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The analysis of self-consistency and proton-neutron interaction effects in the buildup of differential
charge radii has been carried out in covariant density functional theoretical calculations without
pairing interaction on the example of selected configurations in the Pb isotopes. The proton-neutron
interaction of neutron(s) added to neutron N = 126 core and the protons forming the Z = 82 proton
core is responsible for a major contribution to the buildup of differential charge radii. It depends
on the products of proton and neutron wave functions and thus on their nodal structure. This
interaction leads to a redistribution of single-particle density of occupied proton states which in
turn modifies the charge radii. The microscopic origin of this redistribution and its consequences for
differential charge radii have been investigated for the first time. Self-consistency effects affecting
the shape of proton potential, total proton densities and the energies of the single-particle proton
states provide only minor contribution to differential charge radii.

I. INTRODUCTION

Charge radii are among the most fundamental prop-
erties of atomic nuclei and during the last decade there
was a significant increase in experimental and theoreti-
cal studies of this physical observable. The experimental
results were reviewed in Refs. [1, 2] and recent experimen-
tal investigations were summarized in the introduction of
Ref. [3]. The introduction to the latter publication pro-
vides also the overview of theoretical efforts. Theoretical
calculations within different density functional theories
(DFTs) provide a quite accurate global description of ex-
perimental charge radii presented in the compilation of
Ref. [1]: the rms deviations of calculated charge radii rch
from experimental ones are at the level of ≈ 0.03 fm [4]
which corresponds to high average precision of 0.625% in
the prediction of charge radii (see Ref. [3]).

The changes of the charge radii within the isotopic
chain are measured with high precision using laser spec-
troscopy (see Refs. [1, 2]). Thus, the differential mean-
square (ms) charge radii (see Eq. (3) below for defini-
tion), measured with high precision within the isotopic
chains, become an important quantity. They have been
studied within ab initio approaches (see, for example,
Refs. [5, 6]), non-relativistic DFTs based on zero range
Skyrme forces (see Refs. [7–10]), Fayans functional (see
Refs. [11–13]) and finite range Gogny forces (see Refs.
[5, 14]), non-relativistic Hartree-Fock-Bogoliubov (HFB)
approach with a finite-range Yukawa interaction [15–
17] and covariant density functional theory (CDFT) (see
Refs. [3, 10, 18–20]).

It is necessary to recognize that the microscopic mech-
anisms of the changes of charge radii with increasing neu-
tron number or modification of the neutron configuration
are not completely understood. This is because the ab-
solute majority of the publications on the subject includ-
ing those cited above deal only with total charge radii or
their differences. The first hint on the microscopic origin
of such changes has been provided in Ref. [21]: the dif-
ference of the charge radii on the occupation of the 2g9/2

and 1i11/2 neutron subshells in the N > 126 Pb isotopes
is traced back to the nodal structure of these two sub-
shells (n = 1 for 1i11/2 and n = 2 for 2g9/2, where n
stands for principal quantum number). Note that the
kink in differential charge radii at N = 126 is generated
only when neutron 1i11/2 orbitals are substantially occu-
pied in the nuclei with N > 126 (see, for example, Refs.
[3, 8, 21]). These results were generalized to whole nu-
clear chart in Ref. [3] (see discussion of Fig. 32 in this
reference): in a given isotopic chain the largest impact
on differential charge radii above neutron shell closure is
provided by the occupation of the neutron subshell with
n = 1.
It is necessary to recognize that the studies of Refs.

[3, 21] leave many unanswered questions. For example,
is the pull of neutron states on proton orbitals driven
via the symmetry energy (as advocated in Ref. [21]) or
it is due to proton-neutron interaction (as advocated in
the present paper)? How the modifications of the proton
single-particle density distributions leading to changes in
single-proton radii are affected by the occupation of spe-
cific neutron states? What mechanism is responsible for
this process? What role the relative properties of the
proton and neutron single-particle wave functions play
in this mechanism? Thus, the goal of the present paper
is to fill these gaps in our knowledge and to perform de-
tailed studies of the impact of self-consistency effects and
the interaction between neutron(s) added to a reference
nucleus and the protons forming the proton subsystem
on the buildup of differential charge radii.
The paper is organized as follows. Sec. II provides

a brief outline of theoretical formalism and the discus-
sion of physical observables under study. The role of the
single-particle states forming the proton core in micro-
scopic origin of the kinks in differential charge radii is
discussed in Sec. III. Microscopic origin of the pull of
neutron subshells on proton ones leading to the mod-
ifications of charge radii is discussed in detail in Sec.
IV. The limitations of spherical shell model and macro-
scopic+microscopic approach in the description of differ-
ential charge radii are briefly analysed in Sec. V. Finally,
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Sec. VI summarizes the results of our paper.

II. THEORETICAL FORMALISM AND

PHYSICAL OBSERVABLES

Theoretical calculations have been performed within
the framework of covariant density functional theory
(CDFT) [22] employing the modified version of the com-
puter code restricted to spherical symmetry used in Ref.
[23]. Since the details of the CDFT framework are widely
available (see, for example, Ref. [22]), we focus on the
physical quantities of the interest. The pairing corre-
lations are neglected in the calculations in order to bet-
ter understand the underlying physical mechanisms. The
calculations are performed with the NL3* covariant en-
ergy density functional (CEDF) [24]. Its global perfor-
mance in the description of the masses and charge radii
is well documented (see Refs. [3, 4]). It was also recently
used in the study of bubble nuclei (see Ref. [25]) the re-
sults of which have substantial overlap with some aspects
of the present study; this is one of main reasons for the
selection of this functional. Note that it is was verified
that main conclusions obtained in the present paper do
not depend on the selection of the functional.
In order to better apprehend the role of different micro-

scopic mechanisms in building differential charge radii we
consider ground state configuration in 208Pb and two con-
figurations of the 218Pb nucleus labeled below as ”Conf-
1i11/2” and ”Conf-2g9/2”. In these configurations of
218Pb, ten neutrons outside the 208Pb core are located in
the 1i11/2 and 2g9/2 spherical subshells, respectively. We

selected 218Pb in order to maximize the effect of the ad-
dition of neutrons in a given spherical subshell on proton
charge radii1. Note that the maximum number of neu-
trons which can be put into the 2g9/2 and 1i11/2 spherical
subshells is 10 and 12, respectively. Thus, the selection of
218Pb nucleus corresponds to full filling of the 2g9/2 neu-
tron subshell and almost (two neutrons short) full filling
of the 1i11/2 neutron subshell.
The charge radii are defined as

rch =
√

〈r2〉p + 0.64 fm (1)

where the mean square proton point radius is given by

〈

r2
〉

p
=

∫

r2ρ
p
tot(~r )d

3r
∫

ρ
p
tot(~r )d

3r
(2)

and the factor 0.64 accounts for the finite-size effects of

1 One can definitely consider the 1i11/2 and 2g9/2 configurations in

odd-A 209Pb nucleus and this will completely justify the neglect
of pairing which collapses because of the blocking of odd neutron.
However, this will not change the results and conclusions of the
paper.

the proton2. Then differential mean-square charge radius
is given by3

δ
〈

r2
〉N,N ′

p
=

〈

r2
〉

p
(N)−

〈

r2
〉

p
(N ′) =

= r2ch(N)− r2ch(N
′). (3)

Note that N ′ is the neutron number of the reference nu-
cleus (208Pb in this paper).
The total nucleonic density ρtot(r) in a given subsys-

tem (proton or neutron) is built from the contributions
of individual particles as follows:

ρtot(r) =
∑

i

miρ
sp
i (r), (4)

wheremi is the multiplicity of the occupation of the i−th
subshell [mi = (2ji+1) for a fully occupied subshell with
angular momentum ji] and ρ

sp
i (r) is the density of the

single-particle state belonging to the i−th subshell with
the normalization

∫

ρ
sp
i (~r )d3r = 4π

∫

r2ρ
sp
i (r)dr = 1.0. (5)

Taking into account that
∫

ρ
p
tot(~r )d

3r = Z and that
all proton subshells below the Z = 82 shell gap are fully
occupied in the proton subsystem of the Pb isotopes, Eq.
(2) can be rewritten as

〈

r2
〉

p
=

1

Z

∑

i

(2ji + 1)
〈

r2
〉p

i
(6)

where

〈

r2
〉p

i
=

∫

r2ρ
p
i (~r )d

3r (7)

is the proton mean square radius of the single-particle
state belonging to the i-th subshell. As a consequence,
the differential charge radius of two isotopes can be re-
defined as

δ
〈

r2
〉N,N ′

p
=

1

Z

∑

i

(2ji + 1)[
〈

r2
〉p

i
(N)−

〈

r2
〉p

i
(N ′)]

(8)

2 Small contributions to the charge radii originating from the elec-
tric neutron form factor and electromagnetic spin-orbit coupling
[26, 27] are neglected in the NL3* functional (as well as in the
fitting protocols of all existing CEDFs). More precise expres-
sions for charge radii in CDFT are available but their use would
require the refit of the CEDFs (see Refs. [28, 29] and discussion
in Sec. VIII of Ref. [3]). However, this neglect is not critical since
spin-orbit contribution to charge radii decreases with increasing
the mass of nuclei [28, 30] and its contribution to differential
charge radii of the Pb isotopes is expected to be negligible [30].

3 This quantity is frequently written as a function of mass number
A. However, we prefer to define it as a function of neutron

number N since this allows to see the behavior of the δ
〈

r2
〉N,N′

p

curves at neutron shell closures.
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and its magnitude could be traced back to the modifica-
tions in proton mean square radius of the single-particle
states generated by the transition from the nucleus with
neutron number N ′ to the nucleus with N . The quantity

∆
〈

r2
〉N,N ′

i
=

〈

r2
〉p

i
(N)−

〈

r2
〉p

i
(N ′) (9)

is denoted here as differential single-particle proton ra-
dius of the single-particle state belonging to the i-th pro-
ton subshell.
Note that in order to make a connection with single-

particle wave functions ψi more straightforward, we con-
sider single-particle rms radii rpi of the proton states de-
fined as

r
p
i =

√

〈r2〉
p
i . (10)
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FIG. 1. The δ
〈

r2
〉N,126

values of the Pb isotopes relatively to
208Pb obtained in the calculations with and without pairing.

III. DIFFERENTIAL CHARGE RADII: THE

ROLE OF THE SINGLE-PARTICLE STATES

FORMING THE PROTON CORE IN

MICROSCOPIC ORIGIN OF THE KINKS

It is well established in different model calculations
that dominant or significant occupation of the neutron
1i11/2 subshell above the N = 126 shell closure is criti-
cal for explaining the kink in differential charge radii at
neutron N = 126 shell closure [3, 8, 16, 18, 20, 21, 31].
The functionals (typically CEDFs) in which the ν1i11/2
subshell is located below the ν2g9/2 subshell reasonably
well describe this kink and the slope of differential charge
radii as a function of neutron number above N = 126. In
contrast, the functionals (typically non-relativistic ones)
with opposite location of two subshells either fail to de-
scribe the kink or significantly underestimate its magni-
tude.
Fig. 1 illustrates this situation in the CDFT calcu-

lations without pairing: the occupation of the 1i11/2

(2g9/2) subshell above the N = 126 shell closure leads
to an appreciable kink (no kink) in differential charge
radii (see Ref. [3] for more details). The inclusion
of pairing leads to partial occupation of both orbitals
(see Refs. [3, 31] for details) as a consequence of which
the differential charge radii obtained in the relativistic
Hartree-Bogoliubov (RHB) calculations become close to
experimental data. Note that differential charge radii

δ
〈

r2
〉136,126

p
are 1.31 fm2 and 0.61 fm2 in the ”Conf-

1i11/2” and ”Conf-2g9/2” configurations of 218Pb, respec-
tively.
The detailed investigation of self-consistency effects re-

lated to the changes of proton potential, total proton
and neutron densities and relevant changes in the single-
particle energies on the transition from the ground state
of the 208Pb nucleus to the ”Conf-1i11/2” and ”Conf-

2g9/2” configurations in 218Pb reveals that they provide
only minor contribution to respective differential charge
radii.
Thus, the buildup of differential charge radii as a func-

tion of neutron number is related to the occupation of
respective neutron single-particle states and their inter-
action with proton ones. To better understand the mi-
croscopic mechanisms leading to such large differences
we show in Tables I and II the contributions of differ-
ent spherical subshells into build-up of differential charge
radii of the ”Conf-1i11/2” and ”Conf-2g9/2” configura-

tions of 218Pb.
Table I clearly shows that when the neutron 1i11/2 sub-

shell is occupied in 218Pb the largest changes in proton
single-particle rms radii δrpi take place for proton sub-
shells with principal quantum number n = 1. The δrpi
values for the s, p and d n = 2 subshells are smaller than
the average δrpi value over the n = 1 subshells by a factor
of approximately 2, 5 and 25, respectively. Proton single-
particle rms radius of the 3s1/2 subshell even decreases on

transition from the ground state configuration of 208Pb
to the ”Conf-1i11/2” configuration of 218Pb. All these
changes are reflected also in differential single-particle

proton radii ∆
〈

r2
〉N,N ′

i
(see column 7 of Table I) so that

96.7% of differential charge radius δ
〈

r2
〉136,126

p
= 1.31

fm2 [see Eq. (3)] of the ”Conf-1i11/2” configuration in
218Pb with respect of the ground state configuration in
208Pb are built by the n = 1 proton subshells.

The situation drastically changes when the neutron
2g9/2 subshell is occupied in 218Pb [configuration ”Conf-
2g9/2”] (see Table II). In this case, the largest δrpi values
are seen for the 2s1/2, 2p3/2, 2p1/2, 2d5/2 and 2d3/2 pro-
ton subshells. The proton rms radii of low lying 1s1/2,
1p3/2, 1p1/2, 1d5/2 and 1d3/2 subshells even decrease on

transition from the ground state configuration of 208Pb to
the ”Conf-2g9/2” configuration of 218Pb. In addition, the
increase of proton rms radii is rather modest for remain-
ing n = 1 subshells and for the 3s1/2 subshell. All these
changes are reflected also in differential single-particle

proton radii ∆
〈

r2
〉N,N ′

i
(see column 7 of Table II) so that



4

TABLE I. The contributions of different spherical subshells (column 7) into the buildup of differential charge radii of the
”Conf-1i11/2” configuration in 218Pb. The ground state configuration in 208Pb is used here as a reference. Proton subshells
occupied below the Z = 82 shell closure are shown in column 1. Their single-particle energies ei [in MeV] are shown in columns
2 and 3 for two configurations under study. Their proton single-particle rms radii rpi are displayed in columns 4 and 5. The
column 6 shows the change of proton single-particle radii δrpi = r

p
i (218Pb[Conf-1i11/2 ])−r

p
i (208Pb). Column 7 shows differential

single-particle proton radii ∆
〈

r2
〉N,N′

i
of the single-particle state belonging to the i-th proton subshell. The overlaps of proton

and neutron wave functions < Ψk
n|Ψ

i
p > are shown in column 8. The results for spherical subshells with principal quantum

number n = 1 are shown in bold. The total quantities given in the last line are calculated using Eq. (8) (column 7) and
equations similar to it (columns 4, 5 and 6).

subshell ei(
208Pb) ei(

218Pb) r
p
i (208Pb) r

p
i (218Pb) δr

p
i ∆

〈

r2
〉N,N′

i
< Ψk

n|Ψ
i
p >

1 2 3 4 5 6 7 8
1s1/2 -48.905 -48.271 4.064254 4.235252 0.170998 1.419199 0.570778

1p3/2 -43.211 -43.156 4.663197 4.846186 0.182989 1.740112 0.729091

1p1/2 -42.529 -42.598 4.582763 4.771297 0.188534 1.763556 0.694871

1d5/2 -36.118 -36.727 5.105879 5.283008 0.177129 1.840178 0.795503

1d3/2 -34.559 -35.462 4.981504 5.159900 0.178396 1.809189 0.795142

2s1/2 -30.886 -32.032 4.450498 4.528233 0.077735 0.697962 -0.638347
1f7/2 -28.068 -29.330 5.479627 5.643146 0.163519 1.818783 0.899794

1f5/2 -25.298 -27.044 5.334254 5.490660 0.156406 1.693085 0.837178

2p3/2 -20.924 -22.559 4.985584 5.017296 0.031712 0.317213 -0.571543
2p1/2 -19.865 -21.566 5.004156 5.031929 0.027773 0.278730 -0.583835
1g9/2 -19.396 -21.242 5.816346 5.962968 0.146622 1.727100 0.910026

1g7/2 -15.205 -17.693 5.682103 5.807857 0.125754 1.444908 0.932110

2d5/2 -11.163 -13.089 5.522224 5.527597 0.005373 0.059372 -0.521033
1h11/2 -10.360 -12.684 6.129798 6.257349 0.127551 1.579994 0.975584

2d3/2 -9.513 -11.537 5.580005 5.584444 0.004439 0.049559 -0.554369
3s1/2 -8.405 -10.360 5.489444 5.476911 -0.012533 -0.137438 0.448467
Total 5.450221 5.569299 0.119078 1.312261

TABLE II. The same as in Table I but for the ”Conf-2g9/2” configuration in 218Pb. The results for spherical subshells

with principal quantum number n = 2 are shown in bold. Note that δr
p
i in column 6 is defined as δr

p
i = r

p
i (218Pb[Conf-

2g9/2]) − r
p
i (208Pb).

subshell ei(
208Pb) ei(

218Pb) r
p
i (208Pb) r

p
i (218Pb) δr

p
i ∆

〈

r2
〉N,N′

i
< Ψk

n|Ψ
i
p >

1 2 3 4 5 6 7 8
1s1/2 -48.905 -50.239 4.064254 4.062288 -0.001966 -0.015978 0.399380
1p3/2 -43.211 -44.539 4.663197 4.631773 -0.031424 -0.292086 0.345824
1p1/2 -42.529 -43.915 4.582763 4.535377 -0.047386 -0.432074 0.373550
1d5/2 -36.118 -37.305 5.105879 5.092180 -0.013699 -0.139704 0.273309
1d3/2 -34.559 -35.720 4.981504 4.962466 -0.019038 -0.189316 0.282916
2s1/2 -30.886 -31.484 4.450498 4.565793 0.115295 1.039534 0.182596

1f7/2 -28.068 -29.174 5.479627 5.496088 0.016461 0.180670 0.119881
1f5/2 -25.298 -26.329 5.334254 5.363151 0.028897 0.309126 0.186386
2p3/2 -20.924 -22.315 4.985584 5.158503 0.172919 1.754108 0.475303

2p1/2 -19.865 -21.544 5.004156 5.170061 0.165905 1.687954 0.447216

1g9/2 -19.396 -20.544 5.816346 5.862341 0.045995 0.537159 -0.000955
1g7/2 -15.205 -16.330 5.682103 5.757601 0.075498 0.863670 -0.000587
2d5/2 -11.163 -13.214 5.522224 5.663334 0.14111 1.578392 0.754258

1h11/2 -10.360 -11.659 6.129798 6.199679 0.069881 0.861599 -0.182783
2d3/2 -9.513 -11.887 5.580005 5.686162 0.106157 1.195982 0.719801

3s1/2 -8.405 -10.335 5.489444 5.540033 0.050589 0.557970 -0.7388235
Total 5.450221 5.505978 0.055757 0.6110

53.3% of differential charge radius δ
〈

r2
〉136,126

p
= 0.61

fm2 of two configurations under study are built by the
n = 2 proton subshells. This is despite the low multiplic-
ity of the occupied n = 2 subshells which represents only
approximately 22% of the occupied single-particle states

of the Z = 82 core.

The impact of the occupation of neutron 2g9/2 sub-
shell on proton single-particle rms radii of the n = 2
proton subshells (see Table II) is on average comparable
to the one of the neutron 1i11/2 subshell on proton single-
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FIG. 2. Single-particle wave functions of proton (black curves) spherical subshells in 208Pb nucleus compared with those of the
neutron 2g9/2 (green lines) and 1i11/2 (red lines) subshells. Note that the latter two states are shown in each panel. Proton
subshell labels are shown on each panel. The wave functions Ψi of the proton 2s1/2 and 31/2 states [see panels (b) and (c)]

in the 208Pb nucleus gradually increase above 0.06 fm−3/2 (upper limit on vertical axis) with decreasing radius r and reach

Ψ2s1/2 ≈ 0.115 fm−3/2 and Ψ3s1/2 ≈ 0.138 fm−3/2 at r = 0, respectively.

particle rms radii of the n = 1 proton subshells (see Ta-
ble I). Thus, other factors have to be involved to explain
large difference in differential charge radii of the ”Conf-
1i11/2” and ”Conf-2g9/2” configurations in 218Pb. In-
deed, the analysis of Eq. (8) clearly indicates that differ-
ential charge radii between two isotopes are defined not

only by the differential single-particle radii ∆
〈

r2
〉N,N ′

i
of

occupied single-particle states but also by the abundance
of the subshells with a given n among occupied subshells
and their multiplicitymi. Low n subshells are most abun-
dant in any nucleonic potential (see Refs. [25, 32]). In-
deed, there are 10 n = 1, 5 n = 2 and 1 n = 3 oc-
cupied subshells in the Z = 82 core of the Pb isotopes
(see Table I). In addition, the n = 1 subshells have the
highest multiplicity mmax among the occupied subshells:
mmax = 12, 6 and 2 for the n = 1, 2 and 3 subshells,
respectively. As a result, 62, 18 and 2 protons of the
Z = 82 core are located in the n = 1, 2 and 3 subshells,
respectively. The combination of all above mentioned
in this subsection factors allows to explain large differ-
ence in differential charge radii of the ”Conf-1i11/2” and

”Conf-2g9/2” configurations in 218Pb.

IV. MICROSCOPIC ORIGIN OF THE PULL OF

NEUTRON SUBSHELLS ON PROTON ONES

In order to better understand the state dependence of
the pull provided by a neutron in a given state on the pro-
ton in the nlj subshell, Fig. 2 compares the proton wave
functions of all occupied proton subshells in the Z = 82
core of the 208Pb nucleus with the neutron wave func-
tions of the neutron 1i11/2 and 2g9/2 subshells calculated
in the ”Conf-1i11/2” and ”Conf-2g9/2” configurations of
218Pb, respectively. In addition, the overlap of respective
proton and neutron wave functions defined as

〈

Ψk
n|Ψ

i
p

〉

=

∫

Ψk
n(~r )Ψ

i
p(~r )d

3r (11)

is presented in the last columns of Tables I and II. Here
proton state index i runs over all occupied proton sub-
shells while neutron index k is equal either to k = 1i11/2
or k = 2g9/2. Positive (negative) values of these overlaps

indicate that the wave functions Ψk
n and Ψi

p are spatially
mostly in phase (out of phase).
Let us first consider the overlaps of proton wave func-

tions with the neutron ν1i11/2 one [see Table I]. The
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largest overlap exists for the π1h11/2 state (
〈

Ψk
n|Ψ

i
p

〉

=
0.98). Indeed, these two states have the wave functions
which are most similar among considered cases [see Fig.
2(p) and compare it with other panels of this figure].
The degree of the similarity (

〈

Ψk
n|Ψ

i
p

〉

≈ 0.92) of the
wave function of the neutron ν1i11/2 subshell is somewhat
smaller with the wave functions of the proton π1g7/2 and
π1g9/2 subshells [see Fig. 2(m) and (o)]. With decreasing
the single-particle energy of spherical n = 1 proton sub-
shell the degree of the similarity between neutron and
proton wave functions given by

〈

Ψk
n|Ψ

i
p

〉

decreases but
still remains high (see the last column of Table I and
Figs. 2(l), (j), (h), (f), (d) and (a)]. Among the proton
n = 1 subshells the lowest overlap

〈

Ψk
n|Ψ

i
p

〉

= 0.57 exists
for proton 1s1/2 subshell which is the only n = 1 subshell
with the maximum of the wave function at the center of
nucleus [see Fig. 2(a)].
The situation is completely different for the proton

subshells with n = 2: the evolution of their wave func-
tions as a function of radial coordinate r is mostly out
of phase with that of the wave function of the neutron
1i11/2 subshell [see Figs. 2(b), (e), (g), (i) and (k)]. This
is due to the differences in the nodal structure of these
wave functions. As a consequence, large negative over-
laps

〈

Ψk
n|Ψ

i
p

〉

exist for these pairs of the states (see last
column of Table I). There are large differences due to
underlying nodal structure between the wave functions
of the proton 3s1/2 and neutron 1i11/2 subshells (see Fig.

2(c)). However, the overlap
〈

Ψk
n|Ψ

i
p

〉

for this pair of the
subshells is positive due to the fact that the overlap is
dominated by the behavior of the wave functions at large
radial coordinates.
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n = 1

FIG. 3. The correlations between the overlaps
〈

Ψk
n|Ψ

i
p

〉

and
the changes of proton single-particle radii δrpi for proton sub-
shells of the Z = 82 core. Solid red circles, open black squares
and green triangles are used for the n = 1, n = 2 and n = 3
proton subshells. Panels (a) and (b) show the results when
neutron 1i11/2 and 2g9/2 subshells are occupied in the config-

urations of the 218Pb nucleus, respectively. Note that similar
correlations are also seen between

〈

Ψk
n|Ψ

i
p

〉

and differential

single-particle proton radii ∆
〈

r2
〉N,N′

i
.

The occupation of neutron 2g9/2 subshell leads to com-
pletely different pattern of behavior (see Fig. 2 and Table

II). The largest overlaps exist for the n = 2 proton sub-
shells: the only exception is the overlap which includes
proton 2s1/2 subshell which has a maximum of its wave
function at r = 0. These overlaps become smaller or even
negative for the cases which include n = 1 and n = 3 pro-
ton subshells (see the last column in Table II).

Fig. 3 shows the correlations between the overlaps
〈

Ψk
n|Ψ

i
p

〉

for the neutrons in the 1i11/2 and 2g9/2 sub-
shells and the proton subshells occupied in the Z = 82
core and the changes in single-particle proton rms radii
δr

p
i of these subshells triggered by the occupation of re-

spective neutron subshells. In general, the largest δrpi
values appear for the proton subshells which have the
same principal quantum number n as occupied neutron
subshell. This also corresponds to the largest positive
overlaps

〈

Ψk
n|Ψ

i
p

〉

. Small or negative overlaps, which cor-
respond to the case of different principal quantum num-
bers n of proton and neutron subshells, typically lead to
relatively small δrpi values.

These correlations are very pronounced in the case of
the occupation of neutron 1i11/2 subshell since its wave
function has a simple structure with a single maximum
at r ≈ 6 fm (see Fig. 2). Significant changes in the single-
particle rms radius are seen for proton n = 1 subshells
which have large overlaps

〈

Ψk
n|Ψ

i
p

〉

but rather small δrpi
values exist for proton n = 2 subshells which have nega-
tive overlaps (see Fig. 3(a) and Table I).

Such correlations are somewhat less pronounced in the
case of the occupation of the 2g9/2 neutron subshell the
wave function of which has maximum at r ≈ 4 fm and
minimum at r = 7.5 fm (see Fig. 2). The largest overlaps
〈

Ψk
n|Ψ

i
p

〉

are seen with proton n = 2 2p3/2, 2p1/2, 2d5/2
and 2d3/2 subshells which produce the largest changes
in the proton single-particle rms radii (see Fig. 3 and
Table II). Smaller and sometimes negative changes in
the proton single-particle rms radii are produced for the
n = 1 and n = 3 proton subshells when neutron 2g9/2
subshell becomes occupied.

The absolute values of the < Ψk
n|Ψ

i
p > overlaps pre-

sented in column 8 of Tables I and II are similar to those
obtained in Skyrme DFT calculations with NRAPRii en-
ergy density functional (see Fig. 5 of Ref. [21]). This
clearly indicates a similar mechanism of the buildup of
differential charge radii in non-relativistic and covariant
DFTs. However, our analysis below shows that the sign
of the Ψk

n(r)Ψ
i
p(r) product (and, as a consequence, of

the
〈

Ψk
n|Ψ

i
p

〉

overlaps) is important for an understanding
of the impact of the occupation of specific neutron sub-
shell on the radii of proton orbitals forming the Z = 82
core. There is also a difference in the interpretation of
the source of these modifications in charge radii caused
by the occupation of different neutron subshells and in-
creasing neutron number between the present paper and
Ref. [21]. Strong nuclear symmetry energy is indicated
as a source of these changes in Ref. [21]. In contrast,
our detailed analysis clearly indicates that they are due
to proton-neutron interaction. This is similar to the fact
that proton-neutron interaction plays a dominant role in
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FIG. 4. Proton single-particle density redistributions δρ
p
i (r) caused by the occupation of indicated neutron subshells in 218Pb

(see text for details). Note that the density redistributions are very similar for the spin-orbit partner states [compare panels
(d) and (h), (e) and (i), (f) and (j), (g) and (k), (l) and (n), (m) and (o)].

building the deformation (see Refs. [33, 34] for details).
Because of the dependence of charge radii and their

changes on proton single-particle densities (see Sec. II),
a deeper microscopic insight is provided by the analysis of
the redistributions of the proton single-particle densities
defined as

δρ
p
i (r) = ρ

p
i (r)[

218Pb− conf]− ρ
p
i (r)[

208Pb] (12)

when different neutron subshells are occupied in 218Pb.
Since the single-particle density is normalized to unity
[see Eq. (5)], the addition of neutron(s) to the 208Pb nu-
cleus will only lead to redistribution of the proton single-
particle density under the condition that

∫

r2δρ
p
i (r) = 0. (13)

These redistributions are shown in Fig. 4. Let us con-
sider as an example the changes in the single-particle
proton densities of the 1p3/2 subshell [see Fig. 4(h)]. The
occupation of the neutrons in the 2g9/2 subshell (the

”Conf-2g9/2” configuration in 218Pb) leads to an increase
of proton densities of the 1p3/2 subshell at r ≈ 3.2 fm
and their decrease at r ≈ 5.5 fm as compared with that
in the ground state configuration of 208Pb [green line in
Fig. 4(h)]. In contrast, the occupation of the neutrons
in the 1i11/2 subshell (the ”Conf-1i11/2” configuration in
218Pb) has an opposite effect: it leads to the decrease of

proton densities of the 1p3/2 subshell at r ≈ 3 fm and

their increase4 at r ≈ 6 fm [red line in Fig. 4(h)]. Note
that the number of the oscillations of density redistri-
butions increases with the increase of principal quantum
number n of the proton and neutron subshells involved
(compare, for example, the panels (c) and (h) of Fig. 4).
For almost all proton subshells of the Z = 82 core the

occupation of the 1i11/2 or 2g9/2 neutron subshells leads
to drastically different redistributions of proton single-
particle densities which are frequently out of phase of
each others as a function of radial coordinate r (see Fig.
4). Thus, for a given proton subshell this leads to dif-
ferent changes in the proton single-particle radii δrpi and
substantial differences in differential single-particle radii

∆
〈

r2
〉N,N ′

i
(compare Tables I and II).

One can ask which microscopic physical processes are
driving these density redistributions, which factors affect
them and why these redistributions are different for the
occupation of the neutron 1i11/2 and 2g9/2 neutron sub-

4 The reader should not be confused by larger density changes at
low radial coordinates as compared with those at larger values
of r. This is because the density plots as a function of radial
coordinate tend to overemphasize the importance of the central
region since they ignore the fact that the number of particles dn

in a spherical shell of thickness dr is given by 4πr2ρ(r)dr (see
example in Sec. III of Ref. [25]).
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FIG. 5. Proton single-particle density redistributions δρ
p
i (r) caused by the occupation of neutron 1i11/2 subshell in 218Pb

compared with single-particle densities ρ
p
i (r) of indicated proton states in the Z = 82 core and the Ψ

1i11/2
n (r)Ψi

p(r) products.
Note that in order to fit into the figure the latter two quantities are multiplied by factors 0.05 and 0.25, respectively. Vertical

pink dashed lines indicate the radial coordinate at which Ψ
1i11/2
n (r)Ψi

p(r) products have a maximum for the n = 1 proton
subshells.

shells. To answer these questions the density redistribu-
tions ρpi (

218Pb: Conf-1i11/2) − ρ
p
i (

208Pb) caused by the
occupation of the 111/2 neutron subshell are compared
with radial profiles of single-particle densities ρpi of the

proton states in the Z = 82 core and the Ψ
1i11/2
n (r)Ψi

p(r)
products of the single-particle wavefunctions in Fig. 5.

The situation is the simplest in the cases of the n = 1
l > 1 proton orbitals such as 1d3/2, 1d5/2, 1f5/2, 1f7/2,
1g7/2, 1g9/2 and 1h11/2 [see Figs. 5(f), (j), (l), (n), (m),
(o) and (p), respectively]. This is because (i) interacting
proton and neutron n = 1 orbitals do not have a node
in their wave functions and (ii) the maxima of ρpi (r) and

Ψ
1i11/2
n (r)Ψi

p(r) are located reasonably close to each other
in radial coordinate. In all these cases the proton mat-
ter is moved from inside of the nucleus (typically from

the r < r0 region in which Ψ
1i11/2
n (r)Ψi

p(r) increases with
increasing radial coordinate) towards surface region (typ-

ically into the r > r0 region in which Ψ
1i11/2
n (r)Ψi

p(r) de-
creases with increasing radial coordinate) [see Figs. 5 and
6(a)]. Here, r0 is the r value at which ρ

p
i (

218Pb: Conf-
1i11/2) − ρ

p
i (

208Pb) = 0. It is located between 5 and 6
fm for the n = 1 l > 1 proton orbitals. Note that in all

these cases the maxima of the Ψ
1i11/2
n (r)Ψi

p(r) products

are located close to r0.

Similar features also hold for the n = 1 1s1/2, 1p1/2
and 1p3/2 orbitals [see Figs. 5(a), (d), and (h)]. How-

ever the density redistributions ρpi (
218Pb: Conf-1i11/2)−

ρ
p
i (

208Pb) become less symmetric in radial coordinate

and the maxima of the Ψ
1i11/2
n (r)Ψi

p(r) products devi-
ate stronger from r0. This is in part due to the fact that

the maxima of the Ψ
1i11/2
n (r)Ψi

p(r) products are shifted

towards the tail of the single-particle densities ρpi (r). In
addition, the ρpi (r) maximum of the l = 0 1s1/2 state is
located at r = 0.

The situation becomes more complex for the n = 2
and n = 3 proton subshells. First of all, these states
have one (at rn=2

1
) and two nodes (at rn=3

1
and at rn=3

2
)

in their wavefunctions [see Figs. 2(b), (c), (e), (g), (i)
and (k)], respectively, which are also seen in the single-
particle density distributions ρpi in Figs. 5 (c), (e), (g),
(i) and (k). For example, rn=2

1 ≈ 4.2 fm for the 2p1/2
state [see Figs. 2(e) and 5(e)] and rn=3

1
≈ 2.8 fm and

rn=3
2 ≈ 5.4 fm for the 3s1/2 state [see Figs. 2(c) and 5(c)].

Proton density redistributions ρpi (
218Pb: Conf-1i11/2) −

ρ
p
i (

208Pb) are also zero at these coordinates [Figs. 5 (c),
(e), (g), (i) and (k)].
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p
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of the n = 2 and 3 states show the positions of the nodes. See text for details.

It is important to understand how the proton density
redistribution works in the cases of the proton states with
one and two nodes in the wave function. To achieve that
a detailed analysis of the proton density redistributions
of the proton 2d3/2 and 3s1/2 states is presented based
on Fig. 6 and Table III. To facilitate the discussion we
define the sectors in radial coordinate. These are

• sector (i) between the center (r = 0) of the nucleus
and rn=2

1
and

• sector (ii) between rn=2

1
and the surface of the nu-

cleus

for the the n = 2 states [see Fig. 6(b)] and

• sector (i) between the center (r = 0) of the nucleus
and rn=3

1 ,

• sector (ii) between rn=3

1
and rn=3

2
and

• sector (iii) between rn=3

2
and the surface of the nu-

cleus.

for the n = 3 states [see Fig. 6(c)].
In each sector there are the regions of radial coordinate

with δρ
p
i < 0 and δρ

p
i > 0 which are labeled as A and

B, respectively. This is illustrated in Fig. 6(b). So dur-
ing proton density redistribution process caused by the
occupation of neutron state the proton matter m moves
between these regions. Its amount (per state) moved
from/to region A/B can be defined as

m = 4π

∫ rhigh

rlow

r2δρ
p
i (r) (14)

where rlow and rhigh are the lowest and highest radial co-
ordinates of respective region. These values are tabulated
in Table III for the states shown in Fig. 6. One can see

that proton matter transfer takes place not only between
regions A and B of a given sector but also between dif-
ferent sectors. The dominant/secondary mass transfers
from regions A to regions B are shown by black/orange
arrows in Figs. 6. For example, proton matter in region
B of sector (i) in Fig. 6(b) is built by moving it from re-
gion A of sector (i) and from region A of sector (ii). This
is dominant process since only relatively small amount of
proton matter is moved from region A of sector (ii) to
region B of the same sector.

TABLE III. The amount of proton matter m (normalized to a
single state) redistributed in the regions A and B of the states
shown in panels (a)-(c) of Fig. 6.

Panel Sector
Region

A+B
A B

(a) -0.065345 0.065345 0

(b)
(i) -0.007288 0.037636 0.030348
(ii) -0.049197 0.018849 -0.030348

(c)
(i) -0.000801 0.011598 0.010797
(ii) -0.008342 0.023059 0.014717
(iii) -0.041636 0.016122 -0.025514

The analysis of Table III and Fig. 6 reveals a principal
difference in the redistribution of proton density and its
impact on charge radii between the n = 1 and higher n
proton states. In the case of the n = 1 proton states
the interaction with neutron 1i11/2 state always moves
proton matter from inner to outer region of the nucleus
(see, for example, Fig. 6(a)). This leads to a substantial
increase of charge radii (see Table I). In contrast, the
matter is partially moved locally to lower radial coordi-
nates in the case of the n = 2 and 3 states [see Figs. 6(b)
and (c)]. This leads to a substantially lower increase of
charge radii or even to its decrease as in the case of the
3s1/2 subshell (see Table I).
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The present analysis clearly indicates that proton
single-particle density redistributions δρpi (r) are caused
by proton-neutron interaction which is defined by the

Ψ
1i11/2
n (r)Ψi

p(r) products. The outcome of this process
depends in a complicated way (especially for the cases
when neutron subshell has n ≥ 2) on the radial pro-
files of these products and single-particle densities ρpi (r)
and their nodal structure. Note that ρpi (r) defines how
much proton matter is available at coordinate r for re-
distribution to another coordinate. The present analysis
also shows that not only the magnitude but also the sign

of the Ψ
1i11/2
n (r)Ψi

p(r) product is important for an under-
standing on how proton matter at given radial coordinate
is redistributed by proton-neutron interaction.
Similar processes are also active in the case of the occu-

pation of neutron 2g9/2 subshell. In this case only n = 2
proton and neutron states interact in a coherent manner
because of similar spatial distribution of their wave func-

tions. This leads to large values of the Ψ
2g9/2
n (r)Ψi

p(r)
products and significant increases in differential single-
particle proton radii (see Table II). When one deals with
the interaction of the proton n = 1 states with neutron
n = 2 2g9/2 ones in the case of the occupation of the 2g9/2
neutron subshell the situation is very similar to that seen
when proton n = 2 states interact with n = 1 1i11/2 ones
discussed above. In both cases there is a substantial dif-
ferences in the radial profiles of the Ψ

1i11/2
n (r)Ψi

p(r) and

ρ
p
i (r) which leads to a quite modest increase (or even de-

crease in some cases) of single-particle proton radii (see
Tables I and II).

V. APPLICABILITY OF ALTERNATIVE

MODELS TO THE DESCRIPTION OF

DIFFERENTIAL CHARGE RADII

As reviewed in the introduction of Ref. [3], the abso-
lute majority of the studies of differential charge radii
has been performed either in the DFT or in ab initio ap-
proaches. However, it is well known that the DFT models
have some deficiencies in the description of spectroscopic
properties related to the energies of the single-particle
states and their wave functions [35–39]. Moreover, the
performance of ab initio models in the description of
single-particle spectra in odd-A nuclei is comparable with
that for the DFT models but such calculations are avail-
able only for light nuclei (see Refs. [40–43]). In contrast,
spherical shell models with empirical interactions provide
a better description of experimental spectroscopic data in
spherical nuclei located in the vicinity of doubly magic
nuclei and microscopic+macroscopic (mic+mac) models
based on phenomenological potentials such as the Woods-
Saxon one does the same in the region of deformed nuclei.
However, these models are not expected to be adequate
for the description of differential charge radii due to the
reasons mentioned below.
Although the spherical shell model takes into account

the proton-neutron interaction it suffers from the intro-

duction of the core. As a consequence, the pull provided
by neutron(s) on the proton single-particle states form-
ing the core, the microscopic origin of which is discussed
in Sec. IV, is ignored and this affects drastically the cal-
culated charge radii of the nuclei with valence nucleons
outside the core. This introduces uncontrollable errors
in the calculations of differential charge radii and thus
severely limits the applicability of spherical shell model
to the description of this observable. Few existing calcu-
lations of differential charge radii in spherical shell model
(see Refs. [44, 45]) suffer from this problem. For example,
they cannot reproduce the kink in the differential charge
radii of the Sn isotopes at N = 82 and Pb isotopes at
N = 126 [45]. This problem can be rectified by employ-
ing no-core shell model but because of numerical reasons
such models are applicable only to light nuclei [46, 47].
Phenomelogical Nilsson and Wood-Saxon potentials

have been used for the description of differential charge
radii in the past (see, for example, Refs. [48, 49]). How-
ever, the lack of self-consistency effects and the interac-
tion between protons and neutrons will lead to uncon-
trollable errors in the models based on these potentials.
This is because in these models the addition of neutron
does not affect the proton subsystem in a self-consistent
manner on the level of single-particle subshells via the
mechanisms discussed in Secs. III and IV. This means
that the occupation of the neutron 1i11/2 and 2g9/2 sub-
shells in the N > 126 Pb isotopes will lead to the same
differential charge radii contrary to the results of self-
consistent calculations (see Fig. 1 and Refs. [3, 8, 18]).

VI. CONCLUSIONS

The self-consistency and proton-neutron interaction
effects in the buildup of differential charge radii have
been considered by comparing two configurations of the
218Pb nucleus, generated by the occupation of the neu-
tron 1i11/2 and 2g9/2 subshells, with the ground state

configuration in 208Pb. The main contribution to differ-
ential charge radii has a single-particle origin and comes
from the interaction of added neutron(s) and the protons
forming the Z = 82 proton core. This proton-neutron in-
teraction depends on the products of proton and neutron
wave functions and leads to a redistribution of single-
particle density of occupied proton states which in turn
modifies the charge radii. Its impact is similar to the case
of building nuclear deformation which is primarily driven
by proton-neutron interaction both in nuclear shell model
[50] and in DFTs [33, 34]. In contrast, self-consistency ef-
fects affecting the shape of proton potential, proton den-
sities and the energies of the single-particle states in the
proton potential provide only a small contribution. Note
that the buildup of differential charge radii between two
isotopes is also a collective phenomenon since all occupied
proton single-particle states contribute to it. Although
these results were obtained for the Pb isotopes, they are
general and applicable to any isotopic chain.
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