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Fission data are essential inputs to reaction networks involved in nucleosynthesis simulations and
nuclear forensics. In such applications as well as in the description of multi-chance fission, the
characteristics of fission for odd-mass nuclei are just as important as those for even-even nuclei. The
fission theories that aim at explicitly describing fission dynamics are typically based on some variant
of the nuclear mean-field theory. In such cases, the treatment of systems with an odd number of
particles is markedly more involved, both formally and computationally. In this article, we use
the blocking prescription of the Hartree-Fock-Bogoliubov theory with Skyrme energy functionals
to compute the deformation properties of odd-mass uranium isotopes. We show that the resulting
fission fragment distributions depend quite significantly on the spin of the odd neutron. By direct
calculation of the spin distribution of the fissioning nucleus, we propose a methodology to rigorously
predict the charge and mass distributions in odd-mass nuclei.

I. INTRODUCTION

The theory of nuclear fission has a long and rich history
[1] and yet, it is still undergoing a spectacular renaissance
[2]. Thanks to the continuous increase in computing ca-
pabilities, microscopic methods based on nuclear density
functional theory (DFT) have become very competitive
with the phenomenological models that were prevalent
until now [3]. The application of these techniques has
given truly novel insights into the fission process, such
as unveiling the role of shell effects in setting the dom-
inant fission modes [4], analyzing the dissipative nature
of the fission process [5–8], and predicting the spin of
fission fragments [9–11]. These recent developments are
all the more important as simultaneous progress in simu-
lations of nucleosynthesis have created a strong demand
for predictive and complete models of fission applicable
across the entire chart of isotopes [12–14]. A more pre-
dictive model of fission may also be key to understanding
the nuclear reactor anti-neutrino anomaly [15, 16]. Such
applications make it especially important to build com-
prehensive models of fission that can describe the entire
chain of events occuring in the process, from the forma-
tion of the compound nucleus to the β decay and delayed
emission of the fission products [17–19].

Until now, the majority of fission studies, whether
based on DFT or phenomenological mean-field models,
have been restricted to even-even fissioning nuclei. There
are a few notable exceptions: in Refs. [20, 21], fission
barrier heights of 235U and 239Pu were computed in the
Skyrme Hartree-Fock theory with pairing correlations
treated at the BCS approximation, including a full treat-
ment of the time-odd terms for several different con-
figurations of the odd neutron. In Ref. [22], the one-
dimensional fission path and spontaneous fission half-life
of 235U for two different values of the spin projection
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K = 1/2 and K = 7/2 were computed at the Hartree-
Fock-Bogoliubov (HFB) approximation with the Gogny
force. This analysis was extended in Ref. [23], where
similar calculations were performed for the uranium and
plutonium isotopic chains. Even though the details of
these studies differ, they all highlighted the fact that
fission barrier heights, and by extension, the potential
energy surface, vary substantially with the configuration
occupied by the odd particle. While this has an obvious
impact on calculated spontaneous fission half-lives, which
are extremely sensitive to the shape and height of the fis-
sion barrier, one should also expect an effect on fission
fragment distributions. Moreover, the spin dependence
of the potential energy surface in odd-mass nuclei has an
interesting consequence for neutron-induced fission since
upon formation the spin distribution of the compound
nucleus acquires a sizable spread. The characteristics of
the entrance channel should therefore have a visible im-
pact on the distribution of fission fragments.

The goal of this paper is to outline a theoretical
framework based on the HFB theory with blocking and
the time-dependent generator coordinate method with
the Gaussian overlap approximation (TDGCM+GOA)
to compute the charge and mass distributions of fission
fragments for an odd-mass compound nucleus. We con-
firm the important impact of the blocked configurations
on nuclear deformation properties. By computing two-
dimensional potential energy surfaces, we give the first
microscopic calculation of fission fragment distributions
for different blocked configurations. Finally, we use the
coupled channel reaction formalism to include informa-
tion about the entrance channel in the determination of
the fission fragment distributions.

Section II gives an overview of the theoretical frame-
work. Most of it is well known and presented in textbooks
[24]. The one exception is the generalization of the for-
mula for the collective inertia to the case of an odd nu-
cleus. In Section III, we summarize the results of static
HFB calculations, both one-dimensional fission paths and
two-dimensional potential energy surfaces. Section IV
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discusses the methodology adopted to incorporate cal-
culated spin distributions of the compound nucleus into
predictions of fission fragment distributions and shows
results for uranium isotopes.

II. THEORETICAL FRAMEWORK

In this article, we focus on calculations of fission prod-
uct yields from neutron-induced fission. After absorb-
ing the incident neutron, the resulting compound nucleus
can decay through different channels, either by emitting
particles (primarily neutrons or γ rays) or by fissioning.
From a theoretical point of view, fission is described as
a large-amplitude collective motion that drives the nu-
cleus from a near-spherical shape to the scission point.
Typically each fission event leads to a pair of fission frag-
ments; ternary fission will not be considered here.We dis-
tinguish between the yields at two different times fol-
lowing Ref. [25, 26]. The fission fragment charge and
mass distributions that one would obtain immediately
after scission will be referred to as primary fission frag-
ment distributions. The term primary fission fragments
means that the nuclear species formed have yet to emit
any prompt particles. One can define primary charge
Y (Z), mass Y (A), or isotopic Y (Z,A) distributions.

The prompt emission of neutrons and γ rays from the
fission fragments changes the relative abundance of each
isotope. At the end of this prompt deexcitation phase,
which typically takes of the order of 10−16 s after scis-
sion, the new distributions of fission fragments are called
the independent yields. Again, one distinguishes between
independent charge Yind.(Z), mass Yind.(A), and isotopic
Yind.(Z,A) yields.

A. Treatment of the Entrance Channel

For the heavy systems we are addressing in this work,
the number of degrees of freedom involved in a neutron-
induced reaction is very large, as attested by the high
level density at the relevant excitation energies (typically
of the order of 106 MeV−1 around the neutron sepa-
ration energy). In this regime, a statistical description
of the process is known to work well [27–31], and the
states populated in the reaction are described in terms
of compound nucleus formation. In particular, Bohr’s
hypothesis is usually applied, according to which the
way a compound nucleus decays is independent of how
it was formed. Aside from the explicit consideration of
small deviations from this hypothesis in terms of the
so-called width fluctuations that correlate entrance and
exit channels, there is an important caveat: the energy,
angular momentum, and parity of the entrance channel
are exactly preserved in the exit channel. Since the de-
cay branching ratios corresponding to the different decay
modes depend strongly on these conserved quantities, it
is essential to predict the population of the compound

nucleus states in terms of the energy, spin, and parity
distributions as the neutron is absorbed.

The absorption process is described within a direct re-
action scheme in terms of a coupled-channels reaction
formalism. Under the assumption that the target nucleus
is described by a rigid rotor Hamiltonian (see, e.g., [32]),
the incident neutron is coupled to the intrinsic structure
of the target nucleus through the imaginary part of the
optical potential, as well as through the direct excitation
of the members of the ground-state rotational band. The
wavefunction of the composite system formed by the in-
cident neutron and the target is expanded in terms of the
states ΦIn(ξ) of the target ground-state rotational band
with spin In,

ΨJM (r, ξ) =
∑
n

∑
jnln

4π

knr
φn(r)

[
χjnln(r̂, σ)ΦIn(ξ)

]J
M
,

(1)
where r is the neutron-target relative coordinate and ξ
denotes the set of coordinates associated with the target.
We note n ≡ {n; JMjnln} where n indexes the compo-
nents of its (J,M) channel, J and M are the total spin
and its projection, jn and ln are the total and orbital
angular momentum of the neutron, and kn its wave num-
ber. The radial part of the channel wavefunction is noted
φn(r) while χjnln(r̂, σ) refers to its angular and spin part
(σ is the neutron spin). The square brackets indicate an-
gular momentum coupling of jn and In to total spin and
projection J,M . The set of coupled differential equa-
tions obeyed by the channel wavefunctions φn(r) can be
obtained by projecting the many-body Schrödinger equa-
tion on the target rotational states [33],

~2

2m

(
d2

dr2
+

ln(ln + 1)

r2
+ U(r)− k2

n

)
φn(r)

= −
∑
m6=n

Vnm(r;β)φm(r), (2)

where U(r) is a complex optical potential. For a rigid ro-
tor, the coupling potentials Vnm(r;β) depend on the de-
formation parameters β ≡ {β2, β4, β6} of the mean-field
potential in the target. Since we are using the coupling
scheme developed in [34] restricted to transitions within
the ground state rotational band, thus neglecting transi-
tions between bands, we will only consider here deforma-
tions with even multipolarity. The coupling potentials
thus read

Vnm(r;β) =
∑
λ

vλ(r;βλ)Bλ(n,m)Aλ(n,m), (3)

where Bλ(n,m) and Aλ(n,m) are geometrical coefficients
depending on the spins of the states n and m (see [33]),

Aλ(n,m) =
1√
4π

(−1)J−
1
2−Im+jn+jm+

1
2 (lm−ln)

×
√

(2jm + 1)(2jn + 1) 〈jn jm − 1
2

1
2 |λ 0〉

×W (jnInjmIm; Jλ), (4)
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Bλ(n,m) =
√

(2In + 1)〈Im λM 0|InM〉. (5)

The functions vλ(r;βλ) are the coefficients of the mul-
tipole expansion of a deformed Woods-Saxon potential
with standard real and imaginary surface terms, as well
as a real spin-orbit term; for details, see [34]. The ge-
ometry and energy dependence of this potential, as well
as the deformation parameters β, were fitted to repro-
duce neutron elastic scattering and total reaction cross
sections in actinides [34].

The set of coupled differential equations (2) is solved
for the neutron wavefunctions φn(r). The phase shifts
δlJ corresponding to the elastic wavefunction are then
obtained by matching the components φ0(r) of the par-
tial wave expansion of the elastic scattering wave at a
large enough radius R to the spherical Bessel (jl(r)) and
Neumann (yl(r)) functions,

φ0(R) = cos(δlJ)jl(R) + sin(δlJ)yl(R). (6)

The radius R should be larger than the range of the nu-
clear interaction between the target and the neutron, in
our numerical calculations we have used R = 20 fm.

The scattering matrix Sl,Jπ = e2iδlJ for each spin J
and parity π, and partial wave l, can then be used to de-
termine the transmission coefficient TJπ associated with
the formation of the compound nucleus according to the
expression

TJπ = 1−
∑
l

|Sl,Jπ|2 . (7)

In Sec. IV A this transmission coefficient will be taken as
the probability Pth.(J

π) of having the compound nucleus
in a state with spin J and parity π.

B. Large-Amplitude Collective Motion for Odd
Nuclei

One of the main goals of this work is to determine the
primary fission fragment distributions Y (Z) and Y (A)
of an odd-mass fissioning nucleus. To this end, we work
within the global framework of the energy density func-
tional (EDF) theory [24]. Fission fragment distributions
are computed in a three-step process: (i) the potential en-
ergy surface (PES) of the nucleus is computed in a small
space of collective variables within the static HFB the-
ory; (ii) the time-evolution of a collective wavepacket on
this PES is simulated with the time-dependent generator
coordinate method under the Gaussian overlap approxi-
mation [35]; (iii) the actual fission fragment charge and
mass distributions are extracted by computing the flux
of the collective wave packet through the scission line or
surface. This approach was first proposed in the 1980s at
CEA Bruyères-le-Châtel [36–38] with early applications
in the 2000s [39–41] and it is presented in great detail
in Refs. [42–45]. In the following, we only describe the
extension of this formalism to odd-mass nuclei.

1. Blocking Prescription

Nuclei with odd numbers of particles are computed at
the HFB approximation with the blocking prescription
[46–48]. The ansatz for the many-body state thus reads

|Φ〉 = β†α
∏
k

βk |0〉 , (8)

where |0〉 is the particle vacuum and βk are the quasi-
particle annihilation operators as determined by the Bo-
goliubov transformation. In practice, the HFB equation
with blocking is solved by substituting the column vec-
tors (Uα, Vα) ↔ (V ∗α , U

∗
α) for the quasiparticle α one

wishes to block [24, 46]. This procedure is performed
at each iteration of the self-consistent loop. The density
matrix and pairing tensor in configuration space become

ρB,αij =
(
V ∗V T

)
ij

+ UiαU
∗
jα − V ∗iαVjα, (9a)

κB,αij =
(
V ∗UT

)
ij

+ UiαV
∗
jα − V ∗iαUjα. (9b)

The exact implementation of the blocking prescription
breaks time-reversal symmetry and depends on the self-
consistent symmetries [49]. For this reason, one often em-
ploys the equal filling approximation (EFA) where time-
reversal symmetry is explicitly enforced [50]. Detailed
comparisons of the energies of blocking configurations
near the Fermi level showed that the error incurred when
using the EFA does not exceed a few keV [48, 49]. As
demonstrated in Ref. [50], the EFA can be thought of as
a special statistical mixture of one-quasiparticle states.
The density matrices are thus modified to read as

ρEFA,α
ij =

(
V ∗V T

)
ij

+
1

2

(
UiαU

∗
jα − V ∗iαVjα

+ UiᾱU
∗
jᾱ − V ∗iᾱVjᾱ

)
, (10a)

κEFA,α
ij =

(
V ∗UT

)
ij

+
1

2

(
UiαV

∗
jα − V ∗iαUjα

+ UiᾱV
∗
jᾱ − V ∗iᾱUjᾱ

)
. (10b)

In this work, the selection of quasiparticle states
to block follows the automated procedure outlined in
Ref. [51]. From the HFB solution in the even-even neigh-
bor, the code identifies an initial set B of blocking candi-
dates α within a small energy window around the Fermi
energy by imposing the condition |Eα−E0| ≤ ∆E, where
E0 is the energy of the lowest quasiparticle and ∆E is
the energy window. This procedure is applied for each Ω-
block. At each iteration n, the code computes the overlap
Oαα′ between the blocked state α ≡ α(n−1) at the pre-
vious iteration and each quasiparticle state in the same
Ω-block, Oαα′ =

∑
i

(
UiαUiα′ + ViαViα′

)
. The quasipar-

ticle α′ with the maximum overlap defines the updated
version of α at iteration n, α(n) = α′.

Applying this blocking prescription at each point q
of the PES gives a set of Nq blocking potential energies,
Sq ≡ {Vα(q)}α=1,...,Nq

. Note that the number Nq of such
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configurations is not the same everywhere on the PES,
since the blocking criterion is based on a fixed energy
window ∆E. Similarly, the numbers of blocked states
NΩ with Ω = 1/2, Ω = 3/2, . . . , within a given set Sq
are not identical. Often the number of blocked states is
such that N1/2 ≥ N3/2 ≥ . . . .

2. Time-Dependent Generator Coordinate Method

In this work, we assume that the large-amplitude col-
lective dynamics of the fissioning nucleus can be ap-
proximated by the time-dependent generator coordinate
method (TDGCM) under the Gaussian overlap approx-
imation (GOA). Let us recall that the fundamental
hypothesis of this method is that the quantum state
|GCM(t)〉 that describes the fissioning system is a time-
dependent linear superposition of static states at different
deformations

|GCM(t)〉 =

∫
dq |Φ(q)〉 f(q, t), (11)

where f is a complex-valued function that defines the
superposition at each time t and |Φ(q)〉 is a constrained
HFB state. Using the additional hypotheses of the GOA,
the TDGCM+GOA equation of motion reads

i~
∂g(q, t)

∂t
= [Hcoll.(q) + iAcoll.(q)] g(q, t), (12)

where the complex-valued function g(q, t), equivalent to
f(q, t), contains all the information about the dynamics
of the system and Acoll.(q) is a real-valued field that is
added to avoid reflection on the boundaries of the defor-
mation domain [52]. The collective Hamiltonian Hcoll.(q)
is a local linear operator acting on g(q, t),

Hcoll.(q) ≡ − ~2

2γ1/2(q)

∑
µν

∂

∂qµ
γ1/2(q)Bµν(q)

∂

∂qν
+V (q),

(13)
with Bµν(q) the components of the collective inertia ten-
sor, V (q) the potential energy, which is the sum of the
HFB energy and some zero-point energy corrections, and
γ is the GCM metric [53].

Equation (12) is derived from the Hill-Wheeler-Griffin
equation of the GCM after applying the GOA [35]. The
derivation does require that the generator states |Φ(q)〉
are pure states with the structure of quasiparticle vac-
uum [24]. In the EFA, this is not satisfied since the
system is in fact described by a (very specific) statis-
tical density operator. However, it is possible to com-
pute every ingredient of Eq.(13) (potential energy, zero-
point energy corrections, and collective inertia) for sta-
tistical ensembles through the extension of the adiabatic
time-dependent Hartree-Fock-Bogoliubov (ATDHFB) at
finite temperature. Therefore, we adopt the pragmatic
point of view of using Eq. (12) as the equation of mo-
tion with inputs determined from the finite-temperature

ATDHFB theory – with statistical occupations given by
the EFA prescription. Since the (TD)GCM formalism
has not been extended to finite temperature yet, this is a
reasonable compromise that has already been applied to
study the structure of the collective inertia mass tensor
as a function of temperature [54], thermal spontaneous
fission rates [55], the dependency of primary fission frag-
ment distributions on excitation energy [56], and to esti-
mate dissipation effects in fission fragment distributions
[57]. In spite of these examples, the full derivation of the
ATDHFB collective inertia tensor Bij(q) at finite tem-
perature has never been presented. The special case of
the ATDHFB+BCS inertia was derived in Refs. [58, 59]
by replacing expectation values of observables in the zero-
temperature cranking model formula by ensemble aver-
ages and the full, correct ATDHFB result was given with-
out proof in Ref. [54]. Therefore, we demonstrate below
how to obtain the formula for the finite-temperature AT-
DHFB collective inertia tensor.

a. ATDHFB equations The starting point of the
derivation is the Liouville equation for the density op-
erator D [60]. Applying the statistical Wick theorem
yields the finite-temperature time-dependent Hartree-
Fock-Bogoliubov (TDHFB) equation, which is formally
equivalent to the zero-temperature TDHFB equation,
i~Ṙ = [H,R] [61]. Following the ideas of ATDHF [62],
we then write the TDHFB generalized density R(t) =
eiχ(t)R(0)(t)e−iχ(t), where χ(t) is a quadratic form of
single-particle creation and annihilation operators [61].
Assuming the operator χ(t) is small, one can make a
Taylor expansion of the TDHFB generalized density ma-
trix, R(t) = R(0)(t) + R(1)(t) + R(2)(t), for example:
R(1) = i

[
χ(t),R(0)(t)

]
. Plugging these two Taylor ex-

pansions into the finite-temperature TDHFB equation
and separating contributions that are time-even from the
ones that are time-odd gives a set of coupled equations
that are formally analogous to the zero-temperature AT-
DHFB equations,

i~Ṙ(0) = [H(0),R(1)] + [H(1),R(0)], (14a)

i~Ṙ(1) = [H(0),R(0)] + [H(0),R(2)]

+ [H(1),R(1)] + [H(2),R(0)]. (14b)

In Eqs. (14a-14b), the matrices H(n) represent the finite-
temperature HFB (FT-HFB) matrices at order n, i.e.,
they depend on the order-n density matrices ρ(n)(t) and
κ(n)(t) that enter the generalized densities R(n)(t),

R(0)(t) =

(
ρ(0) κ(0)

−κ(0)∗ 1− ρ(0)∗

)
, (15)

R(n)(t) =

(
ρ(n) κ(n)

−κ(n)∗ −ρ(n)∗

)
. (16)

We now introduce the TDHFB quasiparticle basis,
which diagonalizes at each time the zero-order, finite-
temperature R(0)(t) density matrix. In that basis,
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R(0)(t) takes the form

R̃(0)(t) =

(
f(t) 0

0 1− f(t)

)
, (17)

with fkl(t) the statistical occupation factors. In the fol-
lowing, the tilde indicates that a matrix is written in the
TDHFB quasiparticle basis.

b. Energy to Second Order The next step is to ob-
tain a closed-form expression for the total energy of the
system that only depends on the operator χ(t). This is
achieved by first expanding the TDHFB energy in terms
of the matrices R(n). One obtains

E = EHFB +
1

2
tr(H(0)R(2)) +

1

4
tr(H(1)R(1)). (18)

We can then use the commutators that relate each of the
R(n) to χ(t) to obtain an expression of E as a function of
χ(t) only. Even when working in the TDHFB quasipar-
ticle basis, the full calculation is rather lengthy because
of the term proportional to H(1), which depends on R(1)

indirectly through its components ρ(1) and κ(1) and corre-
sponds to the off-diagonal terms of the FT-QRPA matrix
[60]. Since we work at the cranking approximation, we
neglect it. It is then relatively straightforward to show
that the total energy reduces to

E = EHFB +
1

4
~χ†M~χ, (19)

where ~χ is the linearized version of the matrix of the
operator χ in the TDHFB quasiparticle basis,

χ̃ =

(
χ̃11 χ̃12

χ̃21 χ̃22

)
⇒ ~χ =

 χ̃11

χ̃12

χ̃21

χ̃22

 , (20)

andM is the FT-QRPA matrix in the cranking approxi-
mation. In that same linearized TDHFB basis, it can be
written M = EF with

E =

 (Ek−El)
(Ek+El)

−(Ek+El)
−(Ek−El)


and

F =

 −(fk−fl)
(1−fk−fl)

−(1−fk−fl)
(fk−fl)

 .

In these last two expressions, terms like Ek − El stand
for the matrix Ẽ with elements Ẽkl = Ek − El with Ek
the quasiparticle energies.

c. Adiabatic Approximation Starting from
Eqs.(14a14b) and continuing to work in the TDHFB
quasiparticle basis, one can show that

~ ~̇R(0) = EF~χ =M~χ, (21)

where ~̇R(0) is, again, the linearized matrix of the operator
Ṙ(0) in the TDHFB basis. The total energy thus reads

E = EHFB +
~2

4
~̇R(0)†M−1 ~̇R(0). (22)

As is customary in practical applications of the AT-
DHF or ATDHFB theory [62], we then introduce a
(small) set of collective variables q ≡ (q1, . . . , qN ) and as-
sume that the densities R(0)(t) vary in time only through
changes in these collective variables,

Ṙ(0) =
∑
µ

q̇µ
∂R(0)

∂qµ
. (23)

In physics terms, this statement is the equivalent of the
Born-Oppenheimer approximation: the nuclear dynam-
ics is confined to a collective space. Additionally, we
approximate the solutions of the finite-temperature HFB
equation constrained on the expectation value q of the
collective variables by the static densities R(0). In other
words, the collective space that contains the nuclear dy-
namics is precalculated as a series of FT-HFB calcula-
tions. Let us emphasize here that these approximations
are exactly the same as the ones underpinning the zero-
temperature expressions of the ATDHFB collective iner-
tia that are commonly used in the literature.

d. Local Approximation The final stage of the
derivation consists in expressing ∂R(0)

/
∂qµ locally at

point q. Since we have assumed that the density R(0)

is the solution of the FT-HFB equation with constraints
q, it satisfies

[
H(0) −

∑
µ λµQ̂µ,R(0)

]
= 0 with λµ the

Lagrange parameter associated with the constraint oper-
ator Q̂µ. We collect all such parameters into the vector
λ = (λ1, . . . , λN ). We then express that this equation
must be satisfied for small variations of the density, that
is, when

R(0) → R(0) +R(1),

H(0) → H(0) +H(1),

λµ → λµ + δλµ.

Introducing these expansions into the FT-HFB equation
with constraints and taking advantage of the quasipar-
ticle basis, some simple algebra leads to the following

relation: ~R(1) = −δλ · E−1F~Q where ~Q ≡ ( ~Q1, . . . , ~QN )

is a vector containing the linearized matrix ~Qµ of the
constraint operator in the TDHFB quasiparticle basis.
To clarify, the condensed notation stands for

~R(1) = −δλ · E−1F~Q

= −
∑
µ

δλµ
∑
kl

[ fk − fl
Ek − El

Q̃11
µ;kl −

1− fk − fl
Ek + El

Q̃12
µ;kl

− 1− fk − fl
Ek + El

Q̃21
µ;kl +

fk − fl
Ek − El

Q̃22
µ;kl

]
.

We apply the chain rule to write

∂R(0)

∂qµ
=
∑
α

δR(0)

δλα

δλα
δqµ

. (24)
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At this point, we identify the small variations of the gen-
eralized density with the first-order variations R(1), i.e.,
δR(0) = R(1). We then obtain the variations δλa simply
by recalling that in the TDHFB quasiparticle basis,

qµ =
1

2
tr(Qµ) +

1

2
tr(QµR(0))⇒ δqµ =

1

2
tr(QµR(1)).

(25)

The variation can also be written δqµ = 1
2
~Q†µ ~R(1). Using

the previous relationship between ~R(1) and ~Q, we can
find that

δλν = 2
∑
α

[
M
]−1

να
δqα (26)

with the moments M(K) ≡ ~Q†E−KF~Q, that is,

M(K)
µν =

∑
kl

[
Q̃11∗
µ;kl

fl − fk
(Ek − El)K

Q̃11
ν;kl + Q̃12∗

µ;kl

1− fl − fk
(Ek + El)K

Q̃12
ν;kl

+ Q̃21∗
µ;kl

1− fl − fk
(Ek + El)K

Q̃21
ν;kl + Q̃22∗

µ;kl

fl − fk
(Ek − El)K

Q̃22
ν;kl

]
.

The time variations of R(0) thus become

~̇R(0) = 2
∑
αβ

q̇β
[
M(1)

]−1

αβ
E−1F ~Qβ (27)

leading to the total energy taking the form

E2 =
1

2

∑
µν

Mµν q̇µq̇ν (28)

with

M = 2~2
[
M(1)

]−1
M(3)

[
M(1)

]−1
. (29)

Apart from a factor of 2, this formula is the same as the
zero-temperature result. The main difference lies in the

definition of the moments M
(K)
µν , which depend explicitly

on the Fermi-Dirac statistical occupations. In the case of
the EFA, we recall that fk = 0 except fα = fᾱ = 1/2.

III. STATIC POTENTIAL ENERGY SURFACES

As mentioned earlier, we assume in this work that axial
and time-reversal symmetries are conserved. In addition
to accelerating calculations substantially, this hypothe-
sis greatly facilitates the implementation of the blocking
prescription as discussed in Section II B 1. Enforcing ax-
ial symmetry has two main consequences: (i) K-mixing
between states is not possible and (ii) the height of the
first fission barrier will be systematically overestimated
by about 1-1.5 MeV [63–69].

All calculations were performed with the code HF-
BTHO [70]. We use a deformed harmonic oscillator (HO)
basis containing up to Nshells = 30 and truncated to
Nstates = 1100. The HO spherical frequency ω0 and its
axial deformation β2 were adjusted based on the value

of the quadrupole moment q20 following the empirical
formula presented in [69]. We used the SkM* parame-
terization of the Skyrme functional [71] and a surface-
volume, zero-range, density-dependent pairing interac-
tion with a cut-off Ecut = 60 MeV. The neutron and pro-
ton strengths of the pairing force were adjusted to the
three-point odd-even binding-energy difference for neu-
trons and protons separately in 236U: Vn = −255.250
MeV and Vp = −325.594 MeV.

A. One-Dimensional Fission Paths

We begin by recalling the role of quasiparticle blocking
on one-dimensional fission paths. Calculations of fission
barriers in odd-mass nuclei were first reported within the
microscopic-macroscopic model using the blocking pre-
scription [72–75]. Fully self-consistent calculations of fis-
sion paths in odd nuclei were performed for the Gogny
force [22, 23]. Most of these calculations focused on which
K-value gives the lowest fission barrier or lowest energy
fission path. In Refs. [72, 73], the authors investigated
how changes in the blocking configuration affected the
height of the barrier in a few select cases. Similar cal-
culations were performed in the Hartree-Fock plus BCS
formalism in Refs. [20, 21], where the authors mentioned
the consequences of the variations in fission barriers on
quantities such as fission penetrabilities, which enter fis-
sion cross-section models.

In this section, we perform a more systematic explo-
ration of the dependency of the full potential energy
curves, from the ground state to the scission point, on
different values of K. Figure 1 shows the example of
blocking calculations in 239U. For all K-values included
in the figure, the curve shows the energy of the lowest
blocked configuration having that given K as a function
of the expectation value of the axial quadrupole moment
q20. For comparison, we also show the result obtained
in the no-blocking approximation, where the HFB so-
lution for the odd nucleus has K = 0 because it is by
construction a fully paired solution, only with the aver-
age particle number constrained to an odd value, here
〈N̂〉 = 147. We first note that the spin of the ground
state (g.s.) is K = 5/2, which agrees with experimental
assignment [76]. For 237U, we found K = 1/2 for the g.s.,
which is also in agreement with experimental results. As
already noticed in Refs. [22, 23], the potential energy of
blocked configurations is systematically higher than the
no-blocking ones, which is a manifestation of the ‘spe-
cialization’ effect [21].

The comparison of the fission paths for different values
of K show significant differences of the order of up to
several MeV. Table I lists the height of the first fission
barrier (EA) and second fission barrier (EB) as well as the
excitation energy of the fission isomer (EFI) for both 237U
and 239U. The maximum difference reaches 1.28 MeV for
EA, 1.45 MeV for EB and 1.90 MeV for EFI for 237U, and
2.05 MeV for EA, 2.39 MeV for EB and 1.54 MeV for EFI
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Figure 1. Potential energy curves in 239U as a function of
the axial quadrupole moment q20 for different blocking config-
urations K = 1/2, . . . , 9/2. The dashed line corresponds to a
HFB calculation without the blocking prescription where the
average number of particles is set to Z0 = 92 and N0 = 147.

for 239U. Interestingly, and perhaps coincidentally, for
both nuclei the mean value of EA, EB and EFI over the
range of K values is quite close to the no-blocking result.
These results confirm the conclusions in Ref. [21]: since
fission barrier heights enter in the form of an exponential
in standard formulas for either spontaneous fission half-
lives or fission cross sections [1, 77], such differences are
actually considerable.

Table I. Characteristic points of potential energy curves in
237U and 239U: height of the first barrier (EA), of the second
barrier (EB), and excitation energy of the fission isomer (EFI).
The first five columns correspond to blocking configurations
characterized by the K quantum number; the last column
stands for the no-blocking option. All values are given in
MeV.

K 1/2 3/2 5/2 7/2 9/2 no blck.
237U EA 9.17 7.89 9.09 9.00 8.17 8.54

EB 7.77 6.58 8.03 7.68 7.05 7.32
EFI 3.63 2.83 3.56 4.62 2.72 3.45

239U EA 9.31 8.00 10.05 9.30 9.27 9.17
EB 7.78 6.63 8.99 7.83 7.88 7.94
EFI 2.86 2.34 3.49 3.88 2.67 3.09

There were many studies of the evolution of fission bar-
riers with angular momentum [47, 78–83]. Irrespective of
the details of the theoretical model employed, all results
pointed to the gradual decrease of the barriers due to the
damping of shell effects. However, these analyses were fo-
cused on the total angular momentum J of even-even nu-
clei in a rather high-spin regime. Our axially-symmetric
blocking calculations only provide the eigenvalue K of Ĵz
and we have J ≥ K. Even though the K dependency of
fission barriers in odd-mass nuclei as captured by block-

ing calculations is nonlinear – the height of the barrier
is maximum at K = 1/2 for 237U but at K = 5/2 for
239U – one cannot exclude that full angular momentum
projection would restore the order that one might expect
from even-even nuclei (EA(J = 1

2 ) ≥ EA(J = 3
2 ) ≥ ...).

While relative differences, as quantified by the height
of fission barriers, are large, absolute differences are much
smaller: the energy at the top of the first barrier does not
vary by more than 180 keV in 237U and 280 keV in 239U.
In contrast, Fig. 1 shows that the energy in the ground-
state potential well at q20 ≈ 30 b, or in the descent from
saddle to scission for q20 > 170 b, varies by up to several
MeV. If such a pattern holds for multi-dimensional poten-
tial energy surfaces, these results suggest that blocking
different K-values could have an impact on the fission
fragment distributions, not just fission probabilities.

Before finishing this section, we should point out a very
general limitation of the blocking prescription in such po-
tential energy surface calculations (even if it were imple-
mented exactly by breaking time-reversal symmetry and
axial symmetry). As recalled in Section II B 1, blocking
calculations require a reference state, which is typically
chosen as the neighboring even-even nucleus with either
N − 1 or N + 1 particles, or sometimes the HFB solu-
tion for the no-blocking approximation. This prescrip-
tion works very well everywhere except near scission. In
one- or two-dimensional collective spaces, scission often
takes the form of a discontinuity in the PES, as seen at
q20 ≈ 325 b in Fig. 1. If this discontinuity occurs at, say
qdisc.
20 = q0 for the reference states, then the discontinu-

ity for all blocking configurations and K values built on
these reference states must be such that qdisc.

20 ≤ q0. In
other words, the blocking scheme cannot produce a PES
for some K value where scission would occur at larger
values of q20 than in the reference state. The only case
when such a situation is possible is if the collective space
is large enough that scission takes place along a continu-
ous path.

B. Two-Dimensional Potential Energy Surfaces

The one-dimensional potential energy curves of
Sec. III A can provide useful information such as barrier
heights for the calculation of spontaneous fission half-
lives or fission cross sections. However, the determina-
tion of fission fragment distributions requires more col-
lective degrees of freedom. In Fig. 2, we show the two-
dimensional PES for the K = 1/2 configuration in 239U.
For this nucleus, blocking calculations for all K values at
the point q = (q20, q30) were initialized from the time-
even reference state in 238U at the same point q. As
mentioned in the previous section, this implies that con-
figurations that are beyond scission in 238U are also be-
yond scission in 239U. In practice, we also found that for
nearly all blocking solutions in 239U, the scission line is
identical to the one in 238U. For this reason, the PES for
K = 1/2 is, visually, nearly indistinguishable from the



8

ones for K = 3/2, . . . , 9/2 – the color scale would not
allow distinguishing differences in energy of the order of
an MeV – so we choose to show only one such PES.
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Figure 2. Two-dimensional potential energy surface in 239U
as a function of the expectation value of the axial quadrupole
(q20) and axial octupole (q30) moments for the K = 1/2 block-
ing configuration.

This PES is typical of most actinides [69, 84–88]:
the ground state is reflection-symmetric and located at
around q20 ≈ 30 b and the fission isomer at q20 ≈ 80 b
(details depend on the nucleus and the EDF). The second
fission barrier is octupole-deformed and leads to the main
fission valley. An additional fission path at much higher
energy goes through very asymmetric shapes associated
with cluster radioactivity.

Figure 3. Isoline with qN = 6.5 in the two-dimensional po-
tential energy surface of 236U (blue circles) and 238U (orange
crosses).

The choice of the time-even reference solutions to ini-
tialize blocking calculations has another consequence.
To generate the PES for 237U, there are three obvious
choices: start from the the PES of 236U; from the PES of

238U; or from the PES of 237U obtained without block-
ing. It is important to realize that the scission line in
each of these three PES may be different. This is illus-
trated in Fig. 3, where the scission lines of both 236U
and 238U are represented in the same figure. In this par-
ticular example, we adopted the condition qN = 6.5 to
define scission. The most likely fission fragments – the
ones near the peaks of the fission fragment distribution
– correspond to the region around q20 ≈ 300–350 b and
q30 ≈ 40 b3/2, i.e., to the right-hand side of the figure.
Because scission configurations are not identical in each
nucleus, blocking calculations in 237U will give slightly
different results depending on whether the PES for 237U
is initialized from the one in 236U or 238U.

 0.0

 0.4

 0.8

 1.2

 1.6

2

 80  90 100 110 120 130 140 150 160
Fragment Mass Af

-0.4

-0.2

 0.0

 0.2

 0.4

3

from 236U
from 238U

Figure 4. Axial quadrupole (β2) and octupole (β3) deforma-
tion in the fission fragments in 237U for K = 1/2. Black
squares represent blocking calculations initialized from the
PES in 236U and blue crosses represent the ones initialized
from the PES in 238U. The vertical dashed line separates the
light from the heavy fragments.

These differences are minor, as illustrated in Figs. 4
and 5. Figure 4 shows the axial quadrupole and oc-
tupole deformation β2 and β3 of the fission fragments as
a function of their mass. The deformations are defined
from the multipole moments as βλ = 4π/(3ARλ)Qλ0

with R = 1.2A1/3. Black squares correspond to block-
ing calculations initialized from the PES of 236U, blue
crosses to calculations initialized from the PES of 238U.
To increase statistics, we have retained all the configu-
rations such that 1 ≤ qN ≤ 8 that have at least one of
their nearest neighbors with qN < 1. The ensemble of
all such points give a very conservative estimate of the
scission region. Overall, there are relatively few differ-
ences between both sets of deformations. As expected,
we find that nearly all the heavy and the light fragments
are octupole-deformed with values of β3 of opposite signs
for the light and heavy fragment. This implies that the
two fragment smaller edge face each other, which sim-
ply results from the Coulomb repulsion that pushes pro-
tons apart from one another. Our results confirm earlier
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studies of fission in even-even actinide nuclei [84, 85].
We also note the presence of very deformed fragments
around Af ≈ 125–145: such configurations are located
near q20 ≈ 400 b and q30 ≈ 25–30 b3/2 in a region plagued
by discontinuities in the PES. We do not consider them
truly physical.
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1.64

N
f/Z

f

from 236U
from 238U
Nf
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Z0

Figure 5. Ratio of neutron over proton numbers in the fis-
sion fragments of 237U as a function of the charge number of
the fragment for K = 1/2. Black squares represent block-
ing calculations initialized from the PES in 236U and blue
crosses represent the ones initialized from the PES in 238U.
The dashed line corresponds to the ratio N0/Z0 = 145/92 of
the fissioning nucleus.

Figure 5 completes this picture by showing the ratio
of the number of neutrons to the number of protons in
the fragments as a function of the charge number of said
fragment. The dashed line represents the same ratio in
the fissioning nucleus, N0/Z0 = 145/92. Results clearly
show a charge polarization in the fission fragments, that
is, the average number of neutrons deviates quite signif-
icantly from the Unchanged Charge Distribution (UCD)
approximation, which postulates that Nf/Zf = N0/Z0.
This justifies microscopically the empirical models used
to simulate the charge polarization [89].

For the sake of completeness, we also computed the
quantum localization indicator ` of the blocked quasi-
particle (only in the case of 237U) following the defini-
tions in Refs.[69, 90]. Although our results suggested
that the percentage of well-localized blocked quasiparti-
cles seemed to increase with K, they were not conclusive
enough without a comprehensive study of scission config-
urations that would go beyond the scope of this paper.
Among the points worth investigating are possible differ-
ences between the quantum localization of the blocked
quasiparticle and the one of other quasiparticles near the
Fermi surface, and how results are dependent upon the
definition of the scission configurations or the application
of a unitary transformation on quasiparticles to approach
asymptotic conditions.

IV. FISSION FRAGMENT DISTRIBUTIONS

This section summarizes our results on the fission frag-
ment charge and mass distributions of the 236,238U(n,f)
reactions. Primary fission fragment distributions are ex-
tracted from the solution to the TDGCM+GOA equation
(12) of Sec. II B. However, in the case of an odd-mass sys-
tem, the application of the blocking procedure leads to
a multisheet PES – one sheet for each K = 〈Ĵz〉. We
discuss how to set up the TDGCM+GOA equation in
such a case and how to combine calculations for different
K values to extract the yields. We then use the code
FREYA [91, 92] to model the deexcitation of the fission
fragments and calculate the independent fission fragment
mass and charge distributions.

A. Initial Fission Fragment Distributions

Fission fragment distributions are extracted from the
flux of the collective wave packet solution to Eq. (12)
according to the general procedure described in detail in
Ref. [52]. However, a few additional steps are needed
to account for the fact that the compound nucleus can
have different spin projections and that the probability
of occupation of each of these configurations is given by
the characteristics in the entrance channel.

In Sec. II B 1, we denoted by VK(q) the potential en-
ergy surface for the spin projection K of the odd nucleus.
Since the collective nuclear Hamiltonian is rotationally
invariant, we can compute the time-evolution using the
TDGCM+GOA equation of motion for each K indepen-
dently, that is,

i~
∂g(K)(q, t)

∂t
=
[
H

(K)
coll.(q) + iA

(K)
coll.(q)

]
g(K)(q, t). (30)

To infer the fission fragment distributions from the set
of g(K)(q, t), we need to determine the initial probability
that the compound nucleus is populated with spin pro-
jection K. In addition, solving Eq. (30) requires setting
the initial state for the time evolution, i.e., g(K)(q, t = 0).

1. Initial Conditions

The initial probability Pth.(J
π) to populate a given to-

tal angular momentum J and parity π is determined us-
ing the coupled channel code FRESCO [93] which is part
of the LLNL-developed Hauser-Feshbach code YAHFC
(version 3.67) [31]. The set of rotational states, poten-
tials, and deformation parameters needed to define the
coupled channels calculation were taken from Ref. [34];
see Sec. II A. The probability p(Jπ,K) to populate each
K is determined using the equidistribution of the proba-
bilities

p(Jπ,K) =
Pth.(J

π)

2J + 1
. (31)
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The probability of populating a given K is the sum of
the probabilities for all valid J and π. Since we have
−J ≤ K ≤ J , we get

p(K) =

Jmax∑
J=|K|

Pth.(J
−) + Pth.(J

+)

2J + 1
. (32)

In principle, p(K) should be obtained for Jmax → +∞.
In practice, we use a truncation of Jmax = 33

2 , which is
high enough to obtain a good approximation of the error
associated with the other truncation in K. With this
expression, we trivially have p(K) = p(−K).
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Figure 6. Initial probability p(K) to populate a given spin
projection K in the 238U(n,f) reaction as a function of the
incident neutron energy En. Vertical dashed lines represent
the energies considered in this work.

The nuclear Hamiltonian Ĥ is time-reversal invariant.
Consequently, we get the same time-evolution and the
same associated fission yields on a potential energy sur-
face with values of K that differ by only a sign. Thus,
we determine the time-evolution only for K > 0 with the
population probability p±(K) = p(K)+p(−K) = 2p(K).
The probability p(K) we obtain with our approach is
presented in Fig. 6 for the 238U(n,f) reaction. We see
that the contribution from configurations associated with
K > 7/2 is always below 11% for the six neutron energies
En considered here.

We define the initial state for the TDGCM+GOA
time-evolution for each K using the prescription of
Ref. [52]. We recall that this consists in first determining

quasi-bound states g
(K)
n located in the ground-state po-

tential well, defined as solutions of the static GCM+GOA

17
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Figure 7. Spectrum of quasi-bound states for each spin pro-
jection K obtained by solving the static GCM+GOA equa-
tion within the extrapolated ground-state potential well; see
Ref. [52] for details. The red dashed line corresponds to the
energy at the saddle point, which defines the barrier.

equation in an extrapolated potential, and then build the
initial state as a superposition of these states, where the
weights of the superposition are Gaussian functions of
the energy

g(K)(q, t = 0) =
∑
n

exp

[(
E

(K)
n − Ē(K)

)2
2σ2

]
g(K)
n (q) ,

(33)

where E
(K)
n is the energy of g

(K)
n . We show in Fig. 7 the

spectra of such quasi-bound states for 237,239U.
The width σ is a model parameter that controls the

spread of the initial collective wave packet. In this work,
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we set σ = 0.5 MeV. We determined the level density
of quasi-bound states to be approximately 4 MeV−1 at
the energy of the barrier and about 7 MeV−1 at 5 MeV
above the fission barrier. Thus, we have between 20 and
40 quasi-bound states contributing to the initial state.
The parameter Ē(K) is adjusted iteratively in order to
ensure that the energy of the initial collective wave packet
matches the physical energy E0 of the compound nucleus.
It is convenient to write

E0 = Ebind. + Ex , (34)

where Ebind. corresponds to the minimum of the saddle
point energies over all K,

Ebind. = min
K

(
E

(K)
bind.

)
, (35)

and Ex = 0, 1, 2, 3, 4, 5 MeV represents the excitation en-
ergy with respect to this minimum saddle configuration.

2. Calculation of the Collective Flux

We have simulated the large-amplitude collective mo-
tion of the fission process all the way to the formation of
the fragments with the computer code FELIX [52]. For
each PES with spin projection K, the absorption field

Acoll. ≡ A
(K)
coll. in Eq. (30) is parameterized by the ab-

sorption rate r and width w, which is equivalent to

Acoll.(q) =
4r

w3
x3(q) , (36)

where x(q) is zero if q corresponds to a non-scissioned
configuration, and is equal to the Euclidean distance to
the scission line otherwise. We fix the ratio 4r

w3 = 0.04
MeV. The scission line is defined as an isoline of the ex-
pectation value qN of the Gaussian neck operator. In this
work, we fixed qsciss

N = 6.5.
We use the collective inertia tensor defined in

Sec. II B 2. The zero-point energy correction is ex-
tracted from the GCM+GOA width and the inertia ten-
sor through ε = 1

2ΓM−1 in the perturbative cranking
approximation of the GCM [3]. The collective wavefunc-
tion g(K) is discretized using a rectangular cell mesh with
a finite element basis of degree 4, where the nodes are lo-
cated on the zeros of the Gauss-Lobatto quadrature of
order 5. We use a timestep of ∆t = 2.10−25 s and run
the simulation up to tmax = 3.10−20 s.

To determine the yields, we first decompose the scis-
sion line S into small segments ξ. We model the prob-
ability PR(A, ξ) for the right fragment at the segment ξ
to have mass A as an integrated Gaussian,

PR(A, ξ) =

∫ A+ 1
2

A− 1
2

da

σA

√
2π

exp

[
− (a−AR(ξ))

2

2σ2
A

]
, (37)

where AR(ξ) is the average number of particles in the
right fragment and σA is a parameter of our model that

represents the particle-number dispersion in the right
fragment and a mass resolution of the experimental data
we use to compare with our results. Following earlier
studies [45], we use σA = 4.0. We then determine the in-
tegrated flux F (ξ) across the element ξ ∈ S according to
the implementation in [43]. We recall that the integrated
flux reads

F (ξ) = lim
T→∞

F (ξ, T ), (38)

with

F (ξ, T ) =

∫ T

0

dt

∫
q∈ξ

J(q, t) · dS . (39)

In that expression, J(q, t) is the instantaneous flux at a
point q and time t and is determined using

J(q, t) =
~
2i

√
γ(q)B(q)

[
g∗(q, t)∇g(q, t)

− g(q, t)∇g∗(q, t)
]
. (40)

Finally, we can determine the primary fission fragment
mass distributions Y (A) through

Y (A) =
∑
ξ∈S

F (ξ)PR(A, ξ) . (41)

Finally, we noticed that the determination of the fission
fragments by integration of the flux across the scission
line could include spurious negative contributions caused
by a part of the wave packet going back through the
scission line from the opposite direction. We quantify
this effect using

Cflux(T ) =

∫ T

0

dt

∫
S

dξmax(−F (ξ, t), 0)∫ T

0

dt

∫
S

dξ |F (ξ, t)|
. (42)

The results for the reactions 236,238U(n,f) are collected
in Table II for the scission configurations defined by the
condition qsciss

N = 6.5. We find a value around 25%. How-
ever, an important proportion of it probably comes from
tiny oscillations around the scission line, which would
not drastically impact the fission fragment mass distri-
butions. Although a more in-depth analysis of this effect
is needed, we use this criteria as an upper bound for the
error.

We must also associate the different values of Ex with
the energy of an incoming neutron in order to be able
to compare our results with experimental data. For fis-
sionable isotopes, fission only occurs when the incident
neutron energy is higher than some threshold Ef

n. Mea-
surements suggest Ef

n ≈ 0.7 MeV for the 236U(n,f) reac-
tion [94] while Ef

n ≈ 1.2 MeV for the 238U(n,f) reaction
[94, 95]. In such cases, we can assume that our results
at Ex = 0 should be compared with En = Ef

n, and this
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Table II. Values of Cflux(T → ∞) for the two reactions
236,238U(n,f). All values are given in percent.

Ex [MeV]
Target K 0 1 2 3 4 5

236U

1/2 23.9 27.4 25.9 26.0 26.2 25.1
3/2 23.9 24.2 23.0 23.5 22.9 22.5
5/2 18.1 20.2 16.2 14.2 12.4 13.8
7/2 15.7 13.5 14.3 16.6 19.5 18.3

238U

1/2 21.5 25.0 22.9 21.8 20.3 20.9
3/2 17.9 19.0 19.5 19.0 18.5 20.8
5/2 9.3 8.5 10.2 10.4 13.6 13.6
7/2 21.2 21.8 23.3 23.5 24.3 23.7

leads to the simple generalization at higher incident en-
ergies: En = Ef

n +Ex. One of the limitations in this work
is that we assume axial symmetry: as mentioned in the
introduction to this section, fission barriers are therefore
systematically overestimated. We account for this effect
by assuming a generic offset ∆Etriax. = 1 MeV. This leads
to the approximate conversion between incident neutron
energy and collective energy,

En = Ef
n + ∆Etriax. + Ex. (43)

Note that Eq. (43) implicitly depends on the neutron
separation energy of the target. Indeed, for a fission re-
action with an energy threshold Ef

n such as 237U(n,f),
we must have S(N) + Ef

n = EA, where EA is the fission
barrier height. Hence Ef

n = S(N)−EA in this case. How-
ever, we can also write the total energy of the fissioning
system as E = Eg.s.+EA +Ex = Eg.s.+S(N)+Ef

n +Ex
as well as E = Eg.s. + S(N) + En. Thus, equating
the right-hand-side of both definitions, we can simplify
by Eg.s. + S(N) which removes the dependency in Eg.s.

and S(N) in the relation between En and Ef
n. In con-

trast, reactions such as 235U(n,f) and 237U(n,f) fission
already occurs for thermal neutrons [96, 97], hence the
threshold for fission is Ef

n = 0 MeV. It means that
S(N) > EA, and thus we cannot use S(N) in the same
way to relate the neutron energy En with the excita-
tion energy Ex. Instead, we can write that the en-
ergy of the fissioning system after neutron absorption is
E = Eg.s. + S(N) +En = Eg.s. +EA +Ex. Thus, we get
En = EA + Ex − S(N).

3. Analysis of 238U(n,f)

In this section, we focus on the case of the 238U(n,f) re-
action to analyze the impact of the prescription outlined
in the two previous sections on the primary fission frag-
ment distributions. Figure 8 shows the primary mass dis-
tributions of the light fragment produced in the fission of
239U for different spin projections K and at two different
incident neutron energies. The differences between the
curves for each K value are meaningful since all the in-
gredients in the calculation (definition of the scission con-

figurations, characteristics of the TDGCM+GOA, post-
processing of the collective flux, etc.) are identical in
all four cases: the only differences are the values of the
potential energy and collective inertia tensor. Although
Fig. 6 shows the population probability of K = 1

2 is about

twice that of K = 3
2 , the probability of populating states

with higher K is not negligible and so the differences in
mass distributions are important. As the incident neu-
tron energy increases, the probability to populate states
of higher K also increases, further magnifying the impor-
tance of considering the contributions of different spin
projections.
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Figure 8. The first four K-components of the mass distri-
bution of the light fission fragment in the 238U(n,f) reaction,
before prompt emission, at incident neutron energy En = 2.2
MeV (left) and En = 7.2 MeV (right). Each curve has been
independently normalized to 200%.

To study the impact of these specific fission-spin chan-
nels on the primary mass distribution Y (A) we look for
the available experimental data. Mass distributions from
fission reactions induced by fast neutrons are limited and
only available for some standard fission reactions impor-
tant for nuclear technology. One example is the pri-
mary mass distributions of the 238U(n,f) reaction from

E
(exp)
n = 1.2 to 5.8 MeV [98]. The energies of the two

fragments after prompt particle emission were measured
with a dual Frisch-grid ionization chamber and the pri-
mary fragment masses were determined using the double-
kinetic energy technique. Provisional masses of the two
fragments were estimated based on conservation of mo-
mentum and the assumption that the fragments were de-
tected back-to-back. Then, the energy of the primary
fragments (before neutron emission) was computed based
on the expected number of neutrons emitted by each frag-
ment ν(A). The provisional masses were updated based
on the pre-neutron energies, and this was repeated until
the change in the fragment masses from one iteration to
the next was less than some fraction of a mass unit. The
authors of Ref. [98] assumed a sawtooth-like shape for
ν(A); however, the shape of the neutron distribution as
well as the average total number of emitted neutrons as a
function of incident neutron energy have been estimated
based on available data from neighboring fissioning sys-
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tems. Since the number of neutrons emitted by each
fragment is unknown, the mass of the fragments in a sin-
gle event cannot be determined more accurately than 4-5
mass units (FWHM). It should also be noted that using
this technique the primary mass yields in light and heavy
groups are symmetric relative to half of the mass number
of the fissioning nucleus (A = 239 in this case).
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Figure 9. Mass distribution of the light fission fragment in
the 238U(n,f) reaction, before prompt emission, as a function
of incident neutron energy. Experimental data are taken from
Ref. [98].

In Fig. 9 we compare our calculation of these primary
mass distributions of 239U (for the light fragment) with
the available experimental dataset of the 238U(n,f) reac-
tion [98] for several incident neutron energies up to the
onset of second-chance fission. The error band was ob-
tained by considering an error of ±1 MeV in the relation
given by Eq. (43). Overall, the comparison is rather satis-
factory for a “first-principles” approach to the calculation
of the mass distribution, especially since potential energy
surfaces in two-dimensional (q20, q30) spaces are known to
exhibit several spurious discontinuities [99], the removal
of which would require increasing the number of collec-

tive variables [100–102]. In addition, it was also shown
that, at least in two dimensions, calculations with collec-
tive variables based on the expectation value of multipole
moments could not map all possible fragmentations [41].

B. Independent Yields

As mentioned in Section II, the primary fission frag-
ments will be sufficiently excited to evaporate neutrons
in less than 10−15 s. These very short times mean that
in any experiment the nuclei that are detected are not
the primary fragments, but instead THE secondary frag-
ments resulting from the emission of a varying number
of neutrons. As discussed in the previous section, the
“experimental” primary yields presented in Fig. 9 were
reconstructed from measurements of independent yields
following a model-dependent procedure.

However, independent yields can also be computed
from the primary ones by simulating the emission of
prompt neutrons and photons. As is commonly known,
the main drawback of doing so is that one needs to com-
pletely characterize the fission fragments at scission: not
just their distribution Y (Z,A) but also their excitation
energy E∗, spin-parity distribution p(Jπ), and level den-
sity ρ(E∗, Jπ). In spite of very encouraging progress in
recent years, a predictive model of all such quantities does
not yet exist [1]. Evaluations of fission product yields typ-
ically rely on various empirical models with parameters
adjusted to data. We adopt a similar strategy here: the
prompt emission of particles is simulated with the event
generator FREYA [91, 92].

By default, FREYA can calculate fission events of
the 238U(n,f) reaction; various model parameters have
already been adjusted to reproduce experimental data.
Therefore, we used the default FREYA setup to process
our 238U(n,f) primary yields with only two modifications:
(i) we replaced the default 5-Gaussian parameterization
of the primary mass distribution with our calculated ones
at En = 2.2 MeV; and (ii) we changed the parameter
dTKE, which is an overall energy shift to the total ki-
netic energy. FREYA determines the total kinetic energy
for a pair of fragments using experimental data, and the
shift dTKE is tuned to reproduce the prompt neutron
multiplicity, ν̄. We adjusted dTKE for En = 2.2 MeV
from its default value of 1.0 MeV to 0.698 MeV in order
to match the ENDF/B-VIII.0 value ν̄ = 2.605.

Figure 10 compares our calculations with several eval-
uations of the independent mass yields in the reaction
238U(n,f) at an incident neutron energy of En = 2.2 MeV.
The agreement with the data is rather good considering
that the primary mass distribution comes from a model
prediction rather than an empirical fit. The main limita-
tion is that the distance between the two peaks is slightly
too wide. This is most likely caused by the fact that the
mass of the heavy fragments is overestimated. We note
that symmetric and very asymmetric fission are also over-
estimated.
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Figure 10. Fission fragment mass distribution of the
238U(n,f) reaction after neutron emission for an incident neu-
tron energy En =2.2 MeV. The present results are compared
with a GEF-2021/1.1 [103] empirical model calculation at
En =2.2 MeV and the following evaluations for fast-neutron-
induced fission: ENDF/B-VIII.0 [96], JEFF-3.3 [104], and
JENDL-5 [105].

FREYA has not been tuned for the 236U(n,f) reaction,
so we added that reaction and generally kept the default
values of any of the model parameters. As for the case
of 238U(n,f), we replaced the default primary mass yields
with our calculated fission fragment mass distribution,
this time at En = 1.7 MeV. Pre-equilibrium neutron
emission was disabled since there is no available data
for this process for this reaction. There is also no suit-
able experimental database or evaluation for the total
kinetic energy as a function of fragment mass for the
236U(n,f) reaction. For this reason, we took the exper-
imental data from the 235U(n,f) reaction instead. The
parameter dTKE was set to -1.480 MeV to reproduce
the ENDF/B-VIII.0 value ν̄ = 2.545 for En =1.7 MeV.

As shown in Fig. 11, results for 236U(n,f) are some-
what similar to 238U(n,f). Again, both symmetric and
very asymmetric fission are overestimated. This time,
however, the centroids of the light and heavy mass peaks
are much closer to the evaluated values. The yields we
compute are slightly lower than the evaluated one, es-
pecially in the heavy peak. This may be caused by the
fact that our scission configurations near the most likely
fission lack some fragmentations around AH ≈ 135. This
problem is reminiscent of issues identified earlier in po-
tential energy surfaces obtained with constraints on stan-
dard multipole moments [41, 106].

V. CONCLUSIONS

In this work, we established a rigorous procedure
to compute the fission fragment mass distributions be-
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Figure 11. Fission fragment mass distribution of the
236U(n,f) reaction after neutron emission for an incident neu-
tron energy En =1.7 MeV. The present results are compared
with a GEF-2021/1.1 [103] empirical model calculation at
En =1.7 MeV and the following evaluations for fast-neutron-
induced fission: ENDF/B-VIII.0 [96], JEFF-3.3 [104], and
JENDL-5 [105].

fore the emission of prompt neutrons within the general
framework of nuclear energy density functional theory.
Our method assumes that the nuclear shape is axially
symmetric and requires three ingredients: (i) the spin dis-
tribution of the fissioning nucleus, which we obtain from
the coupled-channel formalism; (ii) the potential energy
surfaces for different spin projections K, which are com-
puted within the Hartree-Fock-Bogoliubov theory with
the equal filling approximation of the blocking prescrip-
tion; and (iii) the collective inertia tensor determined by
the finite-temperature extension of the adiabatic time-
dependent Hartree-Fock-Bogoliubov theory. For the lat-
ter, we sketched the complete derivation of the formulas
used without proof so far in the literature.

We tested our approach on the 236U(n,f) and 238U(n,f)
fission reactions, which leads to the odd-mass compound
nuclei 237U and 239U, respectively. We confirmed that
the choice of the blocking configuration has a major im-
pact on deformation properties: fission barrier heights,
which are key ingredients in the evaluation of fission cross
sections and probabilities, can vary by up to 1–2 MeV
depending on the choice of blocked quasiparticle [21].
We also showed that the fission fragment distributions
obtained for different K configurations are significantly
dissimilar and that the different population probabilities
of each spin channel can magnify these differences. We
emphasized that mapping the collective wavepacket’s en-
ergy with the incident neutron’s kinetic energy is much
more challenging in odd-mass systems since each spin
channel has a different barrier height. We simulated the
prompt emission of particles with the code FREYA to
compare our calculations with experimental data. Over-
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all, the agreement between our model and experimental
data is satisfactory.

Combining our microscopic approach of computing
primary fission observables with the fission simulation
model FREYA opens up the possibility to study the im-
pact of different entrance channels on fission-fragment
mass distributions. A systematic comparison of fission-
product yields emerging from different angular momenta
transfer to the compound system is now potentially fea-
sible. We have also provided a framework for large-
scale fission calculations of odd-mass nuclei involved, e.g.,
in r-process nucleosynthesis, for which no experimental
data exists. As often in self-consistent calculations, our
two-dimensional potential energy surfaces are plagued by
several discontinuities. To turn our theoretical frame-
work into a competitive evaluation tool, one must en-
large the collective space and develop algorithms capable
of eliminating spurious discontinuities. Only then will a
proper quantification of theoretical uncertainties associ-
ated with, e.g., the definition of scission configurations
or the choice of the inertia tensor or zero-point energy
contributions, will truly make sense.

In the particular case of odd-mass nuclei, it could be
worthwhile to study the impact of the blocking approx-

imation itself, especially as it pertains to the collective
inertia tensor. In this work, we used the cranking ap-
proximation in its perturbative version, where the QRPA
matrix is diagonal and all derivatives are computed lo-
cally. The analysis of Ref. [107] showed considerable dif-
ferences between such a cranking approximation and the
“exact” calculation. Since solving the QRPA involves
the time-odd channel of the functional, this suggests that
there could be a sizable effect of time-reversal-symmetry
breaking in the collective inertia tensor – hence in the
collective dynamics – which might be further magnified
in odd-mass systems.
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