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The star to star anticorrelation of sodium and oxygen is a defining feature of globular clusters, but, to date,
the astrophysical site responsible for this unique chemical signature remains unknown. Sodium enrichment
within these clusters depends sensitively on reaction rate of the sodium destroying reactions 23Na(p, γ) and
23Na(p, α). In this paper, we report the results of a 23Na(3He, d)24Mg transfer reaction carried out at Triangle
Universities Nuclear Laboratory using a 21 MeV 3He beam. Astrophysically relevant states in 24Mg between
11 < Ex < 12 MeV were studied using high resolution magnetic spectroscopy, thereby allowing the extraction
of excitation energies and spectroscopic factors. Bayesian methods are combined with the distorted wave Born
approximation to assign statistically meaningful uncertainties to the extracted spectroscopic factors. For the first
time, these uncertainties are propagated through to the estimation of proton partial widths. Our experimental
data are used to calculate the reaction rate. The impact of the new rates are investigated using asymptotic giant
branch star models. It is found that while the astrophysical conditions still dominate the total uncertainty, intra-
model variations on sodium production from the 23Na(p, γ) and 23Na(p, α) reaction channels are a lingering
source of uncertainty.

I. INTRODUCTION

Globular clusters are among the oldest objects in the Milky
Way. Comprised of tens to hundreds of thousands of stars that
are gravitationally bound, they offer a unique probe of galac-
tic and stellar evolution [1, 2]. Despite decades of intense
study, we have an incomplete understanding of their unique
chemical evolution [3]. In particular, high resolution photom-
etry has unambiguously determined the presence of multiple
stellar populations within these clusters [4], with the youngest
of these populations displaying a star-to-star variation in light
elements. The anti-correlation between sodium and oxygen
is the most ubiquitous chemical signature, and as such can
be considered a defining feature of globular clusters [3]. The
Na-O anti-correlation indicates that some amount of cluster
material has undergone hydrogen burning at elevated temper-
atures [5–7]. However, at this time the source of this enriched
material is still unknown, with models of massive asymptotic
branch stars, fast rotating massive stars, interacting massive
binaries, and very massive stars all failing to reproduce the
observed chemical signatures [8].

Sodium is synthesized from a series of proton capture re-
actions that occur during hydrogen burning at 50-100 MK.
Known as the NeNa cycle, this group of proton induced re-
actions and β-decays around A = 20-24 are of critical im-
portance to understanding the creation of sodium in globular
clusters. Within the NeNa cycle, sodium may be destroyed
via the 23Na(p, γ) or 23Na(p, α) reactions, both of which pro-
ceed through the compound nucleus 24Mg. For decades di-
rect measurements have aimed to constrain these astrophys-
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ical reaction rates for the (p, γ) and (p, α) channels [9, 10].
The study of Görres et al. (Ref. [10]) is of particular note,
as it was one of the first to directly search for a resonance
around 138-keV. Corresponding to the Ex ≈ 11830-keV state
in 24Mg, this state was first observed in the indirect mea-
surements of Refs. [11, 12] and is thought to dominate the
23Na(p, γ) rate at the temperatures important to globular clus-
ter nucleosynthesis. Since the study of Görres et al., several
direct searches have been performed, all with the intent of
measuring the 138-keV resonance strength. The authors of
Ref. [13] reported an upper limit of ωγ(p,γ) ≤ 1.5 × 10−7

eV. Subsequently, the authors of Ref. [14] used a high inten-
sity proton beam of ≈ 1 mA to give a further reduced upper
limit of ωγ(p,γ) ≤ 5.17 × 10−9 eV, in the process ruling out
its importance for the (p, α) channel. Recently, nearly thirty
years after the first direct search was carried out, detection of
the 138-keV resonance with a statistical significance above 2σ
came in Ref. [15] reporting ωγ(p,γ) = 1.46+0.58

−0.53 × 10−9 eV.
These efforts have solidified the important role of the 138-keV
resonance in globular cluster nucleosynthesis.

At the present time, direct measurements of the 138-keV
resonance strength have greatly reduced the uncertainty of the
23Na(p, γ) reaction rate at the temperatures of relevance to
globular clusters to approximately 30%. However, much of
the rate is still dependent on the results and evaluation pre-
sented in Ref. [16]. In that study, a (3He, d) transfer reaction
was performed, and a state at Ex = 11831.7(18) keV was
observed. The 23Na(3He, d) measurement we present in this
paper was carried out to further reduce the reaction rate un-
certainty. Earlier results from our experiment have been pub-
lished in Ref. [17], and provided evidence that the 138-keV
resonance lies at a lower energy of 133 keV, resulting in a fac-
tor of 2 increase in the 23Na(p, γ) reaction rate. This paper
uses the same data set as as Ref. [17] but expands upon the
analysis of that paper by providing a more complete set of up-
dated excitation energies, and reports spectroscopic factors for
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levels of astrophysical interest. Bayesian analysis methods are
applied to extract excitation energies, spectroscopic factors,
and ` values. Our analysis is the first of its kind, where every
quantity extracted from the transfer measurement is assigned
uncertainties based on Bayesian statistical arguments, allow-
ing these quantities and their uncertainties to be incorporated
into thermonuclear reaction rate libraries.

Our paper is organized as follows: Sec. II provides an
overview of the experimental techniques, Sec. III gives an
in depth discussion of the necessary corrections to the cur-
rent nuclear data in order to extract accurate excitation en-
ergies for the current experiment, Sec. IV reports our en-
ergy values and gives updated recommended values, Sec. V
presents the analysis of the transfer angular distributions using
a Bayesian method for the distorted-wave Born approximation
(DWBA), and Sec. VI reports our values for the proton partial
widths derived from this experiment. Sec. VII presents our
updated astrophysical reaction rate and its incorporation into
an asymptotic giant branch (AGB) model, one of the possible
sites for the Na-O abundance anomaly in globular clusters.
Sec. VIII provides additional outlook and discussion.

II. EXPERIMENT DETAILS

The 23Na(3He, d)24Mg experiment was carried out at Tri-
angle Universities Nuclear Laboratory (TUNL) using the
Split-pole spectrograph (SPS) [18]. A beam of 3He+2 was
accelerated to 21 MeV using the 10 MV TUNL FN tandem
accelerator, and the beam energy was set using a set of high
resolution 90-90 dipole magnets. While the amount of beam
that made it to the target varied throughout the experiment,
typical beam currents were 100− 200 enA of 3He+2.

For the experiment reported here, NaBr was selected as the
target material based on the observations of Ref. [16]. The
authors of that study noted that NaBr targets were stable to
beam bombardment, reasonably resistant to oxygen contam-
ination, and found no evidence of contaminant states arising
from reactions on 79,81Br in the region of interest. Our tar-
gets were fabricated by using thermal evaporation to deposit a
layer of NaBr on 22 µg/cm2 thick natC foils. The carbon foils
were purchased from Arizona Carbon Foil Co., Inc. [19], and
floated onto target frames to create the backing for the NaBr
layer. A quartz crystal thickness monitor measured the rate
of deposition and total thickness of the targets. A total of six
targets were placed into the evaporator, and evaporation was
halted once they reached a thickness of 70 µg/cm2. After the
evaporation was complete, the targets were brought up to at-
mosphere and then immediately placed into a container for
transfer to the target chamber of the SPS. This container was
brought down to rough vacuum to reduce exposure to air dur-
ing transport. Three of the targets were mounted onto the SPS
target ladder. In addition to the NaBr targets, the ladder was
also mounted with a 1 mm diameter collimator for beam tun-
ing, a natC target identical to the backing of the NaBr targets
for background runs, and thermally evaporated 27Al on a natC
backing to use for an external energy calibration. All three
NaBr targets were used during the 120 hour beam time. No

degradation for any of the targets was observed in the elastic
scattering spectra (discussed below), nor was there any sign
of significant oxidation.

The 23Na(3He, d)24Mg reaction was measured at angles
between 3◦-21◦ in steps of 2◦ with a field of 1.14-1.15 T.
Additionally, the elastic scattering reaction, 23Na(3He,3 He),
was measured at angles between 15◦-55◦ in 5◦ steps and 59◦

using fields of 0.75-0.80 T. The solid angle of the SPS was
fixed throughout the experiment at ΩSPS = 1.00(4) msr. After
the reaction products were momentum to charge analyzed by
the spectrograph, they were detected at the focal plane of the
SPS. The focal plane detector consists of two position sensi-
tive avalanche counters, a ∆E proportionality counter, and a
residual E scintillator. Additional detail about this detector
can be found in Ref. [20].

Due to potential for uncontrolled systematic effects from
the charge integration of the SPS beamstop and target degra-
dation, it was decided to determine the absolute scaling of the
data relative to 23Na(3He,3 He). Elastic scattering was mea-
sured continuously during the course of the experiment by
a silicon ∆E/E telescope positioned at θlab = 45◦. The
telescope was double-collimated using a set of brass aper-
tures to define the solid angle. A geometric solid angle of
ΩSi = 4.23(4) msr was measured.

III. UPDATES TO ENERGY LEVELS ABOVE 11 MeV

Spectrograph measurements like the current experiment are
dependent on previously reported excitation energies for en-
ergy calibration of the focal plane. In the astrophysical region
of interest (11 / Ex / 12 MeV) the current ENSDF evalua-
tion, Ref. [21], was found to be inadequate for an accurate cal-
ibration of our spectra. Discussion of the issues with the eval-
uation are available in Ref. [17], which first reported the astro-
physically relevant results of the energy measurements of this
work. In addition to the issues mentioned in the prior work,
the current ENSDF evaluation recommends energies that in-
clude calibration points from the spectrograph measurements
of Ref. [11] and Ref. [22]. The inclusion of these calibra-
tion points is an error because calibration points are not inde-
pendent measurements and increase the weight of the values
they are based on in the resulting average. Every compilation
and evaluation since 1978 [23] includes this error. The mea-
surements of Hale et al. [16] have been excluded from our
compiled values. Discussion of this decision can be found in
Appendix A. Our compiled values are based on the most pre-
cise available literature, but are limited to a narrow excitation
region selected for the purpose of accurately energy calibrat-
ing the current experiment and subsequently for calculating
the astrophysical reaction rate. We made no attempt to update
values outside of the region of interest.

Our compiled energies are presented in Table. I. Note that
in the case of Ref. [24], resonant capture was used to excite
24Mg, but the excitation energies were deduced from gamma
ray energies making these values independent of the reac-
tion Q-value. For the measurements that report the laboratory
frame resonance energies, the excitation energies are deduced
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from:

Ex = Q+ EP
MT

MT +MP
, (1)

where EP is the projectile energy measured in the laboratory
frame, andMP andMT are the nuclear masses for the projec-
tile and target nuclei, respectively. We have used the atomic
masses from Ref. [25] assuming the difference is negligible
compared to the statistical uncertainty inEP . Q is theQ-value
for either the (p, γ) or (α, γ) reaction. The 2020 mass eval-
uation [26, 27] was released after our compilation, but leads
to a difference of 1 eV in the central Q-value, well below its
associated uncertainty. The column in Table I from Ref. [28]
shows energies deduced from a weighted average of several
(p, γ) measurements, and that paper should be referred to for
additional details. For the present work, the suggested value
of these weighted averages is treated as a single measurement
that is updated according to Eq. (1). The weighted averages of
all measurements are presented in the last column. In order to
reduce the effects of potential outliers, when there are three or
less measurements, the lowest measured uncertainty was used
instead of the weighted average uncertainty.

IV. ENERGY CALIBRATION

Our energy calibration is the same one as reported in
Ref. [17], but is reiterated and expanded here for clarity and
completeness. Excitation energies were extracted from the fo-
cal plane position spectrum using a third-order polynomial fit
to parameterize the bending radius of the SPS in terms of the
ADC channels, x:

ρ = Ax3 +Bx2 + Cx+D. (2)

An updated version of the Bayesian method presented in
Ref. [20] was used to fit the polynomial. Briefly, the method
accounts for uncertainties in both x and ρ while also esti-
mating an additional uncertainty based on the quality of the
fit. The update uses the python package emcee to more effi-
ciently sample the posterior [32]. As a result, excitation ener-
gies can be directly calculated from posterior samples, ensur-
ing the correlations between the fit parameters are correctly
accounted for in our reported energies.

Calibration states were methodically selected to span the
majority of the focal plane. Care was taken to avoid in-
troducing additional systematic errors that would come with
misidentifying a state used for calibration. As such, some in-
tensely populated peaks were excluded due to the possibility
of misidentifying them with nearby levels that differed in en-
ergy by more than a few keV. The chosen calibration states at
θlab = 11◦ are shown in the top panel of Fig. 1. The validity of
this internal calibration in the astrophysical region of interest
between 11 and 12 MeV was checked at θlab = 11◦ against
a separate external calibration using the 27Al(3He, d)28Si re-
action. The aluminum states were selected based on the spec-
trum shown in Ref. [33]. When applying the external alu-
minum calibration to the sodium states an energy offset of

≈ 7 keV compared to the internal calibration was observed.
Using the stopping powers of SRIM [34], it was found that the
energy offset could be ascribed to the difference in energy loss
between the Al and NaBr targets. Taking the above as confir-
mation of its validity, the internal calibration was adopted for
all angles.

The energies of this work are presented in Table II. They are
the weighted average of the energies deduced at each angle.
The bottom panel of Fig. 1 shows the location of the peaks
in the astrophysical region of interest at 11◦. Only states that
were seen at three or more angles are reported. Calibration
states are given without uncertainties, italicized, and marked
with an asterisk for clarity in Table II.

The additional uncertainty estimated by our Bayesian en-
ergy calibration also introduces a further complication into the
weighted averaging between angles. Since this uncertainty is
estimated directly from the data, it will be influenced by sys-
tematic effects. These systematic effects introduce correla-
tions between the deduced energies and uncertainties at each
angle, which can become significant because of the high num-
ber of angles measured in this experiment. A clear indication
of a correlation was seen in the deduced energies of our cali-
bration points. The energy of the calibration points predicted
by the fit tend to agree with their input values at each angle,
but exhibit little statistical scatter from angle to angle pro-
ducing some disagreement larger than 2σ for final values if
a simple weighted average is adopted. To account for possible
correlations, the uncertainties on the weighted averages were
estimated using the methods of Ref. [35]. This correction is
done by calculating the χ2 value of the data with respect to
the weighted average, x̄, which is given by:

χ2 =

N∑
i

(xi − x̄)2

σ2
i

. (3)

Since the expected value of χ2 isN−1, the uncertainties from
the weighted average, σ̄, are adjusted based on the deviation
from N − 1. For the case of positive correlations, χ2 < 1,
and, therefore, σ̄ will need to be adjusted by:

σadj =
√

(N − χ2)σ̄2. (4)

A separate estimate can also be made if the scatter in the data
is not well described by the weighted average. In this case,
χ2 > 1, which gives the adjustment:

σadj =

√
χ2

N − 1
σ̄2. (5)

To be conservative, we adopt the larger of these two values. It
can be seen from Table II that our energies are in good agree-
ment with previous measurements. The sole exceptions are
the pair of states at Ex = 9838(7) keV and 9977(6) keV,
which lie 10 keV above the values reported in Ref. [21]. How-
ever, both of these states show clear bimodal behavior as a
function of spectrograph angle, undergoing shifts of over 10
keV, and as a result skewing the average towards higher ener-
gies. Behavior of this nature is inconsistent with the kinematic
shift seen from contaminants, but did not appear to impact the
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FIG. 1: Full and partial focal plane position spectrum at θlab = 11◦ after 6 hours (1015 particles) of data accumulation. The top
panel () shows the entire focal plane spectrum with the calibration states (given in keV) highlighted in orange and the

astrophysical region of interest is between the dashed black lines. The energy values for the states below the proton threshold
(11692.69 keV) are taken from Ref. [21], while the rest are from Table I. All values in the top panel are rounded to the nearest
integer. The bottom panel () is zoomed in on the astrophysical region of interest. Peaks from 24Mg have been identified with

their final weighted average energy value in keV.
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corresponding angular distributions, which were in agreement
with the known 1+ spin-parities. These states have no bearing
on the astrophysical measurement, so while their unique be-
havior is puzzling, we have opted to report the average of all
angles using the expected value method of Ref. [36] to give a
more conservative estimate of the uncertainties.

A. Suggested Energies for Astrophysically Relevant States

Our angle averaged excitation energies have been combined
with our compilation of literature values (Sec. III), to produce
the recommended resonance energies given in the second half
of Table II. The energies of Ref. [16] have been excluded
from the averaging (see Appendix.A). Note that some states
not directly measured in the present work are included since
they play a role in the reaction rate. All values come from a
weighted average of the separate measurements, except for the
11694-keV state. For this state an extreme tension of 10 keV
exists between the two most precise measurements, which are
this work and the value of Ref. [30]. In order for our rec-
ommended value to reflect this disagreement, we again adopt
the expected value method of Ref. [36] to combine our mea-
surement and the measurement of Ref. [30] leading to a more
realistic uncertainty given the discrepant data.

V. BAYESIAN DWBA ANALYSIS

Proton partial widths necessary for the calculation of the
reaction rate can be estimated from the spectroscopic factors
extracted from single-particle transfer reactions. Uncertain-
ties arising from the optical potential and bound state wave
function will typically dominate the total uncertainties of the
spectroscopic factors. Analysis of our data would be incom-
plete if we ignored these sources of uncertainty; therefore,
we adopt the Bayesian distorted wave Born approximation
(DWBA) methods of Ref. [39] to quantify these uncertainties
for the present measurement. All DWBA calculations were
carried out using FRESCO [40]. Ref. [39] should be con-
sulted for a more complete discussion of the Bayesian DWBA
method, but a brief overview is given here in the context of
the present study.

A. Overview of Bayesian DWBA

Elastic scattering data are used to constrain the parameters
of a Woods-Saxon potential given by:

V (r) = − V

1 + exp (
r−r0A1/3

t

a0
)
, (6)

where V is the depth of the well in MeV, r0 is the radius in fm,
and a0 is the diffuseness in fm. The optical model uses a linear
combination of both real and imaginary Woods-Saxon poten-
tials, and by adjusting the parameters of these potentials the
observed elastic scattering data can be reproduced. Bayesian

statistics treats parameters as probability distributions. By as-
signing each parameter a prior probability distribution before
considering the data, Bayesian statistics allows the data, D,
and Bayes’ theorem to update the prior distributions in light
of our observations. Bayes’ theorem is given by:

P (θ|D) =
P (D|θ)P (θ)

P (D)
, (7)

where P (θ) are the prior probability distributions of the
model parameters, P (D|θ) is the likelihood function, P (D)
is the evidence, and P (θ|D) is the posterior [41]. Infor-
mally we can state: the priors are what we believe about the
model parameters considering the new data, the likelihood is
the probability of measuring the observed data given a set
of model parameters, the evidence is the probability of the
observed data, and the posterior is what we know about the
model parameters after analyzing the new data.

The goal of the present experiment is to extract spectro-
scopic factors and assign ` values to states in 24Mg in the as-
trophysical region of interest. Spectroscopic factors are ex-
tracted from experimental angular distributions, dσ

dΩ Exp, ac-
cording to:

dσ

dΩ Exp
= C2SprojC

2Starg
dσ

dΩ DWBA
, (8)

where C and S denotes the isospin Clebsch-Gordan coeffi-
cient and spectroscopic factor, while the subscripts proj and
targ refer to the projectile and target systems, respectively. For
this work, we approximate C2S for the projectile system as 3

2

according to Ref. [42]. Any further mention of C2S should
be understood to be in reference to C2Starg.

It is essential to recognize that Eq. (8) establishes C2S as
a parameter in the framework of DWBA. The only meaning-
ful way to estimate its uncertainty in the presence of both the
measured uncertainties of dσ

dΩ Exp and the optical model uncer-

tainties that affect dσ
dΩ DWBA is to treat it as a parameter in the

statistical analysis. Using Bayesian statistics this entails as-
signing a prior distribution. The excited states of interest to
this work lie above 11 MeV, where it can be safely assumed
that the majority of the single particle strength of the proton
shells has been exhausted. Thus, C2S � 1 and we assign an
informative prior:

C2S ∼ HalfNorm(1.02), (9)

where ∼ means “distributed according to”. HalfNorm stands
for the half normal distribution, which is strictly positive and
has one free parameter the standard deviation, σ. In the case of
Eq. (9), σ = 1.0 is chosen to reflect our assumption that C2S
is more than likely to be less than one in the astrophysical
region of interest.

Assigning probabilities to ` values requires a subcategory
of Bayesian inference called model selection. In this context,
the model is `l, which is shorthand for ` = l (for example
` = 0 is written `0). Posterior distributions for `l can be de-
termined through a modified version of Bayes’ theorem:

P (`l|D) =
P (D|`l)P (`l)∑

k P (D|Mk)P (Mk)
. (10)
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TABLE II: 24Mg excitation energies from this work compared to the values of Table I for states within the region of interest
and those of Ref. [21] for all others. In some cases, due to the presence of a high number of states in certain regions, a unique

identification of the observed state could not be made so all nearby states are listed. For states in the region of interest we
compare to the values of Table. I. The recommended excitation and resonance energies are also given for these states. States

used for this work’s energy calibration are reported in italics, marked with ∗, and listed without uncertainties, but they do
represent the mean value obtained after calibration. All energies are given in units of keV.

ENSDF ([21]) This Work Compilation (Table I) This Work Recommended Ex Recommended Er
7349.00(3) 7364(14) 11392.5(21) 11387.7(14) 11389.2(12) −303.5(12)

7555.04(15) 7555(13) 11452.9(4) 11453.2(21) 11452.9(4) −239.8(4)

7747.51(9) 7752(10) 11521.5(16) 11520.3(23) 11521.1(13) −171.6(13)

8357.98(13) 8362(4) 11698(2) 11688.7(14) 11694(4) 1(4)

8437.31(15) 8441(4) 11729.8(16) 11729.8(16) 37.1(16)

8439.36(4) 11828(3) 11823(3) 11826(3) 133(3)

8654.53(15) 8654* 11861.6(15) 11857(3) 11860.8(14) 168.1(14)

8864.29(9) 8864* 11933.05(19) 11935(3) 11933.06(19) 240.37(19)

9003.34(9) 9002.9(24) 11966.7(5) 11966.7(5) 274.0(5)

9145.99(15) 9145.0(16) 11988.45(6) 11989.3(14) 11988.45(6) 295.76(6)

9284.22(14) 9292.6(12) 12016.9(5) 12014(3) 12016.8(5) 324.1(5)

9299.77(24) 12051.3(4) 12050(3) 12051.3(4) 358.6(4)

9457.81(4) 9460* 12119(1) 12121.5(17) 12119.7(8) 427.0(8)

9516.28(4) 9520(3) 12183.3(1) 12182.3(22) 12183.3(1) 490.6(1)

9527.8(21) 12259.6(4) 12260*

9828.11(11) 9838(7)† 12341.0(4) 12342(3) 12341.0(4) 648.3(4)

9967.19(22) 9977(6)† 12405.3(3) 12406.0(22) 12405.3(3) 712.6(3)

10027.97(9) 10021(3) 12528.4(6) 12530.5(24) 12528.5(6) 835.8(6)

10058.54(16) 10055(3) 12578(5) 12576(3) 12577(3) 884(3)

10161(3) 10163.2(19) 12669.9(4) 12670* 12669.9(4) 977.2(4)

10333.29(13) 10328.1(18) 12738.9(7) 12738(3) 12738.8(7) 1046.1(7)

10360.51(13) 10358* 12817.77(19) 12819(4) 12817.77(19) 1125.08(19)

10576.02(7) 10572.7(21) 12852.1(5) 12854(3) 12852.2(5) 1159.5(5)

10659.58(13) 10660.1(21) 12921.6(4) 12924(4) 12921.6(4) 1228.9(4)

10660.03(4) 12963.9(5) 12965(4) 12963.9(5) 1271.2(5)

10711.74(17) 10713.9(12)

10730.79(11) 10732.5(16)

10820.7(4) 10824.3(13)

10916.96(17) 10918*

11010.5(14) 11011(3)

11015.8(7)

11208.4(16) 11201(5)

11314.4(15) 11317(3)

* State used for calibration.
† These two states show bimodal behavior as a function of angle. The expected value method of Ref. [36] was adopted to

give a more conservative uncertainty since only one state is expected around each energy. See text for additional details.

Each `l is implicitly dependent on a set of model parame-
ters θl which have been marginalized. Expanding P (D|`l)
to show the explicit dependence gives:

P (D|`l) =

∫
P (D|`l,θl)P (θl|`l)dθl. (11)

This equation shows that P (D|`l) is precisely equivalent to
the evidence integral from Eq. (7) conditioned on `l. Thus,

calculating the posteriors for each ` demands evaluating the
evidence for each DWBA cross section generated using a dis-
tinct ` value.

Denoting the evidence integral that corresponds to a model
`l as Zl, we can compare each value of `. The Bayes Fac-
tor, Blk, can be calculated between two angular momentum
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transfers which are assumed to have equal prior probabilities:

Blk =
Zl
Zk
. (12)

Generally, if this ratio is greater than one, the data favor the
transfer ` = l, while values less than 1 favor ` = k. While
the significance of values for Blk is open to interpretation, a
useful heuristic given by Jefferys [43] is often adopted. As-
suming ` = l is favored over ` = k, we have the following
levels of evidence: 1 < Blk < 3 is anecdotal, 3 < Blk < 10
is substantial, 10 < Blk < 30 is strong, 30 < Blk < 100 is
very strong, and Blk > 100 is decisive. Normalized probabil-
ities for each transfer are given by:

P (`l|D) =
Zl∑
k Zk

, (13)

where the index k runs over all allowed angular momentum
values. However, practically (3He, d) reactions are highly se-
lective, allowing us to restrict the sum to the most likely trans-
fers with ` = 0-3.

By using a Bayesian model, Ref. [39] made it possible to
incorporate optical potential uncertainties into the extraction
of spectroscopic factors and assignment of ` values. How-
ever, the current data set for 23Na(3He, d) presents challenges
that require significant extensions to those previously reported
methods.

B. Incorporating Relative Yields

Extraction ofC2S for a state requires that the absolute scale
of the differential cross section is known. Here we use a rel-
ative method to remove beam and target effects. Yields mea-
sured at the focal plane are normalized to the 23Na+3He elas-
tic scattering measured by the monitor detector positioned at
45◦. From these normalized yields, an absolute scale is es-
tablished by inferring an overall normalization through com-
parison of the measured elastic scattering angular distribu-
tion collected in the focal plane to the optical model predic-
tions. Our approach is similar in principle to those found in
Refs. [16, 44, 45].

The present study has a set of ten elastic scattering data
points, which we denote by dY

dΩ Elastic,j for the data measured at
angle j. From these data a posterior distribution can be found
for an overall normalization parameter, η, which renormalizes
the predictions of the optical model such that:

dY

dΩ Optical,j
= η × dσ

dΩ Optical,j
, (14)

where dY
dΩ Optical,j is the relative yield predicted by the optical

model at angle j. As a parameter in our model, η needs a prior
distribution. To assign equal probability on the logarithmic
scale, we introduce a parameter, g, such that:

g ∼ Uniform(−10, 10), (15)

where Uniform is the uniform distribution. η is then defined
via η = 10g . Since η is estimated simultaneously with C2S,

the uncertainty in our absolute normalization will automati-
cally be included in the uncertainty of C2S.

C. Global Potential Selection

Global optical potentials are used to construct the prior dis-
tributions for the potential parameters in our Bayesian model.
Elastic scattering data were only measured for the entrance
channel, since it can be gathered with the same beam energy
and target as the transfer reaction of interest. As a result, our
priors differ for the entrance and exit channels. For the en-
trance channel, mildly informative priors are selected. The
depths, V,W, etc., are assigned Normal distributions centered
around their global values with standard deviations equal to
20% of the central value:

V ∼ N (µglobal, {0.20µglobal}2). (16)

The geometric parameters, r and a, are given priors that at-
tempt to cover their expected physical range while still al-
lowing the posterior to be determined by the data. Taking
this range to be r = 1.0 − 1.5 fm and a = 0.52 − 0.78 fm,
we can again assign Normal distributions with central values
r = 1.25 fm and a = 0.65 and standard deviations of 20% the
central value. Collecting the parameters for all of the poten-
tials, the priors for the entrance channel are written compactly
as:

UEntrance ∼ N (µcentral,k, {0.20µcentral,k}2), (17)

where the index k runs over each of the potential parameters.
The subscript central refers to either the values taken from
the selected global study for each depth or the central values
r = 1.25 fm and a = 0.65 fm for the geometric parameters.

The first attempts to fit the elastic scattering data used the
optical model from the lab report of Beccehetti and Greenless
[47]. The imaginary depth of this potential for a beam of 3He
on 23Na atE3He = 21 MeV is 36 MeV. We note that this value
is nearly twice as deep as the values reported in the more re-
cent works of Trost et al. [48], Pang et al. [49] and Liang
et al. [50]. Although these works use a surface potential, the
work of Vernotte et al. [45] is parameterized by a volume
depth, and also favors depths around 20 MeV. While the start-
ing parameters are of little consequence to standard minimiza-
tion techniques, the overly deep well depth is an issue for our
Bayesian analysis because it determines the prior distribution
for our model. When using the deeper value of 36 MeV for
inference, we observed that the data preferred a lower depth,
thereby causing a bimodal posterior with one mode centered
around the global depth and the other resulting from the influ-
ence of the data. Based on these observations, a decision was
made to use the potential of Liang et al. (Ref. [50]) due to
its applicability in the present mass and energy range and its
shallower imaginary depth of 19.87 MeV. We have chosen to
exclude the imaginary spin-orbit portion of the Liang poten-
tial because of the limited evidence presented for its inclusion
in Ref. [50].

The exit channel optical potential parameters must also be
assigned prior distributions. Our experiment does not have
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data to constrain these parameters directly, but fixing these
parameters in our analysis would neglect a source of uncer-
tainty. We chose informative priors that are determined by the
selected global deuteron potential. These parameters are as-
signed Normal priors centered around the global values and
given standard deviations of 10%:

UExit ∼ N (µglobal,k, {0.10µglobal,k}2). (18)

The selected deuteron potential is the non-relativistic po-
tential from Ref. [46]. Since the region of interest is 11-12
MeV, the outgoing deuterons will have an energy of Ed ≈
E3He +Q(3He,d) − Ex ≈ 15.5 MeV.

All of the potentials used in the following analysis are listed
in Table III. The bound state spin-orbit term was set to roughly
satisfy λ = 25 with λ ≈ 180Vso/V for values of V in the
above energy range. The bound state geometric parameters,
all spin-orbit terms for the entrance and exit channels, and
Coulomb radii were fixed in our calculations.

D. Elastic Scattering

As stated in Sec. II, elastic scattering yields were measured
for 15◦-55◦ in 5◦ steps and finally at 59◦, for a total of 10 an-
gles. The yields at each angle were normalized to those mea-
sured by the monitor detector. A further normalization to the
Rutherford cross section was applied to the elastic scattering
data to ease the comparison to the optical model calculations.

Low angle elastic scattering cross sections in normal kine-
matics can be collected to almost arbitrary statistical preci-
sion, with the present data having statistical uncertainty of
approximately 2-7%. In this case, it is likely that the resid-
uals between these data and the optical model predictions are
dominated by theoretical and experimental systematic uncer-
tainties. To account for this possibility, the Bayesian model is
modified to consider an additional unobserved uncertainty in
the elastic channel:

σ′2Elastic,i = σ2
Elastic,i +

(
fElastic

dσ

dΩ Optical,i

)2

, (19)

where the experimentally measured uncertainties, σElastic,i, at
angle i have been added in quadrature with an additional un-
certainty coming from the predicted optical model cross sec-
tion. This prescription is precisely the same procedure that is
used for the additional transfer cross section uncertainty from
Ref. [39]. With only 10 data points, an informative prior on
fElastic is necessary to preserve the predictive power of these
data. We select the form:

fElastic ∼ HalfNorm(0.102). (20)

This quantifies the expectation that the data will have resid-
uals with the theoretical prediction of about 10%. We found
the above prior to provide the best compromise between the
experimental uncertainties, which lead to unphysical optical
model parameters, and less informative priors that lead to
solutions above fElastic = 50% where the data become non-
predictive.

Once the above parameter was included, the data could be
reliably fit. However, it then became clear that the discrete
ambiguity posed a serious issue for the analysis. It is know
(see for example Ref. [51]) that nearly identical theoretical
cross sections can be produced with drastically different po-
tential depths due to the phase shift only differing by an addi-
tive multiple of π. Previously, Ref. [39] found that the biasing
of the entrance channel potential priors towards their expected
physical values was sufficient to remove other modes from the
posterior. For the present data, the potential priors did little to
alleviate the problem, as might be expected since strongly ab-
sorbed projectiles like 3,4He suffer much worse discrete am-
biguities ([51]) compared to the deuteron scattering data in
Ref. [39]. In order to explore potential solutions, the nested
sampling algorithm in dynesty was used to draw appropri-
ately weighted samples from both of the modes. Nested sam-
pling can explore multi-modal distributions with ease [52], but
is not necessarily suited towards precise posterior estimation.
A run was carried out with 1000 live points, and required over
5× 106 likelihood calls, which is nearly three times the num-
ber of samples required in other calculations. The pair corre-
lation plot of these samples is shown in Fig. 2, and the impacts
of the discrete ambiguity can clearly be seen.

Two different approaches were explored to differentiate the
modes. The first was a simple selection of the modes based on
the continuous ambiguity, V rn0 = c. Fig. 2 shows that the cor-
relation between V and r0 can cleanly resolve the two modes,
while the correlations in the other parameters have significant
overlap between them. In this approach, the constant, c, is cal-
culated for each mode, while the exponent is kept fixed with a
value of n = 1.14, taken from Ref. [45]. It was found that the
correlation in the samples was well described by this relation
as shown in Fig. 3. Our second approach utilized the volume
integral of the real potential. Ref. [53] gives an approximate
analytical form of the integral:

JR =
1

APAT

4π

3
R3

0V

[
1 +

(
πa0

R0

)2]
, (21)

where R0 = r0A
1/3
T . Calculating JR for the samples in

each mode resulted in two clearly resolved peaks, as shown
in Fig. 4.

After comparing these two methods, it was decided to use
the first one, and exclude the other modes via a uniform dis-
tribution based on the relationship between V and r0. This
calculation had the advantages of being relatively simple and
only involving two parameters. The method based on JR has
the advantage that the global values well predict the location
of the peak, but its dependence on a0 makes its possible ef-
fect on the posterior less clear. Integrating the V rn0 relation
into the Bayesian method requires a probability distribution be
specified. A uniform distribution that covered ±30% around
c of the physical mode was chosen. We have intentionally
avoided the word prior because this condition clearly does
not represent a belief about the parameter c before inference.
Rather, this is a constraint enforced on the posterior to limit
the inference to the physical mode [54]. It should be empha-
sized that the posterior distributions of all the parameters will
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TABLE III: Optical potential parameters used in this work before inference.

Interaction V r0 a0 W Ws ri ai rc Vso rso aso
(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (fm) (MeV) (fm) (fm)

3He +23Na a 117.31 1.18 0.67 19.87 1.20 0.65 1.29 2.08 0.74 0.78
d + 24Mgb 88.1 1.17 0.74 0.30 12.30 1.32 0.73 1.30 6.88 1.07 0.66
p + 23Na c 1.25 0.65 1.25 6.24 1.25 0.65

a Global potential of Ref. [50].
b Global potential of Ref. [46].
c Adjusted to reproduce binding energy of the final state.

be conditioned on c, i.e., P (θ|D, c). The constraint is written:

c ∼ Uniform(c0(1− 0.30), c0(1 + 0.30)), (22)

where c0 is the value that is roughly centered around the lower
mode. In this case c0 = 132.9. As long as the distribution in
Eq. (22) covers all of the physical mode and excludes the un-
physical ones, the value of c0 and the width of the distribution
should be understood to be arbitrary.

E. Transfer Considerations

Transfer cross sections are calculated using the zero-range
approximation with the code FRESCO. The zero-range ap-
proximation is necessary in the current context because of the
number of function evaluations that are needed to compute the
posterior distributions (for this work 2×106). For the volume
integral of the proton-deuteron interaction,D0, we use a value
of D0 = −172.8 MeV fm3/2 [55]. D0 is calculated theoret-
ically and has a dependence on the selected nucleon-nucleon
interaction. We added a 15% uncertainty using a parameter
δD0 to account for the spread observed between different the-
oretical models in Refs. [56]. A similar estimate for the D0

uncertainty was made in Ref. [57].
The residuals between the transfer cross section and DWBA

calculations will be impacted not only by the experimental
and optical model uncertainties, but by any deficiency in the
reaction theory. If we do not acknowledge that the DWBA
residuals could be greater than the uncertainties coming from
counting statistics, then we would be assuming that the trans-
fer data are a meaningful constraint on the optical model pa-
rameters. If this were the case, each state would have its own
set of optical model parameters that have been incorrectly ad-
justed to best reproduce the observed angular distribution. To
avoid this issue, we add an additional theoretical uncertainty
in quadrature with the experimental uncertainties, similar to
our procedure for the elastic scattering. Using the same func-
tional form as Eq. (19), we define a fraction of the DWBA
cross section, with the weakly informative prior:

f ∼ HalfNorm(1.02), (23)

meaning that our expectation for the fractional uncertainty on
the DWBA cross section at each angle is f < 1.

A majority of the states of astrophysical interest lie above
the proton threshold, and are therefore unbound. For bound

states, calculation of the overlap functions, which determine
C2S, is done by using a single particle potential with its
Woods-Saxon depth adjusted to reproduce the binding en-
ergy of the state. For unbound states, an analogous procedure
would be to adjust the well depth to produce a resonance cen-
tered aroundEr. FRESCO does not currently support a search
routine to vary V to create a resonance condition, meaning
that V would have to be varied by hand until a phase shift of
π/2 is observed. Such a calculation is obviously time con-
suming and computationally infeasible in the current work.
An alternative is the weak binding approximation. This ap-
proach assumes that the wave function of resonance scattering
resembles the wave function of a loosely bound particle, typ-
ically with a binding energy on the order of Ebind = 1 keV.
Studies have shown that this approximation performs well for
states within ≈ 500 keV of the particle threshold, and repro-
duce the unbound calculations to within 1% [58, 59]. There
are indications that the validity of this approximation depends
on the ` value. The reasoning is that states with higher ` val-
ues more closely resemble bound states, due to the influence
of the centrifugal barrier, and therefore are better described by
the approximation [60]. For this work, DWBA calculations
for states above the proton threshold were carried out with the
weak binding approximation. The error arising from use of
the approximation is considered negligible in the current con-
text.

Further complications arise from the non-zero ground state
of 23Na (Jπ = 3/2+). In this case, angular distributions can
be characterized by a mixture of ` transitions. Although in
principle every allowed ` transition can contribute, practically
speaking, it is difficult to unambiguously determine all but the
lowest two ` contributions because of the rapidly decreasing
cross section with increasing ` [61]. Ignoring the light parti-
cle spectroscopic factor, the relationship between the experi-
mentally measured differential cross section and the DWBA
prediction can be expressed as:

dσ

dΩ exp
= C2S

[
α
dσ

dΩ DWBA,`1
+ (1− α)

dσ

dΩ DWBA,`2

]
, (24)

where α is defined such that C2S`1 = C2Sα and C2S`2 =
C2S(1 − α) [62]. Note that the values for ` must still obey
parity conservation, meaning the most probable combinations
for (3He, d) are ` = 0 ⊕ 2 and ` = 1 ⊕ 3. Incorporating
multiple ` transfers into the Bayesian framework requires as-
signing a prior to α. The above definitions make it clear that
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FIG. 2: Pair correlation plot of the posterior samples for the nested sampling run. The discrete ambiguity is prominent in the
3He +23Na data, posing a significant challenge in estimating the optical model parameter posteriors.

α = [0, 1]; therefore, an obvious choice is:

α ∼ Uniform(0, 1). (25)

F. Bayesian Model for 23Na(3He, d)24Mg

Before explicitly defining the Bayesian model for the
DWBA analysis, the points made above are reiterated for clar-

ity.

1. The measured elastic scattering uncertainties have been
added in quadrature with an inferred theoretical uncer-
tainty.

2. The 3He optical model has a severe discrete ambigu-
ity. A constraint based on the continuous ambiguity has
been added to the model to select the physical mode.
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FIG. 3: The discrete ambiguity as seen in the V versus r0

correlations between the histogrammed samples of the nested
sampling calculation shown in black. The colored lines show
the description of the correlation based on the analytic form
V rn0 = c. The value of c provides a way to distinguish these

modes.
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FIG. 4: Values from the volume integral of the real potential
as calculated using Eq. (21) and the samples from the nested
sampling calculation. The discrete ambiguity causes two well
separated peaks to appear. The black dashed line shows the

value of JR for the global potential.

3. Due to the non-zero spin of the ground state of 23Na,
the transfer cross section can have contributions from
multiple ` values.

4. Only the two lowest ` values are considered for a mixed
transition, with the relative contributions weighted ac-
cording to a parameter α that is uniformly distributed
from 0 to 1.

Folding these additional parameters and considerations into
the Bayesian model of Ref. [39] gives:

Parameters:
n = 1.14

c0 = 132.9

Priors:

UEntrance ∼ N (µcentral,k, {0.20µcentral,k}2)

UExit ∼ N (µglobal,k, {0.10µglobal,k}2)

f ∼ HalfNorm(1)

fElastic ∼ HalfNorm(0.102)

δD2
0 ∼ N (1.0, 0.152)

C2S ∼ HalfNorm(1.02)

g ∼ Uniform(−10, 10)

Functions: (26)
η = 10g

c = UEntrance,(k=0)

(
UEntrance,(k=1)

)n
dY

dΩ

′

Optical,j
= η × dσ

dΩ Optical,j

dY

dΩ

′

DWBA,i
= η × δD2

0 × C2S × dσ

dΩ DWBA,i

σ′2i = σ2
Transfer,i +

(
f
dY

dΩ

′

DWBA,i

)2

σ′2Elastic,i = σ2
Elastic,i +

(
fElastic

dY

dΩ Optical,i

)2

Likelihoods:

dY

dΩ Transfer,i
∼ N

(
dY

dΩ

′

DWBA,i
, σ′ 2i

)
,

dY

dΩ Elastic,j
∼ N

(
dY

dΩ

′

Optical,j
, σ′2Elastic,i

)
,

Constraint:
c ∼ Uniform(c0(1− 0.30), c0(1 + 0.30)),

where the index k runs over the optical model potential param-
eters, i and j denote the elastic scattering and transfer cross
section angles, respectively, and UEntrance,(k=0,1) are the real
potential depth and radius for the entrance channel. In the
case of a mixed ` transfer, the model has the additional terms:

Prior:
α ∼ Uniform(0, 1)

Function: (27)

dY

dΩ

′

DWBA,i
= η × δD2

0 × C2S

×
[
α
dσ

dΩ DWBA,`1
+ (1− α)

dσ

dΩ DWBA,`2

]
,

where the definition for dY
dΩ

′
DWBA,i is understood to replace

all other occurrences of that variable in Eq. (26). Note that
the individual cross sections, dσ

dΩ DWBA,`1
and dσ

dΩ DWBA,`2
, are

calculated simultaneously using same sampled values for the
optical potential.



13

G. Results

The above Bayesian model was applied to the eleven states
observed in the astrophysical region of interest. For each state,
affine invariant MCMC [63], as implemented in the python
package emcee [32] was run with 400 walkers taking 8000
steps, giving a total of 3.2 × 106 samples. Of these samples,
the first 6000 steps were discarded as burn in, and the last
2000 steps were thinned by 50 for 16000 final samples. The
effective sample size was estimated to be greater than 2000
based on the calculated autocorrelation of ≈ 400 steps. These
16000 samples were used to estimate the posterior distribu-
tions for C2S, and to construct the differential cross sections
shown in Fig. 6. An example of the simultaneous fit obtained
for the elastic scattering data is shown in Fig. 5. All of the
data have been plotted as a function of their relative value
(Sec. V B). Data points were only fit up to the first minimum
in the cross section, the region where DWBA is expected to
be most applicable [64]. The normalization η was found to be
η = 0.075+0.007

−0.006, which shows that the absolute scale of the
data, despite the influence of the optical model parameters,
can be established with a 9% uncertainty.

Values obtained for (2Jf + 1)C2S in this work are listed in
Table IV, were the term (2Jf+1)C2S is constant for all possi-
ble values of Jf for the final state if it is populated by the same
j = ` ⊕ s transfer. There is general agreement between our
values and those of Ref. [16], which provides further evidence
that the absolute scale of the data is well established. How-
ever, for the three 2+ states that show a mixture of ` = 0⊕ 2,
the current values are consistently lower. In these cases, the
Bayesian method demonstrates that considerable uncertainty
is introduced when a mixed ` transfer is present. The origin
of this effect merits a deeper discussion, which we will now
present.

First, consider that the posterior distributions for (2Jf +
1)C2S from states with unique ` transfers were found to be
well described by log-normal distributions. Estimations of
these distributions can be made by deriving the log-normal
parameters µ and σ from the MCMC samples. These param-
eters are in turn related to the median value of the log-normal
distribution by med. = exp (µ) and its factor uncertainty,
f.u. = exp (σ). The med. and f.u. quantities are listed in
Table IV. It can be seen that states that have a unique ` trans-
fer show factor uncertainties of f.u. ≈ 1.30, or, rather, a 30%
uncertainty. On the other hand, states that show a mixed `
transition vary from f.u. = 1.4-2.0. It was found that the
individual ` components, which are the quantities relevant to
the reaction rate, have a large factor uncertainty and deviate
strongly from a log-normal distribution. However, their sum
shares the same properties as the states with a single ` trans-
fer. In other words, the total spectroscopic factor still has a
30% uncertainty. Since the total spectroscopic factor is the
quantity that determines the relationship between the theoret-
ical calculations and the data, its uncertainty is similar to a
single ` spectroscopic factor, 30%. For the mixed ` case, the
individual components are terms in a sum that produces the
theoretical prediction. The mean value of this sum grows lin-
early with each term, while the uncertainty grows roughly as

FIG. 5: The credibility intervals obtained for the elastic
scattering fit compared to the measured yields relative to

Rutherford scattering (YR/σR). The dark and light purple
bands show the 68% and 95% credibility intervals,

respectively. The measured error bars are smaller than the
points, while the adjusted uncertainty of Eq. (19) that is

inferred from the data is not shown.

the square root of the sum of the squares. It is this fact that
requires, without appealing to the current Bayesian methods,
the individual ` components to have a greater percentage un-
certainty than their sum. Since previous studies, like those of
Ref. [16], assume a constant uncertainty with the extraction of
spectroscopic factors, each ` component is assumed to have
the same percentage uncertainty. The above discussion high-
lights that this assumption cannot be true, regardless of the
statistical method. The influence of optical model parameters
limits the precision of the total normalization of the cross sec-
tion; thereby, giving an upper limit on the precision that can
be expected from the components. These results indicate that
applying a standard χ2 fit to a mixed ` transfer might not ac-
curately extract the individual spectroscopic factors if optical
model uncertainties are ignored.

We will now discuss our results, and summarize the previ-
ously reported information for each of these states.

1. The 11389-keV State; −303-keV Resonance

This state has been reported in several studies, and is known
to have a spin parity of Jπ = 1− [22]. Our measurements
confirm an ` = 1 nature to the angular distribution, mak-
ing it a candidate for a subthreshold p-wave resonance. A
higher lying state with unknown spin-parity has been reported
in Ref. [12] at Ex = 11394(4) keV. The current evaluation
states that the 25Mg(3He,4He)24Mg measurement of Ref. [65]
also observes this higher state at 11397(10) keV, but their an-
gular distribution gives an ` = 1 character, indicating it would
be compatible with the lower Jπ = 1− state. Ref. [16] finds
a similar peak in their spectrum, but considered it a doublet
because of the ambiguous shape of the angular distribution,
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FIG. 6: DWBA calculations for the states of 24Mg . The 68% and 95% credibility intervals are shown in purple and light
purple, respectively. Only the data points shown in black were considered in each calculation, with the triangles being excluded
based on the cross section increasing after the minimum value was reached. For the 11826 keV state, the 68% bands are shown

for all of the ` transfers between 0-3.

which was caused primarily by the behavior of the data above
20◦. Due to our angular distribution not having these higher
angles, and considering the excellent agreement between our
data and an ` = 1 transfer, only the state at 11389.2(12) keV
with Jπ = 1− was considered to be populated. The present
calculation assumes a 2p3/2 transfer and is shown in Fig. 6a.

2. The 11453-keV State; −240-keV Resonance

Two states lie in the region around 11.45 MeV, with the
lower assigned Jπ = 2+ and the upper Jπ = 0+. The

only study that reports a definitive observation of the 0+,
11460(5) keV state is the (α, α0) of Ref. [66]. The current
study and that of Ref. [16] indicate that there is a state around
Ex = 11452 keV that shows a mixed ` = 0+2 angular distri-
bution. Since the ground state of 23Na is non-zero, this angu-
lar distribution can be the result of a single 2+ state, and the
` = 2 component cannot be unambiguously identified with the
higher lying 0+ state. The (p, p′) measurement of Ref. [22]
also notes a state at 11452(7) keV with ` = 2. The excellent
agreement between our excitation energy and the gamma ray
measurement of Ref. [24] leads us to assume the full strength
of the observed peak comes from the 2+ state. The calcula-
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TABLE IV: The values of (2Jf + 1)C2S that were derived in this work compared to those of Ref. [16]. All values for this
work give the 68% credibility interval from the posterior estimation. Additionally, the parameters of the corresponding

log-normal distribution are listed. All spin parity information, except that of the 11825-keV state, is taken from Ref. [21], and
are updated based on the current observations.

Ex (keV) Jπ ` a (2Jf + 1)C2S med. f.u. Ref. [16]

11389 1− 1 0.066+0.021
−0.015 0.067 1.30 0.06

11453 2+ 0 + 2 0.14+0.05
−0.04 + 0.05+0.03

−0.02 0.14 + 0.048 1.39 + 2.00 0.24 + 0.16 b

11521 2+ 0 + 2 0.05+0.03
−0.02 + 0.057+0.024

−0.018 0.055 + 0.056 1.61 + 1.51 0.10 c

11694 4+ 2 0.085+0.025
−0.018 0.086 1.29 0.11

11826 0 0.023+0.012
−0.007 0.024 1.52 0.039

1 0.010+0.004
−0.003 0.010 1.40 0.009

2 0.014+0.005
−0.003 0.014 1.36 0.015

3 0.025+0.009
−0.006 0.025 1.36 0.024

11861 1− 1 0.022+0.007
−0.005 0.022 1.32 0.026

11933 (2-4)+ 2 0.23+0.07
−0.05 0.24 1.30 0.25

11988 2+ 0 + 2 0.26+0.10
−0.07 + 0.24+0.10

−0.07 0.26 + 0.24 1.40 + 1.45 0.42 + 0.33

12017 3− 1 0.20+0.06
−0.04 0.20 1.30 0.13

12051 4+ 2 0.13+0.04
−0.03 0.14 1.30 0.13

12183 (1, 2+) 2 0.12+0.04
−0.03 0.12 1.34 0.13

a + in the context of mixed ` transfers is simply a delineation between each ` component.
b Ref. [16] assumed a doublet. The (2Jf + 1)C2S values were taken from these two states.
c Ref. [16] assumed a doublet, with a portion of the strength assigned to a negative parity state.

tion shown in Fig. 6b assumes transfers with quantum num-
bers 2s1/2 and 1d5/2.

3. The 11521-keV State; −172-keV Resonance

Another sub-threshold 2+ state lies at 11521.1(13) keV. It
should be noted that another state with unknown spin-parity
was observed at 11528(4) keV in Ref. [12], but has not been
seen on other studies. Ref. [12] reports a measured Γγ/Γ ≈ 1
for this new state, making it a candidate for an unnatural par-
ity 24Mg state. The present angular distribution, Fig. 6c, is
indicative of a mixed ` = 0 + 2 assignment. Thus, the obser-
vation is associated with the 2+ state at 11521.1(13) keV, and
transfers were calculated using 2s1/2 and 1d5/2.

4. The 11694-keV State; 1-keV Resonance

For our measurement this state was partially obscured by a
contaminant peak from the ground state of 17F coming from
16O(3He, d)17F for θLab < 9◦. Previous measurements have
established a firm 4+ assignment, and our angular distribution
is consistent with an ` = 2 transfer. The fit for a 1d5/2 transfer
is shown in Fig. 6d.

5. The 11826-keV State; 133-keV Resonance

This state is also obscured at several angles by the fifth ex-
cited state of 15O. The previous constraints on its spin par-
ity come from the comparison of the extracted spectroscopic
factors for each ` value in Ref. [16] and the upper limits
established in Ref. [13] and subsequently Ref. [14]. This
DWBA analysis finds an angular distribution consistent with
Ref. [16], which it should be noted experienced similar prob-
lems with the nitrogen contamination, but with the Bayesian
model comparison methods presented in Sec. V A, constraints
can be set based purely on the angular distribution. All of the
considered ` transfer are shown in Fig. 6e, and were calcu-
lated assuming 2s1/2, 2p3/2, 1d5/2, and 1f7/2 transfers, re-
spectively. The results of the nested sampling calculations,
which give the relative probabilities of each transfer, are pre-
sented in Table V and shown in Fig. 7. The adopted values
were taken to be the mean of these distributions instead of
the median as in Ref. [39]. Since the statistical errors of the
nested sampling are normally distributed in lnZ, the result-
ing probabilities are distributed log-normally. The choice of
the mean instead of the median then amounts to selecting the
arithmetic mean instead of the geometric mean, which ensures∑
` P (`) = 1.
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TABLE V: Results of the model comparison calculations for the 11826 keV state. For each ` value, We list the logZ value
calculated with nested sampling, the median Bayes factor when compared to the most likely transfer ` = 3, and the mean

probability of each transfer.

` lnZ` B3` P (`)

0 44.226(294) 47.79 1%
1 45.990(289) 8.20 7%
2 47.762(323) 1.39 39%
3 48.093(293) 1.00 53%

FIG. 7: The distributions from the nested sampling algorithm
for the most likely ` values for the 11826-keV state.

6. The 11861-keV State; 168-keV Resonance

There are two states within a few keV of one another re-
ported to be in this region. One is known to have Jπ = 1−

[22], and has been populated in nearly all of the experiments
listed in Table I. The other state is reported to decay to the
6+, 8114-keV state, with a γ-ray angular distribution that fa-
vors an assignment of 8+ [67]. The later polarization mea-
surements of Ref. [68] support the assignment of 8+. For our
experiment, the tentative 8+ state is likely to have a negligible
contribution to the observed peak, and the angular distribu-
tion in Fig. 6f is consistent with a pure ` = 1 transfer. The
calculation assumed 2p5/2.

7. The 11933-keV State; 240-keV Resonance

The 11933-keV State does not have a suggested spin as-
signment in the current ENSDF evaluation [21]. However, the
earlier compilation of Ref. [28] lists a tentative (2− 4)+. The
compilation assignment is justified from two pieces of evi-
dence. First, the ` = 2 angular distribution observed in the
(4He,3 He) measurement of Ref. [65] suggests (0-4)+. Sec-
ond, the 0+ and 1+ assignments are ruled out from the ob-
served γ-decays to the Jπ = 2+, 1368-keV and Jπ = 4+,
4122-keV states observed in Ref. [69]. Our measurement in-
dicates an ` = 2 transfer. Based on these observations, and

the satisfactory ability to describe the angular distribution with
` = 2, a 1d5/2 transfer was calculated, and is shown in Fig. 6g.
It should also be noted that Schmalbrock et. al suggested that
this state could be the analogue to a T = 1 state with spin 3+

in 24Na [30].

8. The 11988-keV State; 295-keV Resonance

As can be seen in Table I, the 11988-keV State has been ob-
served in multiple experiments, including the high precision
γ-ray measurement of Ref. [24]. A spin parity of 2+ has been
assigned based on the inelastic measurement of Ref. [22]. The
current fit is shown in Fig. 6h and assumes a mixed ` = 0 + 2
transition with 2s1/2 and 1d5/2.

9. The 12017-keV State; 324-keV Resonance

The 12017-keV state is known to have Jπ = 3−, which
was established from the angular distributions of Ref. [70, 71]
and confirmed by the inelastic scattering of Ref. [22]. Our
angular distribution is consistent with an ` = 1 transfer, and
was calculated assuming 2p3/2. The fit is shown in Fig. 6i.

10. The 12051-keV State; 359-keV Resonance

The angular distribution of α-particles from 23Na(p, α)
measured in Ref. [71] established Jπ = 4+ for the 12051-keV
state, which was later confirmed by the inelastic scattering of
Ref. [22]. The angular distribution of the present work is well
described by a transfer of 1d5/2, which is shown in Fig. 6j.

11. The 12183-keV State; 491-keV Resonance

Ref. [72] observed that the 12183-keV state γ-decays to 0+,
2+, and 1+ states, which permits values of (1, 2+). The angu-
lar distribution of Ref. [16] permits either ` = 2 or ` = 0 + 2
transfers, which requires the parity of this state be positive.
The current work finds an angular distribution consistent with
a pure ` = 2 transfer. The calculation of the 1d5/2 transfer is
shown in Fig. 6k.
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VI. PROTON PARTIAL WIDTHS

The spectroscopic factors extracted in Sec. V F are only an
intermediate step in the calculation of the 23Na(p, γ) reaction
rate. From the proton spectroscopic factors of this work, pro-
ton partial widths can be calculated using

Γp = C2SΓsp, (28)

where Γsp is the single-particle partial width. If there is a
mixed ` transfer, then the total proton width is calculated us-
ing:

Γp =
∑
`

Γp,`. (29)

However, for our case the ` = 2 single particle widths, Γsp,
are typically two orders of magnitude lower than the ` = 0
ones, making them negligible in the calculations presented be-
low.

A. Bound State Uncertainties

There are additional sources of uncertainty impacting the
determination of Γp. One of the largest is the bound state pa-
rameters used to define the overlap function. Since the over-
lap function is extremely sensitive to the choice of Woods-
Saxon radius and diffuseness parameters, the extracted spec-
troscopic factor can vary considerably. This dependence has
been discussed extensively in the literature, for a review, see
Ref. [73]. Ref. [39] confirmed this strong dependence in a
Bayesian framework. If the uncertainties of C2S are inde-
pendent from those of Γsp, then single-particle transfer reac-
tion experiments that determine spectroscopic factors will be
unable to determine Γp with the precision needed for many
astrophysics applications.

Ref. [57] noted an important consideration for the calcula-
tion of Γp fromC2S and Γsp. If these quantities are calculated
using the same bound state potential parameters, the variation
in C2S is anticorrelated with that of Γsp. Thus, the product
of these two quantities, i.e., Γp, has a reduced dependence on
the chosen bound state potentials. Using the same bound state
parameters for both quantities, Refs. [16, 44] found variations
in Γp of ≈ 5%. With the Bayesian methods of this study, we
investigate whether this anticorrelation still holds in the pres-
ence of optical model uncertainties.

The code BIND calculates Γsp for a resonance at energy Er
with a Woods-Saxon potential. For additional details on this
code see Ref. [74]. Modifications were made to the code so
that it could be run on a set of tens of thousands of bound state
samples to produce a set of Γsp samples. Due to the numeri-
cal instability of the integration for low energy resonances, the
potential impact of the weak binding approximation, and the
difficulties for mixed ` transitions, the state selected for this
calculation needs to have a 500 ' Er ' 100 keV, ` ≥ 2, and
a known spin parity. The only such state is at Ex = 12051
keV (Er = 359 keV). A new MCMC calculation was car-
ried out using the same model as Eq. (26) with the additional

parameters for the bound state r0 and a0. These were given
priors:

r0 ∼ N (1.25, 0.1252) (30)

a0 ∼ N (0.65, 0.0652).

The sampler was again run with 400 walkers taking 8000
steps. The final 2000 steps were thinned by 50 giving 16000
posterior samples. These samples were then plugged into
BIND to produce the 16000 samples of Γsp. Since these sam-
ples all come directly from the MCMC calculation they nat-
urally account for the variations in the optical model param-
eters as well as C2S. First it is worth establishing the bound
state parameters influence on the uncertainty ofC2S. The log-
normal distribution well described these samples and had a
factor uncertainty of f.u. = 1.50 increased from f.u. = 1.30
in the case of fixed bound state parameters. The pair correla-
tion plot for (2Jf + 1)C2S versus Γsp is shown in Fig. 8. The
resulting distribution gives (2Jf + 1)Γp = 0.083+0.025

−0.018 eV,
while the value calculated using fixed bound state parameters
gives (2Jf + 1)Γp = 0.082+0.025

−0.018 eV.
The cancellation between the variation in Γsp and C2S is

nearly exact in this case, with the resulting uncertainty be-
ing 30% in both calculations. The quantum numbers of the
bound state, n and j, can also a have a dramatic effect on
the extracted spectroscopic factor. Repeating the above cal-
culation assuming a 2d5/2 state instead of a 1d5/2 causes
C2S to drop to a value 50% lower. Once again, taking the
MCMC samples of the bound state geometric parameters and
running BIND with these parameters as well as n = 2 gives
(2Jf +1)Γp = 0.090+0.029

−0.020 eV. This relation still requires fur-
ther study using Bayesian methods, particularly the influence
of the bound state quantum numbers n and j, which cannot
be determined from the transfer data, but for the present work
the potential influence of the bound state parameters on Γp
is considered negligible compared to the those of the optical
model.

B. Subthreshold Resonances

Three of the observed states lie close enough to the proton
threshold to be astrophysically relevant. The penetrability, P`,
is undefined for Er < 0, and therefore Γsp cannot be calcu-
lated for subthreshold states. Instead these resonances will be
integrated using θ2 = C2Sθ2

sp. θ2
sp can be calculated using the

fits provided in either Ref. [74] or Ref. [75]. We have adopted
the fit of Ref. [74]. It should be noted that the fit of Ref. [74]
was derived using the bound state parameters r0 = 1.26 fm
and a0 = 0.69 fm which differ from those used in this work.
The impact of this difference was investigated by using higher
lying states where values of θ2

sp could also be calculated using
BIND. The maximum observed deviation was 10%, which is
in decent agreement with the expected accuracy of the fit as
mentioned in Ref. [74]. The values of θ2 for this work are
shown in Table VI.
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TABLE VI: Reduced width calculations for the observed subthreshold resonances. All θ2
sp values were calculated using the fit

of Ref. [74] and should be considered to have a 10% systematic uncertainty. The 68% credibility intervals of the samples are
presented in the fifth column.

Ex(keV) Er(keV) Jπ θ2sp (2Jf + 1)θ2

11389.2(12) −303.5(12) 1− 0.738 0.049+0.016
−0.011

11452.9(4) −239.8(4) 2+ 0.654 0.09+0.03
−0.03

11521.1(13) −171.6(13) 2+ 0.639 0.035+0.018
−0.013

(2Jf + 1)C 2S = 0.15+0.08
0.05

0.1 0.2 0.3 0.4 0.5

(2Jf + 1)C 2S

0.3
0.6
0.9
1.2
1.5

sp

0.3 0.6 0.9 1.2 1.5

sp

sp = 0.57+0.21
0.16

FIG. 8: Pair correlation plot for the MCMC posterior
samples of Γsp and (2Jf + 1)C2S for the 12051-keV state.
A strong anticorrelation exists when the same bound state

parameters are used to calculate both quantities, resulting in
Γp having less sensitivity to these parameters.

C. Resonances Above Threshold

Eight resonances were observed above the proton threshold
and below 500 keV. Except for Er = 2, all of the Γsp values
were calculated using BIND. BIND calculations were carried
out with the Woods-Saxon potential parameters r0 = 1.25 fm,
a0 = 0.65 fm, rc = 1.25 fm, Vso = 6.24, and channel radius
of 1.25 fm. The low resonance energy of Er = 2 presented
numerical challenges for BIND, so it was calculated using the
fit of Ref. [74]. Our results are shown in Tablet VII.

D. Discussion

The literature for ωγ values is extensive. Ref. [16] com-
piled and corrected previous measurements for stopping pow-
ers and target stoichiometry. Using those compiled values as
well as the recent measurement of Ref. [15], comparisons can

be made between the results of the current work and previous
measurements. We choose to compare (2Jf + 1)Γp values
deduced from ωγ measurements instead of transforming our
(2Jf + 1)Γp values into their associated ωγ. Knowledge of
Γγ/Γ is required in order to carry out a comparison, which
limits us to a select few of the many measured resonances.

1. 133-keV Resonance

The 133-keV resonance was measured directly at a sig-
nificance greater than 2σ for the first time at LUNA and is
reported in Ref. [15]. The value from that work is ωγ =
1.46+0.58

−0.53 × 10−9 eV. Using Γγ/Γ = 0.95(4) from Ref. [12]
implies (2Jf + 1)Γp = 1.23+0.49

−0.45 × 10−8 eV. The upper
limit reported in Ref. [14] can also be used for compari-
son and yields (2Jf + 1)Γp ≤ 4.35 × 10−8 eV. The clos-
est value from this work is the ` = 2 transfer which gives
(2Jf + 1)Γp = 6.0+2.1

−1.5 × 10−8 eV. The disagreement be-
tween our value and that of LUNA is stark, and a significant
amount of tension exists with the upper limit of Ref. [14].

2. 168-keV Resonance

Ref. [16] derived a proton width of (2Jf +1)Γp = 1.8(4)×
10−4 eV for the 168-keV Resonance using ωγ(α,γ), ωγ(p,α),
and Γ. This value is in good agreement with the current work
(2Jf + 1)Γp = 1.3+0.4

−0.3 × 10−4 eV.

3. 240-keV Resonance

Using the resonance strength measured in Ref. [15] of
ωγ = 4.8(8) × 10−4 eV and Γγ/Γ > 0.7 from Ref. [12],
(2Jf + 1)Γp has a lower limit of 3.8(6) × 10−3 eV, which is
in mild tension with the transfer value of 2.5(7)× 10−3 eV.

4. 295-keV Resonance

Ref. [15] measured ωγ = 1.08(19) × 10−1 eV, while
Ref. [12] gives Γγ/Γ = 0.70(9). In this case, (2Jf + 1)Γp =
1.2(2) eV. The current value is in significant disagreement
with (2Jf + 1)Γp = 4.0+1.5

−1.1 eV.
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TABLE VII: Proton partial widths derived from this work. The values of Γsp from BIND are listed for reference. (2Jf + 1)Γp
values are given in terms of their 68% credibility intervals.

Ex(keV) Er(keV) Jπ Γsp(eV) (2Jf + 1)Γp(eV) This Work (2Jf + 1)Γp(eV) Previous Work

11694(4) 1(4) 4+ 2.589 × 10−140 a 2.2+0.6
−0.5 × 10−141

11826(3) 133(3) ` = 0 1.092 × 10−03 2.6+1.3
−0.8 × 10−5

` = 1 2.314 × 10−04 2.2+0.9
−0.6 × 10−6

` = 2 4.949 × 10−06 6.7+2.4
−1.7 × 10−8 1.23+0.49

−0.45 × 10−8 b

` = 3 6.157 × 10−08 1.5+0.5
−0.4 × 10−9

11860.8(14) 168.1(14) 1− 5.894 × 10−3 1.3+0.4
−0.3 × 10−4 1.8(4) × 10−4 c

11933.06(19) 240.37(19) (2-4)+ 1.034 × 10−2 2.4+0.7
−0.5 × 10−3 1.2(2) b

11988.45(6) 295.76(6) 2+ 15.39 4.0+1.5
−1.1

12016.8(5) 324.1(5) 3− 8.550 1.7+0.5
−0.4

12051.3(4) 358.6(4) 4+ 6.141 × 10−1 8.2+2.5
−1.8 × 10−2

12183.3(1) 490.6(1) (1, 2)+ 9.318 1.1+0.4
−0.3

a Calculated using θ2sp from the fit of Ref. [74] to avoid the numerical instability of BIND at 2 keV. An additional 10% systematic uncertainty should be
considered.

b Derived from resonance strengths reported in Ref. [15] and Γγ/Γ values from Ref. [12]
c Derived in Ref. [16], which should be consulted for details.

5. 491-keV Resonance

The 490-keV Resonance is considered a standard resonance
for the 23Na(p, γ) reaction, and has a value of 9.1(12)×10−2

eV [77]. Unfortunately, Γγ/Γ is not known. However, an
upper limit for ωγ(p,α) has been set at ≤ 0.011 eV [16]. The
ratio of the two resonances strengths can set an upper limit for
Γα/Γγ :

ωγ(p,α)

ωγ(p,γ)
=

Γα
Γγ
. (31)

Plugging in the values gives Γα/Γγ ≤ 0.12. Assuming
Γp � Γγ , Γγ/Γ ≥ 0.89. The current value for (2Jf+1)Γp =

1.1+0.4
−0.3 eV which can be compared to the upper limit of the

standard resonance of (2Jf + 1)Γp = 0.82(11) eV. If we as-
sume the α channel is completely negligible, (2Jf + 1)Γp =
0.73(10) eV. The standard resonance value appears to be con-
sistent with the current work.

E. Final Remarks on Proton Partial Widths

The above comparisons make it clear that the agreement
between the current experiment and previous measurements
is inconsistent. Of particular concern are the 133-keV and
295-keV resonances, in which the disagreement is at a high
level of significance. However, the measurement of Ref. [15]
at LUNA used the 295-keV resonance as a reference during
the data collection on the 133-keV resonance, which could
explain some correlation between those resonance strengths
when compared to this work. On the other hand, LUNA’s
value of ωγ = 1.08(19) × 10−1 eV is in excellent agree-
ment with the value given in the compilation of Endt [28],

ωγ = 1.05(19) × 10−1 eV, which normalized the value of
Ref. [78] to the standard resonance at 491-keV. These com-
ments are not meant to brush aside the serious issues that
come with extracting proton partial widths from DWBA cal-
culations, but to highlight that any comparison between direct
and indirect measurements involves data from several sources,
each of which have their own systematic uncertainties compli-
cating the conclusions that can be drawn. There is a need for
detailed, systematic studies to determine the reliability of Γp
values extracted from transfer reactions at energies relevant to
astrophysics.

It is also worth reiterating the comment first made in
Ref. [17], the updated resonance energy of 133 keV compared
to the previously assumed 138 keV could impact the assump-
tion of a thick target yield curve made in Ref. [14, 15]. The
significantly lower energy has the potential to move the beam
off of the plateau of the yield curve, further affecting the ex-
tracted resonance strength, but the magnitude of this effect is
difficult to estimate. However, the measurement of Ref. [14]
made at LENA has an upper limit that is consistent with the
LUNA value and is in tension with the current work. Impor-
tantly, their upper limit also assumed the 138-keV resonance
energy, but used a much thicker target (≈ 30 keV) than the
LUNA measurement (≈ 15 keV) making it less sensitive to
the resonance energy shift. Again it should be mentioned
that all of this discussion presupposes that the proton state
has ` = 2 and that our observed angular distribution arises
completely from a direct reaction mechanism. If the spin is
one of the other possible values, the current results will differ
by over an order of magnitude, which could indicate the ob-
served yields have significant contributions from a compound
reaction mechanism.
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VII. THE 23Na(p, γ) AND 23Na(p, α) REACTION RATES

There exists a formidable amount of data relevant to the
23Na(p, γ) and 23Na(p, α) reaction rates. The values com-
piled in Ref. [16] make up the majority of the current STAR-
LIB rates [79]. A detailed reanalysis of these rates is likely
needed, but is well beyond the scope of the current work. As
such, we focus our efforts on showing the astrophysical im-
plications of the results presented above. To do this we con-
struct two updated versions of the rates in Ref. [15], which are
themselves updates of STARLIB Version v6.5 [79]. The first
update (called New1) uses all of our recommended resonance
energies presented in Sec. IV A and scales the STARLIB pro-
ton partial widths for consistency. The second update (called
New2) is a more exploratory study that, in addition to the up-
dated energies, replaces the resonance strength for the 133-
keV resonance reported in Ref. [15] with the proton partial
widths measured in this work (Table VII) using the probabil-
ities for ` = 0-3 transfers from Table V. New2 also makes
corrections to subthreshold resonances involved in the (p, α)
rate. All rates and their uncertainties were calculated using
the Monte-Carlo reaction rate code RatesMC [76].

A. Energy Update

The resonance energies presented in Table II were substi-
tuted into the RatesMC input files provided by STARLIB for
the (p, γ) and (p, α) rates. Particle partial widths were scaled
as needed to reflect the new energies. Normalizing the rates
to their own median produces the reaction rate ratios shown in
Fig. 9. The blue contours centered around one show the 68%
coverage of the rates of this work, while the gray contour is
the ratio of the rate as determined by LUNA [15] to the up-
dated rate. The influence of the new energy for the 133-keV
resonance on the (p, γ) rate can be clearly seen. Recall that
the resonance energy enters the rate exponentially, and in this
case the 5-keV shift in energy is responsible for the rate in-
creasing by a factor of 2 for temperatures of 70-80 MK. The
impact of the new energies on the (p, α) rate are more modest.
A factor of 1.25 increase is observed as a result of the lower
energy for the 168-keV resonance resulting from the exclu-
sion of Hale’s measurement from the weighted average. The
updated rate is still well within the uncertainty of the current
STARLIB rate.

B. Partial Widths Update

The partial widths extracted in this study are consistent
with those reported in Ref. [16]. However, it was found
that θ2 value for the −304-keV resonance was erroneously
translated using the value of (2J + 1)C2S instead of C2S
in Ref. [80], making this subthreshold p-wave resonance ap-
pear ×3 stronger. When corrected, the sub-threshold region
is dominated primarily by the two s-wave resonances at−240
keV and −172 keV, and the rate at lower temperatures is in-
creased.

In the case of the 133-keV resonance, we substitute our
proton partial widths weighted by the probabilities given in
Table. V. Folding different ` probabilities estimated directly
from transfer reactions is only possible due to the Bayesian
methods developed in Ref. [39] and the Monte-Carlo reaction
rate developed in Ref. [76, 81]. The net effect is a dramat-
ically more uncertain rate in the temperature ranges relevant
to globular cluster nucleosynthesis, as can be seen in Fig. 10.
New2 uses the same energy value updates as New1.

C. AGB Models

The impact of our updated sodium destruction rates was
examined in the context of intermediate mass (M & 4M�,
depending on metallicity) AGB stellar environments. AGB
models that are sufficiently massive to enter the thermally
pulsing AGB (also dependent on initial metallicity, see
Ref. [82]) can activate the NeNa cycle within the intermittent
hydrogen burning shell for temperatures greater than 15 MK.
Hydrogen burning can also occur at the base of the convective
envelope if temperatures exceed 50 MK, with the NeNa cycle
operating for T > 80−100 MK. This process is known as hot
bottom burning (HBB) and can lead to significant enhance-
ment of hydrogen burning products in the envelope [83–89].
AGB stars that undergo HBB provide a possible explanation
for the Na-O abundance anomaly of globular clusters, though
they and other models cannot account for all observations [8].
The competition between 23Na production via the NeNa cy-
cle and 23Na destruction via the proton capture channels in
question is not limited exclusively to the thermally pulsing
AGB. 23Na produced during the main sequence can be mixed
to the stellar surface during the first and second (for inter-
mediate mass stars) dredge up events. For further details of
AGB evolution and nucleosynthesis, we refer the reader to
Refs. [82, 89–94]. Specifically for 23Na production in AGB
stars, see Refs. [95–105].

The models discussed in this section all achieve temper-
atures sufficient for HBB, but of varying efficiencies. We
choose a range of initial masses and metallicities (where Z
denotes the initial mass fraction of all elements heavier than
helium): 4 and 7M� at Z = 0.001, 4M� at Z = 0.0028,
6 and 8M� at Z = 0.014 (solar metallicity; Asplund et al.
106). The evolutionary properties of the Z = 0.014 models
were previously published in Refs. [86, 107], the Z = 0.0028
model in Ref. [88] and the 7M�, Z = 0.001 model in
Ref. [108]. We note that in general, lower metallicities and
higher initial masses will produce higher temperatures at the
base of the envelope. The lowest metallicity at 7M� contains
the highest temperatures, the lower mass model, 4M�, at the
same metallicity contains the coolest.

The evolutionary sequences were run with the Monash stel-
lar evolution code ([109–111]; described most recently in
Ref. [82, 107] and Ref. [112]) and post processing nucleosyn-
thesis code (see Refs. [89, 113–115]). Briefly, the evolution
of the models is run from the zero-age main sequence to the
tip of the thermally pulsing AGB. Mass loss on the red giant
branch (RGB) is only included in the 4M, Z=0.001 model.
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FIG. 9: New1 reaction rates normalized to their median. (left) The (p, γ) reaction rate taken from Ref.[17]. The blue contours
show the relative uncertainty as a function of temperature. The gray contour is the recommend rate of Ref. [15] normalized to

the updated rate’s median. Both contours show 68% coverage. (right) The reaction rate ratio plot for the (p, α) rate.

FIG. 10: New2 reaction rates normalized to their median. The gray contour is the recommend rate of Ref. [15] normalized to
the New2 rate’s median (left) The (p, γ) reaction rate ratio. Large variations are seen around 80 MK due to the uncertain spin

parity assignment for the 133-keV resonance. (right) The reaction rate ratio plot for the (p, α) rate.

The quantity of mass lost from intermediate mass stars is typ-
ically insignificant on the RGB owing to their short lifetimes
in this phase. For the 4M�, Z = 0.001 model, the approxi-
mation of Ref. [116] is used, with parameter ηR=0.477 based
on Ref. [117]. For AGB mass-loss, we use the semi-empirical
mass-loss rate in all the models [118], except for the 4M�,
Z = 0.001 model in which we use the method of Ref. [119]
with η = 0.02 (see treatment of mass-loss in Ref. [88] for
intermediate-mass AGB stars). We treat convection using the
Mixing-Length Theory (MLT) of convection, with the MLT
parameter, αMLT, set to 1.86. We assume instantaneous mix-
ing in convective regions and use the method of relaxation
[109] to determine the borders of convective regions. We use
the ÆSOPUS low temperature opacity tables of Ref. [120]

and the OPAL opacities [121] for high temperature regions.
The evolution code follows six isotopes, 1H, 3He, 4He, 12C,
14N and 16O, adopting the rates of Refs. [122–124].

These sequences are then fed into a post processing nucle-
osynthesis code, which follows 77 isotope species from hy-
drogen to sulfur, with a few iron-peak nuclei [125]. We use so-
lar scaled initial compositions based on the solar abundances
of Ref. [106]. Excluding the 23Na proton capture rates investi-
gated in this paper, the Z = 0.001 and Z = 0.014 models use
the nuclear reaction rates from the 2016 default JINA REA-
CLIB database [126]. For the Z = 0.0028 model, the rates
were updated to the 2021 default set from the same database.

For all models, we ran three calculations with different sets
of median rates: LUNA’s latest experimental results (LUNA),
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the energy updates from this paper (New1, Sec. VII A), and
the partial width updates (New2, Sec. VII B). LUNA and
New1 differ only in the temperature range of 60-80 million K,
as seen in Fig. 9. In this range, the New1 sodium destruction
rates are faster due to the influence of the 133-keV resonance
in the 23Na(p, γ) reaction.

For each model, we also calculate the stellar yields. The
yields are the integrated mass expelled from the model over
its lifetime, where a positive yield for an isotope indicates net
production of that species, a negative indicates net destruction
of that species. These are shown in Table VIII. The largest im-
pact of the New1 rates is found in the 8M�, solar metallicity
model, which holds a 5% variation in yields between New1
and LUNA. This is most likely due to this particular model
experiencing the largest duration of HBB within the tempera-
ture range for which the difference between New1/New2 and
LUNA is at a maximum. The next largest variation is seen by
the 6M�, solar metallicity model which shows a 2% differ-
ence between the yields. The variation for both 4M� models
and the 7M�, Z = 0.001 model are less than 1%. The 20Ne
abundances mirror those of 23Na, where higher quantities of
20Ne are found with the New1 rates. There is almost no dif-
ference in 24Mg between the rates for any of the models. It
would therefore appear that most of the variation in the 23Na
yields between the rates is coming from the small variations
in the median 23Na(p, α) rate.

For one chosen model, 6M� and Z = 0.014, we ran a fur-
ther six calculations (two combinations for each set of rates),
to estimate the potential impact of the rate uncertainties. For
each of the three rates, a high and low rate were run. These
correspond to the 16th and 84th percentile of both the (p, γ)
and (p, α) rates. Thus, the high rate has an increase in both
destructive rates and the low rate has a corresponding decrease
in both. We show these results in Figure. 11. Even with the
conservative uncertainties of New2, there appears to be very
little impact on 23Na production.

D. Discussion

The 23Na abundances and the initial mass and metallicity
thresholds for which the updated rates show maximum vari-
ation should be considered qualitatively. There are various
uncertainties in stellar modeling that directly impact the tem-
perature at the base of the convective envelope. These uncer-
tainties can skew the exact amount of 23Na that is destroyed.
For example, we use the MLT to treat convective regions in
the Monash code. Other methods, such as the Full Spectrum
of Turbulence [127, 128] used in the ATON code [129, 130],
are known to produce higher temperatures at the base of the
convective envelope. Consequently, HBB occurs at a lower
initial stellar mass [131]. The choice of mass loss rate on the
AGB will also impact HBB. The mass loss rate of Ref. [118]
is slower than that of Ref. [119] when used in intermediate-
mass stellar models (e.g., see discussion in Ref. [86]). The
mass loss rate of Ref. [118] results in more thermal pulses,
a longer AGB lifetime, and consequently the base of the en-
velope will spend longer at higher temperatures. Hence the
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FIG. 11: 23Na surface abundance for median (solid line) and
low/high (dashed lines) reaction rates for LUNA, New1, and
New2 (see text for details). The high rates for the 23Na(p, γ)
and 23Na(p, α) lead to lower 23Na surface abundances and
vice versa for the low rates. Model number is a proxy for

time. The impact of rate uncertainties shown here is small.

4M� model of Z = 0.0028 from Ref. [88] achieves much
higher temperatures at the base of the envelope compared to
the model of the same mass and metallicity evolved with the
mass loss rate of Ref. [119].

There is a general pattern of faster 23Na destruction with the
New1 rates as opposed to LUNA in AGB models that spend
significant time during HBB in the key temperature range of
60-80 million K. However, the exact initial mass and metal-
licity thresholds for which HBB at this temperature range oc-
curs is heavily dependent on the stellar evolution mode uti-
lized alongside the chosen input physics. Simple single zone
calculations still indicate the importance of the 20Ne(p, γ),
23Na(p, α), and 23Na(p, γ) reactions rates, but the above cal-
culations emphasize that stellar modeling uncertainties domi-
nate once a polluter candidate is chosen.

VIII. CONCLUSIONS AND OUTLOOK

Utilizing the high resolution capabilities of the TUNL SPS,
astrophysically important excited states in 24Mg were popu-
lated via the (3He, d) transfer reaction. Careful calibration
and compilation of previous results give a significantly lower
resonance energy for the 133-keV resonance. This resonance
has the single largest contribution to the (p, γ) reaction rate
at temperatures important for globular cluster nucleosynthe-
sis. Angular distributions were analyzed using the Bayesian
DWBA methods of Ref. [39], and spectroscopic factors were
extracted. Methods were developed to deal with the addi-
tional challenges presented by 23Na(3He, d)24Mg: mixed `
transfers, a severe discrete ambiguity, and data that needed ab-
solute scaling established during the fitting. These advances
mean that our analysis is the first of its kind, where Bayesian
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TABLE VIII: Stellar yields for stable isotopes of interest for various masses and metallicities.

23Na 20Ne 24Mg
LUNA New1 New2 LUNA New1 New2 LUNA New1 New2

m4z001 1.65 × 10−5 1.64 × 10−5 1.61 × 10−5 −1.29 × 10−6−1.29 × 10−6−9.48 × 10−7−1.69 × 10−6−1.69 × 10−6−1.68 × 10−6

m7z001 −1.05 × 10−5−1.05 × 10−5−1.02 × 10−5 2.19 × 10−5 2.20 × 10−5 2.12 × 10−5 −2.31 × 10−4−2.31 × 10−4−2.31 × 10−4

m4z0028 2.48 × 10−5 2.47 × 10−5 2.47 × 10−5 2.01 × 10−5 2.00 × 10−5 2.02 × 10−5 −7.94 × 10−6−7.94 × 10−6−7.93 × 10−6

m6z014 9.08 × 10−5 8.89 × 10−5 9.19 × 10−5 3.37 × 10−6 4.79 × 10−6 2.57 × 10−6 −2.68 × 10−4−2.68 × 10−4−2.69 × 10−4

m8z014 1.05 × 10−4 1.00 × 10−4 9.28 × 10−5 2.37 × 10−5 2.76 × 10−5 2.73 × 10−5 −1.79 × 10−3−1.79 × 10−3−1.80 × 10−3

methods were used to accurately determine uncertainties at
every step of the analysis of a transfer reaction. As a result
of the above effort, astrophysical reaction rates derived from
such experiments will naturally reflect the underlying nuclear
physics uncertainties.

The astrophysical impact of these uncertainties was briefly
investigated. Our work indicates that the unknown astrophysi-
cally conditions still dominate the total uncertainty. However,
in a given environment significant variation still exists due to
uncertainties in the NeNa cycle. The results of this experi-
ment indicate that uncertainties are still present in both the
23Na(p, γ) and 23Na(p, α) reaction rates.

The direct capture component of the rate, which dominates
at temperatures lower than 60 MK and is significant up to
70 MK, has recently been updated by Boeltzig et. al [132].
Larger uncertainties on the direct capture component were
found due to previously neglected interference effects and an
assumption of larger uncertainties on C2S. Updated spec-
troscopic factors for bound states could significantly alter the
behavior of the low temperature portion of the reaction rate.
We suggest that future work focus on the direct capture com-
ponent of the 23Na(p, γ) rate, the precise energy determina-
tion of the 133-keV resonance, and the sub-threshold region
of 23Na(p, α). At this time our knowledge of the Na-O anti-
correlation in globular clusters is still limited by the nuclear
physics.
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APPENDIX A: THE ENERGIES REPORTED BY HALE et al.

As first reported in Ref. [17], a significant disagreement
exists between the results of our measurement and those of
Ref. [16]. Of particular concern is the state corresponding to
the 138-keV resonance, whose mean values falls ≈ 9 keV be-
low what is reported in Ref. [16]. A disagreement of this mag-
nitude is of particular concern since the previous measurement
was also performed at TUNL using the SPS.

Studying the information reported in Ref. [16], measured
energies are reported for a single region of the focal plane
that covers ≈ 400 keV. These energies are extracted from a
3rd order polynomial calibration based on twelve states sur-
rounding the mentioned region. Of these twelve states, the
most interior, i.e, the states that begin and end the interpo-
lated region, were states identified as 11330 keV and 12184
keV, respectively. Comparing the spectrum from this work
and that shown in Fig. 3 of Ref. [16], the state labeled 11330
keV in their spectrum corresponds to the state identified as
11317(3) keV in this work. Ref. [21] lists two states around
this energy range, one with Ex = 11314.4(15) keV and the
other Ex = 11330.2(10) keV. Neither of these states has an
unambiguous spin parity assignment in the current evaluation,
but the preceding compilation of Ref. [28] identified the lower
energy state (11314 keV) as (3, 4)+ and the higher (11330
keV) as (2+-4+). These assignments seem to be in tension
with the (p, p′) angular distribution of Ref. [22], which as-
signs the lower lying state ` = 3 giving Jπ = 3−. However,
Ref. [37] reports log ft = 5.19(14) for 24Al(β+) ( ground
state Jπ = 4+), which based on the empirical rules derived
in Ref. [38] requires an allowed decay giving (3, 4, 5)+ for
this state. In light of these discrepancies, it is hard to reach
a firm conclusion about the identity of the state populated in
this work and Ref. [16].

One method to investigate the disagreement is to recalibrate
our data using the calibration states of the previous study. This
cannot be considered a one-to-one comparison because of the
Bayesian method used to calibrate the focal plane and the dif-
ferent focal plane detectors used in each study, but it should
show the impact of misidentifying the states around 11320
keV. To be specific, we consider two sets of energies:

1. The adopted results of this work from Sec. IV (Set #1).

2. The peak centroids of this work energy calibrated using
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TABLE IX: Comparison of the 24Mg excitation energies
measured in this work (Set #1), the excitation energies

derived from our data if the calibration of Hale et al. is used
(Set #2), and finally the energies Hale et al. reported in
Ref. [16]. All energies are in units of keV. These results
indicate that the state close to 11320 keV was previously
misidentified, and, as a result, led to systematically higher

excitation energies.

Set No. 1 (keV) Set No. 2 (keV) Hale et al. [16] (keV)
11688.7(14) 11695(3) 11698.6(13)
11823(3) 11828(3) 11831.7(18)
11857(3) 11860.1(19) 11862.7(12)
11935(3) 11937.5(17) 11936.5(12)

11965.3(12) a

11989.3(14) 11991.2(17) 11992.9(12)
12014(3) 12016.2(16) 12019.0(12)
12050(3) 12051.4(17) 12051.8(12)

a Ref. [16] reports this state, which appears as an unresolved peak in their
spectrum. The current study does not find a corresponding peak in the
same region.

the calibration states of Hale et al. (Set #2).

The results shown in Table IX report these two sets of ener-
gies and compares them to Ref. [16]. Using the same calibra-
tion for our data (Set #2) produces consistent results with the
Ref. [16].

The above discussion presents the evidence that led to the
decision to exclude excitation energies of Ref. [16] from the
recommended energies of the current work. There is a rea-
sonable cause to do this at the current time, but further exper-
iments are needed to firmly resolve this issue.
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W. Paul, E. Roick, M. Wolfe, J. Worzeck, and U. Strohbusch,
Nuclear Physics A 337, 377 (1980).

[49] D. Y. Pang, P. Roussel-Chomaz, H. Savajols, R. L. Varner, and
R. Wolski, Phys. Rev. C 79, 024615 (2009).

[50] C.-T. Liang, X.-H. Li, and C.-H. Cai, Journal of Physics G:
Nuclear and Particle Physics 36, 085104 (2009).

[51] R. Drisko, G. Satchler, and R. Bassel, Physics Letters 5, 347
(1963).

[52] J. S. Speagle, “dynesty: A dynamic nested sampling pack-
age for estimating bayesian posteriors and evidences,” (2019),
arXiv:1904.02180 [astro-ph.IM].

[53] R. Varner, W. Thompson, T. McAbee, E. Ludwig, and
T. Clegg, Physics Reports 201, 57 (1991).

[54] J. Wu, J. Wang, and S. Shadden, in AAAI (2019).
[55] R. H. Bassel, Phys. Rev. 149, 791 (1966).
[56] L. Goldfarb, J. Gonzalez, and A. Phillips, Nuclear Physics A

209, 77 (1973).
[57] P. F. Bertone, A. E. Champagne, M. Boswell, C. Iliadis, S. E.

Hale, V. Y. Hansper, and D. C. Powell, Phys. Rev. C 66,
055804 (2002).

[58] A. Kankainen et al., Eur. Phys. J. A 52, 6 (2016).
[59] D. Kahl, P. Woods, T. Poxon-Pearson, F. Nunes, B. Brown,

H. Schatz, T. Baumann, D. Bazin, J. Belarge, P. Bender, B. El-
man, A. Estrade, A. Gade, A. Kankainen, C. Lederer-Woods,
S. Lipschutz, B. Longfellow, S.-J. Lonsdale, E. Lunderberg,

F. Montes, W. Ong, G. Perdikakis, J. Pereira, C. Sullivan,
R. Taverner, D. Weisshaar, and R. Zegers, Physics Letters B
797, 134803 (2019).

[60] T. E. Poxon-Pearson, INDIRECT REACTION METHODS
FOR NUCLEAR ASTROPHYSICS:EXPLORING CHARGE-
EXCHANGE AND TRANSFER REACTION MODELS, Ph.D.
thesis, Michigan State University (2020).

[61] P. Hodgson, Nuclear reactions and nuclear structure, Inter-
national series of monographs on physics (Clarendon Press,
1971).

[62] J. Vernotte, G. Berrier-Ronsin, J. Kalifa, R. Tamisier, and
B. Wildenthal, Nuclear Physics A 571, 1 (1994).

[63] J. Goodman and J. Weare, Communications in Applied Math-
ematics and Computational Science 5, 65 (2010).

[64] I. J. Thompson and F. M. Nunes, Nuclear Reactions for As-
trophysics: Principles, Calculation and Applications of Low-
Energy Reactions (Cambridge University Press, 2009).

[65] F. El-Bedewi, M. Shalaby, A. Khazbak, and F. Raoof, Journal
of Physics G: Nuclear Physics 1, 749 (1975).

[66] E. Goldberg, W. Haeberli, A. I. Galonsky, and R. A. Douglas,
Phys. Rev. 93, 799 (1954).

[67] D. Branford, M. J. Spooner, and I. F. Wright, Particles and
Nuclei 4, 231 (1973).

[68] S. A. Wender, C. R. Gould, D. R. Tilley, D. G. Rickel, and
R. W. Zurmühle, Phys. Rev. C 17, 1365 (1978).

[69] I. Berkes, I. DEZSI, L. KESZTHELYI, and I. FODOR, JETP
18, 1186 (1964).

[70] J. Kuperus, P. Glaudemans, and P. Endt, Physica 29, 1281
(1963).

[71] T. R. Fisher and W. Whaling, Phys. Rev. 131, 1723 (1963).
[72] M. Meyer, J. Reinecke, and D. Reitmann, Nuclear Physics A

185, 625 (1972).
[73] R. E. Tribble, C. A. Bertulani, M. La Cognata, A. M.

Mukhamedzhanov, and C. Spitaleri, Reports on Progress in
Physics 77, 106901 (2014).

[74] C. Iliadis, Nuclear Physics A 618, 166 (1997).
[75] F. Barker, Nuclear Physics A 637, 576 (1998).
[76] R. Longland, C. Iliadis, A. Champagne, J. Newton, C. Ugalde,

A. Coc, and R. Fitzgerald, Nuclear Physics A 841, 1 (2010),
the 2010 Evaluation of Monte Carlo based Thermonuclear Re-
action Rates.

[77] B. Paine and D. Sargood, Nuclear Physics A 331, 389 (1979).
[78] Z. E. Switkowski, R. O’Brien, A. K. Smith, and D. G. Sar-

good, Australian Journal of Physics 28, 141 (1975).
[79] A. L. Sallaska, C. Iliadis, A. E. Champange, S. Goriely,

S. Starrfield, and F. X. Timmes, 207, 18 (2013),
arXiv:1304.7811 [astro-ph.SR].

[80] C. Iliadis, R. Longland, A. Champagne, and A. Coc, Nuclear
Physics A 841, 251 (2010), the 2010 Evaluation of Monte
Carlo based Thermonuclear Reaction Rates.

[81] P. Mohr, R. Longland, and C. Iliadis, Phys. Rev. C 90, 065806
(2014), arXiv:1412.2956 [nucl-th].

[82] A. I. Karakas, G. Cinquegrana, and M. Joyce, Monthly No-
tices of the Royal Astronomical Society 509, 4430 (2022).

[83] L. Siess, Memorie della Societa Astronomica Italiana 81, 980
(2010).

[84] P. Ventura, M. Di Criscienzo, R. Carini, and F. D’Antona,
MNRAS 431, 3642 (2013).

[85] S. Cristallo, O. Straniero, L. Piersanti, and D. Gobrecht, ApJ
Supp. Series 219, 40 (2015).

[86] A. I. Karakas and M. Lugaro, ApJ 825, 26 (2016).
[87] M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rocke-

feller, C. Fryer, F. Timmes, C. Ritter, A. Heger, S. Jones, et al.,
ApJ Supp. Series 225, 24 (2016).



26

[88] A. I. Karakas, M. Lugaro, M. Carlos, B. Cseh, D. Kamath,
and D. Garcı́a-Hernández, MNRAS 477, 421 (2018).

[89] G. C. Cinquegrana and A. I. Karakas, Monthly Notices of the
Royal Astronomical Society 510, 1557 (2022).

[90] M. Busso, R. Gallino, and G. Wasserburg, Annual Review of
Astronomy and Astrophysics 37, 239 (1999).

[91] F. Herwig, Annu. Rev. Astron. Astrophys. 43, 435 (2005).
[92] K. Nomoto, C. Kobayashi, and N. Tominaga, Annual Review

of Astronomy and Astrophysics 51, 457 (2013).
[93] A. I. Karakas and J. C. Lattanzio, Pub. Astron. Soc. Aus. 31

(2014).
[94] P. Ventura, F. Dell’Agli, M. Tailo, M. Castellani, E. Marini,

S. Tosi, and M. Di Criscienzo, Universe 8, 45 (2022).
[95] M. Forestini and C. Charbonnel, A&AS Supp. Series 123, 241

(1997).
[96] N. Mowlavi, arXiv preprint astro-ph/9910542 (1999).
[97] N. Mowlavi, Astronomy and Astrophysics 350, 73 (1999).
[98] A. I. Karakas and J. C. Lattanzio, Publications of the Astro-

nomical Society of Australia 20, 393 (2003).
[99] P. Ventura and F. D’Antona, A & A 457, 995 (2006).

[100] S. Cristallo, R. Gallino, O. Straniero, L. Piersanti, and
I. Dominguez, Mem. Soc. Astron. Ital. 77, 774 (2006).

[101] L. Siess, in Why Galaxies Care About AGB Stars: Their Im-
portance as Actors and Probes, Vol. 378 (2007) p. 9.

[102] R. G. Izzard, M. Lugaro, A. I. Karakas, C. Iliadis, and M. van
Raai, A&A 466, 641 (2007).

[103] C. L. Doherty, P. Gil-Pons, H. H. B. Lau, J. C. Lattanzio, and
L. Siess, MNRAS 437, 195 (2013).

[104] A. Slemer, P. Marigo, D. Piatti, M. Aliotta, D. Bemmerer,
A. Best, A. Boeltzig, A. Bressan, C. Broggini, C. Bruno, et al.,
MNRAS 465, 4817 (2016).

[105] F. D’Antona and P. Ventura, Memorie della Societa Astronom-
ica Italiana 87, 243 (2016).

[106] M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Ann.
Rev. of A & A 47, 481 (2009).

[107] A. I. Karakas, MNRAS 445, 347 (2014).
[108] C. K. Fishlock, A. I. Karakas, M. Lugaro, and D. Yong, The

Astrophysical Journal 797, 44 (2014).
[109] J. C. Lattanzio, ApJ 311, 708 (1986).
[110] C. Frost and J. Lattanzio, ApJ 473, 383 (1996).
[111] A. Karakas and J. C. Lattanzio, Pub. Astron. Soc. Aus. 24, 103

(2007).
[112] G. C. Cinquegrana, M. Joyce, and A. I. Karakas, arXiv e-

prints , arXiv:2208.01859 (2022), arXiv:2208.01859 [astro-
ph.SR].

[113] R. C. Cannon, MNRAS 263, 817 (1993).
[114] J. Lattanzio, C. Frost, R. Cannon, and P. Wood, Memorie della
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