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Neutron matter, through its connection to neutron stars as well as systems like cold atom gases,
is one of the most interesting yet computationally accessible systems in nuclear physics. The
Configuration-Interaction Monte Carlo (CIMC) method is a stochastic many-body technique allowing
to tackle strongly coupled systems. In contrast to other Quantum Monte Carlo methods employed
in nuclear physics, the CIMC method can be formulated directly in momentum space allowing
for an efficient use of non-local interactions. In this work we extend CIMC method to include
three-nucleon interactions through the normal-ordered two-body approximation. We present results
for the equation of state of neutron matter in line with other many-body calculations that employ
low resolution chiral interactions, and provide predictions for the momentum distribution and the
static structure factor.

I. INTRODUCTION

A common feature among effective theories of complex
systems is their intrinsic non-locality originating from the
integration of non-essential degrees of freedom. This fea-
ture permeates nuclear physics at different levels because,
besides the many-body mechanisms at play, the relevant
components of the nucleus (protons and neutrons) are
themselves the result of the underlying degrees of freedom
of Quantum Chromodynamics (QCD). For this reason,
modern ‘first principle’ theories of nuclear systems rely
on effective field theories (EFTs) to construct realistic
inter-nucleon interactions [1]. In this approach, the ex-
change of light mesons (pions) and the inclusion of contact
counterterms are ordered according to a perturbative se-
ries [2–4]. However, most many-body methods used to
study low energy processes cannot deal explicitly with
mesonic fields. Mesons are then integrated out using some
regulator that imposes a cutoff in momentum space, and
the resulting potential is in general correctly described
only including explicit momentum-dependent terms.
Partly due to the recent success of the application of

Quantum Monte Carlo in dealing efficiently with Hamilto-
nians including complex operatorial dependencies, like the
Auxiliary Field Diffusion Monte Carlo (AFDMC) [5, 6],
a substantial effort was made in order to produce local
versions of chiral effective interactions (local χ-EFT po-
tentials) [7, 8]. These potentials, while retaining some of
the spirit of the chiral EFT, are plagued by a number of
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necessary inconsistencies (such as in the introduction of
regulators that break Fierz symmetry), making the basic
connection with the QCD symmetries feebler and feebler.
In this context the use of methods that can smoothly

work in momentum space, avoiding the necessity of this
further step of making the interaction local, would be
preferable. Non-local Hamiltonians can be easily handled
for finite nuclei by exploiting methods formulated in a
Fock space (i.e., the space of the Slater determinants
and including different particle numbers) built on sets of
localised basis functions [9]. Several ab initio methods,
such as Many-Body Perturbation Theory (MBPT) [10],
Self-Consistent Green’s Function (SCGF) [11, 12], Cou-
pled Cluster (CC) [13, 14] or the In-Medium Similarity
Renormalization Group (IMSRG) [15, 16], can indeed pro-
vide results beyond light nuclei and have reached masses
above A≈100 [17–20] up to first estimations of 208Pb [21].
Working in momentum space also gives direct access to
quantities such as the momentum distribution or the
static structure factor that are not so easily computable
in coordinate space, and that are an important ingredient
for the estimate of further observables of interest. More-
over, momentum space calculations facilitates accurate
determinations of optical potentials [22], that would draw
a bridge between ab initio methods and the description
of dynamical processes for medium-heavy nuclei [23].
For the case of infinite matter, the SCGF approach

can be implemented directly in momentum space, which
allows to handle high-momentum components and there-
fore works equally well with both soft and hard interac-
tions [24, 25]. Moreover, the moderate computing require-
ments (sometimes not even requiring parallelisation) and
its general formulation at finite temperatures make SCGF
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the method of choice to investigate a large range of phe-
nomena, such as nucleon propagation in the medium [26]
or pairing effects [27] and temperature dependence [28, 29]
of neutron matter. In spite of their great versatility, cur-
rent implementations of SCGF face some limitations in
the pairing instabilities for symmetric matter at very
low temperatures and densities, and in the precision of
response functions that would require effective vertices
to go beyond resummations of dressed ring diagrams.
While some step could be taken using a Nambu covariant
formalism [30], these problems may be solved more effi-
ciently using a direct digonalization in the full Fock space
that goes beyond common post-Hartree-Fock many-body
truncations.
The ground state properties of neutron matter, from

saturation to very low densities, are particularly interest-
ing due to its vicinity to the unitary Fermi gas limit [31].
In this regime, neutron matter shares very similar proper-
ties with cold gasses at the Feshbach resonance [32]. The
resulting equation of state (EoS) directly affects the struc-
ture of the inner core of neutron stars [33] and the skin
of heavy neutron-rich isotopes [34]. Hence, high-accuracy
investigations with the best advanced nuclear interactions
are of remarkable importance.
A few years ago, Roggero et al. introduced a flavor

of Quantum Monte Carlo simulations, under the name
of Configuration-Interaction Monte Carlo (CIMC) [35–
38], partly originating from existing Shell Model Monte
Carlo algorithms [39], providing an efficient way to expand
an arbitrary state in the Fock space and stochastically
propagate it in imaginary time (IT). Carrying out the
propagation for a sufficiently long IT gives the possibil-
ity of sampling the expansion of the ground state. This
method combines the natural language needed to deal
with momentum-dependent interactions to the efficiency
of Quantum Monte Carlo techniques. The method uses
CC amplitudes as a trial wave function to guide the IT
propagation and therefore it is computationally more
expensive than the corresponding CC and SCGF com-
putations of infinite nucleonic matter [40, 41] embedded
in the same Fock space. However, it is not limited by
the same many-body truncations of these schemes and
it is guaranteed to improve toward the correct ground
state while satisfying the variational ansatz. The method
demonstrated to be very efficient for Hamiltonians lim-
ited to two-body interaction. However, the extension
to three-body forces (absolutely necessary for a realistic
description of nuclear systems of interest) was hindered
by technical limitations.

In this paper we present the first CIMC results obtained
for cold, catalyzed neutron matter interacting through a
χ-EFT potential that includes full three-nucleon forces
(3NFs). We exploit the NNLOopt [42] interaction for the
two-nucleon sector and apply our method at different
densities below and above the nuclear saturation density
ρ0 = 0.16. The propagation is started from the amplitudes
obtained in the second-order Møller-Plesset (MP2) solu-
tion for the same Hamiltonian. Besides the energies and

the related EoS of neutron matter, we illustrate results
for the momentum distribution and the static structure
factor, compared to calculations with other methods.

The paper is organized as follows. In Sec. II the CIMC
method is reviewed and extended to the case of 3NFs.
Some technical details of how we store nuclear matrix
elements are pivotal to practical implementations. We
collect them in App. A. Secs. III A, III B and III C present
the results for the EoS, the momentum distribution and
the static structure factor, respectively. Sec. IV is devoted
to conclusions.

II. METHOD

Configuration-interaction (CI) approaches have been
widely used over the past decades in atomic, molecular
and nuclear physics, describing a variety of systems and
observables. They rely on the expansion of the N -body
wave function |ΨFCI〉 in the space spanned by N -particle
Slater determinants |Φi〉,

|ΨFCI〉 ≡
∑
i

Ci|Φi〉 , (1)

where Ci corresponds to the expansion coefficient asso-
ciated to the determinant |Φi〉. Those coefficients are
ultimately obtained by diagonalising the Hamiltonian of
the system in the truncated model space. The combinato-
rial cost in the size of the model space and the number of
particles can make such an approach unusable for systems
larger than a few-particles. For nuclear physics, stan-
dard CI and Quantum Monte Carlo reach such a wall for
around A ≈ 12–20 nucleons. One way to reduce this cost
has been the development of novel Monte Carlo meth-
ods, like Auxiliary-Field Monte Carlo in configuration
space [39, 43, 44], or more recently in quantum chemistry
the Full CI Quantum Monte Carlo approach [45–50].
Configuration-Interaction Monte Carlo [35] is another

of these approaches, already successfully applied to the
homogeneous electron gas [36], small molecules [51] and
neutron matter [37, 38]. One starts by defining a suitable
projector P = exp (−τ(H − ET)), where H is the Hamil-
tonian of the system, τ a finite step in imaginary time
and ET a shift in energy. The ground-state wave-function
|Ψ〉 is then extracted by applying P iteratively Nτ times
on an initial state |Φ〉,

|Ψ〉 ≡ lim
Nτ→∞

PNτ |Φ〉 , (2)

where |Φ〉 has been selected to have a large overlap with
the ground state.

The evolution is then done stochastically, with probabil-
ities proportional to the matrix elements of the propagator
P between different Slater determinants. As such, it de-
pends on the interaction part of the Hamiltonian and not
just on its kinetic part like for coordinate-space Monte
Carlo methods. Since this method is not exempt from
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the sign problem one introduces a guiding wave func-
tion |ΦG〉, ideally pre-determined from a low-cost method.
On configurations for which the wave function does not
cancel out, one can then introduce an auxiliary family
of Hamiltonians Hγ with γ ∈ [0; 1], designed in such a
way to keep the wave-function positive semi-definite [35].
This allows for an evolution free of the sign problem,
and ultimately CIMC provides an upper bound on the
ground-state energy of the system.
The calculations are done in the space of Slater deter-

minants spanned from a set of discretized single-particle
eigenstates of momentum and of spin and isospin pro-
jections. These basis states form a cubic lattice that
corresponds to a box with periodic boundary conditions
in coordinate space. The density of the system ρ and the
number of particles N included determine the side length
of the box L and the lattice spacing q in momentum space.

q = ~c
2π
L

= ~c2π
( ρ
N

) 1
3
. (3)

A cutoff is imposed on the maximal squared momentum
allowed k2

max, and convergence is reached once the differ-
ence in energy when increasing the cutoff is smaller than
the statistical uncertainty. This proved to be the case for
all present calculations at k2

max = 24 in squared units q2

of the momentum space lattice. Using the definition in
Eq. (3) this corresponds to ≈ 23.5kF , with kF the Fermi
momentum. Though the construction of the Hamiltonians
Hγ would require to extrapolate to γ = −1 to get to the
exact value, we noticed during exploratory calculations
that for densities around and below nuclear saturation, the
differences when varying γ were smaller than the statisti-
cal uncertainties, and results can be considered converged.
For larger densities, linear extrapolations from results ob-
tained with values of γ comprised between 0 and 1 yield at
most a correction of 50 keV/N for ρ = 0.32 fm−3, in line
with previous results obtained with two-body potentials
for neutron matter and symmetric nuclear matter [52].
This indicates that the sign problem is very mild in our
system, and we thus discuss only results with γ = 0 in
the following.
One of the key aspects for CIMC calculations is the

choice of the guiding wave function |ΦG〉. The closer to
the true ground state it is, the better the final results, but
this comes at the price of a costlier pre-processing. For
the present calculations, |ΦG〉 was obtained by computing
the MP2 energy and amplitudes. This is equivalent to
applying the coupled cluster with doubles (CCD) method
and stopping after the first iteration, and provides a good
enough approximation for a perturbative system like neu-
tron matter. We note that, due to the use of single particle
orbitals in the construction of the Slater determinants,
the present calculations are not able to capture pairing
correlations leading to the superfluidity of neutron matter
at low densities. Part of this information is implicitly
included in the extrapolation over γ described above. One
may as well generate the guiding wave function |ΦG〉 using
methods that account for the presence of paired orbitals,

like e.g. Gorkov SCGF [53, 54] and Bogoliubov Coupled
Cluster theory [55, 56]. Such extension could in princi-
ple be used to allow for a more explicit description of
superfluidity properties.
While previous implementations of CIMC were re-

stricted to two-body (NN) forces, we presently extend the
method to include effects from three-body forces, which
have been shown to be critical to the reproduction of
nuclear matter saturation [57, 58] as well as for reproduc-
tion of e.g. driplines in finite nuclei [59, 60]. A common
strategy adopted within the nuclear physics community
is to normal-order H with respect to the reference state
and then truncate at the two-body level, resulting in the
Normal-Ordered Two-Body (NO2B) approximation [61–
65]. Focusing on the three-body part of the original
Hamiltonian H,

H3 = 1
36

∑
pqrstu

v̄pqrstua
†
pa
†
qa
†
rauatas , (4)

where v̄pqrstu are the antisymmetrized three-body matrix
elements of H, and {a†p, ap} are particle creation and an-
nihilation operators, this consists in rewriting it in normal
order with respect to the HF reference state, reading as

H3 = 1
6
∑
ijk

v̄ijkijk + 1
2
∑
ijpq

v̄ijpijq : a†paq :

+ 1
4
∑
ipqrs

v̄ipqirs : a†pa†qasar :

+ 1
36

∑
pqrstu

v̄pqrstu : a†pa†qa†rauatas :

(5)

where :AB: represents the operator AB in normal order
and i, j, k are occupied states. One then discards the last
term in Eq. (5), known as residual three-body forces. This
has proved to yield a very good reproduction of systems at
the price of a small truncation error, especially for neutron
matter [40, 66]. As such, the present calculations rely on
the use of the NO2B Hamiltonian, with implementation
details being discussed in App. A.

III. RESULTS

We compute pure neutron matter using the CIMC
framework discussed in the previous section and the
NNLOopt Hamiltonian introduced in Ref. [42]. This inter-
action is optimized with respect to data in the two-nucleon
sector but 3NFs are still required to reproduce the EoS
for nucleonic matter and the driplines in neutron-rich
isotopes. Following Ref. [42] we add a next-to-next-to-
leading-order (NNLO) three-nucleon interaction with val-
ues of cD = −0.20 and cE = −0.36 for the low-energy
coupling constants, and apply local regulators depending
on momentum transfer [67] as discussed in [40] with a
value of Λ = 500 MeV/c.

For all results shown below we consider a periodic
box containing 66 neutrons, which is known to be the
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Figure 1. Top panel. Equation of state of neutron matter
computed from CIMC in a periodic box with 66 neutrons and
compared to results from HF mean field and second-order
perturbation theory. Dashed and full lines show predictions
for the sole two-nucleon NNLOopt interaction and with the
addition of 3NFs at NNLO, respectively. Note that the NN-
only HF result (dashed blue line) is partially hidden as it
overlaps with the MP2 and CIMC curves for full 3NFs. Bottom
panel. Correlation energy per particle.

optimal choice to minimize the finite size effects while still
requiring moderate computational costs. We have also
checked that our results are stable with respect to the
number of particles included and computations resulted
to be largely converged with respect to k2

max, as discussed
above.
In the following, we demonstrate results for different

properties of interests for neutron matter—namely the
EoS, the momentum distribution, and the static response—
and discuss the effects arising form the inclusion of 3NFs.

A. Equation of State

The energy per particle as a function of density is
displayed in Fig. 1. This shows the three steps of the
CIMC calculations: the energy from the Hartree-Fock
approximation, the second-order Møller-Plesset perturba-
tion theory, and finally the prediction from Monte Carlo
diffusion. As expected for neutron matter, the bulk of
the correlation is already captured by a perturbative ex-
pansion but MP2 still over binds slightly. The CIMC
algorithm corrects this behaviour and at the same time
provides a solid variational upper bound to the ground-
state energy. It will be interesting to revisit this with
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Figure 2. Equation of state of neutron matter for the NO2B
NNLOopt Hamiltonian with 66 neutrons compared with CCD
with NO2B and CCD(T) with full 3NF results with NNLOopt
[40] and MBPT calculations at fourth order with various chiral
forces: EMN at NNLO and N3LO, NNLOsim at NNLO and
Hebeler+ at N3LO (see [66] and references therein). For EMN,
the band corresponds to the calculated theoretical uncertainty,
the two shades corresponding to NNLO and N3LO. The bands
for Hebeler+ and NNLOsim correspond to a variation of cutoffs
and/or renormalization scale.

harder Hamiltonians or especially in symmetric nuclear
matter, where CIMC typically corresponds to resumming
high-rank particle-hole excitations [52]. The 3NFs have
the overall effect of making the system less bound across
the whole range of densities considered. Nevertheless, the
bulk of this repulsion originates solely in the mean-field
step. This is demonstrated by the correlation energies
Ecorr ≡ E −EHF reported in the bottom panel of Fig. 1.
Many-body correlations are not appreciably affected by
3NFs for dilute systems up to ≈ 1.2ρ0 and instead gener-
ate more attraction at large neutron densities (although
not sufficiently strong to invert the repulsion generated
by 3NFs themselves at the mean-field level). The mod-
erate contribution of the 3NF can be traced back to the
design of the NNLOopt Hamiltonian, made to minimise
contributions beyond the two-nucleon force [42] and the
use of a local cutoff [68].
Fig. 2 benchmarks our results including 3NFs against

other computations available in the literature. The CCD
and CCD(T) are obtained from the same (two-nucleon)
NNLOopt Hamiltonian but with slightly different choices
for the low-energy constants cD and cE in the 3NF
sector [40]. Colored bands are uncertainty estimates
from fourth-order MBPT calculations for different chi-
ral forces [66]. The present CIMC results fit well within
the prediction of all chiral Hamiltonians shown, which
gives further confidence in the predictive capabilities of
this method. Particularly remarkable is the fact that
CIMC points are effectively on top of the CCD results
and CCD(T) curves that are obtained with a nearly iden-
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tical interaction.

B. Momentum distribution

Having gained confidence in our CIMC approach with
3NFs, we consider results for the momentum distribution
n(k) [69]. For fermionic systems, deviations from the
ideal Fermi-Dirac distribution inform on beyond-mean-
field correlations induced by a particular Hamiltonian.
The occupation of states as a function of their momentum
k is obtained directly from the Quantum Monte Carlo
walkers for each lattice point in the single-particle model
space.
The momentum distribution of neutron matter is dis-

played in the left panel of Fig. 3 for various densities and
the full Hamiltonian that includes 3NFs. The depletion
at zero momentum is found to be between 1-2% and it
is independent of the density. Such small effect is in
part due to the fact that neutron matter is generally less
correlated than symmetric nuclear matter [70]. At the
same time, we observe a weaker effect compared to predic-
tions from other standard chiral next-to-next-to-next-to-
leading-order (N3LO) forces in the literature [25, 70–72],
showing that the NNLOopt interaction is particularly soft.
The left panel of Fig. 3 shows that the n(k) curve is

almost independent from ρ up to saturation density. On
the contrary, correlation effects increase for ρ ≈ 2ρ0 and
smooth the discontinuity in occupations at the Fermi
surface. The origin of this behavior can be traced to
3NFs and be better understood from the right panel,
were we compare the momentum distributions computed
with and without 3NFs (the latter is equivalent to the
results shown in Ref. [37]). At low density, the bulk

of correlations comes only from the two-body NNLOopt
Hamiltonian and the two curves are on top of each other.
For densities ρ > 0.20 fm−3 the two-nucleon Hamiltonian
provides a distribution very close to the one observed
a lower densities but the contribution of 3NFs becomes
dominant.
Computations based on SCGF have pointed out that,

around saturation density, 3NFs have a quantitatively
small impact on n(k) and the fragmentation properties
of single-particle strength, even though they have a large
influence on the energetics and thermodynamics of the
system [25]. Our results from Figs. 1 and 3 confirm this
picture but suggest that correlations from 3NFs become
relevant at large densities.

C. Static Structure factor S(q)

The static structure function S(q) carries information
about the response of the system to density excitations
with momentum transfer equal to |q| = q. It can be
thought as the energy average of the (vector) dynamic
structure factor S(q, ω) defined as

S(q, ω) =
∑
n

|〈Ψn|ρ(q)|Ψ0〉|2 δ(En − E0 − ω) , (6)

with |Ψn〉 the energy eigenstates of the nuclear Hamilto-
nian with eigenvalue En and ρ(q) the Fourier transform of
the density operator. This quantity is proportional to the
differential scattering cross section of processes coupling
to the density of the system and transfering energy ω and
momentum q. Upon integration over the energies, the
static structure factor can be then expressed as

S(q) =
∫ ∞

0
dωS(q, ω) = 〈Ψ0|ρ(q)†ρ(q)|Ψ0〉 . (7)

These quantities, together with the corresponding spin
(or axial) responses, carry important information about
neutrino scattering from neutrons in infinite matter. Pre-
vious calculations of S(q) where performed in the high-
temperature small-density regime employing either a virial
expansion [73] or lattice Monte Carlo methods exploiting
the similarity between low-density neutron matter and
a unitary Fermi gas which present no sign problem [74].
Using the CIMC we were able to extend these earlier
calculations and estimate the density static structure fac-
tor S(q) at zero temperature and large densities, beyond
the reach of either method. This is an important step
forward to characterize the response of neutron matter
to neutrinos using ab initio methods with realistic NN
and 3N interactions from chiral EFT. The information
contained in the static structure factor is complementary
to the one present in the static response function χ(q)
defined instead as

χ(q) = − ρ

π~

∫ ∞
0

dω
S(q, ω)
w

. (8)
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q = 2kF for saturation density ρ = 0.16 fm−3. We employ a
correction for finite size effects as described in Appendix B.

This quantity has been computed recently for neutron
matter using a different Quantum Monte Carlo technique
using both phenomenological as well as chiral EFT inter-
actions, including 3N forces [75, 76].
We present our results for S(q) in Fig. 4 for densities

ranging from ρ = 0.02 fm−3 (shown in blue) to nuclear sat-
uration density (shown in green). A detailed description
of our procedure to estimate S(q) from the configurations
sampled by CIMC is provided in Appendix B. The solid
grey lines are results obtained within the Hartree-Fock
approximation which in this case is equivalent to the
free Fermi gas result. We find a rather weak effect from
interactions of the order of ≈ 1% at nuclear saturation
density. These results are compatible with the response to
density excitations being dominated by the repulsive part
of the interactions and it does not show a pronounced
peak, which would instead be expected for purely attrac-
tive forces. As one can see in more detail in the inset,
showing results for ρ = 0.16 fm−3 only, the net effect of
adding 3NFs is to further suppress the oscillations in S(q)
and is consistent with the net repulsion brought by these
interactions.

In future work it would be interesting to also explore the
spin (axial) response of neutron matter as this will provide
information about neutrino properties in bulk neutron
matter like their mean free path and emissivity [77, 78].

IV. CONCLUSIONS

In this work we have extended the Configuration-
Interaction Monte Carlo method for nuclear physics to
include the effect of three-nucleon forces through the nor-
mal ordered two-body approximation. A key improvement

needed in order to achieve this progress was an appro-
priate storage scheme for the nuclear matrix elements in
momentum space. We have applied this extended frame-
work to the calculations of properties of pure neutron
matter such as the equation of state, the one-body mo-
mentum distribution and the static structure factor. The
accurate calculation of the latter two quantities was made
possible by representing the many-body state in a Slater
determinant basis formulated directly in momentum space.
While critical for both the energy per particle and, to
some extent, for the one-body momentum distribution
we found that the three-nucleon interaction has only a
modest effect on the static structure factor at nuclear
saturation density. This work opens new tools for fully
ab initio simulations of the bulk nucleonic matter start-
ing from chiral nuclear interactions and that are capable
to investigate the systematic effects introduced by the
necessary regulators. In a follow-up work we plan to di-
rectly compare both local and non-local low-momentum
regulators and study how the breaking of Fierz symmetry
impacts the extraction of properties of neutron matter at
densities higher than nuclear saturation. This is a unique
feature which sets aside CIMC with respect to more con-
ventional Quantum Monte Carlo methods formulated in
coordinate space which are instead limited to local regu-
lators and for which the inclusion of interactions beyond
next-to-next-to-leading-order requires more sophisticated
approaches.

ACKNOWLEDGMENTS

The authors are grateful to A. Rios for help bench-
marking their code and to A. Schwenk and V. Somà
for comments on the manuscript. This work is sup-
ported in part by the UK Science and Technology Facili-
ties Council (STFC) through grants No. ST/L005816/1
and No. ST/V001108/1, the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – Project-
ID 279384907 – SFB 1245, by the BMBF Contract
No. 05P18RDFN1 and by the U.S. Department of En-
ergy (DOE), Office of Science, Office of Nuclear Physics,
Inqubator for Quantum Simulation (IQuS) under Award
Number DOE (NP) Award DE-SC0020970. This research
used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231 us-
ing NERSC award NP-ERCAP0020946 and resources at
the DiRAC DiAL system at the University of Leicester,
UK, (funded by the UK BEIS via STFC Capital Grants
No. ST/K000373/1 and No. ST/R002363/1 and STFC
DiRAC Operations Grant No. ST/R001014/1).



7

107

108

109

1010

1011

1012

S
to

ra
ge

re
q
u

ir
ed

[B
]

2.0 2.5 3.0 3.5 4.0

kmax[fm−1]

106

107

108

109

1010

1011
M

at
ri

x
el

em
en

ts
Full space

Non-zero MEs

Figure 5. Number of matrix elements depending on whether
the full accessible configuration space or only the non-zero
normal-ordered matrix elements for NNLOopt with 66 neutrons
at ρ0 = 0.16 fm−3 are considered, as well as the corresponding
storage space required in double precision.

Appendix A: Matrix element storage

One of the main perks of CIMC is that working di-
rectly in configuration space, the on-the-fly computation
of non-local χ-EFT matrix elements is easy and fast, and
this does not require the pre-processing of the matrix ele-
ments needed by other many-body methods working in a
harmonic oscillator basis. While this on-the-fly approach
was previously used in CIMC, its computational cost rises
tremendously when incorporating normal-ordered 3NF,
as the matrix elements now include a summation over
the third particle, scaling with the number of nucleons
included in the simulation. This makes the calculations
intractable, and thus the matrix elements need to be
computed once and stored in memory.

But as the number of normal-ordered two-body matrix
elements grows as O(N4

s.p.), with Ns.p. the size of the
single-particle model space, realistic calculations using
large model spaces come with storage requirements that
exceed the capacity of modern clusters, as displayed on
Fig. 5. The obvious choice is then to store only the non-
zero matrix elements Nn.z.. This tremendously reduces
the matrix elements storage requirement, but a map from
the single-particle configurations indices to the non-zero
matrix elements ones still needs to be stored. As this map
scales as O(N4

s.p.) as well, one uses a hash table scaling
as O(Nn.z.) instead, with matrix elements being shared
over different MPI processes but keeping a full copy of all
non-zero elements on each separate computing node. This
ensures that the memory requirement remains tractable
and all matrix elements can be stored for the calculations.

Appendix B: Computation of the response function

We now provide technical details of our implementa-
tion of the static structure factor S(q) within the CIMC
approach. We perform a random walk with importance
sampling using a state |ΦG〉 as guiding function. The
projected state at time τ is

|ΨG(τ)〉 =
Nτ∑
l=1

wG(l, τ) |Dl〉 , (B1)

with wG(l, τ) ∈ R+ a set of weights, Nτ their number at
time τ , and |Dl〉 a N -particle Slater determinant. We
will consider the mixed estimator

Smixed(q, τ) = 〈ΦG|Ŝ(q)|Ψ(τ)〉
〈ΦG|Ψ(τ)〉 , (B2)

where q is a three-dimensional vector and

Ŝ(q) = 1
N

∑
σ,σ′

∑
k,k′

a†k−q,σak,σa
†
k′+q,σ′ak′,σ′ . (B3)

The state |Ψ(τ)〉 is obtained by removing the guiding
function from |ΨG(τ)〉, in components

〈Dm|Ψ(τ)〉 = 〈Dm|ΨG(τ)〉
〈ΦG|Dm〉

(B4)

for a determinant |Dm〉. The mixed expectation value
can then be written more explicitly as follows

Smixed(q, τ) =
∑Nτ
l=1 wG(l, τ) 〈ΦG|Ŝ(q)|Dl〉

〈ΦG|Dl〉∑Nτ
l=1 wG(l, τ)

, (B5)

from which we can define the local expectation value

Sl(q) = 〈ΦG|Ŝ(q)|Dl〉
〈ΦG|Dl〉

. (B6)

It is useful to introduce a complete set of determinants and
split Sl(q) into a diagonal and an off-diagonal contribution

Sl(q) = 〈Dl|Ŝ(q)|Dl〉+
∑
m 6=l

〈ΦG|Dm〉〈Dm|Ŝ(q)|Dl〉
〈ΦG|Dl〉

= SDl (q) + SOl (q) .
(B7)

The off-diagonal contribution can be evaluated by re-
stricting the sum of states to the two-particle-two-hole
excitations using |Dl〉 as reference

SOl (q) =
∑
a<b

∑
i<j

〈ΦG|ij; ab〉
〈ΦG|Dl〉

〈ij; ab|Ŝ(q)|Dl〉 (B8)

or, by introducing tensor notation

Ŝ(q) =
∑

α,β,γ,δ

Sαβ,γδ c
†
αc
†
βcγcδ , (B9)
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equivalently expressed as follows

SOl (q) =
∑
a<b

∑
i<j

〈ΦG|ij; ab〉
〈ΦG|Dl〉

(Sab,ij − Sab,ji) . (B10)

In order to bring Ŝ(q) to the ordered form in Eq. (B9)
we use

Ŝ(q) = 1
N

∑
σ,σ′

∑
k,k′

c†k−q,σck,σc
†
k′+q,σ′ck′,σ′

= 1
N

∑
σ′

∑
k′

c†k′,σ′ck′,σ′

− 1
N

∑
σ,σ′

∑
k,k′

c†k−q,σc
†
k′+q,σ′ck,σck′,σ′

= N̂

N
− 1
N

∑
σ,σ′

∑
k,k′

c†k−q,σc
†
k′+q,σ′ck,σck′,σ′ ,

(B11)

where we used the definition of the (total) number opera-
tor. The first term is diagonal and does not contribute to
SOl (q) while the second one can be written as in Eq. (B9)
by choosing

Sαβ,γδ = − 1
N
δσα,σγ δσβ ,σδ

× δ(3)(kα − kγ + q)δ(3)(kβ − kδ − q) .
(B12)

For the diagonal contribution we find instead that

SDl (q) = Nδ(3)(q) + 1
N

∑
σ

∑
k

(
1− nlk−q,σ

)
nlk,σ ,

(B13)
with the occupation numbers

nlk,σ = 〈Dl|a†k,σak,σ|Dl〉. (B14)

The expression for the diagonal part in Eq. (B13) shows
already that, for |q| > 2kF , the structure factor is exactly
equal to 1 for the Hartree-Fock state while m-particle
m-hole states can acquire a correction of order O(m/N).
In order to account for shell effects generated by using
a finite simulation box with N particles, we employ the
following simple approach. We assume the finite-size

distortion of the static structure factor can be modelled
by a momentum-dependent multiplicative factor

S(N)(q) = S(q)
(

1 + ε(N)(q)
)
, (B15)

and that this perturbation is mostly independent of inter-
actions. We can then estimate ε(N) by taking the ratio
between the free gas response function S0(q) with and
without finite-size effects(

1 + ε(N)(q)
)

= S
(N)
0 (q)/S0(q) . (B16)

The corrected static response reported in Fig. 4 of the
main text is then obtained as

S(q) = S0(q)
S

(N)
0 (q)

S(N)(q) . (B17)

This correction is important for a system of only 66 nu-
cleons as shell effects are still sizeable and stronger than
the contribution of interactions. For reference we show in
Fig. 6 the free particle response functions S(N)

0 (q) (red cir-
cles), S0(q) (full blue line) and S(N)(q) (green diamonds)
for ρ = 0.16 fm−3 with NN forces only. The very close
trends for S(N)

0 (q) and S(N)(q) confirm our assumption
that finite size effects are largely independent of correla-
tions and therefore the same values of ε(N)(q) can enter
both Eqs. (B15) and (B16).
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Figure 6. Free particle structure factors S0(q) and S(N)
0 (q)

for N = 66 neutrons at saturation density. Also shown is the
structure factor S(N)(q) for the NNLOopt Hamiltonian with
NN forces only.
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