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Calculation of the nuclear matrix elements (NMEs) for double-beta decay is of paramount impor-
tance for guiding experiments and for analyzing and interpreting the experimental data, especially
for the search of the neutrinoless double beta decay mode (0νββ). However, there are currently still
large differences between the NME values calculated by different methods, hence a quantification
of their uncertainties is very much required. In this paper we propose a statistical analysis of 0νββ
NME for the 136Xe isotope, based on the interacting shell model, but using three independent ef-
fective Hamiltonians, emphasizing the range of the NMEs’ most probable values and its correlations
with observables that can be obtained from the existing nuclear data. Consequently, we propose a
common probability distribution function for the 0νββ NME, which has a range of (1.55 - 2.65) at
90% confidence level, with a mean value of 1.99 and a standard deviation of 0.37.

I. INTRODUCTION

Double-beta decay (DBD) is an actively studied pro-
cess due to its potential to provide insights into the nu-
clear structure of involved nuclei, the properties of neu-
trinos, and to test models beyond the Standard Model
(SM) [1, 2]. Within the SM, this rare nuclear decay oc-
curs with the emission of two electrons/positrons and two
anti-neutrinos/neutrinos (2νββ), preserving the lepton
number. However, the possibility of the decay occurring
without the emission of neutrinos (0νββ), resulting in
lepton number violation, is a highly intriguing theoretical
possibility. In the case of neutrino exchange, this would
imply that neutrinos are Majorana particles with non-
zero mass, a feature beyond the original SM framework.
While 2νββ transitions have been observed in eleven iso-
topes, no 0νββ transition has been detected yet. How-
ever, these transitions are actively sought in DBD experi-
ments due to their potential to reveal phenomena beyond
the SM.

The DBD half-life equations can be expressed, in a
good approximation, as a product of some factors. Thus,
the 2νββ half-life is a product of a phase space factor
(PSF) describing the kinematics of the outgoing lep-
tons [3–8], and a nuclear matrix element (NME) de-
scribing the nuclear effects related to the nuclei involved
in the decay. In the 0νββ half-life expression, besides
the PSF and NME factors, an additional lepton num-
ber violation (LNV) factor appears as well, describing
the particular BSM mechanism that may contribute to
this decay mode. In principle, any LNV operator intro-
duced in the Lagrangian can contribute, therefore the
full half-life expression should be the sum of the individ-
ual contributions of all mechanisms and their interference
terms [2, 4, 9–13]. In the absence of a signal indicat-
ing the 0νββ transition, the experimental lifetime limits
and theoretical PSF and NME values are used to con-
strain the LNV parameters and associated BSM scenar-

ios, typically under the assumption that only one mech-
anism is contributing at a time [14]. Thus, progress in
the DBD study needs the continuous improvement of the
experimental set-ups and measurement techniques cor-
roborated with accurate, reliable calculations of the the-
oretical quantities involved. The current sensitivity of
the DBD experiments reached limits of 1026 yr for the
half-lives, and it is expected that the next generation of
experiments to push these limits to 1028 yr, thus cover-
ing the entire region of the neutrino inverted mass hi-
erarchy [15, 16]. The interpretation of these results in
terms of values of the neutrino mass and constraints of
the LNV parameters depend on reliable values of the cal-
culated PSF and NME quantities.

The progress of the theoretical methods for relativis-
tic wave function computations, now provides PSF cal-
culations with a high degree of confidence for all the
double-beta decay modes and transitions [6–8]. How-
ever, the same level of confidence is not yet valid for
the NME calculation, which still remain the main source
of uncertainty for the DBD lifetime. There are sev-
eral nuclear structure methods for the NME calcula-
tion, the most used being: interacting shell model meth-
ods [14, 17–26], pn-QRPA methods [5, 27–32], IBA meth-
ods [33, 34], Energy Density Functional method [35],
PHFB [36], Coupled-Cluster method (CC) [37], in-
medium generator coordinate method (IM-GCM) [38],
and valence-space in- medium similarity renormalization
group method (VS-IMSRG) [39]. Each of these methods
have their strengths and weakness, largely discussed over
time in the literature, and the current situation is that
there are still significant differences between NME values
calculated with different methods, and sometimes, even
between NME values calculated with the same methods
(see for example the reviews [15, 40, 41]). For the 2νββ
decay NMEs are products of two Gamow-Teller (GT)
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Observable Data Error svds gcns j5ts µsvd σsvd µgcn σgcn µj5t σj5t
M0ν N/A N/A 1.763 2.645 2.314 1.749 0.111 2.632 0.135 2.306 0.156
M2ν 0.018 0.001 0.025 0.069 0.060 0.022 0.003 0.061 0.007 0.052 0.007
PGT 0.150 0.021 0.163 0.545 0.512 0.141 0.059 0.457 0.105 0.333 0.220
PBE2 0.286 0.081 0.154 0.121 0.096 0.153 0.009 0.122 0.013 0.099 0.012
PE2+ 1.313 0.150 1.498 1.363 1.513 1.494 0.089 1.352 0.089 1.507 0.098
PE4+ 1.694 0.150 2.073 1.747 2.012 2.070 0.089 1.740 0.107 2.011 0.107
PE6+ 1.892 0.150 2.178 1.892 2.254 2.192 0.088 1.884 0.125 2.212 0.096
POPg7 2.930 0.100 2.705 2.716 3.143 2.702 0.187 2.705 0.209 3.082 0.267
POPs1 0.057 0.006 0.089 0.025 0.020 0.090 0.018 0.025 0.006 0.021 0.006
POPh11 0.400 0.040 0.190 0.375 0.265 0.189 0.020 0.373 0.050 0.265 0.045
POPd 0.520 0.030 1.016 0.884 0.572 1.019 0.180 0.896 0.197 0.632 0.250
DGT 0.012 0.005 0.001 0.009 0.004 0.001 0.000 0.008 0.003 0.003 0.003
DBE2 0.413 0.011 0.342 0.194 0.158 0.337 0.023 0.195 0.026 0.163 0.028
DE2+ 0.819 0.150 0.662 0.842 0.917 0.660 0.067 0.836 0.056 0.919 0.049
DE4+ 1.867 0.150 1.389 1.873 2.113 1.403 0.131 1.861 0.116 2.087 0.082
DE6+ 2.207 0.150 2.157 2.196 2.502 2.171 0.151 2.197 0.090 2.507 0.117
DVNg7 0.000 0.150 0.102 0.174 0.130 0.100 0.010 0.172 0.014 0.132 0.023
DVNs1 0.080 0.020 0.271 0.251 0.415 0.286 0.117 0.255 0.058 0.407 0.110
DVNh11 1.680 0.130 1.205 0.726 0.347 1.177 0.237 0.724 0.132 0.385 0.162
DVNd 0.240 0.050 0.423 0.850 1.108 0.437 0.132 0.850 0.118 1.076 0.158
DOPg7 3.860 0.100 3.189 3.475 4.145 3.187 0.209 3.477 0.249 4.078 0.436
DOPs1 0.200 0.020 0.263 0.083 0.049 0.264 0.047 0.084 0.020 0.052 0.017
DOPh11 0.620 0.060 0.264 0.658 0.625 0.269 0.049 0.658 0.093 0.613 0.121
DOPd 1.290 0.080 2.285 1.785 1.181 2.280 0.227 1.781 0.265 1.258 0.447

Table I. All relevant data and statistics for all selected observables. See section III for notations and details.

transition amplitudes, and most of the nuclear methods
overestimate them, in comparison with experiment. This
drawback is often treated by introducing a quenching fac-
tor that multiplies the GT matrix element and reduces
its strength. This procedure is viewed as equivalent to
using a quenched axial vector constant, instead of its bare
value gA = 1.27. The NME calculation for 0νββ decay is
more complicated, since besides the GT transitions, other
transitions may contribute as well. Also, the NME values
calculated by different methods may differ by factors of
3-4 for most relevant isotopes, including 136Xe (see e.g.
Fig. 5 of Ref. [15], and Refs. [37, 38]). The uncertainties
in the NME values are further amplified when predicting
half-lives, since they enter at the power of two in the in-
verse lifetime formula. In addition, given that there is no
measured lifetime for this decay mode to compared with,
these uncertainties in the calculated NME affect the pre-
diction and interpretation of the existing 0νββ half-life
limits and the planning of performances for the future
DBD experiments.

Among the nuclear methods for calculating NMEs, the
shell model based methods have some advantages, such as
the inclusion of all correlations between nucleons around
the Fermi surface, preserving all symmetries of the nu-

clear many-body problem, and the use of nucleon-nucleon
(NN) interactions tested for other observables and for
different mass regions of nuclei. The construction and
use of effective NN Hamiltonians in accordance with the
model spaces is a key ingredient in calculations. There-
fore, one question that arises is the stability of the calcu-
lated NME values to small changes in the parameters of
effective Hamiltonians. In a previous recent paper [42],
we presented a statistical analysis of the NME distribu-
tion for 48Ca to random changes of two body matrix
elements (TBME) calculated with shell model methods
in a fp model space with three different effective Hamil-
tonians, namely FPD6, GXPF1A and KB3B. Besides
the stability of NME to these changes, we also inves-
tigated the correlation between the changes in the 0νββ
NME and the changes in other observables, such as 2νββ
NME, GT strengths, B(E2) transition probabilities, ex-
cited states energies, occupation probabilities, etc. Based
on this statistical analysis with the three Hamiltonians,
we proposed a common probability distribution function
for 0νββ NME which has a range of (0.45 – 0.95) at 90%
confidence level with a mean value of 0.68 [42]. A simi-
lar analysis for 76Ge using ab-initio nuclear methods, al-
though with a smaller number of observables and a much
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smaller statistics, was recently presented in Ref. [43]. In-
deed, it is important to provide uncertainty quantifica-
tion for observables of physical processes like 0νββ NME
where experimental data for verification is limited.

In this paper we propose a similar statistical analysis of
0νββ NME for 136Xe, which is theoretically among the
most suitable for NME calculation using a shell model ap-
proach, and it is also among the most promising isotope
for experimental search of 0νββ transitions. We only con-
sider in this work the standard light left-handed (LH)
neutrino exchange mass mechanism, which is presently
viewed as the most likely to contribute to the 0νββ de-
cay process. The calculations are performed using three
independent effective Hamiltonians SVD [44], jj55t [23]
and GCN5082 [45], for the jj55 model space that is ap-
propriate for 136Xe. These effective Hamiltonians are
obtained starting with a theoretical Bruekner G-Matrix
effective Hamiltonians that are further fine-tuned to de-
scribe the experimental energy levels for a reasonably
large number of nuclei that can be investigated in the
corresponding model spaces. These effective Hamiltoni-
ans are described by a small number of single particle
energies and a finite number of two-body matrix ele-
ments. As a by-product, the wave functions produced
by these Hamiltonians can be used to describe and pre-
dict observables, such as the electromagnetic transition
probabilities, Gamow-Teller transitions probabilities, nu-
cleon occupation probabilities, spectroscopic factors, etc,
using relatively simple changes of the transition opera-
tors in terms of effective charges and quenching factors.
These quantities are calibrated to the existing data. For
0νββ NMEs such calibrations are not yet possible due
to the lack of experimental data confirming the transi-
tion. However, different existing effective Hamiltonians
for nuclei involved in a given 0νββ decay produce smaller
ranges of the NME. In addition, some recent ab-initio
methods, such as IM-SRG [38, 39], built on the modern
advances in the shell model by providing ab-initio derived
effective Hamiltonians and effective transition operators
can provide some guidance for calibrating the shell model
calculations for 0νββ NMEs.

Following the analysis line from [42], we study the ro-
bustness of the 136Xe 0νββ NME values to small changes
of the parameters of the above mentioned Hamiltonians,
and also examine the correlation between the changes
in 0νββ NMEs and other observables, for which the ex-
perimental data exists. Furthermore, we investigate the
range of possible 0νββ NME values and their correlations
with several observables that can be extracted from the
existing nuclear data. Finally, using a statistical analysis
based on the Bayesian Averaging Model [46, 47], we pro-
pose a common probability function for the 0νββ NME, a
plausible range, its expectation value and its uncertainty.
The application of the Bayesian Averaging Model here is
novel; it was not possible in the 48Ca case due to lack
of relevant experimental data that was highly correlated
with 0νββ NME.

The paper is organized as follows. In section II the

calculation methods of the observables and the statistical
model are presented. Then, in section III we present
the results and discussions on their relevance, followed
by an statistical analysis based on the Bayesian Model
Averaging method in section IV, and in section V we
end with conclusions and outlook.

II. THE MODEL

Following the analysis available in Ref. [42], we extend
our study to the 136Xe isotope that actively investigated
or proposed in several leading current and future DBD
experiments [48–52]. In this work we are also concerned
calculating the 0νββ NME starting from three popular
shell model effective Hamiltonians alongside several ob-
servables that can be compared to their experimental val-
ues.

The calculations reported here are done within the in-
teracting shell model in the jj55 model space consisting
of the 0g7/2, 1d5/2, 1d3/2, 2s1/2 and 0h11/2 orbitals that

assumes 100Sn as a core, covering the sector of the nu-
clear chart between N,Z=50 and N,Z=82. One concern
regarding the jj55 model space is the missing Gamow-
Teller strengths when compared to the calculated Ikeda
sum-rule. This is attributed to missing spin-orbit partner
orbitals of 0g7/2 and 0h11/2. Calculations in jj77 model
space are too complex [23] and not presently suitable for
a statistical analysis.

As starting effective Hamiltonians we use SVD [44],
jj55t [23], and GCN5082 [45]. The jj55t effective Hamil-
tonian (also known as sn100t [53]) is very similar to
sn100pn [54], except with minor modifications and was
used in Refs. [23, 53] to calculate NMEs for 136Xe 0νββ
decay. The GCN5082 effective Hamiltonian is based on
a renormalized G-matrix [55] obtained from the Bonn-
C nucleon-nucleon potential [56]. The final effective
Hamiltonian was obtained through a mostly monopole
fit to about 300 energy levels from approximately 90 nu-
clei in the region with a root mean-square (RMS) de-
viation of about 150 keV [45]. Similarly to GCN5082,
SVD [44] also starts with a Bonn-C potential and renor-
malized via a G-matrix method for the core polariza-
tion effects [57]. The T = 1 monopoles and the single-
particle energies where obtained by fitting to the binding
energies of 157 experimentally measured [58] low-lying
yrast states in 102−132Sn nuclei. These three Hamiltoni-
ans are further modified by introducing random pertur-
bations within the range of ±10% to their two-body ma-
trix elements (TBME) with the aim of getting a range
to the shell model 0νββ NME values and the correla-
tions between the 0νββ NME and the other observables.
For the purpose of this study, we generate 1000 effective
Hamiltonians via random perturbations from each start-
ing Hamiltonian. Just like in the case of 48Ca [42], the
single-particle energies were kept unmodified, as not to
interfere with the magicity of the 100Sn core.

The aim of this study is to explore the relationship be-
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Figure 1. The heat-map for all 24 observables when using the SVD effective Hamiltonian. See section III for notations and
analysis.
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tween the 0νββ NME and other measurable observables
for each starting effective Hamiltonian. The research also
aims to establish theoretical limits for each observable,
examine the shape of different distributions for each ob-
servable and starting Hamiltonian, use this data to de-
termine the impact of different starting Hamiltonians on
the most favorable distribution of the 0νββ NME, and
ultimately identify the most favorable value of the 0νββ

NME and its estimated theoretical uncertainty.

The observables that we calculate and compare to their
experimental values are: 2νββ NME, the energies of the
first 2+, 4+, and 6+ states in the parent (136Xe) and
daughter (136Ba) nuclei, B(E2)↑ transition probabilities
for 136Xe and 136Ba to the first 2+ states, the Gamow-
Teller transition probability for the transition from 136Xe
and from 136Ba to the 1+ excited state in 136Cs, and
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the neutron and proton occupancies for 136Xe and 136Ba
above the 100Sn core in the jj55 model space shells. The
number of observables that we calculate for each sample
is 24, including the 0νββ NME.

Other observables related to double-beta decay, such as
one-muon capture (OMC) rates, have also been studied
in the literature [59]. Some recent references for OMC
analyses can be found in Refs. [60] and [61]. However,
the calculation of the OMC rates is quite complex, as it
depends on multiple factors that contribute to the decay
amplitude, which can lead to uncontrollable interference
effects [59]. Additionally, it is highly sensitive to the
effective Hamiltonian used [62]. Due to this complexity,
we have decided not to include the OMC rates to our list
of observables in this study.

The 0νββ NME is related to the half-life of the re-
spective process [21], where we only consider the con-
tribution from the light left-handed neutrino exchange
mechanism, which is likely to contribute to the 0νββ de-
cay. The methodology of calculating the 0νββ NME,
M0ν , within the shell model was extensively described
elsewhere [14, 21, 22] and it will not be repeated here
(see also Eq. (1) of Ref. [42]). It includes a short range
correlation function that can be viewed as an effective
modification of the bare operator. In Ref. [42] we were
able to select a short-range correlation function based on
comparisons with similar calculations with ab-initio effec-
tive operators. Unfortunately, such a comparison is not
possible for 136Xe, while no such ab-initio calculations
are available. Therefore, we choose a short-range cor-
relation function based on the widely utilized CD-Bonn
parametrization (see e.g. [14, 25, 26]). One should also
add that as in Ref. [42], here we also use the closure ap-
proximation. It is well known that the dependence of the
closure energy is very mild, and although one can find
optimal closure energies for each Hamiltonian [24, 63–
65], here we use the same closure energy of 3.5 MeV [25]
in all cases.

The 2νββ NME squared is proportional to the inverse
half-life of the respective process [20] (see also Eq. (2) of
Ref. [42]). The 2νββ NME, M2ν , can be calculated with

M2ν =
∑
k

q
〈

0+f | στ− | 1
+
k

〉 〈
1+k | στ− | 0

+
i

〉
q

Ek − E0
, (1)

where the summation is on the 1+k states in 136Cs, E0 =
Qββ/2+∆M(136Sc−136Xe), and q is the quenching factor
of the GT matrix element. Details on how the 2νββ
NMEs are caluclated are given in section IV of Ref. [66].

In our analysis of the shell model for 2νββ NME values,
we maintain consistency by utilizing the same quenching
factor of q = 0.70 for both the NME and GT strengths.
Additionally, we maintain the standard canonical val-
ues for effective charges in our calculations of B(E2)↑.
Other observables, including excited state energies, GT
strengths to the first 1+ state of 136Cs, B(E2)↑ to the
first 2+ state in the parent and daughter nuclei, and s.p.

occupation probabilities, are calculated using the estab-
lished shell model methodology. Here we use in all cases
the same effective charges (ep = 1.5 and en = 0.5)) for
the B(E2)↑, and the same quenching factor (q = 0.70)
for the the GT strengths and M2ν .

III. RESULTS OF THE STATISTICAL
ANALYSIS

The experimental data used in this study is listed
in Table I. The excitation energies of the 2+, 4+ and
6+ states of 136Xe and 136Ba in MeV are taken from
Ref. [67]. The 2νββ NME (in MeV−1) is from Ref. [68].
B(E2)↑ electric quadrupole transition probabilities (in
e2b2) come from Ref. [69]. The Gamow-Teller transition
probabilities to the first excited 1+ state in 136Cs are
from Ref. [70]. 136Ba neutron vacancies are taken from
Ref. [71], while 136Xe and 136Ba proton occupancies are
from Ref. [72] . The experimental errors for the excita-
tion energies are very small, and for the calculations we
use the typical theoretical RMS value of 150 keV [73]. All
observables have experimental data available, except for
the 0νββ NME. Therefore, a statistical analysis of the
0νββ NME is performed using the Bayesian Averaging
Model (see Section IV).

The primary outcomes of this study are presented in
Table I and Figures 1-3. Here, the ”parent nucleus”
stands for 136Xe, ”daughter nucleus” stands for 136Ba,
and ”intermediary nucleus” stands for 136Cs from the
perspective of ββ transitions. When presenting the re-
sults referring to one single nucleus, we use the the let-
ter ”P” at the beginning of a label for an observable
indicates that it is related to the parent nucleus, while
the letter ”D” denotes observables for the daughter nu-
cleus. In the table and figures M0ν are the 0νββ NMEs,
and M2ν denote the 2νββ NMEs. With PGT and DGT
we present the Gamow-Teller strengths to the first ex-
cited 1+ state in the 136Cs intermediate nucleus from
136Xe and from 136Ba, respectively. PB(E2) ↑ and
DB(E2) ↑ are the electric quadrupole transition prob-
abilities (0+ → 2+) for 136Xe and 136Ba, respectively.
PE2+ , PE4+ , PE6+ and DE2+ , DE4+ , and DE6+ denote
the energy of the first 2+, 4+, and 6+ excited states,
for 136Xe and 136Ba and respectively. POPg7, POPs1,
POPh1, and POPd stand for the proton occupation prob-
abilities of the 0g7/2, 2s1/2, 0h11/2, and d orbitals in
136Xe, while DOPg7, DOPs1, DOPh1, and DOPd are
the proton occupation probabilities of the 0g7/2, 2s1/2,

0h11/2, and d orbitals in 136Ba. DVNg7, DVNs1, DVNh1,
and DVNd represent the neutron vacancy probabilities in
136Ba. The experimental proton occupancies do not dis-
tinguish between the 1d5/2 and 1d3/2 orbitals, thus we
add our results for both orbitals into a single proton oc-
cupation probability.

In the columns of Table I we show from left to right
the experimental values (Data), the adopted experimen-
tal errors (Error), the calculated values of the observables
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Figure 3. Distributions based on experimental data in red compared with the those obtained from the SVD starting Hamiltonian.
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using the starting Hamiltonians SVD (labeled ”svss”),
GCN5082 (labeled ”gcns”) and jj55t (labeled ”j5ts”), the
mean value obtained after 1000 samples for each start-
ing Hamiltonian, denoted with µ, followed by the stan-
dard deviation σ. Overall, one can see from Table I that
the SVD starting Hamiltonian produces M2ν NMEs that
are closest to the experimental value, thus needing the
least amount of quenching when compared to those of
GCN5082 or jj55t. For the PGT and DGT one observes
that the SVD results are closest to the experimental data
for the parent nucleus, overestimating the result by much
less than GCN5082 and jj55t. However, for the daugh-
ter’s GT, GCN5082 was best, with SVD underestimating
the result the most. For PB(E2) ↑ and DB(E2) ↑ SVD
shows values closest to the experiment. Carefully ad-
justing the values of the effective charges would improve
the results for all three Hamiltonians, but that is beyond
the scope of our analysis. The excitation energies are
better described by GCN5082, in large part because the
GCN5082 starting Hamiltonian was fine-tuned with data
for more nuclei and energy levels than SVD and jj55t.
Overall, GCN5082 appears to describe the occupations
and vacancies best.

Figures 1-3 present more detailed statistical results ob-
tained with the SVD starting Hamiltonian. The corre-
sponding figures for GCN5082 and jj55t starting effective
Hamiltonians look similar and are not included here. Fig-
ure 1 presents the complete correlation matrix for all 24
observables that we calculate, with the number values
denoting the Pearson coefficient R. The color intensity
highlights the value of Pearson coefficient R between -1
as white and 1 as dark blue. For ease of use, a color scale
is also shown on the right side. The lines are listed in
descending order for the value of the Pearson coefficient
R of an observable and M0ν . This figure is particularly
interesting because it reveals the correlations between all
of the observables, not just related to M0ν .

Figure 2 illustrates the more interesting cases for cor-
relations between the observables, where the value of the
Pearson coefficient R of an observable and M0ν is higher
than 0.5. Since on the diagonal every observable would
correlate perfectly with itself, we utilize that space to
plot the histograms for the probability distributions. On
top of the diagonal we present scatter plots for pairs of
observables forming the coordinates with a reduced set of
data points for ease of viewing, while below the diagonal
we show contour plots emphasising the density of points
considering all the available data. Visually, higher values
of the Pearson correlation coefficient R result in scatter
plots and contour plots clustering closer to a diagonal
line in each graph. Most noticeable examples include the
energy levels that correlate with each other and, signifi-
cantly for this study, the 0νββ NME and the 2νββ NME
with R=0.8 in the case of the SVD Hamiltonian. Simi-
lar strong correlations between the 0νββ NME and the
2νββ NME were recently reported in Ref. [74]

Figure 3 details the histograms of the 24 observables
with increased detail of the data bins and adding the ex-

perimental data in the form of a Gaussian distribution
displayed with a red curve. This Gaussian was obtained
with the experimental values providing the mean and
its width constrained by the experimental error for the
standard deviation. Encasing the probability distribu-
tions with a blue line is the kernel-density estimate used
for the analysis detailed in Section IV. Each histogram
has 20 bins and they are normalized to unity as well as
the red Gaussian curves describing the experimental data
and their errors.

Interestingly, the correlations between the 0νββ NME
and the strengths of the parent and daughter Gamow-
Teller transitions to the first 1+ state in 136Cs are signifi-
cantly reduced, while the correlation with the 2νββ NME
is very strong. One explanation for this phenomenon
could be related to the fact that the product of the
GT matrix elements describing transitions to the first
1+ state in 136Cs in Eq. (1) does not significantly con-
tribute to the total sum of all excited 1+ states in the
intermediate nucleus.

Other observables that have relatively high correla-
tions with the 0νββ NME (detailed in Fig. 2) are the en-
ergies of the 2+, 4+ and 6+ states in both 136Xe and 136Ba
with the correlators R between 0.64 and 0.78. The g7/2
neutron vacancies in 136Ba correlate with the 0νββ NME
at R = 0.61. The proton occupancies of the h11/2 orbital

in 136Ba correlate with the 0νββ NME at R = 0.55, while
the proton occupancies of the h11/2 orbital in 136Xe cor-
relate with the 0νββ NME at R = 0.53.

From the full correlation matrix in Figure 1, we no-
tice the B(E2)↑ of the 136Xe and 136Ba cases. PBE2
correlates very strongly with POPd (R = 0.9) and
DOPd (R = 0.91), while it anti-correlates significantly
with DOPg7 (R = −0.91) and POPg7 (R = −0.93).
PBE2 also shows reasonable anti-correlations with DE2+

(R = −0.54), DE4+ (R = −0.55), DE6+ (R = −0.56),
PE2+ (R = −0.58) and DE4+ (R = −0.52). For PBE2
(right-most column of Fig. 1) we highlight the correla-
tions with DOPs1 (R = 0.74) and DVNh11 (R = 0.88),
anti-correlating with DVNd (R = −0.84), DVNs1 (R =
−0.82) and the energy levels DE2+ (R = −0.79), DE4+

(R = −0.88), DE6+ (R = −0.84). The energy levels
usually correlate strongly with each other, and this is in-
herited by the B(E2)↑-s that depend on the 2+ states.
The same is true about the occupancies and vacancies
that correlate, passing on their correlation properties to
other observables that depend on any of them.

IV. STATISTICAL INFERENCE BASED ON
THE BAYESIAN MODEL AVERAGING

An in-depth statistical analysis of the 0νββ NME may
yield valuable insights into its potential range and mean
value. It appears that the values of all observables listed
in Table I remain relatively consistent in response to
slight variations in the effective Hamiltonian. There is
no indication of any significant deviation from the main
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Figure 4. PDFs of the 0νββ NME distributions for the SVD,
jj55t and gcn5082 Hamiltonians, and their weighted sum (red
curve, see text for details).

values, which may be attributed to the preservation of nu-
clear many-body symmetries in the nuclear shell model.
Further investigations, such as utilizing the distributions
of available effective Hamiltonians, may aid in determin-

ing optimal values and a potential range of error for the
0νββ NME. One possible approach investigated in Ref.
[42] for 48Ca is to combine the distributions for each
starting effective Hamiltonian depicted in Fig. 3 using
weighting factors WH ,

P (x = M0ν) =WsvdPsvd(x) +WgcnPgcn(x)

+Wj5tPj5t(x) ,
(2)

where x is the random value of the 0νββ NME. The
normalized weights Wk with k = svd, gcn, jj5 can be in-
ferred using the statistical distributions of the evidence
observables in Table I and their correlations with the cal-
culated M0ν NME. However, in Ref. [42] not all data
that strongly correlated to the 0νββ NME was avail-
able, and therefore we only used ”democratic” weights
for three effective Hamiltonians. In the case of 136Xe
we have all needed data listed in Table I. Here, we use
the Bayesian Model Averaging method [46, 47] by re-
mapping the quantities in Eq. (2) in the framework of
the Bayes approach to updating probabilities,

p(x = M0ν |ye, σe) =

j5t∑
k=svd

p(x = M0ν |ye, σe,Mk)p(Mk|ye, σe), (3)

where p(x = M0ν |ye, σe,Mk) correspond to the probability densities Pk in Eq. (2) and p(Mk|(ye, σe) correspond to
the weights Wk. Here the Mk models are represented by the TBME of different starting Hamiltonians in the jj55
model space, such as SVD, jj55t or gcn5082. The ye and σe represent a set of relevant experimental data and their
uncertainties for the nuclei involved in the decay. The TBME values for the starting Hamiltonians of each model were
determined from a wider set of data (more specific only a set of excitation energies) describing a larger class of nuclei
in a given s.p. particle space. One would like to calibrate the weighting factors Wk to the evidence data ye and their
errors σe that are relevant for the 0νββ decay, evidence data listed in the first three columns of Table I. In Eq. (4),
θj represents a set of parameters describing the model Mk Hamiltonians, i.e. their two-body matrix elements. To
obtain the weights Wk one needs the so called evidence integrals

p(ye, σe|Mk) =

∫ Nobs∏
i

dyipye,σe(yi)

∫ Ntbme∏
j

dθjp(yi|θj ,Mk)π(θj |Mk)

 , (4)

which can be used in Bayes theorem to obtain the pos-
terior probabilities

p(Mk|ye, σe) =
p(ye, σe|Mk)π(Mk)∑j5t

k=svd p(ye, σe|Mk)π(Mk)
. (5)

Here the π(Mk) are the prior probabilities for each
model, which are considered uniform. In Eq. (4)
π(θj |Mk) represents the distribution of the parameters
θj in a given model, which we generate uniformly, al-
though with a compact support. In addition, the evi-
dence likelihood function is taken as a typical product

for independent observables,

pye,σe
(yi) ∝

Nobs∏
i

exp[−(yi − yei)2/(2σ2
ei)], (6)

where the overall proportionality factor is irrelevant if
the same set of observales are used with all models. In
Eqs. (3-4) the integration variable yi run on a subset of
observables that correlate strongly with M0ν . Here we
take the 10 observables that have R > 0.5, listed below
0νββ in the heat map of Fig. 1 and included in the
correlation matrix of Fig. 2. The integrals in eq. (4) are
done using multi-dimensional Monte Carlo techniques,



10

provided that the integration hypervolume is the same
for all models Mk. Having the posterior probabilities
p(Mk|ye, σe), one often calculates the Bayesian factors

Bkm = p(Mk|ye, σe)/p(Mm|ye, σe) (7)

to either infer that one model is dominant or to use them
in Eq. (2) (equivalent of Eq. (3)) to obtain an aver-
age probability density. In our case, using a standard
quenching factor of 0.7 for all GT matrix elements one
gets a clearly dominant contribution of the SVD model.
In principle, one could infer that all Wk are 0, but the
Wsvd. However, given the inherent bias embedded in the
Bayesian approach, and in the spirit of the predictor-
corrector approach to step-by-step evolution schemes,
we consider for the weights Wk an average between the
prior probabilities π(Mk) and the posterior probabilities
p(Mk|ye, σe) ≡ Wk, where k = svd, gcn, jj5. Therefore,
we take Wsvd = 4/6,Wgcn = Wjj5 = 1/6.

Fig. 4 shows the probability distribution functions
(PDF) for the three starting effective Hamiltonians and
their weighted sum, Eq. (2) (the red curve). To calcu-
late each PDF we use kernel-density estimates [75, 76] for
the histograms describing the M0ν , such as that of the
upper-left panel of Fig. 3. Based on the results of our sta-
tistical analysis summarized in Fig. 4 (see the ”weighted
sum” curve) one can infer that with 90% confidence the
0νββ NME lies in the range between 1.55 and 2.65, with
a mean value of about 1.99 and a standard deviation of
0.37.

The results presented above may vary if a different
quenching factor, q, is used. In this study, q = 0.7
was employed, which aligns with values used in com-
monly studied model spaces such as sd, fp, and jj44
[42, 77, 78]. For instance, if a very low quenching fac-
tor, less than 0.45, is used, the impact of the GCN5082
effective Hamiltonian in Eq. (2) will increase, resulting
in a shift of the weighted distribution in Fig. 4 towards
higher values. This correlation between the 0νββ NME
and the 2νββ NME, and the need for a small quenching
factor, q ≈ 0.35, to describe the 2νββ NME could be an
effect of excessive adjustments to the TBME of the ef-
fective Hamiltonian due to fine-tuning the energies [77].
Similarly, when 0.45 < q < 0.56, the distribution for the
jj55t dominates the weighted distribution in Fig. 4.

V. CONCLUSION AND OUTLOOK

In this paper we presented a statistical model for ana-
lyzing the distribution and the theoretical uncertainty of
the 0νββ NME of experimentally relevant isotope 136Xe
(see e.g. Ref. [79] for the latest 0νββ lower half-life
limit), using the interacting shell model in the jj55-shell
model space. For this analysis we used three known start-
ing effective Hamiltonians that were widely tested for
tin isotopes and other nuclei near 132Sn, namely SVD,
GCN5082 and jj55t. Considering potential uncertain-
ties of these starting effective Hamiltonians, we added to

their TBME random contributions of ±10%. Using sam-
ple sizes of 1,000 points we analyzed for each starting
effective Hamiltonian: (i) the correlations between 0νββ
NME and other 23 observables that are accessible experi-
mentally; (ii) the theoretical ranges for each observables;
(iii) the shape of different distributions for each observ-
ables and each starting Hamiltonian; (iv) the weighted
contributions from different starting Hamiltonians to the
”optimal” distribution of the 0νββ NME; (v) an ”opti-
mal” value of the 0νββ NME and its predicted probable
range (theoretical error).

As in the case of 48Ca [42], we found that the 0νββ
NME correlates strongly with the 2νββ NME, but much
less with the Gamow-Teller strengths to the first 1+ state
in 136Cs. We also found that the 0νββ NME exhibits rea-
sonably strong correlations with the energies of the 2+,
4+ and 6+ states in 136Ba, and with the neutron occu-
pation probabilities in 136Xe. We also noticed that there
are additional correlations between observables, such as
the energies of the 2+, 4+ and 6+ states in 136Ba and
the neutron occupation probabilities, as well as between
B(E2)↑ values in 136Ba and proton and neutron occu-
pation probabilities, which can indirectly influence the
0νββ NME.

The significant difference in the present analysis rel-
ative to that for 48Ca [42] is that reliable experimental
values for the occupation probabilities in 136Ba and 136Xe
are available. This made possible a statistical analysis of
the 0νββ NME within the Bayesian Averaging Model
that can all the available experimental data for the nu-
clei involved in the transition to update the weights cor-
responding to each starting Hamiltonian to the overall
NME distribution. We found that the Bayesian Averag-
ing Model favors the SVD model, mainly because of the
strong correlations observed between the 0νββ NME and
2νββ NME. Based on this statistical analysis with three
independent starting effective Hamiltonians we propose
a common probability distribution function for the 0νββ
NME, which has a range (theoretical error) of (1.55 -
2.65) at 90% confidence level, with a mean value of 1.99
and a standard deviation of 0.37.

Unfortunately, our results still depend on the choice
of the quenching factor for the Gamow-Teller operator.
Ab-initio studies, however, can overcome this shortcom-
ing by consistently producing effective operators that can
describe Gamow-Teller transition without the need of a
quenching factor. We thus believe that the present anal-
ysis will help ab-initio studies, such as those reported in
Refs.[37–39], to better identify correlations and further
reduce the uncertainties of the 0νββ NME, given that
such ab-initio analyses, e.g. that recently reported on
76Ge [43], seem to be confined to fewer observables and
much smaller statistics.

Acknowledgements. MH acknowledges support from
the US Department of Energy grant DE-SC0022538 ”Nu-
clear Astrophysics and Fundamental Symmetries”. AN
and SS acknowledge support by grants of Romanian Min-



11

istry of Research, Innovation and Digitalization through
the project CNCS – UEFISCDI number 99/2021 within
PN-III-P4-ID-PCE-2020-2374 and the project CNCS –

UEFISCDI number TE12/2021 within PN-III-P1-1.1-
TE-2021-0343. We are grateful for the resources at
INCDFM-CIFRA HPC Cluster.

[1] F. T. Avignone, III, S. R. Elliott, and J. Engel, Rev.
Mod. Phys. 80, 481 (2008).

[2] J. D. Vergados, H. Ejiri, and F. Simkovic, Rep. Prog.
Phys. 75, 106301 (2012).

[3] M. Doi, T. Kotani, H. Nishiura, and E. Takasugi, Progr.
Theor. Exp. Phys. 69, 602 (1983).

[4] M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys.
Suppl. 83, 1 (1985).

[5] J. Suhonen and O. Civitarese, Phys. Rep. 300, 123
(1998).

[6] J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012).
[7] S. Stoica and M. Mirea, Phys. Rev. C 88, 037303 (2013).
[8] M. Mirea, T. Pahomi, and S. Stoica, Rom. Rep. Phys.

67, 872 (2015).
[9] W. Rodejohann, J. Phys. G 39, 124008 (2012).

[10] F. F. Deppisch, M. Hirsch, and H. Pas, J. Phys. G 39,
124007 (2012).

[11] M. Horoi and A. Neacsu, Phys. Rev. D 93, 113014 (2016),
arXiv:arXiv:1511.00670 [hep-ph] [hep-ph].

[12] A. Neacsu and M. Horoi, Advances in High Energy
Physics 2016 (2016).

[13] F. Ahmed, A. Neacsu, and M. Horoi, Physics Letters B
769, 299 (2017).

[14] M. Horoi and A. Neacsu, Phys. Rev. C 98, 035502 (2018).
[15] J. Engel and J. Menéndez, Reports on Progress in Physics

80, 046301 (2017).
[16] C. Adams, K. Alfonso, C. Andreoiu, E. Angelico, I. J.

Arnquist, J. A. A. Asaadi, F. T. Avignone, S. N. Axani,
A. S. Barabash, P. S. Barbeau, L. Baudis, F. Bellini,
M. Beretta, T. Bhatta, V. Biancacci, M. Biassoni,
E. Bossio, P. A. Breur, J. P. Brodsky, C. Brofferio,
E. Brown, R. Brugnera, T. Brunner, N. Burlac, E. Ca-
den, S. Calgaro, G. F. Cao, L. Cao, C. Capelli, L. Car-
dani, R. C. Fernandez, C. M. Cattadori, B. Chana,
D. Chernyak, C. D. Christofferson, P. H. Chu, E. Church,
V. Cirigliano, R. Collister, T. Comellato, J. Dalmasson,
V. D’Andrea, T. Daniels, L. Darroch, M. P. Decowski,
M. Demarteau, S. D. M. Peixoto, J. A. Detwiler, R. G.
DeVoe, S. Di Domizio, N. Di Marco, M. L. di Vacri,
M. J. Dolinski, Y. Efremenko, M. Elbeltagi, S. R. Elliott,
J. Engel, L. Fabris, W. M. Fairbank, J. Farine, M. Feb-
braro, E. Figueroa-Feliciano, D. E. Fields, J. A. Formag-
gio, B. T. Foust, B. Franke, Y. Fu, B. K. Fujikawa,
D. Gallacher, G. Gallina, A. Garfagnini, C. Gingras,
L. Gironi, A. Giuliani, M. Gold, R. Gornea, C. Grant,
G. Gratta, M. P. Green, G. F. Grinyer, J. Gruszko,
Y. Guan, I. S. Guinn, V. E. Guiseppe, T. D. Gutierrez,
E. V. Hansen, C. A. Hardy, J. Hauptman, M. Heffner,
K. M. Heeger, R. Henning, H. Hergert, D. H. Aguilar,
R. Hodak, J. D. Holt, E. W. Hoppe, M. Horoi, H. Z.
Huang, K. Inoue, A. Jamil, J. Jochum, B. J. P. Jones,
J. Kaizer, G. Karapetrov, S. A. Kharusi, M. F. Kidd,
Y. Kishimoto, J. R. Klein, Y. G. Kolomensky, I. Kon-
tul, V. N. Kornoukhov, P. Krause, R. Krucken, K. S.
Kumar, K. Lang, K. G. Leach, B. G. Lenardo, A. Leon-
hardt, A. Li, G. Li, Z. Li, C. Licciardi, R. Lindsay,

I. Lippi, J. Liu, M. Macko, R. MacLellan, C. Macol-
ino, S. Majidi, F. Mamedov, J. Masbou, R. Massar-
czyk, A. T. Mastbaum, D. Mayer, A. Mazumdar, D. M.
Mei, Y. Mei, S. J. Meijer, E. Mereghetti, S. Mertens,
K. Mistry, T. Mitsui, D. C. Moore, M. Morella, J. T.
Nattress, M. Neuberger, X. E. Ngwadla, C. Nones,
V. Novosad, D. R. Nygren, J. C. N. Ondze, T. O’Donnell,
G. D. O. Gann, J. L. Orrell, G. S. Ortega, J. L. Ouellet,
C. Overman, L. Pagani, V. Palusova, A. Para, M. Pa-
van, A. Perna, L. Pertoldi, W. Pettus, A. Piepke, P. Pis-
eri, A. Pocar, P. Povinec, F. Psihas, A. Pullia, D. C.
Radford, G. J. Ramonnye, H. Rasiwala, M. Redchuk,
S. Riboldi, G. Richardson, K. Rielage, L. Rogers, P. C.
Rowson, E. Rukhadze, R. Saakyan, C. Sada, G. Sala-
manna, F. Salamida, R. Saldanha, D. J. Salvat, S. San-
giorgio, D. C. Schaper, S. Schoenert, M. Schwarz, S. E.
Schwartz, Y. Shitov, F. Simkovic, V. Singh, M. Slavick-
ova, A. C. Sousa, F. L. Spadoni, D. H. Speller, I. Stekl,
R. R. Sumathi, P. T. Surukuchi, R. Tayloe, W. Tornow,
J. A. Torres, T. I. Totev, S. Triambak, O. A. Tyuka, S. I.
Vasilyev, M. Velazquez, S. Viel, C. Vogl, K. von Strum,
Q. Wang, D. Waters, S. L. Watkins, M. Watts, W. Z.
Wei, B. Welliver, L. Wen, U. Wichoski, S. Wilde, J. F.
Wilkerson, L. Winslow, C. Wiseman, X. Wu, W. Xu,
H. Yang, L. Yang, C. H. Yu, J. Zeman, J. Zennamo,
and G. Zuzel, arXiv 10.48550/ARXIV.2212.11099 (2022),
nucl-ex/2212.11099.

[17] E. Caurier, A. Poves, and A. P. Zuker, Phys. Lett. B 252,
13 (1990).

[18] E. Caurier, F. Nowacki, A. Poves, and J. Retamosa, Phys.
Rev. Lett. 77, 1954 (1996).

[19] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves,
and A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).

[20] M. Horoi, S. Stoica, and B. A. Brown, Phys. Rev. C 75,
034303 (2007).

[21] M. Horoi and S. Stoica, Phys. Rev. C 81, 024321 (2010).
[22] M. Horoi, Phys. Rev. C 87, 014320 (2013).
[23] M. Horoi and B. A. Brown, Phys. Rev. Lett. 110, 222502

(2013).
[24] R. A. Sen’kov and M. Horoi, Phys. Rev. C 90, 051301(R)

(2014).
[25] A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015).
[26] M. Horoi and A. Neacsu, Phys. Rev. C 93, 024308 (2016).
[27] F. Simkovic, G. Pantis, J. D. Vergados, and A. Faessler,

Phys. Rev. C 60, 055502 (1999).
[28] S. Stoica and H. Klapdor-Kleingrothaus, Nucl. Phys. A

694, 269 (2001).
[29] V. Rodin, A. Faessler, F. Simkovic, and P. Vogel, Nucl.

Phys. A 766, 107 (2006).
[30] M. Kortelainen and J. Suhonen, Phys. Rev. C 75,

051303(R) (2007).
[31] A. Faessler, V. Rodin, and F. Simkovic, J. Phys. G 39,

124006 (2012).
[32] F. Simkovic, V. Rodin, A. Faessler, and P. Vogel, Phys.

Rev. C 87, 045501 (2013).
[33] J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009).

https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1088/0034-4885/75/10/106301
https://doi.org/10.1088/0034-4885/75/10/106301
https://doi.org/10.1143/PTP.69.602
https://doi.org/10.1143/PTP.69.602
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1143/PTPS.83.1
https://doi.org/10.1016/S0370-1573(97)00087-2
https://doi.org/10.1016/S0370-1573(97)00087-2
https://doi.org/10.1103/PhysRevC.85.034316
https://doi.org/10.1103/PhysRevC.88.037303
https://doi.org/10.1088/0954-3899/39/12/124008
https://doi.org/10.1088/0954-3899/39/12/124007
https://doi.org/10.1088/0954-3899/39/12/124007
https://doi.org/10.1103/PhysRevD.93.113014
https://arxiv.org/abs/arXiv:1511.00670 [hep-ph]
https://doi.org/10.1103/PhysRevC.98.035502
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.48550/ARXIV.2212.11099
https://arxiv.org/abs/nucl-ex/2212.11099
https://doi.org/10.1016/0370-2693(90)91071-I
https://doi.org/10.1016/0370-2693(90)91071-I
https://doi.org/10.1103/PhysRevLett.77.1954
https://doi.org/10.1103/PhysRevLett.77.1954
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/PhysRevC.75.034303
https://doi.org/10.1103/PhysRevC.75.034303
https://doi.org/10.1103/PhysRevC.81.024321
https://doi.org/10.1103/PhysRevC.87.014320
https://doi.org/10.1103/PhysRevLett.110.222502
https://doi.org/10.1103/PhysRevLett.110.222502
https://doi.org/10.1103/PhysRevC.90.051301
https://doi.org/10.1103/PhysRevC.90.051301
https://doi.org/10.1103/PhysRevC.91.024309
https://doi.org/10.1103/PhysRevC.93.024308
https://doi.org/10.1103/PhysRevC.60.055502
https://doi.org/10.1016/S0375-9474(01)00988-5
https://doi.org/10.1016/S0375-9474(01)00988-5
https://doi.org/10.1016/j.nuclphysa.2005.12.004
https://doi.org/10.1016/j.nuclphysa.2005.12.004
https://doi.org/10.1103/PhysRevC.75.051303
https://doi.org/10.1103/PhysRevC.75.051303
https://doi.org/10.1088/0954-3899/39/12/124006
https://doi.org/10.1088/0954-3899/39/12/124006
https://doi.org/10.1103/PhysRevC.87.045501
https://doi.org/10.1103/PhysRevC.87.045501
https://doi.org/10.1103/PhysRevC.79.044301


12

[34] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87,
014315 (2013).

[35] T. R. Rodriguez and G. Martinez-Pinedo, Phys. Rev.
Lett. 105, 252503 (2010).

[36] P. K. Rath, R. Chandra, K. Chaturvedi, P. Lohani, P. K.
Raina, and J. G. Hirsch, Phys. Rev. C 88, 064322 (2013).

[37] S. Novario, P. Gysbers, J. Engel, G. Hagen, G. R.
Jansen, T. D. Morris, P. Navrátil, T. Papenbrock, and
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