

fk
j t

ab
ik

+
1

2

∑
cd

〈
k⃗ak⃗b|v|k⃗ck⃗d

〉
tcdij

+
1

2

∑
kl

〈
k⃗kk⃗l|v|k⃗ik⃗j

〉
tabkl .

(44)

Here we introduced the Fock matrix with elements

fp
q =

〈
k⃗p|t0|k⃗q

〉
+
∑
i

〈
k⃗pk⃗i|v|k⃗qk⃗i

〉
, (45)

and P (pq) is a permutation operator. Solving the equa-
tion H̄ab

ij = 0 yields the amplitudes tabij .
Figure 6 shows the correlation energy per neutron as

a function of neutron number. The correlation energy is
defined as the difference between the CCD energy (13)
and the Hartree-Fock energy EHF

EHF =
∑
i

〈
k⃗i|t0|k⃗i

〉
+

1

2

∑
i,j

〈
k⃗ik⃗j |v|k⃗ik⃗j

〉
(46)

FIG. 6. Correlation energy per neutron versus the neutron
number N = 14, 38, 54, 66, 114 with different size Nmax of
momentum space.

of the reference state. We see that the correlation en-
ergy depends weakly on N (and becomes approximately
constant) for Nmax = 5. We attribute the peak at
N = 54 to finite-size effects, i.e. shell oscillations.
We note that these shell oscillations can be reduced
using twist-averaged boundary conditions [41, 43, 44].
The total energies, obtained from adding the correla-
tion and the Hartree Fock energies, in Nmax = 5 case,
are 9.5, 8.2, 8.3, 9.1, 9.6 MeV for N = 14, 38, 54, 66, 114
respectively. These energies are close to results from
more sophisticated theories (giving 9-10 MeV per neu-
tron when three-nucleon forces are also included) [45],
and they are very close to results from nucleon-nucleon
forces only (giving about 8.7 MeV per neutron) [46].

Table I shows the value of t2 from Eq. (21) for various
Nmax. We see that t2 ≪ 1, required for the applicability
of our analytical results regarding entropies, is only valid
for N ≲ 66. Thus, we limit the analysis to N ≤ 66 for
neutron matter.

N = 14 N = 38 N = 54 N = 66 N = 114
Nmax = 3 0.106 0.298 0.246 0.475 1.239
Nmax = 4 0.106 0.322 0.299 0.557 1.431
Nmax = 5 0.106 0.324 0.308 0.581 1.565

TABLE I. Numerical values for t2 for different neutron mat-
ter models N = 14, 38, 54, 66, 114 with increasing momentum
space size.

We compute the entanglement entropies by partition-
ing the single-particle basis as follows: The Fermi sphere,
i.e. the set of lattice sites occupied in the Hartee-Fock
state of a closed-shell configuration, is the hole space,
and all other lattice sites are the particle space. Figure 7
shows Rényi entanglement entropies Sα for α = 1, 2, 4
and 8 of neutron matter as a function of the neutron
number N . The entropies increase approximately lin-
early with increasing neutron number (and N = 54 is
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FIG. 7. Rényi entropy (von Neumann entropy S1 is denoted
as limiting case of Rényi entropy) versus the neutron number
N = 14 (triangle up), N = 38 (circle), N = 54 (square),
N = 66 (triangle left), Nmax = 5 of momentum space.

FIG. 8. Rényi entropy (von Neumann entropy S1 is denoted
as limiting case of Rényi entropy) versus the particle number
variation with N = 14 (triangle up), N = 38 (circle), N = 54
(square), N = 66 (triangle left), Nmax = 5 of momentum
space.

again an outlier). This is expected because the short-
range Minnesota potential couples the Fermi sphere to
all momentum states in the particle space. Thus, a vol-
ume law holds for neutron matter in momentum space.

Figure 8 shows the entanglement entropies versus the
particle number fluctuations. Again, the relation is ap-
proximately linear.

The results of this Section show that neutron matter
exhibits entanglement entropies (in momentum space)
that are approximately proportional to the neutron num-
ber; they are also approximately proportional to the
particle-number fluctuations. The latter result is less ac-
curate than for the pairing model. This is because the
size of the T2 amplitudes is sizeable. i.e. we have t2 < 1
but not really t2 ≪ 1.

C. Finite nuclei

Computing the entanglement entropy in finite nuclei is
a computationally daunting task: model spaces consist of
O(1000) of single-particle states, and the hole-space den-
sity matrix required for this task is a many-body opera-
tor. Instead, we use the depletion number (37) as an en-
tanglement witness, because for small cluster amplitudes,
the depletion number is proportional to the Rényi en-
tropies, see Eqs. (30) and (38). The depletion number can
be accurately computed with coupled-cluster theory, as
we describe in the following paragraph. In contrast, the
particle-number fluctuation of the hole space is a small
number resulting from cancellations of two large num-
bers. Being non-Hermitian, the coupled-cluster method
does not guarantee that the particle-number variation is
non-negative.
We perform coupled-cluster singles-and-doubles

(CCSD) computations of the closed-shell nuclei 4He,
16O, 40Ca, and 100Sn using the interactions of Ref. [47].
The CCSD approximation accounts for about 90% of
the correlation energy and is a size-extensive method,
i.e. the error in the correlation energy is proportional
to the mass number A. For the calculations, we employ
a model space of 15 major harmonic oscillator shells
and use an oscillator spacing of ℏω = 16 MeV. We
perform a Hartree-Fock computation to obtain the
reference state |Φ⟩, and this defines the hole space.
We then solve the CCSD equations, and compute the
similarity-transformed Hamiltonian H where

O ≡ e−T̂ ÔeT̂ (47)

for any operator Ô. We solve for the left ground state
⟨L| ≡ ⟨Φ|(1 + Λ̂) of H; here Λ̂ is a 1p-1h and 2p-2h
de-excitation operator. We then compute the hole-space
occupation as

⟨NH⟩ = ⟨L|N |Φ⟩ , (48)

and the depletion number becomes

δA = A− ⟨NH⟩ (49)

for a nucleus with the mass number A. This approach is
valid also for large coupled-cluster amplitudes.
Figure 9 shows the results for the depletion num-

ber (49) for 4He, 16O, 40Ca, and 100Sn computed with
the interactions from Ref. [47] as a function of the mass
number A. The numbers in the labels indicate the val-
ues of the momentum cutoffs (in fm−1) employed for the
two- and three-body interactions, respectively. The de-
pletion number is larger for “harder” interactions, i.e. for
those with larger momentum cutoffs, and this meets our
expectations. We see also that the depletion number ap-
proximately is an extensive quantity (i.e. linear in A). Its
scaling with A is certainly closer to A1 than to A2/3, thus
preferring a volume over an area law. This is consistent
with the arguments presented in Sect. I.
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FIG. 9. Depletion number δA of the hole space in the nuclei
4He, 16O, 40Ca, and 100Sn computed with the interactions of
Ref. [47] as indicated, as a function of the mass number A.

V. SUMMARY

We studied entanglement in nuclear systems, based on
a partition of the single-particle space into holes and par-
ticles. This is the most natural choice for finite systems.
Analytical arguments based on coupled-cluster theory
show that the Rényi entropies Sα for α > 1 are propor-
tional to the number variation and the depletion num-
ber of the hole space. This extends analytical arguments
for non-interacting fermions to systems with sufficiently
weak interactions. For arbitrary weak interactions, we
also obtain universal results for the von Neumann en-

tropy S1.
We confirmed our analytical results using numerical so-

lutions of the pairing model. For a semi-realistic model of
neutron matter, we showed that entanglement entropies
of the Fermi sphere are approximately proportional to
the particle number fluctuations of the hole space and
to the number of neutrons. The former confirms our an-
alytical results and the latter agrees with expectations
for short-ranged interactions. Finally, we computed the
depletion number in finite nuclei using interactions from
chiral effective field theory. We saw that the entangle-
ment witness increases with an increasing cutoff of the
employed interaction and again grows approximately lin-
ear with the mass number.
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