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The deformation properties of the low-lying states in 76Ge have been investigated following a safe-
energy Coulomb excitation measurement with the GRETINA tracking array and CHICO2 heavy-ion
counter at the ATLAS accelerator facility at Argonne National Laboratory. A comprehensive set
of transition and static E2 matrix elements were extracted from the measured differential Coulomb
cross-sections, and compared with results of configuration interaction shell-model calculations and
computations carried out within the framework of the generalized triaxial rotor model. The remark-
able agreement between the calculated and experimental data supports a near-maximum triaxial
deformation for the ground state of 76Ge. In addition, the degree of softness of the asymmetry
in 76Ge and 76Se was investigated using rotational invariants generated from configuration inter-
action shell-model wave functions computed with the jj44b and JUN45 effective interactions. The
resulting invariants are shown to be consistent with a stiff triaxial deformation in 76Ge and a pre-
dominantly soft triaxial potential for 76Se, in agreement with the conclusions of recent works by
this collaboration.

I. INTRODUCTION

Over the last few years, there has been a notable in-
crease in the number of experimental and theoretical
studies dedicated to understanding the nature of low-spin
intrinsic excitations in stable and neutron-rich even-even
Ge isotopes. While many of these investigations were mo-
tivated by the fact that these isotopes have so far eluded
satisfactory model descriptions, the vast majority are due
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to the emergence of 76Ge as a candidate nucleus for the
hypothetical neutrinoless double beta (0νββ) decay pro-
cess. The latter follows from the fact that the observa-
tion of this lepton number violating process would not
only establish the neutrino as a self-conjugate particle,
but would also provide a pathway toward the determi-
nation of its effective mass, once the nuclear matrix el-
ements (NME) governing the decay are reliably known.
These NMEs are not experimental observables and, thus,
can only be determined theoretically. Although signifi-
cant discrepancies between the NME values calculated
by different methods remain, efforts to understand and
minimize these differences have progressed remarkably
in the past few years. Amongst the many nuclear struc-
ture effects studied, deformation due to quadrupole cor-
relations and, thus, the nuclear shape parameters are
shown to have a significant impact on the magnitude
of the calculated NMEs. Specifically, these NMEs are
shown to adopt substantially lower values when the par-
ent and daughter nuclei assume different shapes [1–4],
but they are enhanced when similar deformations are in-
volved [4, 5]. In addition, it was demonstrated that the
calculated NMEs are maximized when spherical symme-
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try is assumed in both parent and daughter nuclei [6].
These findings, along with effects due to pairing corre-
lations [7], imply that a proper characterization of the
ground-state properties and, in particular, an under-
standing of the role of deformation and axial asymmetry
in parent-daughter pairs is critical for reliably calculating
the 0νββ NMEs.

With only four valence proton particles with respect
to the Z = 28 shell closure, the Ge isotopes display a
remarkable complexity in their ground-state wave func-
tions and exhibit notable spectral variations with increas-
ing neutron excess. Close to stability, the structure is
dominated by phenomena associated with shape transi-
tion and coexistence between weakly- and/or strongly-
deformed structures with varying degrees of shape asym-
metry [8], as well as structures impacted by mixing with
intruder configurations. As such, these nuclei have pro-
vided a challenging testing ground for nuclear models.
Indeed, the Ge isotopes have been the subject of exten-
sive investigations using various theoretical formalisms
including the Monte Carlo shell model (MCSM) [9], pro-
jected shell-model approaches [10] and shell-model calcu-
lations with newly-developed effective interactions [11–
13]. Mean-field calculations using the five-dimensional
collective Hamiltonian (5DCH) based on the Hartree-
Fock-Bogoliubov (HFB) model with the Gogny interac-
tion [14], and other self-consistent approximations em-
ploying Skyrme and relativistic interactions [15] are avail-
able as well. Calculations within the framework of
the interacting boson model (IBM) and its associated
variants [16, 17] as well as covariant density function-
als [18, 19] have also been performed. While some of
these calculations have been somewhat successful, albeit
only qualitatively, in elucidating some of the low-spin
properties of these isotopes, many of the salient features,
such as the parabolic variation of the energy of the first-
excited 0+ state along the isotopic chain, have either re-
mained unaccounted for or poorly reproduced. For in-
stance, the calculations of Ref. [19] compute the excita-
tion of this level in 72Ge to be at an energy of about 1.5
MeV above the experimental value and suggest it to be
the bandhead of a highly-collective structure that has not
been observed experimentally. Other systematic investi-
gations of the structure of the even-even Ge nuclei, car-
ried out within the frameworks of the multi-quasiparticle
triaxial projected shell model (TPSM) [20, 21], Gogny-
Hartree-Fock-Bogoliubov (HFB) theory, and the Skyrme
Hartree-Fock plus pairing in the BCS approximation [22]
have, in addition, demonstrated the importance of triax-
ial collectivity and configuration mixing in reproducing
the experimental data.

Triaxiality is an essential feature and plays an impor-
tant role in determining the structure of Ge isotopes. For
example, the unusual level structure of 72Ge has recently
been reinterpreted as being the result of coexistence, with
maximum mixing, of two triaxially-deformed configura-
tions, based on evidence derived from the rotational-
invariant sum-rule analysis of E2 matrix elements asso-

ciated with the 0+1 ground state and the first-excited 0+2
level [23]. Moreover, while triaxiality at low spin is of-
ten associated with pronounced γ softness, i.e., with a
broad minimum in the (β, γ) deformation plane, a spec-
troscopic analysis of the levels of the γ- and ground-state
bands of 74Ge, as presented in Ref. [19], reveals a charac-
teristic transition from a soft to a rigid triaxial structure.
In the same way, empirical evidence for rigid-triaxial de-
formation was proposed, based on the energy pattern of
the low-spin structure of 76Ge [24], where the phase of
the odd-even staggering in the γ band was shown to be
consistent with predictions of the phenomenological γ-
rigid model [25]. Likewise, the energy staggering of the
unusual sequence with suppressed ∆I = 2 crossover tran-
sitions recently observed in 78Ge [26] displays the phase
expected for a γ-rigid structure. It is important to note,
however, that while evidence for rigid-triaxial deforma-
tion is now well established at high spins, the question
of whether such structures exist near the ground state is
still a matter of debate and, indeed, represents a funda-
mental challenge in nuclear structure.

Recently, we reported on a model-independent study
of the nature of low-spin triaxial deformation in 76Ge fol-
lowing a high-statistics Coulomb excitation measurement
performed at the ATLAS facility at Argonne National
Laboratory. In this study, shape parameters deduced on
the basis of a rotational-invariant sum-rule analysis pro-
vided considerable insight into the underlying collectivity
of the ground-state and γ bands. In particular, both se-
quences were found to be characterized by similar values
of the quadrupole (β) and asymmetry (γ) deformation
parameters. In addition, compelling evidence for low-
spin, rigid triaxial deformation was deduced, based on
analysis of the statistical fluctuations of the rotational-
invariant quadrupole asymmetry derived from the mea-
sured E2 matrix elements. These results, along with
a subset of the deduced matrix elements, were first re-
ported in Ref. [27]. In the present follow-up publication,
a more in-depth description of the experimental and data
analysis procedures is presented and the complete set of
E2 matrix elements extracted from the data is provided.
Additionally, the data are compared with results of con-
figuration interaction (CI) shell-model calculations, orig-
inally reported in Ref. [28], and computations carried out
within the framework of the triaxial rotor model with in-
dependent inertia and electric quadrupole tensors [29].
Excellent agreement between the experimental and cal-
culated electric quadrupole properties is observed. In
particular, the rotational-invariant shape parameters de-
duced from the shell-model calculations agree with the
rigid triaxial interpretation of the 76Ge low-spin struc-
ture.

This article is organized as follows. Section II pro-
vides further details about the experiment, while Sec. III
presents a methodological description of the process for
extracting matrix elements from the Coulomb excitation
yields before providing the results. An in-depth discus-
sion of the experimental results along with comparisons
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with shell-model and triaxial rotor calculations is pre-
sented in Sec. IV. Finally, the conclusions are summa-
rized in Sec. V.

II. EXPERIMENTAL DETAILS

The low-lying states of 76Ge were populated via mul-
tistep Coulomb excitation in two separate experiments
performed at the ATLAS accelerator facility at Argonne
National Laboratory. In both measurements, 76Ge ions
bombarded an enriched 0.5 mg/cm2-thick 208Pb tar-
get, sandwiched between a 6 µg/cm2 Al front layer
and a 40 µg/cm2 C backing. The γ rays emitted in
the de-excitation were detected by the advanced track-
ing array, GRETINA [30], in kinematic coincidence
with scattered reaction products recorded with CHICO2,
a two-dimensional, pixelated parallel-plate avalanche
counter [31]. As a large solid-angle position-sensitive
charged-particle array, CHICO2 maintains a mass resolu-
tion (∆m/m) of ∼ 5% and covers laboratory scattering
angles between 20 − 85◦ in the downstream sector and
96− 164◦ upstream, with 1.55◦ and 2.47◦ localization in
θ (polar angle) and φ (azimuthal angle), respectively. In
addition, the detector achieves a time resolution of ∼ 1.2
ns (FWHM), which is sufficient for measuring the time-
of-flight differences, ∆Ttof , between the reaction prod-
ucts as a function of the polar scattering angle, θ. A
two-dimensional histogram depicting ∆Ttof as a func-
tion of laboratory scattering angle demonstrates a clear
separation between the reaction participants, as seen in
Fig. 1. The first experiment utilized a sub-barrier beam
energy of 304 MeV. At the time of this experiment, the
GRETINA array consisted of 28 highly-segmented coax-
ial high-purity germanium (HPGe) crystals grouped into
7 modules. For the second, two beam energies of 291
and 317 MeV were employed. The 291-MeV energy was
chosen to satisfy the “safe energy” criterion [32] which
ensures a purely electromagnetic interaction, while the
other two, were selected to enhance the population of
high-spin states in the ground-state and γ bands. For the
second measurement, GRETINA comprised 44 crystals,
grouped into 11 modules. In both experiments, the time
and angular resolution provided by the CHICO2 detector
as well as the position information in GRETINA, enabled
the event-by-event reconstruction of the reaction kine-
matics and the precise Doppler correction of the in-flight
γ-ray energies. A representative Doppler-reconstructed
spectrum, measured in coincidence with the scattered
76Ge recoils, is presented in Fig. 2. In all, a total of
21 γ rays, linking 17 low-lying states in 76Ge, were mea-
sured. Two additional γ rays (1497 and 2170 keV) were
observed, but not included in the analysis, since either
they have not been observed in earlier works or their
placement in the level scheme is uncertain. These are
marked with an asterisk symbol in Fig. 2. The 1410-keV
γ ray marked with the # symbol was also excluded in
the analysis, as it is most likely a sum peak arising from

FIG. 1. Differences in the time-of-flight between the projectile
and target recoils as a function of scattering angle measured
with the CHICO2 detector. A clear separation between the
76Ge and 208Pb ions is observed.

the simultaneous detection of the 563- (2+1 → 0+1 ) and
847-keV (4+1 → 2+1 ) transitions. A partial level scheme
incorporating every transition observed in the present
measurement is provided in Fig. 3. The seven transi-
tions highlighted in red are those observed by Toh et
al. [33] in the most recent 76Ge Coulomb excitation mea-
surement prior to the present work. By contrast, transi-
tions in black refer to γ rays observed in Coulomb excita-
tion for the first time, herewith illustrating the resolving
power and efficiency of the present experiment. Except
for the 2767-keV level, which was reassigned in Ref. [28],
the spins and parities of all other levels in Fig. 3 were
adopted from earlier decay experiments [34, 35], trans-
fer [36] and/or fusion-evaporation [37] reactions.

III. DATA ANALYSIS AND RESULTS

The population of nuclear states by multistep Coulomb
excitation and their subsequent decay is governed by the
reduced matrix elements linking the nuclear states in-
volved. To measure these matrix elements, γ-ray yields
derived from the data were analyzed with the semiclassi-
cal, least-squares search code, gosia [38, 39]. This code
uses a standard χ2 function constructed from the mea-
sured γ-ray yields and theoretical ones calculated from
an initial set of both transition and static matrix ele-
ments. Since the excitation probability also depends on
the relative phases as well as on the sign and magnitude
of the E2 matrix elements, the initial set of these quan-
tities used as starting values in the two-dimensional χ2

search were chosen to sample all possible signs of the
interference term [40].

To enhance the sensitivity to the matrix elements and
exploit the dependence of the excitation probability on
the particle scattering angle, the data from each of the
three beam energies were partitioned into seven angular
subsets, corresponding to scattering ranges of 30◦ − 40◦,
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numbers refer to the sequence in which levels of the same spin and parity are observed in this work.

40◦ − 50◦, 50◦ − 60◦, 60◦ − 70◦, 70◦ − 85◦, 96◦ − 130◦,
and 130◦ − 165◦. This resulted in a total of about 118
efficiency-corrected γ-ray intensities from 21 data sets
corresponding to the different projectile energies and
scattering angles. Representative spectra depicting the
angular dependence, shown in Fig. 4, indicate that, as
the average center-of-mass scattering angle is increased
from ∼ 35◦ [Fig. 4 (a)] to ∼ 147.5◦ [Fig. 4 (e)], the
impact parameter and the distance of closest approach
are decreased. As a result, the excitation probability for
higher-energy and higher-angular momentum states via
multistep excitation is strongly enhanced at larger scat-
tering angles. As can be seen in the differential popu-
lation of individual transitions, this enhancement is not
only dependent on the scattering angle, but also differs

significantly for the various transitions, thereby illustrat-
ing the sensitivity of the present data to the individual
matrix elements. For the present study, data obtained
at the three bombarding energies were analyzed inde-
pendently, but were later combined as well to check for
consistency.

In addition, known spectroscopic data such as life-
times, branching and E2/M1 mixing ratios were included
as constraints of the relevant parameters during the fit-
ting procedure. This information is summarized in Ta-
bles I and II. As the excitation process is also influ-
enced by internal conversion at low transition energies
and effects associated with the detection system, the γ-
ray yields calculated by gosia from the input matrix
elements were corrected for possible conversions, the fi-
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FIG. 4. Spectra after Coulomb excitation of 76Ge on 208Pb for five subsets of data corresponding to different ranges of particle-
scattering angles. The observation at backward angles of many more γ rays associated with transitions between higher-spin
states can be noticed.

TABLE I. Lifetimes (τ) and mixing ratios (δ) used to con-
strain the minimization process. Data marked with (*) were
taken from Ref. [41]. All others were taken from Ref. [28].
The uncertainties are symmetrized for use in GOSIA.

Iπ τ (ps)

2+
1 26.26(29)*

2+
2 11.54(22)*

4+
1 2.60(59)*

0+
2 1.8(9)

4+
2 2.1(15)

6+
1 0.38(42)

5+
1 1.5(8)

3−1 0.231(20)
4+
3 0.54(10)

Iπi → Iπf Mixing Ratio (δ)

2+
2 → 2+

1 2.5(2)
3+
1 → 2+

1 2.5(2)a

3+
1 → 2+

2 1.87(17)
4+
2 → 4+

1 0.59(14)
4+
2 → 3+

1 0.48(9)
2+
3 → 2+

2 1.9(2)
2+
3 → 3+

1 0.57(14)
4+
3 → 3+

1 0.36(6)
2+
4 → 2+

1 -0.09(2)

a Taken from Ref. [24]

TABLE II. Branching ratios (BR) in the literature for selected
transitions used in constraining the χ2 minimization. Data
are taken from Ref. [28]. The uncertainties are symmetrized
for use in GOSIA.

I(Iπi → Iπf1) I(Iπi → Iπf2) BR
[
I(Iπi →I

π
f1)

I(Iπi →I
π
f2

)

]
2+
2 → 0+

1 2+
2 → 2+

1 0.68(4)
3+
1 → 2+

2 3+
1 → 2+

1 0.72(7)
4+
2 → 4+

1 4+
2 → 2+

2 0.67(3)
4+
2 → 3+

1 4+
2 → 2+

2 0.142(15)
5+
1 → 4+

2 5+
1 → 3+

1 0.11(1)
2+
3 → 0+

1 2+
3 → 2+

2 0.35(3)
2+
3 → 3+

1 2+
3 → 2+

2 0.16(2)
3−1 → 4+

1 3−1 → 2+
1 0.13(2)

nite size and relative efficiency of the γ-ray detectors, as
well as for the attenuation of the particle-γ correlation
due to deorientation effects during recoil in vacuum. For
the present analysis, the BrIcc database [42] was used
to compute the internal-conversion coefficients for all ob-
served transitions.

The final set of matrix elements, which best repro-
duces the experimental γ-ray yields and known spectro-
scopic data, are displayed in Table III. Convergence was
achieved with a minimum χ2, normalized to the num-
ber of experimental data points, of 0.98 for all three
beam energies combined. Overall, a total of 81 E1, E2,
E3, and M1 reduced matrix elements were determined.
These results are in satisfactory agreement with previous
Coulomb excitation measurements [33, 43, 44]. For all
matrix elements, the quoted uncertainties were derived
in the standard way by constructing a probability distri-
bution in the space of fitted parameters and requesting
the total probability to be equal to the chosen confidence
limit (in this case 68.3%). These uncertainties include the
statistical and systematic contributions as well as those
arising from cross-correlation effects.

TABLE III: Summary of E1, E2, E3, and M1 matrix elements and reduced transition probabilities for 76Ge deduced in
the present work. Units for reduced transition strengths are µ2

N , e2b, e2b2, and e2b3 for M1, E1, E2, and E3 transitions,
respectively. Accordingly, E1, E2, E3, and M1 matrix elements are listed in units of eb1/2, eb, eb3/2 and µN . Here, λ is
either E or M and L = |Ii − If | takes values of 1, 2, or 3. The last two columns present the reduced transition probabilities in
Weisskopf units (W.u.). Note that the uncertainties are quoted in a format based on whether the errors are symmetric or not.

Iπi → Iπf Mult.
〈Ii||M(λL)||If 〉 ↑ B(λL ↓; Iπi → Iπf )

B(λL ↓; Iπi → Iπf ) [W.u.]
This work Toh et al. [33] Refs. [43, 44] This Work Ref. [28]

0+
1 → 2+

1 E2 0.526(2) 0.522(4) 0.550(3) 0.0553(4) 28.9(2) 29(1)
0+
1 → 2+

2 E2 0.089(3) 0.069(10) 0.081(14) 0.0016(1) 0.83(6) 0.90(3)
0+
1 → 2+

3 E2 0.061(3) 0.00074(7) 0.39(4) 0.05(2)
0+
1 → 2+

4 E2 0.054(4) 0.00058(9) 0.31(5) 0.33(6)
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Iπi → Iπf Mult.
〈Ii||M(λL)||If 〉 ↑ B(λL ↓; Iπi → Iπf )

B(λL ↓; Iπi → Iπf ) [W.u.]
This work Toh et al. [33] Refs. [43, 44] This Work Ref. [28]

0+
1 → 2+

5 E2 0.010+0.009
−0.021 0.00002+0.00005

−0.00002 0.01+0.03
−0.01

0+
1 → 2+

6 E2 0.023(6) 0.00011(6) 0.06(3) 0.06(2)
2+
1 → 2+

1 E2 −0.24(2) −0.19(5)1 −0.25(8)1

2+
1 → 4+

1 E2 0.795(5) 0.71(4) 0.77(4) 0.0702(9) 36.7(5) 38(9)
2+
1 → 2+

2 E2 0.535+0.003
−0.007 0.54(3) 0.71(7) 0.0573+0.0006

−0.0015 29.9+0.3
−0.8 39+5

−4

2+
1 → 2+

2 M1 0.175+0.006
−0.008 0.0061+0.0004

−0.0006 0.0034+0.0002
−0.0003

2+
1 → 4+

2 E2 −0.220+0.005
−0.003

2 0.10(2) 0.0054(2) 2.81+0.13
−0.08

2+
1 → 3+

1 E2 0.082(5) 0.0010(1) 0.50(6)
2+
1 → 3+

1 M1 0.027+0.003
−0.003 0.00010+0.00002

−0.00002 0.00006+0.00001
−0.00001

2+
1 → 2+

3 E2 −0.126+0.006
−0.004 0.0032+0.0003

−0.0002 1.7+0.2
−0.1

2+
1 → 2+

3 M1 0.11+0.06
−0.28 0.0024+0.0034

−0.0024 0.0013+0.0019
−0.0013

2+
1 → 0+

2 E2 0.085(2) 0.08(5) 0.0072(3) 3.8+0.1
−0.2 5(2)

2+
1 → 4+

3 E2 −0.064+0.006
−0.007 0.00045+0.00008

−0.00010 0.24+0.04
−0.05

2+
1 → 2+

4 E2 0.022+0.008
−0.005 0.00009+0.00007

−0.00004 0.05+0.03
−0.02 0.28(3) or 35+9

−7

2+
1 → 2+

4 M1 0.2+0.1
−0.4 0.008+0.010

−0.008 0.005+0.006
−0.005

2+
1 → 2+

5 E2 0.016+0.011
−0.021 0.00005+0.00010

−0.00005 0.027+0.050
−0.027 0.32(3)

2+
1 → 2+

6 E2 −0.048+0.002
−0.007 0.00045+0.00004

−0.00014 0.24+0.02
−0.07

2+
1 → 2+

6 M1 1.08+0.16
−0.06 0.23+0.07

−0.03 0.13+0.04
−0.01

2+
1 → 3−1 E1 0.026+0.001

−0.001 0.000100+0.000008
−0.000007 0.0086+0.0007

−0.0006

2+
1 → 0+

3 E2 0.002+0.003
−0.005 0.000004+0.000021

−0.000004 0.002+0.011
−0.002

2+
1 → 4+

4 E2 0.47+0.07
−0.02 0.025+0.007

−0.002 12.8+3.8
−1.0

4+
1 → 4+

1 E2 −0.26+0.01
−0.07

4+
1 → 6+

1 E2 1.11+0.03
−0.02 0.87(2) 0.095+0.005

−0.003 50+3
−2 91+55

−48

4+
1 → 4+

2 E2 0.61(1) −0.10(3) 0.041(1) 21.6(7) 7+4
−3 or 23(13)

4+
1 → 4+

2 M1 0.447+0.009
−0.009 0.0222+0.0009

−0.0009 0.0124+0.0005
−0.0005

4+
1 → 6+

2 E2 −0.186+0.030
−0.005 0.0027+0.0009

−0.0001 1.39+0.45
−0.08

4+
1 → 3+

1 E2 −0.44+0.08
−0.05 0.028+0.010

−0.006 15+5
−3

4+
1 → 5+

1 E2 −0.08+0.09
−0.05 0.0006+0.0021

−0.0006 0.3+1.1
−0.3

4+
1 → 4+

3 E2 0.04+0.02
−0.03 0.0002+0.0002

−0.0002 0.09+0.12
−0.09 0.00001(1) or 0.78(40)

4+
1 → 4+

3 M1 0.9+0.2
−0.1 0.09+0.04

−0.02 0.05+0.02
−0.01

4+
1 → 4+

4 E2 0.21(1) 0.0049(5) 2.6(3)
4+
1 → 4+

4 M1 0.21+0.02
−0.02 0.0049+0.0009

−0.0009 0.0027+0.0005
−0.0005

4+
1 → 3−1 E1 0.021+0.002

−0.002 0.00006+0.00001
−0.00001 0.0052+0.0010

−0.0010

6+
1 → 6+

1 E2 −0.23+0.09
−0.04

6+
1 → 8+

1 E2 1.25+0.07
−0.10 0.09+0.01

−0.02 48+5
−8

6+
1 → 6+

2 E2 1.2+0.2
−0.1 0.11+0.04

−0.02 58+19
−10

2+
2 → 2+

2 E2 0.26+0.02
−0.05 0.37(8)1

2+
2 → 4+

1 E2 0.09(2) −0.11(1) 0.0009(4) 0.5(2)
2+
2 → 4+

2 E2 0.472(6) 0.56(2) 0.0248(6) 13.0(3) 18(8)
2+
2 → 3+

1 E2 0.52+0.02
−0.04 0.039+0.003

−0.006 20+2
−3

2+
2 → 3+

1 M1 0.10+0.01
−0.01 0.0014(3) 0.0008(2)

2+
2 → 2+

3 E2 0.38+0.01
−0.02 0.028+0.002

−0.003 15+1
−2 2(1) or 0.02(1)

2+
2 → 0+

2 E2 0.236+0.031
−0.006 0.06(2) 0.056+0.015

−0.003 29+8
−1

2+
2 → 4+

3 E2 0.60+0.01
−0.02 0.040(2) 21(1) 5(1)

2+
2 → 2+

4 E2 −0.18(2) 0.007(1) 3.4(7)
2+
2 → 2+

5 E2 0.002+0.006
−0.003 0.0000008+0.0000120

−0.0000008 0.0004+0.0063
−0.0004 0.00007(1)

2+
2 → 2+

6 E2 0.036+0.011
−0.007 0.0003+0.0002

−0.0001 0.14+0.08
−0.05 0.27(4)

2+
2 → 0+

3 E2 −0.002(2) 0.000004+0.000012
−0.000004 0.0021+0.0063

−0.0021

2+
2 → 4+

4 E2 0.25+0.02
−0.05 0.007+0.001

−0.003 3.5+0.6
−1.4

2+
2 → 3−1 E1 0.012+0.001

−0.001 0.000022+0.000002
−0.000003 0.0019+0.0002

−0.0003

4+
2 → 4+

2 E2 −0.24+0.08
−0.04

4+
2 → 6+

1 E2 0.35+0.05
−0.03 0.21(4) 0.0094+0.0027

−0.0016 4.9+1.4
−0.9

4+
2 → 6+

2 E2 0.49(3) 0.019(2) 10(1)
4+
2 → 5+

1 E2 −0.9+0.7
−0.2 0.07+0.12

−0.03 39+60
−17 37+42

−16 or 85+104
−67

1 Calculated using the published spectroscopic quadrupole mo-
ment.

2 The value of −0.22+0.05
−0.03 eb previously quoted for this transition

in Ref. [27] was in error. The present value of −0.220+0.005
−0.003 eb

is correct.
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Iπi → Iπf Mult.
〈Ii||M(λL)||If 〉 ↑ B(λL ↓; Iπi → Iπf )

B(λL ↓; Iπi → Iπf ) [W.u.]
This work Toh et al. [33] Refs. [43, 44] This Work Ref. [28]

6+
2 → 6+

2 E2 1.3+0.2
−0.2

6+
2 → 8+

1 E2 −0.3+0.2
−0.3 0.0053+0.0094

−0.0053 2.8+4.9
−2.8

6+
2 → 8+

2 E2 0.5+0.4
−0.3 0.015+0.033

−0.012 7.8+17.3
−6.3

3+
1 → 3+

1 E2 0.13+0.08
−0.10

3+
1 → 5+

1 E2 0.9+0.4
−0.6 0.07+0.08

−0.07 39+42
−34 33+12

−11

3+
1 → 2+

3 E2 0.25+0.02
−0.04 0.013+0.002

−0.004 7+1
−2

3+
1 → 4+

2 E2 0.64+0.03
−0.07 0.046+0.004

−0.010 24+2
−5 12+6

−5 or 56+57
−32

3+
1 → 4+

3 E2 0.35+0.04
−0.07 0.013+0.004

−0.006 7+2
−3 8+4

−3 or 1.0(2)
2+
3 → 2+

3 E2 −0.24+0.02
−0.16

2+
3 → 0+

2 E2 0.32+0.02
−0.02 0.021(2) 11(1)

3−1 → 3−1 E2 0.1+1.8
−1.5

5+
1 → 6+

2 E2 −0.74+0.10
−0.08 0.042+0.011

−0.009 22+6
−5

4+
3 → 4+

3 E2 0.5+0.1
−0.2

2+
4 → 2+

4 E2 −0.12+0.03
−0.12

2+
6 → 2+

6 E2 −0.2+0.3
−0.2

4+
4 → 4+

4 E2 0.8+0.2
−0.2

0+
1 → 3−1 E3 0.12+0.02

−0.04 0.0021+0.0007
−0.0014 6+2

−4

2+
2 → 2+

3 M1 0.31+0.04
−0.03 0.019+0.005

−0.004 0.011+0.003
−0.002

2+
2 → 2+

4 M1 0.51+0.10
−0.05 0.05+0.02

−0.01 0.03+0.01
−0.01

3+
1 → 4+

2 M1 0.26(1) 0.0075(6) 0.0042(3)
4+
2 → 5+

1 M1 −0.74+0.18
−0.06 0.050+0.024

−0.008 0.028+0.014
−0.005

3+
1 → 2+

3 M1 0.33+0.02
−0.03 0.022+0.003

−0.004 0.012+0.001
−0.002

3+
1 → 4+

3 M1 0.69+0.02
−0.05 0.053+0.003

−0.008 0.030+0.002
−0.004

IV. DISCUSSION

The transition matrix elements resulting from the
present analysis agree, within errors, with those derived
from previous Coulomb excitation measurements [33, 43–
45], albeit, with better precision. The only significant
exceptions are the magnitudes of the matrix elements as-
sociated with decays from the 4+2 level, as well as that for
the 0+2 → 2+1 transition. For the latter, Toh et al., [33]
report a matrix element with a magnitude of |0.08(3)|
eb, in contrast to the present value of 0.144+0.002

−0.003 eb.
The discrepancy is likely related to the very weak exci-
tation of the 4+2 and 0+2 levels in their measurement. In
terms of the static moments, the measurements similarly
agree, although the absolute magnitude of the present
value of −0.24(2) eb for the 〈2+1 ||M(E2)||2+1 〉 diagonal
matrix element is in better agreement with the −0.25(8)
eb moment measured by Lecomte et al. [43] compared
to the −0.19(5) eb one determined in Ref. [33]. How-
ever, the measured value of 〈2+2 ||M(E2)||2+2 〉 = 0.26+0.02

−0.03
eb is lower than the 0.37(8) eb value reported by Toh
et al., [33]. Moreover, the reduced transition probabili-
ties deduced from the present matrix elements are also
in satisfactory agreement with those determined in the
inelastic neutron scattering measurements reported in
Ref. [28]. The latter are presented in the rightmost col-
umn of Table III. In general, the negative signs of the
diagonal matrix elements for the 2+1 , 4+1 , and 6+1 levels
in the ground-state band (K = 0) are consistent with
a prolate deformation when assuming axial symmetry.
The modestly collective character of 76Ge being reflected
by the large and increasing transition matrix elements for
the levels in the 2+1 −6+1 sequence is supported by the cor-

responding reduced transition probabilities B(E2) which
have values of up to ∼ 60 W.u. (see Table III). Similarly,
the positive sign as well as the magnitude deduced for
the 〈2+2 ||M(E2)||2+2 〉 diagonal matrix element for the 2+2
state in the γ band (K = 2) aligns with a prolate defor-
mation, in agreement with the observations of Ref [33].
In addition, the relatively large values determined for the
〈2+1 ||M(E2)||2+2 〉 and 〈2+2 ||M(E2)||4+2 〉 static matrix el-
ements also agree with a moderately collective structure
for the quasi-γ band and show, in the case of the former,
the increasing role of triaxiality which enables the strong
mixing between the I = 2 states in the K = 0 and K = 2
bands. This is also reflected in the non-zero value for
the B(E2; 2+2 → 2+1 )/B(E2; 2+1 → 0+1 ) ratio, a sensitive
measure of triaxiality. It varies from zero in the axially
symmetric limit to 10/7 at γ = 30◦, and is always less
than 2, the limit for a harmonic vibrator.

To further investigate the role of triaxiality and provide
insight into the nature of the low-lying states, a gener-
alized version of the triaxial rotor model with indepen-
dent inertia and electric quadrupole tensors [29, 46–49]
was applied to the newly-deduced E2 matrix elements
of 76Ge. As noted in Ref. [29], this version of the ro-
tor model is a departure from the standard use of ir-
rotational flow moments of inertia employed in, for ex-
ample, the Davydov-Filippov model [25]. Within this
generalized triaxial rotor model (GTRM), the E2 matrix
elements for states within the ground and γ bands are
determined analytically with a minimum set of assump-
tions [50] and compared with the experimental data. To
account for other excited states, such as the 0+2 and
2+3 levels and their associated matrix elements, a con-
figuration mixing calculation between two triaxial rotors
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[51] is often considered since these states require and/or
imply such mixing. However, due to the almost con-
stant Q2 and Q3 values observed for the ground and
γ bands (see Ref. [27] for details), a single triaxial ro-
tor based on a simple asymmetric top was determined
to be sufficient in describing the primary trend of the
E2 matrix elements. The three model parameters re-
quired to describe the E2 matrix elements of the triaxial
rotor include the intrinsic quadrupole deformation, Q0,
the asymmetry or triaxiality of the electric quadrupole
tensor, γ, and the asymmetry or mixing angle of the
inertia tensor, Γ. In the present study, these parame-
ters were determined analytically from the experimental
〈01||M(E2)||21〉, 〈01||M(E2)||22〉, and 〈21||M(E2)||21〉
matrix elements (cf. Ref. [47]), yielding Q0 = 1.69(1) eb,
γ = 25.4(5)◦, and Γ = −15.8(4)◦.

Figures 5 (a) and (b) compare results of these cal-
culations, designated as (GTRM), with the experimental
transition matrix elements for the yrast and γ bands.
For completeness, calculations for a symmetric rotor
(SYMM) are also included in Figures 5. Clearly, both
versions of the rotor model reproduce the ground-state
[Fig. 5 (a)] and γ intra-band [Fig. 5 (b)] transition ma-
trix elements satisfactorily. This is not unexpected, since
both models provide non-zero body projections on the
symmetry axis which manifest as K = 0 (ground-state)
and K = 2 (γ) sequences with in-band transitions gov-
erned primarily by the quadrupole deformation parame-
ter, β. Beyond this point, however, the symmetric rotor
model fails to account for the data, since it provides no
mixing between the two bands. In contrast, the asymme-
try in the electric tensor inherent in the GTRM allows
transitions between these bands. This is evidenced in
Fig. 6, where the calculated transition strengths between
the ground-state and γ bands are in good agreement with
the data. In particular, the model predicts large values
when the experimental ones are large as well as when
they are small. Overall, the data and calculations fol-
low the same trend. However, there is clear failure in
reproducing some of the matrix elements associated with
∆I = 0, 1; ∆K = 2 transitions, which have been shown
to be very sensitive to interference effects [47, 49]. Ex-
cept for the 4+2 state, another important outcome is the
ability of the GTRM calculations to reproduce the static
E2 matrix elements 〈Ii||M(E2)||Ii〉. This is presented
in Fig. 7, where the experimental 〈Ii||M(E2)||Ii〉 values
and their trends with spin are well reproduced by the
triaxial rotor model. These results indicate that the tri-
axial rotor model with independent inertia and electric
quadrupole tensors is able to predict the experimental
data with satisfactory accuracy, implying that a depar-
ture from axial symmetry is necessary in order to account
for the low-spin spectral variations in this nucleus.

The excitation characteristics of low-lying states in
76Ge were also analyzed by examining the behavior of
the three moments of inertia as a function of axial asym-
metry, γ. Following the prescription of Ref. [52], the
moments were extracted, within the framework of the tri-

axial rotor model with independent electric quadrupole
and inertia tensors, using the experimental 2+1 and 2+2
energies and a mixing strength derived from a fit to
the measured E2 matrix elements. The resulting mo-
ments, J1, J2 and J3, associated with the three prin-
cipal axes are given as a function of the triaxiality pa-
rameter, γ, in Fig. 8. For reference, data for 12 other
nuclei with well delineated γ bands and yrast energy ra-
tios R4/2 = E(4+1 )/E(2+1 ) > 2.7, another indicator of
triaxiality, are also included in this figure. These are
plotted relative to the irrotational moments of inertia,
indicated by the solid lines. Similar to the scenario es-
tablished in 110Ru [53], the extracted moments for 76Ge
also show a J1 > J2 ∼ J3 relation, as expected for a
rigid triaxial nucleus with γ ≈ 30◦. It is important to
note, however, that while the GTRM relaxes the irrota-
tional flow requirement, the relative moments of inertia
extracted on the basis of independent electric quadrupole
and inertia tensors are qualitatively consistent with irro-
tational flow. The absolute values, however, are between
the irrotational and rigid flow limits.

As noted above, the experimental matrix elements pre-
sented in Table III were used in an earlier publication [27]
to investigate the nature of triaxial deformation in 76Ge
via the rotational-invariant sum-rule technique [54–56].
This method is model independent and enables the de-
termination of the nuclear charge distribution from the
expectation values of invariant products of the collective
E2 operator via expansion over the experimental reduced
E2 matrix elements associated with the states. In partic-
ular, it relates the experimentally-determined E2 matrix
elements with the collective quadrupole deformation de-
fined in the intrinsic frame of the nucleus by constructing
a number of collective quadrupole invariants, expressed
as functions of the two charge deformation parameters,
Q and δ. To first order, the

〈
Q2
〉

and 〈cos 3δ〉 invariants
define the average measure of the magnitude of the sym-
metric quadrupole deformation and the departure from
axial symmetry (triaxiality) of a charged ellipsoid, re-
spectively. These are analogous to the elongation pa-
rameter β and the collective-model asymmetry angle γ in
the Bohr Hamiltonian [57]. The invariant

〈
Q2
〉

includes
both static and dynamic contributions to the symmetry
deformation, and is related to the root-mean-square of
the Bohr variable:

βrms =
4π

3ZR2

√
〈Q2〉 (1)

where, R = 1.2A1/3 and Z andA are the atomic and mass
numbers, respectively. Similarly, the root-mean-square of
the quadrupole asymmetry 〈cos 3δ〉 corresponds to the
asymmetry angle γ:

δrms =
1

3
arccos (〈cos 3δ〉) (2)

The asymmetry angle derived in this way provides a good
measure of the triaxiality of the nuclear shape for a state,
but is not sensitive to dynamic shape fluctuations and is,
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FIG. 5. Experimental transition matrix elements for intra-band transitions, 〈Ii||M(E2)||If 〉, within the (a) ground-state and
(b) γ bands in comparison with theoretical calculations with the generalized triaxial rotor (GTRM) and symmetric rotor models
(SYMM). Note that all these states are of positive parity.
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FIG. 6. Experimental transition matrix elements for transitions linking the ground-state and γ bands in comparison with
theoretical calculations with the generalized triaxial rotor (GTRM) and symmetric rotor (SYMM) models. The failure of the
asymmetric model to reproduce these matrix elements is evident, implying that a departure from axial symmetry is necessary
to account for the data on these low-lying transitions.

thus, incapable of distinguishing between soft and rigid
triaxiality. For the latter purpose, the sum-rule technique
allows for higher-order invariants to be constructed, al-
beit, with a larger set of matrix elements. In particu-
lar, the relative stiffness or softness in

〈
Q2
〉

and 〈cos 3δ〉
can be determined by evaluating their statistical fluctu-
ations, or variance, σ

〈
Q2
〉

and σ 〈cos 3δ〉 over a range of
reduced E2 matrix elements. Following this approach,
it was demonstrated in Ref. [27] that the E2 proper-
ties of 76Ge are strongly correlated with the macroscopic
quadrupole collective degrees of freedom. In particular,
both the ground-state and γ bands were shown to be
characterized by the same

〈
Q2
〉

values, with an average

of ∼ 0.30 e2b2, corresponding to a quadrupole deforma-

tion of βrms ≈ 0.28 over the observed spin range. The
notable similarity and overall constancy of the

〈
Q2
〉

val-
ues in both sequences confirms the presence of strong
correlations between the E2 properties and, hence, the
same deformation, as anticipated for collective behavior.
Compared to

〈
Q2
〉
, however, the 〈cos 3δ〉 invariant was

shown to exhibit a small increase with spin, although a
constant value was not ruled out within the quoted un-
certainties. The average value of 〈cos 3δ〉 ∼ 0.15 for the
ground-state band corresponds to a deformation δrms of
∼ 27◦, in line with expectations for a well-defined triax-
ial shape. Within the quoted uncertainties, the 〈cos 3δ〉
behavior for the γ band was similarly constant and aver-
aged 0.24, corresponding to an asymmetry angle, δrms, of
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FIG. 7. Comparisons of the static quadrupole moments
〈Ii||M(E2)||Ii〉 in the ground and quasi-γ bands with the gen-
eralized triaxial rotor (GTRM) and symmetric rotor models
(SYMM). Note that all these states are of positive parity.

76Ge

FIG. 8. The relative moments of inertia for all three axes as a
function of axial asymmetry, γ. The experimental values (cir-
cles) have been normalized to the irrotational values (lines)
through the 1-axis. Reproduced from Ref. [52]. Note: the
76Ge values are represented by black squares.

∼ 25◦. Hence, the quadrupole asymmetry, as determined
from the 〈cos 3δ〉 invariant, provides compelling evidence
for triaxial deformation in both the ground-state and γ
bands, in agreement with the interpretation proposed in
Ref. [24], based on the pattern observed for the energy
staggering in the latter sequence. These results, along
with the analysis of the statistical fluctuations of the in-
variants, indicate that 76Ge is triaxially deformed at low
spin with appreciable rigidity in both the β and γ degrees
of freedom. For further details on the model-independent
analysis summarized here, the interested reader is re-
ferred to Ref. [27].

In the present investigation, the comprehensive set

of experimental reduced E2 matrix elements and cor-
responding reduced transition probabilities, B(E2), are
compared to results of large-scale shell-model calcula-
tions performed with realistic interactions based on a G-
matrix renormalized Bonn-C potential. The calculations
were carried out in the jj44 model space which comprises
a 56Ni inert core and the 0f7/2, 1p3/2, 1p1/2, and 0g9/2
proton and neutron orbitals. The calculations were per-
formed using the shell-model code NuShellX [58] with
isoscalar effective charges of eπ = 1.8e and eν = 0.8e
for both the jj44b [28] and JUN45 [12] Hamiltonians.
These Hamiltonians are tuned for the f5/2pg9/2 model
space and are specifically designed to explore the role of
neutron multi particle-hole excitations from the fp shell
into the g9/2 orbital. They have been extensively used
to predict spectral properties of low-lying states in the
A ≈ 60− 70 region with notable accuracy.

A comparison of the experimental level energies with
results of the shell-model calculations using the two in-
teractions is displayed in Fig. 9. It includes levels up
to 8+ in the ground-state band and 6+ in the γ band,
as well as the non-yrast 0+2 , 2+3 , and 4+3 levels. Over-
all, both interactions account for the experimental lev-
els rather well and, except for the 8+1 , 2+3 and 4+3 levels
where the JUN45 interaction underestimates the exper-
imental data, the theoretical predictions appear system-
atically higher in excitation energy. Quantitatively, the
JUN45 interaction agrees with the data somewhat better
than the jj44b one. The former reproduces the exper-
imental data with a root-mean-square deviation of 150
keV compared to 200 keV for the latter. The correspon-
dence between the calculated and experimental energies
for the yrast states (up to 6+) is essentially the same for
both interactions, the only exception being JUN45 un-
derestimating the 8+1 state by about 147 keV, while jj44b
predicts it to be located 64 keV above the experimental
value.

Tables IV and V present the calculated reduced tran-
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FIG. 9. Comparison of the experimental levels energies with
theoretical ones computed with the jj44b and JUN45 interac-
tions. (see text for details).
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FIG. 10. The absolute quadrupole and asymmetry deformations mapped in the (
〈
Q2
〉
, δ) space for the 76Ge ground state. The

experimental values (a) are shown alongside quadrupole invariants computed with the configuration interaction shell model
using the jj44b (b) and JUN45 (c) effective interactions. Statistical fluctuations describing the measure of the relative stiffness
of the deformations are presented as standard deviations of a normal distribution.

TABLE IV. Comparison of experimental reduced transition
strengths with those obtained with shell-model calculations
using the jj44b and JUN45 effective interactions.

Iπi → Iπf
B(E2; Ii → If ) W.u.

EXP jj44b JUN45

2+
1 → 0+

1 28.9(2) 31.8 28.5
4+
1 → 2+

1 36.7(5) 42.4 38.7
6+
1 → 4+

1 50+3
−2 44.9 41.8

8+
1 → 6+

1 48+5
−8 39 39

2+
2 → 0+

1 0.83(6) 0.03 0.60
2+
2 → 2+

1 29.9+0.3
−0.8 39.9 43.6

4+
1 → 2+

2 0.5(2) 0.13 0.01
4+
2 → 2+

1 2.81+0.13
−0.08 0.06 0.40

4+
2 → 2+

2 12.9(3) 13.5 9.46
4+
2 → 4+

1 21.6(7) 10.5 4.41
3+
1 → 2+

1 0.50(6) 0.03 1.05
3+
1 → 2+

2 20+2
−3 56.5 49.3

3+
1 → 4+

1 15+5
−3 24.7 27.6

0+
2 → 2+

1 3.8+0.1
−0.2 0.23 8.62

0+
2 → 2+

2 29+8
−1 0.45 0.35

2+
3 → 0+

1 0.39(4) 0.24 0.74
2+
3 → 2+

1 1.7+0.3
−0.2 0.000003 0.24

2+
3 → 2+

2 15+1
−2 0.07 0.73

2+
3 → 3+

1 7+1
−2 0.18 0.87

6+
1 → 4+

2 4.9+1.4
−0.9 0.02 0.75

sition probabilities, B(E2), as well as the spectroscopic
quadrupole moments, Qs, computed with the two effec-
tive interactions. These are compared with the exper-
imental values deduced from the measured matrix ele-
ments. On the whole, the calculations provide a suffi-
ciently good reproduction of the measured strengths for
both the ground-state and γ-band transitions. In partic-
ular, the 2+1 → 0+1 and 4+1 → 2+1 strengths are calculated
almost exactly by the JUN45 interaction, with the corre-
sponding values predicted by the jj44b calculations being
only a few units above the experimental values. Similarly,
the measured strengths of 50(2) and 48+15

−20 W.u. for the

6+1 → 4+1 and 8+1 → 6+1 transitions, respectively, are well

TABLE V. Theoretical spectroscopic quadrupole moments,
Qs(I), in comparison with the experimental values deduced
from the measured diagonal matrix elements.

Iπ 〈I||M(E2)||I〉 Qs(I) [eb]
EXP jj44b JUN45

2+
1 −0.24(2) −0.18(2) −0.19 +0.030

2+
2 +0.26+0.02

−0.05 +0.20+0.02
−0.04 +0.20 −0.007

4+
1 −0.26+0.01

−0.07 −0.197+0.008
−0.053 −0.18 −0.008

4+
2 −0.24+0.08

−0.04 −0.18+0.06
−0.03 −0.51 −0.59

6+
1 −0.23+0.09

−0.04 −0.16+0.06
−0.03 −0.15 −0.15

reproduced by both interactions, although, in this case,
the jj44b computation performs slightly better than the
JUN45 one. Relative to the 0.98(2) W.u. strength for
the 2+2 → 0+1 transition, the one for the 2+2 → 2+1 transi-
tion is experimentally determined to be quite large and
both interactions account for the observation. However,
the JUN45 interaction provides a better agreement for
the 2+2 → 0+1 strength, which is underestimated by the
jj44b computation. Likewise, the measured strength of
0.39(4) W.u. for the 2+3 → 0+1 transition is well repro-
duced by the JUN45 interaction. Thus, except for the
2+3 → 2+1 strength, which is significantly underestimated
by the jj44b computation, the measured strengths are
accounted for by the present configuration-interaction
computations. These results signify that the choice of
effective charges used in these calculations are appropri-
ate for this nucleus, a conclusion that is further rein-
forced by the remarkable agreement between the mea-
sured spectroscopic quadrupole moments and those com-
puted within the jj44b space (Table V). Here, while the
JUN45 interaction flips the signs and considerably under-
estimates the magnitudes of the 2+1 and 2+2 quadrupole
moments, thereby predicting oblate deformation (pos-
itive quadrupole moment), the jj44b interaction accu-
rately predicts both the signs and magnitudes (within
errors) of the measured moments, consistent with a po-
tential localized within the prolate sector.

The spectroscopic quadrupole moments also inform on
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the triaxiality of the nuclear shape. For axially asymmet-
ric nuclei, the magnitude of the spectroscopic quadrupole
moment determined in the laboratory frame using the
diagonal matrix elements, Qs, is often a fraction of the
intrinsic quadrupole moment derived from the reduced
transition matrix elements (under the assumption of an
axially symmetric rigid rotor), Q0. In the present case,
the experimental Qs(2

+
1 ) value is much smaller than the

axially symmetric Q0(2+1 ) moment3, as expected for an
asymmetrically deformed shape. Similarly, the shell-
model computed absolute ratio, |Qs/Q0| = 0.85, for the
2+1 state, determined within the jj44b space, is in sat-
isfactory agreement with the experimentally determined
value of 0.86(3). This result further reinforces the validity
of these calculations and highlights the role of triaxiality
in the ground state. Note that the corresponding ratio
determined using the JUN45 interaction is at variance
with the experimental data.

To gain further insight into the nature of triaxial de-
formation in 76Ge, the reduced E2 matrix elements com-
puted from the shell-model calculations with the two in-
teractions were used to calculate the two rotational in-
variants associated with the absolute quadrupole defor-
mation,

〈
Q2
〉
, and the degree of asymmetry, 〈cos 3δ〉, as

well as their respective degrees of softness, σ
〈
Q2
〉

and

σ 〈cos 3δ〉 for the 0+1 ground state. These calculations
were performed using a method similar to that presented
in Ref. [59]. It should be pointed out that an alterna-
tive method of evaluating these quadrupole invariants
has recently been presented in Ref. [60]. While this lat-
ter method provides an almost exact solution, the results
are effectively similar to the ones derived here. To ensure
sufficiently good convergence, E2 transition and diagonal
matrix elements linking the 0+1 level with the 2+ states up
to the 2+6 level were used. A comparison of the resulting
invariants with those determined from the experimental
matrix elements is displayed in Fig. 10. These are pre-
sented in the (

〈
Q2
〉
, δ) space, where the statistical fluc-

tuations (that provide a measure of the stiffness of the
deformation) are treated as standard deviations within a
normal distribution. It can be seen that, although the
jj44b calculations [Fig. 10 (b)] provide a slightly better
quantitative measure of the absolute deformation and a
narrower spread in the

〈
Q2
〉

invariant compared to the
JUN45 computation [Fig. 10 (c)], the two interactions
qualitatively reproduce both the absolute magnitudes of
the quadrupole deformation (with an effective value of
about 0.29 confined within the prolate sector) and the
degree of asymmetry. For both interactions, the fluctua-
tion in the asymmetry, with an effective value of ∼ 27◦,
is computed with a relatively narrow spread (∼ 4◦). This
compares well with the experimentally deduced asymme-
try and spread of ∼ 29◦ and ∼ 2◦, respectively, and in-

3 Calculated using the rotational model expression: Q0(2
+
1 ) =

2
7

√
16π ·B(E2; 2+1 → 0+1 )/5

FIG. 11. Configuration interaction shell-model deformation
parameters in the (

〈
Q2
〉
, δ) deformation plane computed with

the jj44b effective interaction for the ground states of 76Ge
and 76Se. The black dot represent the root-mean-square

〈
Q2
〉

and δ value in each nucleus.

FIG. 12. Configuration interaction shell-model deformation
parameters in the (

〈
Q2
〉
, δ) deformation plane computed with

the JUN45 effective interaction for the ground states of 76Ge
and 76Se. The black dot represent the root-mean-square

〈
Q2
〉

and δ value in each nucleus.

dicates that the ground state of 76Ge is characterized by
a sizable, stiff triaxial deformation. The results further
suggest that the effective charges and the two interactions
employed in the present shell-model calculations are able
to reproduce well the underlying structure of 76Ge, and
its spectroscopic properties.

Finally, to explore the implications of these results for
theoretical efforts aiming to calculate nuclear matrix el-
ements relevant for 0νββ decay, the present comparisons
were extended to 76Se, the daughter in the 76Ge dou-
ble β decay process. Similar to 76Ge, the configuration
interaction shell-model calculations for 76Se were per-
formed within the same jj44 model space consisting of
the 0f7/2, 1p3/2, 1p1/2, and 0g9/2 orbitals for protons and
neutrons using the shell model code NuShellX with the
JUN45 and jj44b Hamiltonians. In these calculations, an
isoscalar effective charge of ep + en = 2.6 was chosen to
reproduce the experimental B(E2; 2+1 → 0+1 ) value for
the jj44b Hamiltonian. More details about these calcula-
tions can be found in Ref. [61], where they were originally
presented. Figures 11 and 12 provide contour plots in the
(
〈
Q2
〉
, δ) deformation plane generated from E2 matrix

elements determined from the shell-model calculations
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with the two interactions. These are displayed along-
side the configuration interaction calculations for 76Ge.
A clear distinction between the ground-state structures
of 76Ge and 76Se is seen in both calculations. While a
relatively rigid triaxial configuration is evident for 76Ge
in the jj44b calculations, the computed ground state of
76Se supports a soft triaxial minimum, with a dispersion
essentially covering the entire oblate and prolate sectors.
In this space, the ground state of 76Se is characterized by
a larger, but less well-defined effective quadrupole defor-
mation than 76Ge, in agreement with experimental obser-
vations of triaxiality previously reported in Ref. [62]. A
similar conclusion can be drawn from the JUN45 compu-
tation, except, here the effective asymmetry of 76Se (with
a dispersion of ∼ 40◦ consistent with a soft triaxiality)
is distinctively localized within the oblate sector. It is
noteworthy that the dispersion values in the asymmetry
of 78Se for JUN45 and jj44b are roughly in agreement
with those computed using the same interactions with
the formalism of Ref. [60]. Therefore, these results col-
lectively indicate that the ground states of 76Ge and 76Se
are characterized by sizable quadrupole and asymmetry
deformations, albeit with markedly different degrees of
triaxial rigidity. Consequently, these observations impact
the nuclear matrix elements relevant for 0νββ decay: the
various theoretical approaches will have to reproduce the
parent 76Ge as a rigid triaxial rotor while also allowing
for soft triaxiality in the 76Se daughter.

V. CONCLUSIONS

An extensive study of the deformation characteristics
of the low-lying states of 76Ge has been undertaken fol-
lowing a multistep Coulomb excitation measurement per-
formed using the γ-ray tracking array, GRETINA, and
the CHICO2 particle detector. A comprehensive set of

reduced E2 transition and static matrix elements was
deduced using the semi-classical coupled channel code
GOSIA. These were compared with results of theoreti-
cal calculations carried out within the framework of the
generalized triaxial rotor model, which provided an ac-
curate reproduction of the experimental matrix elements
and, herewith, support the proposed triaxial interpre-
tation. In addition, the low spin and, in particular,
the degree of softness of the asymmetry deformation
in 76Ge and 76Se was investigated using the rotational-
invariant sum-rule technique with configuration interac-
tion shell-model wave functions computed with the jj44b
and JUN45 effective interactions. The calculated invari-
ants indicate a near-maximal stiff triaxial deformation
in 76Ge and a predominantly-soft triaxial potential for
76Se, in agreement with the conclusions of earlier works
of Refs. [27, 62]. These results are important for calcu-
lations aiming to determine the nuclear matrix elements
relevant for 0νββ decay.
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Phys. Rev. C 83, 034320 (2011).

[3] M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302
(2013).

[4] J. M. Yao and J. Engel, Phys. Rev. C 94, 014306 (2016).
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