
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Local position-space two-nucleon potentials from leading to
fourth order of chiral effective field theory

S. K. Saha, D. R. Entem, R. Machleidt, and Y. Nosyk
Phys. Rev. C 107, 034002 — Published 29 March 2023

DOI: 10.1103/PhysRevC.107.034002

https://dx.doi.org/10.1103/PhysRevC.107.034002


Local position-space two-nucleon potentials from leading to fourth order of chiral
effective field theory

S. K. Saha,1, ∗ D. R. Entem,2, † R. Machleidt,1, ‡ and Y. Nosyk1, §

1Department of Physics, University of Idaho, Moscow, Idaho 83844, USA
2Grupo de F́ısica Nuclear, IUFFyM, Universidad de Salamanca, E-37008 Salamanca, Spain

(Dated: February 14, 2023)

We present local, position-space chiral NN potentials through four orders of chiral effective field
theory ranging from leading order (LO) to next-to-next-to-next-to-leading order (N3LO, fourth
order) of the ∆-less version of the theory. The long-range parts of these potentials are fixed by
the very accurate πN LECs as determined in the Roy-Steiner equations analysis. At the highest
order (N3LO), the NN data below 190 MeV laboratory energy are reproduced with the respectable
χ2/datum of 1.45. A comparison of the N3LO potential with the phenomenological Argonne v18
(AV18) potential reveals substantial agreement between the two potentials in the intermediate range
ruled by chiral symmetry, thus, providing a chiral underpinning for the phenomenological AV18
potential. Our chiral NN potentials may serve as a solid basis for systematic ab initio calculations
of nuclear structure and reactions that allow for a comprehensive error analysis. In particular,
the order by order development of the potentials will make possible a reliable determination of the
truncation error at each order. Our new family of local position-space potentials differs from existing
potentials of this kind by a weaker tensor force as reflected in relatively low D-state probabilities of

the deuteron (PD
<∼ 4.0 % for our N3LO potentials) and predictions for the triton binding energy

above 8.00 MeV (from two-body forces alone). As a consequence, our potentials may lead to
different predictions when applied to light and intermediate-mass nuclei in ab initio calculations
and, potentially, help solve some of the outstanding problems in microscopic nuclear structure.

PACS numbers: 13.75.Cs, 21.30.-x, 12.39.Fe
Keywords: local nucleon-nucleon potentials, chiral perturbation theory, chiral effective field theory

I. INTRODUCTION

A primary goal of theoretical nuclear physics is to explain nuclear structure and reactions in terms of the forces
between nucleons—in present-day popular jargon dubbed the ab initio approach. The current prevailing belief in the
community is that chiral effective field theory (EFT) is best suited to provide those forces, because it can be related
to low-energy QCD in a straight-forward way and produces abundant three-nucleon forces (3NFs) needed for any
quantitative nuclear structure prediction [1–4].

Since chiral EFT is a low-momentum expansion, most chiral NN potentials of the past have been developed in
momentum space–and are non-local. However, this feature makes them unsuitable for a large group of ab initio few-
and many-body algorithms, particularly, the ones known as quantum Monte Carlo (QMC) methods [5, 6]. Variational
Monte Carlo (VMC) and Green’s Function Monte Carlo (GFMC) techniques provide reliable solutions of the many-
body Schrődinger equation for, presently, up to 12 nucleons. Spectra, form factors, transitions, low-energy scattering,
and response functions for light nuclei have been successfully calculated using QMC methods [7]. A further extension,
the Auxiliary Field Diffusion Monte Carlo (AFDMC) [5, 6], additionally samples the spin-isospin degrees of freedom,
thus, making possible the study of neutron matter. In summary, QMC techniques have substantially contributed to
the progress in ab initio nuclear structure of the past 20+ years, and will continue to do so. Thus, it is important
that high-quality nuclear interactions are available for application by these promising many-body methods.

An important advantage of chiral EFT is that it allows for a systematic quantification of the uncertainties of the
predictions. For this it is necessary to conduct calculations at different orders of the chiral expansion. However, so
far, local chiral NN potentials have been developed only at next-to-next-to-leading order (NNLO) [8] or in the hybrid
format, NNLO/N3LO [9, 10], where two-pion exchange (2PE) contributions are included up to NNLO and contact
terms up to next-to-next-to-next-to-leading order (N3LO). To make proper uncertainty quantifications possible, local
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chiral NN potentials at all orders from leading order (LO) to N3LO (and, if necessary, even beyond) are needed. It
is the purpose of this work to construct such local NN potentials of high quality and make them available for QMC
calculations as well as any other purposes where they can be of use.

We will develop these potentials within the ∆-less theory, which has two degrees of freedom, namely, pions (Gold-
stone bosons) and nucleons, and does not include a ∆(1232)-isobar degree of freedom. If an explicit ∆-isobar is
included in chiral EFT (∆-full theory [11–16]), then the two-nucleon force (2NF) and 3NF contributions are enhanced
at next-to-leading order (NLO), resulting in a smoother convergence when advancing from leading order (LO) to
NNLO. However, summing up all contributions at NNLO brings about very similar results for both versions of the
theory [15]. The predictions of both theories beyond NNLO are expected to be very similar [16]. In contrast to recent
claims [17], it has been shown in Ref. [18] that there is no advantage to the ∆-full theory.

This paper is organized as follows: In Sec. II, we present the expansion of the NN potential through all orders
from LO to N3LO. The reproduction of the NN scattering data and the deuteron properties are given in Sec. III.
Uncertainty quantification is considered in Sec. IV. Sec. V concludes the paper.

II. THE CHIRAL NN POTENTIAL

A. Effective Lagrangians

In the ∆-less version of chiral EFT, which is the one we are applying, the relevant degrees o f freedom are pions
and nucleons. Consequently, the effective Lagrangian is subdivided into the following pieces,

Leff = Lππ + LπN + LNN + . . . , (2.1)

where Lππ deals with the dynamics among pions, LπN describes the interaction between pions and a nucleon, and LNN
contains two-nucleon contact interactions which consist of four nucleon-fields (four nucleon legs) and no meson fields.
The ellipsis stands for terms that involve two nucleons plus pions and three or more nucleons with or without pions,
relevant for nuclear many-body forces. Since the interactions of Goldstone bosons must vanish at zero momentum
transfer and in the chiral limit (mπ → 0), the low-energy expansion of the effective Lagrangian is arranged in powers
of derivatives and pion masses, implying to following organization:

Lππ = L(2)
ππ + L(4)

ππ + . . . , (2.2)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + . . . , (2.3)

LNN = L(0)
NN + L(2)

NN + L(4)
NN + . . . , (2.4)

where the superscript refers to the number of derivatives or pion mass insertions (chiral dimension) and the ellipses
stand for terms of higher dimensions. We use the heavy-baryon formulation of the Lagrangians, the explicit expressions
of which can be found in Ref. [1].

B. Power counting

Based upon the above Lagrangians, an infinite number of diagrams contributing to the interactions among nucleons
can be drawn. Nuclear potentials are defined by the irreducible types of these graphs. By definition, an irreducible
graph is a diagram that cannot be separated into two by cutting only nucleon lines. These graphs are then analyzed
in terms of powers of Q with Q = p/Λb, where p is generic for a momentum (nucleon three-momentum or pion
four-momentum) or a pion mass and Λb ∼ mρ ∼ 0.7 GeV is the breakdown scale [19]. Determining the power ν has
become know as power counting.

Following the Feynman rules of covariant perturbation theory, a nucleon propagator is p−1, a pion propagator
p−2, each derivative in any interaction is p, and each four-momentum integration p4. This is also known as naive
dimensional analysis or Weinberg counting.

Since we use the heavy-baryon formalism, we encounter terms which include factors of p/MN , where MN denotes
the nucleon mass. We count the order of such terms by the rule

p/MN ∼ (p/Λb)
2, (2.5)

for reasons explained in Ref. [20].
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FIG. 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid dots,
solid squares, and solid diamonds denote vertexes of index ∆i = 0, 1, 2, and 4, respectively. Q = p/Λb with p a momentum or
pion mass and Λb the breakdown scale. Further explanations are given in the text.

Applying some topological identities, one obtains for the power of a connected irreducible diagram involving A
nucleons [1, 20]

ν = −2 + 2A− 2C + 2L+
∑
i

∆i , (2.6)

with

∆i ≡ di +
ni
2
− 2 , (2.7)

where L denotes the number of loops in the diagram; di is the number of derivatives or pion-mass insertions and ni
the number of nucleon fields (nucleon legs) involved in vertex i; the sum runs over all vertexes i contained in the
connected diagram under consideration. Note that ∆i ≥ 0 for all interactions allowed by chiral symmetry.

An important observation from power counting is that the powers are bounded from below and, specifically, ν ≥ 0.
This fact is crucial for the convergence of the low-momentum expansion.

For an irreducible NN diagram (A = 2, C = 1), the power formula collapses to the very simple expression

ν = 2L+
∑
i

∆i , (2.8)

which is most relevant for our current work.
In summary, the chief point of the chiral perturbation theory (ChPT) expansion of the potential is that, at a

given order ν, there exists only a finite number of graphs. This is what makes the theory calculable. The expression
(p/Λb)

ν+1 provides an estimate of the relative size of the contributions left out and, thus, of the relative uncertainty
at order ν. The ability to calculate observables (in principle) to any degree of accuracy gives the theory its predictive
power.

ChPT and power counting imply that nuclear forces evolve as a hierarchy controlled by the power ν, see Fig. 1 for
an overview. In what follows, we will focus on the 2NF.
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TABLE I: The πN LECs as determined in the Roy-Steiner-equation analysis of πN scattering conducted in Ref. [28]. The
given orders of the chiral expansion refer to the NN system. The ci and d̄i are the LECs of the second and third order πN
Lagrangian [1] and are in units of GeV−1 and GeV−2, respectively. The uncertainties in the last digits are given in parentheses
after the values. We use the central values.

NNLO N3LO

c1 –0.74(2) –1.07(2)

c2 3.20(3)

c3 –3.61(5) –5.32(5)

c4 2.44(3) 3.56(3)

d̄1 + d̄2 1.04(6)

d̄3 –0.48(2)

d̄5 0.14(5)

d̄14 − d̄15 –1.90(6)

C. The long-range NN potential

The long-range part of the NN potential is built up from pion exchanges, which are ruled by chiral symmetry.
The various pion-exchange contributions are best analyzed by the number of pions being exchanged between the two
nucleons:

Vπ = V1π + V2π + V3π + . . . , (2.9)

where the meaning of the subscripts is obvious and the ellipsis represents 4π and higher pion exchanges. For each of
the above terms, we have a low-momentum expansion:

V1π = V
(0)
1π + V

(2)
1π + V

(3)
1π + V

(4)
1π + . . . , (2.10)

V2π = V
(2)
2π + V

(3)
2π + V

(4)
2π + . . . , (2.11)

V3π = V
(4)
3π + . . . , (2.12)

where the superscript denotes the order ν of the expansion. Higher order corrections to the one-pion exchange (1PE)
are taken care of by mass and coupling constant renormalizations. Note also that, on shell, there are no relativistic

corrections. Thus, V1π = V
(0)
1π through all orders. The leading 3π-exchange contribution that occurs at N3LO, V

(4)
3π ,

has been calculated in Refs. [21, 22] and found to be negligible. We, therefore, omit it.
Order by order, the long-range NN potential then builds up as follows:

V LO
π = V

(0)
1π , (2.13)

V NLO
π = V LO

π + V
(2)
2π , (2.14)

V NNLO
π = V NLO

π + V
(3)
2π , (2.15)

V N3LO
π = V NNLO

π + V
(4)
2π . (2.16)

We note that we add to V N3LO
π the 1/MN corrections of the NNLO 2PE proportional to ci (cf. Table I). This

correction is proportional to ci/MN (cf. Fig. 9 and Appendix A 5, below) and appears nominally at fifth order, but we
include it at fourth order. As demonstrated in Ref. [23], the 2PE football diagram proportional to c2i that appears at
N3LO (Fig. 8(a) and Appendix A 4 a) is unrealistically attractive, while the ci/MN correction is large and repulsive.
Therefore, it makes sense to group these diagrams together to arrive at a more realistic intermediate-range attraction
at N3LO. This is common practice and has been done so in Refs. [24, 26, 27].

The explicit mathematical expressions for the pion-exchanges up to N3LO are very involved. We have, therefore,
moved them into the Appendix A.

Chiral symmetry establishes a link between the dynamics in the πN -system and the NN -system through common
low-energy constants (LECs). Therefore, consistency requires that we use the LECs for subleading πN -couplings
as determined in the analysis of low-energy πN -scattering. Currently, the most reliable πN analysis is the one by
Hoferichter and Ruiz de Elvira et al. [28], in which the Roy-Steiner equations are applied. These LECs carry very
small uncertainties (cf. Table I); in fact, the uncertainties are so small that they are negligible for our purposes.
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TABLE II: Basic constants used throughout this work [29].

quantity Value

Axial-vector coupling constant gA 1.29

Pion-decay constant fπ 92.4 MeV

Charged-pion mass mπ± 139.5702 MeV

Neutral-pion mass mπ0 134.9766 MeV

Average pion-mass m̄π 138.0390 MeV

Proton mass Mp 938.2720 MeV

Neutron mass Mn 939.5654 MeV

Average nucleon-mass M̄N 938.9183 MeV

Conversion constant ~c 197.32698 MeV fm
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FIG. 2: Left panel: 1P1 phase shifts for the order zero (i.e., LO) contact terms with nonlocal regulator (solid black line,
“nonloc”) versus the same terms multiplied with a local regulator (dashed black line, “locLO”). Right panel: 3F3 phase shifts
for the central force contact terms at orders LO, NLO, and N3LO with nonlocal regulator (solid red line, “nonloc”) versus
the same terms multiplied with a local regulator (dashed lines at orders as denoted). The central force contact LECs of the
N3LO potential with cutoff combination (Rπ, Rct)=(1.0, 0.70) fm are applied (Table VII). The filled and open circles represent
the results from the Nijmegen multi-energy np phase-shift analysis [46] and the GWU single-energy np analysis SP07 [49],
respectively.

This makes the variation of the πN LECs in NN potential construction obsolete and reduces the error budget in
applications of these potentials. For the potentials constructed in this paper, the central values of Table I are applied.
Other constants involved in our potential construction are shown in Table II.

D. The short-range NN potential

The short-range NN potential is described by contributions of the contact type, which are constrained by parity,
time-reversal, and the usual invariances, but not by chiral symmetry. Because of parity and time-reversal only even
powers of momentum are allowed. Thus, the expansion of the contact potential is formally written as

Vct = V
(0)
ct + V

(2)
ct + V

(4)
ct + . . . , (2.17)

where the superscript denotes the power or order.
In principle, the most general set of contact terms at each order is provided by all combinations of spin, isospin, and

momentum operators that are allowed by the usual symmetries [30] at the given order. Two momenta are available,
namely, the final and initial nucleon momenta in the center-of-mass system, ~p ′ and ~p. This can be reformulated in

terms of two alternative momenta, viz., the momentum transfer ~q = ~p ′−~p and the average momentum ~k = (~p ′+~p)/2.
Functions of ~q lead to local interactions, that is, to functions of the relative distance ~r between the two nucleons after

Fourier transform. On the other hand, functions of ~k lead to nonlocal interactions.
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Since ChPT is a low-momentum expansion, it requires cutting off high momenta to avoid divergences. This is
achieved by multiplying the potential with a regulator function that suppresses the large momenta (or, equivalently,
the short distances). Depending on the type of momenta used, the regulator can be local or nonlocal.

When chiral NN potentials are constructed in momentum-space and regulated by nonlocal cutoff functions [1],
then it is possible to reduce the number of contact operators (by a factor of two) due to Fierz ambiguity [31, 32],
which is a consequence of the fact that nucleons are Fermions and obey the Pauli exclusion principle. However, for
the reasons stated in the Introduction, we wish to construct NN potentials which are strictly local, implying that we
have to use local regulators.

When a local (regulator) function is applied to the contact terms, then the Fierz rearrangemnt freedom is vio-
lated [32]. To provide a simple example of this, consider a contact operator of order zero (∼ Q0, LO). After a
partial-wave decomposition and when multiplied by either no regulator or a nonlocal regulator, such operator pro-
duces no contributions for states with orbital angular momentum L > 0, i.e., P and higher partial waves. However,
this property is violated when the operator is multiplied with a local regulator function [32]. We demonstrate this
fact in Fig. 2, where, in the left panel, we show phase shifts in the 1P1 state: The solid line (“nonloc”) shows the
phase shifts when the LO contact terms are multiplied with a nonlocal cutoff function, which does not violate Fierz
ambiguity and, therefore, the phase shifts are zero. However, when the LO contact terms are multiplied by a local
regulator, the dashed curve (“locLO”) is obtained—obviously a severe violation. This violation by local regulators
continues through higher orders. As an example, we show in the right panel of Fig. 2 the phase shifts in an F -wave,
where polynomial terms up to fourth order should not contribute which, as demonstrated in the figure, is, indeed, true
when a nonlocal cutoff is multiplied to contact terms up to fourth order (solid red curve, “nonloc”). However, when
local functions are applied, then at orders Q0, Q2, and Q4, the contributions are not zero anymore as demonstrated
by the dashed curves denoted by “locLO”, “locNLO”, “locN3LO”, respectively; which, again, may be perceived as a
severe violation of the Fierz rearrangement freedom.

Attempts can be undertaken to restore Fierz reordering as tried in Ref. [32] by way of contributions of higher order.
However, the Fierz violations demonstrated in Fig. 2 for 3F3 cannot be compensated within the scope of this work,
since they would require contributions of sixth order.

To make a long story short, our bottom-line argument is simply that it does not make sense to apply a symmetry
that is invalid for the problem under consideration. Therefore, we will not apply Fierz reordering to the contact terms
and, hence, use for the contacts all combinations of spin, isospin, angular momentum, and momentum ~q that are
allowed by the usual symmetries, for each of the given orders. On a historical note, this is also the approach that was
taken for the very first chiral NN potentials ever constructed [11, 12].

According to standard power counting rules, only two contacts are needed at LO while, in our approach and the
one of Refs. [11, 12], there are four at LO. Consequently, the approach uses an overcomplete basis implying that
some parameters are redundant. Note, however, that there is nothing fundamentally wrong with using redundant
parameters. It merely means that the approach may be perceived as being inefficient (which is not the same as being
wrong). Ironically, here, the inefficient approach is more efficient, since it allows to relate the contact parameters in
a one-to-one correspondence to states of well-defined total spin S and total isospin T [Eqs. (B1) and (B2)] and, thus,
makes possible fitting phase shifts state-by-state. However, as discussed, due to the local character of the regulator
function, Eq. (2.19), that is multiplied to the zero-order contacts, P and higher partial waves will be affected by
LO contact terms (cf. Fig. 2), hence, promoting higher order terms to LO and increasing the fit freedom when four
independent LO parameters are available.

At higher orders, the discussed redundancy applies to the C8 term at NLO and the D10, D12, and D14 terms
at N3LO (see below for the detailed expressions). As a result, at N3LO we have only 11 non-redundant contact
parameters, even though according to power counting rules there should be 15. The four “missing” fourth order
contact terms are nonlocal (cf. Ref. [9]) and, therefore, we have to leave them out, as practiced already in Ref. [10].

Our approach overlaps with the philosophy of the Argonne v18 potential (AV18) [33], which includes 14 charge-
independent operators. Not accidentally, we will also have 14 contact operators at N3LO (see below) which are all
equivalent to the 14 operators of the AV18 potential. This fact provides another advantage to our approach, namely,
there is now a one-to-one correspondence between the terms of the AV18 potential and the chiral potentials of this
paper. This allows for a detailed comparison between the two potentials as conducted in Appendix C, which turns
out to be most revealing.

Next, we present the explicit expressions for the contact operators, order by order.
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1. Leading order

In momentum-space, the LO or zeroth order charge-independent contact terms are given by

V
(0)
ct (q) = (Cc + Cτ τ1 · τ2 + Cσ ~σ1 · ~σ2 + Cστ ~σ1 · ~σ2 τ1 · τ2) fct(q) (2.18)

with regulator function

fct(q) = e−(q/Λ)2 (2.19)

and Λ a momentum cutoff. The operators ~σ1,2 and τ1,2 denote the spin and isospin operators for nucleon 1 and 2,
respectively, with τi = (τix, τiy, τiz), i = 1, 2. In the convention we apply, the proton carries an eigenvalue of (+1)
and the neutron an eigenvalue of (−1) with regard to τz.

At LO, we also include charge-dependent contact terms that are defined as follows:

CDV
(0)
ct (q) =

[
CCD
T12

T12 + CCD
σT12

~σ1 · ~σ2 T12 + CCA
τz (τ1z + τ2z) + CCA

στz ~σ1 · ~σ2 (τ1z + τ2z)
]
fct(q) , (2.20)

with

T12 = 3 τ1zτ2z − τ1 · τ2 (2.21)

an isotensor operator. Terms proportional to T12 are charge dependent, while terms proportional to (τ1z + τ2z) are
charge asymmetric.

In position space, this translates into

Ṽ
(0)
ct (r) = (Cc + Cτ τ1 · τ2 + Cσ ~σ1 · ~σ2 + Cστ ~σ1 · ~σ2 τ1 · τ2) ctṼ

(0)
C (r) (2.22)

and

CDṼ
(0)
ct (r) =

[
CCD
T12

T12 + CCD
σT12

~σ1 · ~σ2 T12 + CCA
τz (τ1z + τ2z) + CCA

στz ~σ1 · ~σ2 (τ1z + τ2z)
]ct
Ṽ

(0)
C (r) (2.23)

with

ctṼ
(0)
C (r) = f̃ct(r) =

1

π3/2R3
ct

e−(r/Rct)
2

, (2.24)

the Fourier transform of fct(q), and Rct = 2/Λ. Note that we use units such that ~ = c = 1.

2. Next-to-leading order

In momentum-space, the NLO or second order contact contribution is

V
(2)
ct (~p ′, ~p) =

{
(C1 + C2 τ1 · τ2 + C3 ~σ1 · ~σ2 + C4 ~σ1 · ~σ2 τ1 · τ2) q2

+ (C5 + C6 τ1 · τ2 ) Ŝ12(~q)

+ (C7 + C8 τ1 · τ2 )
[
−i~S · (~q × ~k)

]}
fct(q) , (2.25)

where ~S = (~σ1 + ~σ2)/2 denotes the total spin and

Ŝ12(~q) = 3~σ1 · ~q ~σ2 · ~q − q2 ~σ1 · ~σ2 (2.26)

is the spin-tensor operator in momentum-space.
Fourier transform of the above creates the second order contact contribution in position space

Ṽ
(2)
ct (~r) = (C1 + C2 τ1 · τ2 + C3 ~σ1 · ~σ2 + C4 ~σ1 · ~σ2 τ1 · τ2) ctṼ

(2)
C (r)

+ (C5 + C6 τ1 · τ2 ) S12(r̂) ctṼ
(2)
T (r)

+ (C7 + C8 τ1 · τ2 ) (~L · ~S) ctṼ
(2)
LS (r) , (2.27)
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where

S12(r̂) = 3~σ1 · r̂ ~σ2 · r̂ − ~σ1 · ~σ2 (2.28)

denotes the standard position-space spin-tensor operator with r̂ = ~r/r, and ~L is the operator of total angular mo-
mentum. Furthermore,

ctṼ
(2)
C (r) = −f̃ (2)

ct (r)− 2

r
f̃

(1)
ct (r) , (2.29)

ctṼ
(2)
T (r) = −f̃ (2)

ct (r) +
1

r
f̃

(1)
ct (r) , (2.30)

ctṼ
(2)
LS (r) = −1

r
f̃

(1)
ct (r) , (2.31)

with

f̃
(n)
ct (r) =

dnf̃ct(r)

drn
. (2.32)

3. Next-to-next-to-next-to-leading order

In momentum-space, the N3LO or fourth order contact contribution is assumed to be

V
(4)
ct (~p ′, ~p) =

{
(D1 +D2 τ1 · τ2 + D3 ~σ1 · ~σ2 + D4 ~σ1 · ~σ2 τ1 · τ2) q4

+ (D5 +D6 τ1 · τ2 ) q2 Ŝ12(~q)

+ (D7 +D8 τ1 · τ2 ) q2
[
−i~S · (~q × ~k)

]
+ (D9 +D10 τ1 · τ2 )

[
−i~S · (~q × ~k)

]2
(2.33)

+ (D11 +D12 τ1 · τ2 + D13 ~σ1 · ~σ2 + D14 ~σ1 · ~σ2 τ1 · τ2)
[
−i(~q × ~k)

]2 }
fct(q) (2.34)

In position-space, the N3LO or fourth order contact contribution then is

Ṽ
(4)
ct (~r) = (D1 +D2 τ1 · τ2 + D3 ~σ1 · ~σ2 + D4 ~σ1 · ~σ2 τ1 · τ2) ctṼ

(4)
C (r)

+ (D5 +D6 τ1 · τ2 ) S12(r̂) ctṼ
(4)
T (r)

+ (D7 +D8 τ1 · τ2 ) (~L · ~S) ctṼ
(4)
LS (r)

+ (D9 +D10 τ1 · τ2 ) (~L · ~S)2 ctṼ
(4)
LS2(r)

+ (D11 +D12 τ1 · τ2 + D13 ~σ1 · ~σ2 + D14 ~σ1 · ~σ2 τ1 · τ2) ~L2 ctṼ
(4)
LL (r) , (2.35)

with

ctṼ
(4)
C (r) = f̃

(4)
ct (r) +

4

r
f̃

(3)
ct (r) , (2.36)

ctṼ
(4)
T (r) = f̃

(4)
ct (r) +

1

r
f̃

(3)
ct (r)− 6

r2
f̃

(2)
ct (r) +

6

r3
f̃

(1)
ct (r) , (2.37)

ctṼ
(4)
LS (r) =

1

r
f̃

(3)
ct (r) +

2

r2
f̃

(2)
ct (r)− 2

r3
f̃

(1)
ct (r) , (2.38)

ctṼ
(4)
LS2(r) =

1

r2
f̃

(2)
ct (r)− 1

r3
f̃

(1)
ct (r) , (2.39)

ctṼ
(4)
LL (r) =

1

r2
f̃

(2)
ct (r)− 1

r3
f̃

(1)
ct (r) , (2.40)

where from the Fourier transforms of Eqs. (2.33) and (2.34) we retained only the local terms [9].
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E. Charge dependence

This is to summarize what charge-dependence we include. Through all orders, we take the charge-dependence of
the 1PE due to pion-mass splitting into account, Eqs. (A10) - (A17). Charge-dependence is seen most prominently in
the 1S0 state at low energies, particularly, in the 1S0 scattering lengths. Charge-dependent 1PE cannot explain it all.
The remainder is accounted for by the LO charge-dependent contact potential Eq. (2.23), see also Appendix B. In
all 2PE contributions, we apply the average pion mass, m̄π. Thus, 2PE does not generate charge-dependence. For pp
scattering at any order, we include the relativistic Coulomb potential [34, 35]. We omit irreducible π-γ exchange [36],
which would affect the N3LO np potential. We take nucleon-mass splitting into account in the kinetic energy by using
Mp in pp scattering, Mn in nn scattering, and M̄N in np scattering (see Table II for their precise values).

For a comprehensive discussion of all possible sources of charge-dependence of the NN interaction, see Ref. [1].

F. The full potential

The potential V is, in principal, an invariant amplitude (with relativity taken into account perturbatively) and,
thus, satisfies a relativistic scattering equation, like, e. g., the Blankenbeclar-Sugar (BbS) equation [37], which reads
explicitly,

T (~p ′, ~p) = V (~p ′, ~p) +

∫
d3p′′ V (~p ′, ~p ′′)

M2
N

Ep′′

1

p2 − p′′2 + iε
T (~p ′′, ~p) (2.41)

with Ep′′ ≡
√
M2
N + p′′2 and MN the nucleon mass. The advantage of using a relativistic scattering equation is

that it automatically includes relativistic kinematical corrections to all orders. Thus, in the scattering equation, no
propagator modifications are necessary when moving up to higher orders.

Defining

V̂ (~p ′, ~p) ≡

√
MN

Ep′
V (~p ′, ~p)

√
MN

Ep
(2.42)

and

T̂ (~p ′, ~p) ≡

√
MN

Ep′
T (~p ′, ~p)

√
MN

Ep
, (2.43)

the BbS equation collapses into the usual, nonrelativistic Lippmann-Schwinger (LS) equation,

T̂ (~p ′, ~p) = V̂ (~p ′, ~p) +

∫
d3p′′ V̂ (~p ′, ~p ′′)

MN

p2 − p′′2 + iε
T̂ (~p ′′, ~p) . (2.44)

Since V̂ satisfies Eq. (2.44), it may be regarded as a nonrelativistic potential. By the same token, T̂ may be considered
as the nonrelativistic T-matrix. The above momentum-space equation is equivalent to the nonrelativistic Schrödinger
equation for the calculation of phase shifts and bound states, the position-space techniques of which can be found in
Refs. [38, 39].

Expanding the square-root factors in Eq. (2.42) up to second order in p/MN , results in

V̂ (~p ′, ~p) ≈ V (~p ′, ~p)

(
1− p2 + p′

2

4M2
N

)
, (2.45)

and similarly for T̂ (~p ′, ~p). Since we count p/MN corrections the way indicated in Eq. (2.5), the correction displayed in
Eq. (2.45) is four orders up from a given potential contribution, V—which is beyond the order of all ν ≤ 3 potentials
constructed in this paper and, therefore, can be ignored in those cases. Yet, the correction is relevant for the LO
contributions to the N3LO potentials. While the corrections to the LO contacts can be absorbed by the 4th order
contacts, this correction also applies to the LO (i. e., static) 1PE. However, because this correction term is nonlocal
and—for reasons explained in the Introduction—because we wish to construct strictly local potentials, we neglect this
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FIG. 3: Various regulator functions used in the construction of chiral position-space potentials. The solid, dashed, and dotted

curves represent the regulators f̃1π(r), f̃2π(r), and f̃Pia(r) given in Eqs. (2.52), (2.53), and (2.54), respectively. Rπ = 1.0 fm is
applied in all cases.

fourth order correction to the 1PE. The bottom line then is that, throughout our local potential constructions, we
employ the approximations

V̂ (~p ′, ~p) ≈ V (~p ′, ~p) , (2.46)

T̂ (~p ′, ~p) ≈ T (~p ′, ~p) . (2.47)

The Fourier transforms of V are denoted by Ṽ (cf. Appendix A).
The full NN potential is the sum of the long- and the short-range potentials. Order by order, this results into:

Ṽ LO = Ṽ
(0)
1π + Ṽ

(0)
ct + CDṼ

(0)
ct , (2.48)

Ṽ NLO = Ṽ LO + Ṽ
(2)
2π + Ṽ

(2)
ct , (2.49)

Ṽ NNLO = Ṽ NLO + Ṽ
(3)
2π , (2.50)

Ṽ N3LO = Ṽ NNLO + Ṽ
(4)
2π + Ṽ

(4)
ct , (2.51)

where we note again that we add to Ṽ
(4)
2π the 1/MN corrections of Ṽ

(3)
2π . This correction is proportional to ci/MN and

appears nominally at fifth order, but we include it at fourth order for the reasons discussed. The explicit mathematical

expressions for Ṽ
(0)
1π are given in Appendix A 1, for Ṽ

(2)
2π in Appendix A 2, for Ṽ

(3)
2π in Appendix A 3, and for Ṽ

(4)
2π in

Appendices A 4 and A 5.

G. Regularization

All pion-exchange potentials, Ṽπ(r), are singular at the origin and, thus, need regularization. For this purpose, we

multiply the Ṽ
(0)
1π (r) potential with the regulator function

f̃1π(r) = 1− exp

[
−
(
r

Rπ

)2n
]

(2.52)

and all Ṽ
(ν)
2π (r) (ν = 2, 3, 4) with [26, 40]

f̃2π(r) =

[
1− exp

(
− r2

R2
π

)]n
(2.53)

using n = 5 in all cases. (Notice that n = 4 is the minimum required for Ṽ
(4)
2π .)

In the work of Piarulli et al. [9, 10], the regulator function

f̃Pia(r) = 1− 1(
r
Rπ

)6

exp
(

2(r−Rπ)
Rπ

)
+ 1

(2.54)
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FIG. 4: (a) The solid and dashed curves show the impact of the regulator functions f̃1π(r) and f̃2π(r), respectively, on the

tensor potential W̃T (r) of 1PE, Eq. (A7). The dotted curve is obtained without regulation. (b) Same as (a), but for the central

potential ṼC(r) of 2PE at N3LO. Rπ = 1.0 fm is applied for all regulators.

is used for both 1PE and 2PE.
In Fig. 3 we show the shape of the different regulators for Rπ = 1.0 fm. Our f̃1π(r) (solid line) is similar to f̃Pia(r)

(dotted), while our f̃2π(r) (dashed) continues to cut down in the range between 1 and 2 fm where the other regulators
have ceased to be of impact.

The difference between the different regulators becomes even more evident when they are applied to specific com-

ponents of the NN potential. Therefore, we show in Fig. 4(a) the impact of f̃1π(r) (solid line) and f̃2π(r) (dashed) on

the 1PE tensor potential W̃T (r), Eq. (A7). Both regulators suppress 1PE below 1 fm, but differ substantially above.

While the regulator f̃1π(r) leaves the 1PE essentially unchanged above 1 fm, f̃2π(r) suppresses 1PE drastically in the
range 1 to 2 fm. It is well established that the 1PE at intermediate and long-range gets the physics right (in particular
the one of the deuteron) [41, 42] and, therefore, should not be suppressed in that range. Consequently, the regulator

f̃2π(r) (dashed line) is inappropriate for 1PE, since it cuts out too much in the region 1 to 2 fm.

In Fig. 4(b) we show the corresponding situation for 2PE by way of the central potential ṼC(r) produced by 2PE
at N3LO. The situation with the 2PE is very different from 1PE.

It is well known that, in conventional meson theory, the 2PE contribution to the NN interaction always comes out
too attractive at short and intermediate range. For a conventional field-theoretic model [43, 44], this is demonstrated
in Fig. 10 of Ref. [1]. It is also true for the dispersion theoretic derivation of the 2PE that was pursued by the
Paris group (see, e. g., the predictions for 1D2, 3D2, and 3D3 in Fig. 8 of Ref. [45] which are all too attractive). In
conventional meson theory [43, 44], this surplus attraction is compensated by heavy-meson exchanges (ρ-, ω-, and
πρ-exchanges) which, however, have no place in chiral EFT. Instead, a drastic regulator has to be invoked that is

also effective in the intermediate range. This is the case with the regulator f̃2π(r) (dashed curve in Fig. 4(b)) which,
therefore, is our choice for 2PE.

III. NN SCATTERING AND THE DEUTERON

Based upon the formalism presented in the previous section, we have constructed NN potentials at four different
orders, namely, LO, NLO, NNLO, and N3LO, cf. Sec. II F. At each order, we apply three different cutoff combinations
(Rπ, Rct), see Secs. II G and II D, respectively, for their definitions. Specifically, we use the combinations (1.0, 0.70)
fm, (1.1, 0.72) fm, and (1.2, 0.75) fm. Since we take charge dependence into account, each NN potential comes in
three versions: pp, np, and nn. In this section, we will present the predictions by these potentials for NN scattering
and the deuteron.
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A. NN scattering
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FIG. 5: Chiral expansion of neutron-proton scattering as represented by the phase parameters for J ≤ 4. Four orders ranging
from LO to N3LO are shown as denoted. The cutoff combination (Rπ, Rct) = (1.0, 0.70) fm is applied in all cases. The filled
and open circles represent the results from the Nijmegen multi-energy np phase-shift analysis [46] and the GWU single-energy
np analysis SP07 [49], respectively.

The free (fit) parameters of our theory are the coefficients of the contact terms presented in Sec. II D. The other set
of parameters involved in NN potential construction are the πN LECs. We apply the ones from the very accurate
Roy-Steiner analysis of Ref. [28] given in Table I. We use the central values and, thus, the πN LECs are precisely
fixed from the outset and no fit parameters.
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TABLE III: χ2/datum for several energy intervals as obtained from the fit of the 2016 NN database [27] by NN potentials at
various orders of chiral EFT applying the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm. Note that the χ2 is always minimized
for the interval 0–190 MeV.

Tlab bin (MeV) No. of data LO NLO NNLO N3LO

proton-proton

0–100 795 433 1.85 2.64 1.32

0–190 1206 363 4.60 7.84 1.33

0–290 2132 341 16.2 18.1 1.69

neutron-proton

0–100 1180 211 1.58 2.34 1.59

0–190 1697 157 15.0 10.2 1.53

0–290 2721 109 35.4 21.4 1.99

pp plus np

0–100 1975 300 1.68 2.45 1.48

0–190 2903 243 10.7 9.23 1.45

0–290 4853 203 26.9 20.0 1.86

Fitting proceeds in two steps. First we fit phase shifts, where the adjustment is done to the Nijmegen multi-energy
analysis [46], which we perceive as the most reliable one. In the second step, the potential predictions are confronted
with the experimental NN data—calculating the χ2 as follows.

The experimental data are broken up into groups (sets) of data, A, with NA data points and an experimental over-
all normalization uncertainty ∆nexpA . For datum i of set A, xexpA,i is the experimental value, ∆xexpA,i the experimental

uncertainty, and xmodA,i the model prediction. When fitting the data of group A by a model (or a phase shift solution),

the over-all normalization, nmodA , is floated and finally chosen such as to minimize the χ2 for this group. The χ2 is
then calculated from [35]

χ2 =
∑
A


NA∑
i=1

[
nmodA xmodA,i − x

exp
A,i

∆xexpA,i

]2

+

[
nmodA − 1

∆nexpA

]2
 ; (3.1)

that is, the over-all normalization of a group is treated as an additional parameter. For groups of data without
normalization uncertainty (∆nexpA = 0), nmodA = 1 is used and the second term on the r.h.s. of Eq. (3.1) is dropped.
The total number of data is

Ndat = Nobs +Nne (3.2)

where Nobs denotes the total number of measured data points (observables), i. e., Nobs =
∑
ANA; and Nne is the

number of experimental normalization uncertainties. We state results in terms of χ2/Ndat ≡ χ2/datum, where we use
for the experimental NN data the “2016 database” defined in Ref. [27].

Each of the two steps described above, is done in two parts. In part one, we adjust the pp potential, which fixes the
T = 1 partial waves (where T denotes the total isospin of the two-nucleon system). In part two, the charge-dependence
described in Sec. II E is applied to obtain the np T = 1 phase shifts from the pp ones. The np T = 0 partial-waves
are then pinned down by first fitting phase shifts and, after that, minimizing the χ2 in regard to the np data. During
this last step, we allowed for minor changes of the T = 1 parameters (which also modifies the pp potential) to obtain
an even lower overall χ2. We always minimize the χ2 for the energy range 0-190 MeV laboratory energy (Tlab). For
more details on the NN database and the fitting procedure, see Ref. [27].

The nn potential is obtained by starting from the pp version, replacing the proton mass by the neutron mass in the
kinetic energy, leaving out Coulomb, and adjusting the zeroth-order contacts such as to reproduce the empirical nn
1S0 scattering length of –18.95 fm [47, 48].

The contact LECs that result from our best fits at N3LO are tabulated in Appendix B.
Plots of the various components of the chiral potentials in comparison to more traditional potentials are shown and

discussed in Appendix C.
The χ2/datum for the reproduction of the NN data at various orders of chiral EFT are shown in Table III for

different energy intervals below Tlab = 290 MeV. The most relevant energy interval is the one from 0–190 MeV, for
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TABLE IV: Scattering lengths (a) and effective ranges (r) in units of fm as predicted by NN potentials at various orders of
chiral EFT applying the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm. (aCpp and rCpp refer to the pp parameters in the presence

of the Coulomb force. aN and rN denote parameters determined from the nuclear force only and with all electromagnetic
effects omitted.) aNnn, and anp are fitted, all other quantities are predictions.

LO NLO NNLO N3LO Empirical

1S0

aCpp –7.8161 –7.8134 –7.8147 –7.8136 –7.8196(26) [35]

–7.8149(29) [50]

rCpp 2.009 2.715 2.764 2.748 2.790(14) [35]

2.769(14) [50]

aNpp — –17.364 –17.466 –17.391 —

rNpp — 2.788 2.834 2.818 —

aNnn –18.950 –18.950 –18.950 –18.950 –18.95(40) [47, 48]

rNnn 1.985 2.761 2.807 2.790 2.86(10) [51]

anp –23.738 –23.738 –23.738 –23.738 –23.740(20) [52]

rnp 1.888 2.653 2.695 2.679 [2.77(5)] [52]

3S1

at 5.299 5.414 5.413 5.420 5.419(7) [52]

rt 1.586 1.750 1.747 1.756 1.753(8) [52]

which the χ2/datum is 10.7 at NLO and 9.2 at NNLO for the pp plus np data. Note that the number of NN contact
terms is the same for both orders, which may naively explain why there is essentially no change. However, for nonlocal
momentum-space potentials [27] the χ2 at NNLO turns out to be substantially lower than at NLO, because of a large
2PE contribution at NNLO providing the proper intermediate-range attraction for the nuclear force. The fact that
this is not happening for the present local potentials may have the following explanation: First note that our χ2 at
NLO is already unusually low as compared to what nonlocal momentum-space potentials (cf., e.g., Ref. [27]) generate
at that order leaving not much room for improvement at NNLO. The unusually good results at NLO may be due
to the fact that the iteration of a locally regularized 1PE creates a larger 2PE contribution than the iteration of a
nonlocal one. After all, the reason why NLO is in general not doing well is a lack of a sizable 2PE contribution.

Finally, moving on to N3LO, 14 more contacts are added [Eq. (2.35)] that affect, in particular, the the 1D2 and
3D2 waves, which typically come out far too attractive at NLO and NNLO (Fig. 5). This improves the χ2/datum to
1.45 at N3LO, a respectable value.

All np phase shifts up to J = 4 and Tlab = 200 MeV are displayed in Fig. 5, which reflects what just has been said in
the context of the the χ2. At this point, it is instructive to talk about the uncertainties of the phase shift predictions.
As discussed in Sec. IV below, the truncation error creates the largest uncertainty, for which the simplest formula
is given by Eq. (4.1). Following this prescription, the error at a certain order is the difference between the given
order and the next higher one. For example, the uncertainties of our NNLO phase shifts are given by the differences
between the (green) NNLO curves and the (red) N3LO curves in Fig. 5. For the uncertainty at N3LO, Eq. (4.2) has
to be invoked. The factor Q in this formula is, of course, energy dependent but, as a simple rule of thumb, one may
assume Q ≈ 1/3.

The low-energy scattering parameters, order by order for the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm, are
shown in Table IV. For nn and np, the effective range expansion without any electromagnetic interaction is used. In
the case of pp scattering, the quantities aCpp and rCpp are obtained by using the effective range expansion appropriate

in the presence of the Coulomb force (cf. Appendix A4 of Ref. [52]). Note that the empirical values for aCpp and rCpp in
Table IV were obtained by subtracting from the corresponding electromagnetic values the effects due to two-photon
exchange and vacuum polarization. Thus, the comparison between theory and experiment for these two quantities is
conducted correctly. aNnn, and anp are fitted, all other quantities are predictions. Note that the 3S1 effective range
parameters at and rt are not fitted. But the deuteron binding energy is fitted and that essentially fixes at and rt.
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B. Electromagnetic effects

The full scattering amplitude for NN scattering consists of two parts: the strong-interactions (nuclear) amplitude
plus the electromagnetic (em) amplitude. Following the way the Nijmegen partial-wave analysis was conducted [35,
46, 53], the em amplitude includes relativistic Coulomb, two-photon exchange, vacuum polarization, and magnetic
moment (MM) interactions. The nuclear amplitude is parametrized in terms of the strong nuclear phase shifts which
are to be calculated in the presence of the em interaction, i. e., with respect to em wave functions. In the case
of pp scattering, it is in general a good approximation to just use the phase shifts of the nuclear plus relativistic
Coulomb interaction with respect to Coulomb wave functions. The exception are the 1S0 pp phase shifts below 30
MeV, where electromagnetic phase shifts are to be used, which are obtained by correcting the Coulomb phase shifts
for the distorting effects from two-photon exchange, vacuum polarization, and MM interactions as calculated by the
Nijmegen group [35, 54]. In the case of np and nn scattering, the phase shifts from the nuclear interaction with
respect to Riccati-Bessel functions are applied. More technical details of our phase shift calculations can be found in
Appendix A3 of Ref. [52].

The NN potentials constructed in this paper represent the strong nuclear interaction between two nucleons. Elec-
tromagnetic interactions are not provided, because they are well known and readily available elsewhere [33]. In
applications of the potentials in the nuclear many-body problem, one would add at least the Coulomb interaction be-
tween protons. Other more subtle em interactions between protons, like, two-photon-exchange, vacuum polarization,
and MM interactions, can also be added to our nuclear pp potentials. However their effects are, in general, very small
and, in fact, much smaller than the effects from off-shell differences between different strong nuclear potentials. Thus,
in most applications, there is no significance to their inclusion.

A special word is called-for concerning our np potentials. Following tradition [27, 46, 52, 55–57], we fit the exper-
imental 1S0 np scattering length, anp = −23.74 fm (cf. Table IV), and the experimental deuteron binding energy,
Bd = 2.22458 MeV. This implies that we tacitly include the np MM interaction in our strong interaction np potentials.
This is not unreasonable, because, e. g. in 1S0, only a MM contact term with the range of the ρ meson contributes,
which is naturally absorbed by the contacts of the EFT potentials. Therefore, no em interactions must be added to
our np potentials.

The bottom line is that, in typical nuclear many-body calculations, all that needs to be added to our strong NN
potentials is the Coulomb force between protons (and nuclear three-nucleon forces).

C. The deuteron and triton

The evolution of the deuteron properties from LO to N3LO of chiral EFT are shown in Table V. In all cases, we fit
the deuteron binding energy (Bd) to its empirical value of 2.22458 MeV using the LO contact parameters. All other
deuteron properties are predictions. Note, however, that the asymptotic S state, AS , and the 3S1 effective range
parameter, rt, are related [58–60] and, furthermore, the rt is strongly correlated with Bd. Thus, the fact that, at NLO
and up, AS falls essentially within the empirical range is no real freelance prediction. In contrast, the asymptotic D/S
state, η, is more versatile. While at LO, NLO, and NNLO, the predictions agree with experiment, the value at N3LO
is low and outside the N3LO truncation error. This phenomenon is most likely related to the local character of the
present potentials, since such underprediction is not happening with nonlocal potentials at N3LO (and N4LO) [27].
It represents an interesting topic for future investigations (see also the ε1 discussion, below).

At the bottom of Table V, we also show the predictions for the triton binding as obtained in 34-channel charge-
dependent Faddeev calculations using only 2NFs. The result is around 8.1 MeV at N3LO. This contribution from
the 2NF will require only a moderate 3NF. The relatively low deuteron D-state probabilities (≈ 4% at N3LO) and
the concomitant generous triton binding energy predictions are a reflection of the fact that our NN potentials have a
weaker tensor force than commonly used local position-space potentials. This can also be seen in the predictions for
the ε1 mixing parameter that is a measure for the strength of the mixing of the 3S1 and 3D1 states due to the tensor
force. Our predictions for ε1 at NNLO and N3LO are on the lower side for lab. energies above 100 MeV (Fig. 5).
However, there is agreement with the GWU analysis [49] at 100 MeV. Note that the average relative momentum
in nuclear matter at normal density is equivalent to Tlab ≈ 50 MeV. Thus, the properties of NN potentials for

Tlab
<∼ 100 MeV are the most important ones for nuclear structure applications. Moreover, the discrepancies between

the Nijmegen [46] and the GWU [49] analyses for ε1 may be seen as an indication that this parameter is not as well
determined as the uncertainties quoted in the analyses suggest. The χ2/datum of our N3LO potential is 1.45, which is
a typical value achieved in the GWU phase shift analyses. Furthermore, the χ2/datum (for the energy range 0–≈200
MeV) for the well-established and highly appreciated N3LO potentials of Refs. [10, 27, 56] are 1.40, 1.35, and 1.50,
respectively. The fact that our χ2/datum is the same as for the referenced potentials, while our ε1 differs, implies
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TABLE V: Two- and three-nucleon bound-state properties as predicted by NN potentials at various orders of chiral EFT
applying the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm. (Deuteron: Binding energy Bd, asymptotic S state AS , asymptotic
D/S state η, quadrupole moment Q, D-state probability PD; the prediction for Q is without meson-exchange current contri-
butions and relativistic corrections. Triton: Binding energy Bt.) Bd is fitted, all other quantities are predictions.

LO NLO NNLO N3LO Empiricala

Deuteron

Bd (MeV) 2.22458 2.22458 2.22458 2.22458 2.224575(9)

AS (fm−1/2) 0.8613 0.8833 0.8836 0.8852 0.8846(9)

η 0.0254 0.0259 0.0252 0.0242 0.0256(4)

Q (fm2) 0.264 0.284 0.274 0.260 0.2859(3)

PD (%) 5.08 5.67 5.02 4.03 —

Triton

Bt (MeV) 11.92 7.87 7.98 8.09 8.48

aSee Table XVIII of Ref. [52] for references.

TABLE VI: χ2/datum for the fit of the pp plus np data up to 100 MeV and two- and three-nucleon bound-state properties
as produced by NN potentials at NNLO and N3LO with the cutoff combinations (Rπ, Rct) = (1.2, 0.75) fm, (1.1, 0.72) fm,
and (1.0, 0.70) fm. In the column headings, we use the Rπ value to identify the different cases. For some of the notation, see
Table V, where also empirical information on the deuteron and triton can be found.

NNLO N3LO

Rπ = 1.2 fm Rπ = 1.1 fm Rπ = 1.0 fm Rπ = 1.2 fm Rπ = 1.1 fm Rπ = 1.0 fm

χ2/datum pp & np

0–100 MeV (1975 data) 2.75 2.39 2.45 1.75 1.56 1.48

Deuteron

Bd (MeV) 2.22458 2.22458 2.22458 2.22458 2.22458 2.22458

AS (fm−1/2) 0.8862 0.8835 0.8836 0.8842 0.8851 0.8852

η 0.0244 0.0246 0.0252 0.0234 0.0239 0.0242

Q (fm2) 0.263 0.265 0.274 0.248 0.255 0.260

PD (%) 3.98 4.27 5.02 3.22 3.65 4.03

Triton

Bt (MeV) 8.31 8.25 7.98 8.40 8.18 8.09

that our ε1 prediction is as consistent with the data as the alternatives and may simply be viewed as another valid
phase shift analysis.

We finally note that the observation that a weak tensor force (low PD) causes a low ε! at intermediate energies is a
typical feature of local NN potentials. For nonlocal potentials there is not necessarily such a trend as the weak-tensor
force potentials of Ref. [27] demonstrate.

D. Cutoff variations

As noted before, besides the cutoff combination (Rπ, Rct) = (1.0, 0.70) fm, we have also constructed potentials with
the combinations (1.1, 0.72) fm, and (1.2, 0.75) fm, to allow for systematic studies of the cutoff dependence. In Fig. 6,
we display the variations of the np phase shifts for different cutoffs at NNLO (left half of figure, green curves) and at
N3LO (right half of figure, red curves). Fig. 6 demonstrates nicely how cutoff dependence diminishes with increasing
order—a reasonable trend. Another point that is evident from this figure is that (1.2, 0.75) fm should be considered
as an upper limit for cutoffs, because obviously cutoff artifacts start showing up.

In Table VI, we show the cutoff dependence for three selected aspects that are of great interest: the χ2 for the fit
of the NN data below 100 MeV, the deuteron properties, and the triton binding energy. The χ2 does not change
substantially as a function of cutoff. Thus, we can make the interesting observation that the reproduction of NN
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FIG. 6: Cutoff variations of the np phase shifts at NNLO (left side, green lines) and N3LO (right side, red lines). Solid, dashed,
and dotted lines represent the results obtained with the cutoff combinations (Rπ, Rct) = (1.0, 0.70) fm, (1.1, 0.72) fm, and (1.2,
0.75) fm, respectively, as also indicated by the curve labels which state the Rπ value. Filled and open circles as in Fig. 5.

observables is not much affected by the cutoff variations. However, the D-state probability of the deuteron, PD,
which is not an observable, changes substantially as a function of cutoff. As discussed, PD is intimately related to
the strength of the tensor force of a potential and so are the binding energies of few-body systems. In particular, the
cutoff combination (Rπ, Rct) = (1.1, 0.72) fm and (1.2, 0.75) fm at NNLO as well as N3LO generate the substantial
triton binding energies between 8.20 and 8.40 MeV and, therefore, differ significantly from other local position-space
potentials that are commonly in use. On these grounds one can expect that results for light and intermediate-mass
nuclei may differ considerably when applying our potentials in ab initio calculations. It will be interesting to see if
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this may solve some of the problems that some ab initio calculations with local potentials are currently beset with.

IV. UNCERTAINTY QUANTIFICATIONS

In ab initio calculations applying chiral two- and many-body forces, major sources of uncertainties are [61]:

1. Experimental errors of the input NN data that the 2NFs are based upon and the input few-nucleon data to
which the 3NFs are adjusted.

2. Uncertainties in the Hamiltonian due to

(a) uncertainties in the determination of the NN and 3N contact LECs,

(b) uncertainties in the πN LECs,

(c) regulator dependence,

(d) EFT truncation error.

3. Uncertainties associated with the few- and many-body methods applied.

The experimental errors in the NN scattering and deuteron data propagate into the NN potentials that are adjusted
to reproduce those data. To systematically investigate this error propagation, the Granada group has constructed
smooth local potentials [62], the parameters of which carry the uncertainties implied by the errors in the NN data.
Applying 205 Monte Carlo samples of these potentials, they find an uncertainty of 15 keV for the triton binding
energy [63]. In a more recent study [64], in which only 33 Monte Carlo samples were used, the Granada group
reproduced the uncertainty of 15 keV for the triton binding energy and, in addition, determined the uncertainty for
the 4He binding energy to be 55 keV. The conclusion is that the statistical error propagation from the NN input data
to the binding energies of light nuclei is negligible as compared to uncertainties from other sources (discussed below).
Thus, this source of error can be safely neglected at this time. Furthermore, we need to consider the propagation of
experimental errors from the experimental few-nucleon data that the 3NF contact terms are fitted to. Also this will
be negligible as long as the 3NFs are adjusted to data with very small experimental errors; for example the empirical
binding energy of the triton is 8.481795± 0.000002 MeV, which will definitely lead to negligible propagation.

Now turning to the Hamiltonian, we have to, first, account for uncertainties in the NN and 3N LECs due to the
way they are fixed. Based upon our experiences from Ref. [65] and the fact that chiral EFT is a low-energy expansion,
we have fitted the NN contact LECs to the NN data below 100 MeV at LO and NLO and below 190 MeV at NNLO
and N3LO. One could think of choosing these fit-intervals slightly different and a systematic investigation of the
impact of such variation on the NN LECs is still outstanding. However, we do not anticipate that large uncertainties
would emerge from this source of error.

The story is different for the 3NF contact LECs, since several, very different procedures are in use for how to fix
them. The 3NF at NNLO has two free parameters (known as the cD and cE parameters). To fix them, two data
are needed. In most procedures, one of them is the triton binding energy. For the second datum, the following
choices have been made: the nd doublet scattering length 2and [66], the binding energy of 4He [67], the point charge
radius radius of 4He [68], the Gamow-Teller matrix element of tritium β-decay [69–71]. Alternatively, the cD and
cE parameters have also been pinned down by just an optimal over-all fit of the properties of light nuclei [72]. 3NF
contact LECs determined by different procedures will lead to different predictions for the observables that were not
involved in the fitting procedure. The differences in those results establish the uncertainty. Specifically, it would be
of interest to investigate the differences that occur for the properties of intermediate-mass nuclei and nuclear matter
when 3NF LECs fixed by different protocols are applied.

The uncertainty in the πN LECs used to be a large source of uncertainty, in particular, for predictions for many-
body systems [73–75]. With the new, high-precision determination of the πN LECs in the Roy-Steiner equations
analysis [28] (cf. Table I) this large uncertainty is essentially eliminated, which is great progress, since it substantially
reduces the error budget. We have varied the πN LECs within the errors given in Table I and find that the changes
caused by these variations can easily be compensated by small readjustments of the NN LECs resulting in essentially
identical phase shifts and χ2 for the fit of the data. Thus, this source of error is essentially negligible. The πN
LECs also appear in the 3NFs, which also include contacts that can be used for readjustment. Future calculations of
finite nuclei and nuclear matter should investigate what residual changes remain after such readjustment (that would
represent the uncertainty). We expect this to be small.

The choice of the regulator function and its cutoff parameter create uncertainty. Originally, cutoff variations were
perceived as a demonstration of the uncertainty at a given order (equivalent to the truncation error). However, in
various investigations [25, 26] it has been demonstrated that this is not correct and that cutoff variations, in general,
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underestimate this uncertainty. Therefore, the truncation error is better determined by sticking literally to what
‘truncation error’ means, namely, the error due to omitting the contributions from orders beyond the given order ν.
The largest such contribution is the one of order (ν + 1), which one may, therefore, consider as representative for the
magnitude of what is left out. This suggests that the truncation error at order ν can reasonably be defined as

∆Xν(p) = |Xν(p)−Xν+1(p)| , (4.1)

where Xν(p) denotes the prediction for observable X at order ν and momentum p. If Xν+1 is not available, then one
may use,

∆Xν(p) = |Xν−1(p)−Xν(p)|Q , (4.2)

with the expansion parameter Q chosen as

Q = max

{
mπ

Λb
,
p

Λb

}
, (4.3)

where p is the characteristic center-of-mass (cms) momentum scale and Λb the breakdown scale.
Alternatively, one may also apply the more elaborate scheme suggested in Ref. [26] where the truncation error at,

e.g., N3LO is calculated in the following way:

∆XN3LO(p) = max
{
Q5 × |XLO(p)| , Q3 × |XLO(p)−XNLO(p)| , Q2 × |XNLO(p)−XNNLO(p)| , (4.4)

Q× |XNNLO(p)−XN3LO(p)|} , (4.5)

with XN3LO(p) denoting the N3LO prediction for observable X(p), etc..
Note that one should not add up (in quadrature) the uncertainties due to regulator dependence and the truncation

error, because they are not independent. In fact, it is appropriate to leave out the uncertainty due to regulator
dependence entirely and just focus on the truncation error [26]. The latter should be estimated using the same cutoff
in all orders considered.

Finally, the last uncertainty to be taken into account is the uncertainty in the few- and many-body methods applied
in the ab initio calculation. This source of error has nothing to do with EFT. Few-body problems are nowadays exactly
solvable such that the error is negligible in those cases. For heavier nuclei and nuclear matter, there are definitely
uncertainties no matter what method is used. These uncertainties need to be estimated by the practitioners of those
methods. But with the improvements of algorithms and the increase of computing power these errors are decreasing.

The conclusion is that the most substantial uncertainty is represented by the truncation error. This is the dominant
source of (systematic) error that should be carefully estimated for any calculation applying chiral 2NFs and 3NFs up
to a given order.

V. SUMMARY AND CONCLUSIONS

We have constructed local, position-space chiral NN potentials through four orders of chiral EFT ranging from LO
to N3LO. The construction may be perceived as consistent, because the same power counting scheme as well as the
same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the
very accurate πN LECs as determined in the Roy-Steiner equations analysis of Ref. [28]. In fact, the uncertainties of
these LECs are so small that a variation within the errors leads to effects that are essentially negligible at the current
level of precision. Another aspect that has to do with precision is that, at least at the highest order (N3LO), the NN
data below 190 MeV laboratory energy are reproduced with the respectable χ2/datum of 1.45.

The NN potentials presented in this paper may serve as a solid basis for systematic ab initio calculations of nuclear
structure and reactions that allow for a comprehensive error analysis. In particular, the order by order development
of the potentials will make possible a reliable determination of the truncation error at each order.

Our new family of local position-space potentials differs from the already available potentials of this kind [8–10]

by a weaker tensor force as reflected in relatively low D-state probabilities of the deuteron (PD
<∼ 4.0 % for our

N3LO potentials) and predictions for the triton binding energy above 8.00 MeV (from two-body forces alone). As a
consequence, our potentials will also lead to different predictions when applied to light and intermediate-mass nuclei
in ab initio calculations [76]. It will be interesting to see if this will help solving some of the outstanding problems in
microscopic nuclear structure.
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Appendix A: The long-range NN potential

For each order, we will state, first, the momentum-space functions and then the corresponding position-space
potentials as obtained by Fourier transform. Note that all long-range potentials are local.

In momentum space, we use the following decomposition of the long-range potential,

Vπ(~p ′, ~p) = VC(q) + τ1 · τ2WC(q)

+ [VS(q) + τ1 · τ2WS(q) ] ~σ1 · ~σ2

+ [VT (q) + τ1 · τ2WT (q) ] ~σ1 · ~q ~σ2 · ~q

+ [VLS(q) + τ1 · τ2WLS(q)]
(
−i~S · (~q × ~k)

)
. (A1)

For notation, see Sec. II D. The position-space potential is represented as follows:

Ṽπ(~r) = ṼC(r) + τ1 · τ2 W̃C(r)

+
[
ṼS(r) + τ1 · τ2 W̃S(r)

]
~σ1 · ~σ2

+
[
ṼT (r) + τ1 · τ2 W̃T (r)

]
S12(r̂)

+
[
ṼLS(r) + τ1 · τ2 W̃LS(r)

]
~L · ~S , (A2)

where the operator for total orbital angular momentum is denoted by ~L.
The 2PE potentials in spectral representation are given in momentum space by

VC,S(q) = −2q6

π

∫ ∞
2mπ

dµ
ImVC,S(iµ)

µ5(µ2 + q2)
,

VT,LS(q) =
2q4

π

∫ ∞
2mπ

dµ
ImVT,LS(iµ)

µ3(µ2 + q2)
, (A3)

and similarly for WC,S,T,LS . Their Fourier transforms are

ṼC(r) =
1

2π2r

∫ ∞
2mπ

dµµe−µrImVC(iµ) ,

ṼS(r) = − 1

6π2r

∫ ∞
2mπ

dµµe−µr
[
µ2ImVT (iµ)− 3ImVS(iµ)

]
,

ṼT (r) = − 1

6π2r3

∫ ∞
2mπ

dµµe−µr(3 + 3µr + µ2r2)ImVT (iµ) ,

ṼLS(r) =
1

2π2r3

∫ ∞
2mπ

dµµe−µr(1 + µr)ImVLS(iµ) , (A4)

and similarly for W̃C,S,T,LS .

1. Leading order

At leading order, only 1PE contributes to the long range, cf. Fig. 7. The charge-independent 1PE is given in
momentum space by

WT (q) = − g2
A

4f2
π

1

q2 +m2
π

, (A5)
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FIG. 7: LO, NLO, and NNLO pion-exchange contributions to the NN interaction. Notation as in Fig. 1.

where gA, fπ, and mπ denote the axial-vector coupling constant, pion-decay constant, and the pion mass, respectively.
See Table II for their values. Fourier transform yields:

W̃S(r) =
g2
Am

2
π

48πf2
π

e−x

r
, (A6)

W̃T (r) =
g2
A

48πf2
π

e−x

r3
(3 + 3x+ x2) , (A7)

with x = mπr.
For the NN potentials constructed in this paper, we take the charge-dependence of the 1PE due to pion-mass

splitting into account. For this, we define:

ṼS(mπ) =
g2
Am

2
π

48πf2
π

e−x

r
, (A8)

ṼT (mπ) =
g2
A

48πf2
π

e−x

r3
(3 + 3x+ x2) . (A9)

The proton-proton (pp) and neutron-neutron (nn) potentials are then given by:

Ṽ
(pp)
S (r) = Ṽ

(nn)
S (r) = ṼS(mπ0) , (A10)

Ṽ
(pp)
T (r) = Ṽ

(nn)
T (r) = ṼT (mπ0) , (A11)

and the neutron-proton (np) potentials are:

Ṽ
(np)
S (r) = −ṼS(mπ0) + (−1)T+1 2 ṼS(mπ±) , (A12)

Ṽ
(np)
T (r) = −ṼT (mπ0) + (−1)T+1 2 ṼT (mπ±) , (A13)

where T = 0, 1 denotes the total isospin of the two-nucleon system. See Table II for the precise values of the pion
masses. Formally speaking, the charge-dependence of the 1PE exchange is of order NLO [1], but we include it also at
leading order to make the comparison with the (charge-dependent) phase-shift analyses meaningful.

Alternatively, the charge-dependent 1PE can also be stated in terms of a “charge-independent” 1PE,

W̃CI
S (r) =

1

3

[
ṼS(mπ0) + 2 ṼS(mπ±)

]
, (A14)

W̃CI
T (r) =

1

3

[
ṼT (mπ0) + 2 ṼT (mπ±)

]
, (A15)
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plus charge-dependent contributions given by,

Ṽ CD(r) =
1

3

[
ṼS(mπ0)− ṼS(mπ±)

]
~σ1 · ~σ2 T12 , (A16)

+
1

3

[
ṼT (mπ0)− ṼT (mπ±)

]
S12 T12 , (A17)

with the isotensor operator T12 defined in Eq. (2.21).

2. Next-to-leading order

The 2PE NN diagrams that occur at NLO (cf. Fig. 7) contribute—in momentum space— in the following way [77]:

WC(q) =
L(q)

384π2f4
π

[
4m2

π(1 + 4g2
A − 5g4

A) + q2(1 + 10g2
A − 23g4

A)− 48g4
Am

4
π

w2

]
, (A18)

VT (q) = − 1

q2
VS(q) = − 3g4

A

64π2f4
π

L(q) , (A19)

with the logarithmic loop function

L(q) =
w

q
ln
w + q

2mπ
(A20)

and w =
√

4m2
π + q2. Note that we apply dimensional renormalization for all loop diagrams. Moreover, in all 2PE

contributions, we use the average pion-mass, i. e., mπ = m̄π (cf. Table II).
These expressions imply the spectral functions

ImWC(iµ) = − 1

768πf4
π

√
µ2 − 4m2

π

µ

[
4m2

π(1 + 4g2
A − 5g4

A)− µ2(1 + 10g2
A − 23g4

A)− 48g4
Am

4
π

4m2
π − µ2

]
, (A21)

ImVT (iµ) =
1

µ2
ImVS(iµ) =

3g4
A

128πf4
π

√
µ2 − 4m2

π

µ
. (A22)

Via Fourier transform, Eq. (A4), the equivalent position-space potentials are:

W̃C(r) =
mπ

128π3f4
π

1

r4

{[
1 + 2g2

A(5 + 2x2)− g4
A(23 + 12x2)

]
K1(2x)

+x
[
1 + 10g2

A − g4
A(23 + 4x2)

]
K0(2x)

}
, (A23)

ṼS(r) =
g4
Amπ

32π3f4
π

1

r4

[
3xK0(2x) + (3 + 2x2)K1(2x)

]
, (A24)

ṼT (r) = − g4
Amπ

128π3f4
π

1

r4

[
12xK0(2x) + (15 + 4x2)K1(2x)

]
, (A25)

where K0 and K1 denote the modified Bessel functions.

3. Next-to-next-to-leading order

The 2PE NNLO contribution (cf. Fig. 7) is given by [77]:

VC =
3g2
A

16πf4
π

[
2m2

π(c3 − 2c1) + c3q
2
]

(2m2
π + q2)A(q) , (A26)

WT = − 1

q2
WS = − g2

A

32πf4
π

c4w
2A(q) , (A27)

with the loop function

A(q) =
1

2q
arctan

q

2mπ
. (A28)
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The associated spectral functions are

ImVC(iµ) =
3g2
A

64µf4
π

[
2m2

π(c3 − 2c1)− c3µ2
]

(2m2
π − µ2) , (A29)

ImWT (iµ) =
1

µ2
ImWS(iµ) = − g2

A

128µf4
π

c4(4m2
π − µ2) ; (A30)

which, by way of Eq. (A4), yield the position-space expressions

ṼC(r) =
3g2
A

32π2f4
π

e−2x

r6

[
2c1x

2(1 + x)2 + c3(6 + 12x+ 10x2 + 4x3 + x4)
]
, (A31)

W̃S(r) =
g2
A

48π2f4
π

e−2x

r6
c4(1 + x)(3 + 3x+ 2x2) , (A32)

W̃T (r) = − g2
A

48π2f4
π

e−2x

r6
c4(1 + x)(3 + 3x+ x2) . (A33)

4. Next-to-next-to-next-to-leading order

a. Football diagram at N3LO

The N3LO football diagram, Fig. 8(a), generates [78]:

Momentum-space potentials:

VC(q) =
3L(q)

16π2f4
π

[(
c2
6
w2 + c3(2m2

π + q2)− 4c1m
2
π

)2

+
c22
45
w4

]
, (A34)

WT (q) = − 1

q2
WS(q) =

c24 w
2 L(q)

96π2f4
π

. (A35)

Spectral functions:

ImVC(iµ) = − 3

32πf4
π

√
µ2 − 4m2

π

µ

[(
c2
6

(4m2
π − µ2) + c3(2m2

π − µ2)− 4c1m
2
π

)2

+
c22
45

(4m2
π − µ2)2

]
, (A36)

ImWT (iµ) =
1

µ2
ImWS(iµ) =

c24
192πf4

π

(µ2 − 4m2
π)3/2

µ
. (A37)

Position-space potentials:

ṼC(r) = − 3m7
π

32π3f4
π

1

x5

[ (
3c22 + 20c2c3 + 60c23 + 4(2c1 + c3)2x2

)
xK1(2x)

+2
(
3c22 + 20c2c3 + 60c23 + 2(2c1 + c3)(c2 + 6c3)x2

)
K2(2x)

]
, (A38)

W̃S(r) =
c24m

7
π

24π3f4
π

1

x4

[
2xK2(2x) + 5K3(2x)

]
, (A39)

W̃T (r) = − c24m
7
π

96π3f4
π

1

x5

[
(3 + 4x2)K2(2x) + 16xK3(2x)

]
, (A40)

where K2(z) = K0(z) + 2
zK1(z) and K3(z) = K1(z) + 4

zK2(z) = 4
zK0(z) + ( 8

z2 + 1)K1(z).

b. Leading 2PE two-loop diagrams

The leading-order 2π-exchange two-loop diagrams are shown in Fig. 8(b). The various contributions are [78]:
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(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

FIG. 8: Two-pion exchange contributions at N3LO with (a) the N3LO football diagram, (b) the leading 2PE two-loop contri-
butions, and (c) the leading relativistic corrections. Basic notation as in Fig. 1. The shaded disc stands for all one-loop πN
graphs as illustrated. Open circles are relativistic 1/MN corrections.
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Isoscalar central potential:

Spectral functions:

ImV
(a)
C (iµ) = −3g4

A(µ2 − 2m2
π)

πµ(4fπ)6

{
(m2

π − 2µ2)2mπ + 4g2
Amπ(2m2

π − µ2)

}
, (A41)

ImV
(b)
C (iµ) = −3g4

A(µ2 − 2m2
π)

πµ(4fπ)6
(m2

π − 2µ2)
2m2

π − µ2

2µ
ln
µ+ 2mπ

µ− 2mπ
. (A42)

Position-space potentials:

Ṽ
(a)
C (r) =

3m7
πg

4
A

2048π3f6
π

e−2x

x6

{
24 + 48x+ 43x2 + 22x3 + 7x4

+4g2
A(6 + 12x+ 10x2 + 4x3 + x4)

}
, (A43)

Ṽ
(b)
C (r) = − 3m7

πg
4
A

8192π3f6
π

e−2x

x7

{
(120 + 240x+ 213x2 + 106x3 + 32x4 + 8x5)(ln(4x) + γE)

−(120− 240x+ 213x2 − 106x3 + 32x4 − 8x5)e4xEi(−4x)

−4x(96 + 72x+ 38x2 + 7x3)

}
+

3m7
πg

4
A

4096π3f6
π

Ī−1(2x)

x
, (A44)

where Ei(−z) denotes the exponential integral function defined by

Ei(−z) = −
∫ ∞
z

dt
e−t

t
, (A45)

and

Ī−1(z) =

∫ ∞
1

dt
e−zt

t
ln

(
t+ 1

t− 1

)
. (A46)

The double precision value for Euler’s constant is γE = 0.5772156649015329.

Isovector central potential:

Spectral functions:

ImW
(a)
C (iµ) = − 2κ

3µ(8πf2
π)3

∫ 1

0

dz
[
g2
A(2m2

π − µ2) + 2(g2
A − 1)κ2z2

]
×
{[

4m2
π(1 + 2g2

A)− µ2(1 + 5g2
A)
] κ
µ

ln
µ+ 2κ

2mπ
+
µ2

12
(5 + 13g2

A)

−2m2
π(1 + 2g2

A) + 96π2f2
π

[
(2m2

π − µ2)(d̄1 + d̄2)− 2κ2z2d̄3 + 4m2
πd̄5

]}
= − 2κ

3µ(8πf2
π)3

[
g2
A(2m2

π − µ2) +
2

3
(g2
A − 1)κ2

]
×
{[

4m2
π(1 + 2g2

A)− µ2(1 + 5g2
A)
] κ
µ

ln
µ+ 2κ

2mπ
+
µ2

12
(5 + 13g2

A)

−2m2
π(1 + 2g2

A) + 96π2f2
π

[
(2m2

π − µ2)(d̄1 + d̄2) + 4m2
πd̄5

]}
− κ3

µ4πf4
π

[
1

3
g2
A(2m2

π − µ2) +
2

5
(g2
A − 1)κ2

]
d̄3 , (A47)
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ImW
(b)
C (iµ) = − 2κ

3µ(8πf2
π)3

∫ 1

0

dz
[
g2
A(2m2

π − µ2) + 2(g2
A − 1)κ2z2

]
×
{
− 3κ2z2 + 6κz

√
m2
π + κ2z2 ln

κz +
√
m2
π + κ2z2

mπ
+

g4
A(µ2 − 2κ2z2 − 2m2

π)

[
5

6
+

m2
π

κ2z2
−
(

1 +
m2
π

κ2z2

)3/2

ln
κz +

√
m2
π + κ2z2

mπ

]}
,

(A48)

with κ =
√
µ2/4−m2

π.

In Ref. [23] it was found that the contribution from W
(b)
C is negligible. Therefore, we include only W

(a)
C , which we

divide it into three parts:

ImW
(a1)
C (iµ) = − 2κ

3µ(8πf2
π)3

[
g2
A(2m2

π − µ2) +
2

3
(g2
A − 1)κ2

]
×
[
4m2

π(1 + 2g2
A)− µ2(1 + 5g2

A)
] κ
µ

ln
µ+ 2κ

2mπ
, (A49)

ImW
(a2)
C (iµ) = − 2κ

3µ(8πf2
π)3

[
g2
A(2m2

π − µ2) +
2

3
(g2
A − 1)κ2

]{
µ2

12
(5 + 13g2

A)

−2m2
π(1 + 2g2

A) + 96π2f2
π

[
(2m2

π − µ2)(d̄1 + d̄2) + 4m2
πd̄5

]}
, (A50)

ImW
(a3)
C (iµ) =

κ3

µ4πf4
π

[
1

3
g2
A(2m2

π − µ2) +
2

5
(g2
A − 1)κ2

]
d̄3 , (A51)

Position-space potentials:

W̃
(a1)
C (r) = − m7

π

9216π5f6
π

1

x7

{[
30 + 89x2 − 8x4 + g2

A(300 + 926x2 − 32x4)

+g4
A(750 + 2405x2 + 76x4)

]
K0(2x) +

[
137 + 8x2 + 8x4

+2g2
A(685 + 106x2 + 16x4) + g4

A(3425 + 860x2 + 32x4)

]
xK1(2x)

}
+

m7
π

576π5f6
π

(1 + 2g2
A)2 Ĩ−1(2x)

x
, (A52)

W̃
(a2)
C (r) = − m7

π

8π3f4
π

{
− 2g2

AxK1(2x) + (1 + 5g2
A)K2(2x)

x3
2d̄5

+
(5 + g2

A(25 + 2x2))xK1(2x) + (10 + x2 + g2
A(50 + 11x2))K2(2x)

x5
(d̄1 + d̄2)

}
+

m7
π

9216π5f6
π

1

x5

{
(25 + g2

A(190− 4x2) + g4
A(325 + 4x2))xK1(2x)

+2(25− x2 + g2
A(190 + 11x2) + g4

A(325 + 44x2))K2(2x)

}
, (A53)

W̃
(a3)
C (r) = − m7

π

16π3f4
π

2g2
AxK2(2x) + (3 + 7g2

A)K3(2x)

x4
d̄3 , (A54)

with

Ĩ−1(z) =

∫ ∞
1

dt
e−zt

t
ln(t+

√
t2 − 1) (A55)
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Isoscalar spin-spin and tensor potentials:

Spectral functions:

ImV
(a)
S (iµ) = µ2 ImV

(a)
T (iµ) = −g

2
Aκ

3µ

8πf4
π

(d̄14 − d̄15) , (A56)

ImV
(b)
S (iµ) = µ2 ImV

(b)
T (iµ)

= − 2g6
Aκ

3µ

(8πf2
π)3

∫ 1

0

dz(1− z2)

[
− 1

6
+

m2
π

κ2z2
−
(

1 +
m2
π

κ2z2

)3/2

ln
κz +

√
m2
π + κ2z2

mπ

]
. (A57)

In Ref. [23] it was found that the contribution from V
(b)
S and V

(b)
T are negligible. Therefore, we include only V

(a)
S and

V
(a)
T , which yield the position-space potentials:

Ṽ
(a)
S (r) = − g2

Am
7
π

8π3f4
πx

4
(d̄14 − d̄15)(2xK2(2x) + 5K3(2x)) , (A58)

Ṽ
(a)
T (r) =

g2
Am

7
π

32π3f4
πx

5
(d̄14 − d̄15)

[
(3 + 4x2)K2(2x) + 16xK3(2x)

]
. (A59)

Isovector spin-spin and tensor potentials:

Spectral functions:

ImWS(iµ) = −g
4
A(µ2 − 4m2

π)

π(4fπ)6

{[
m2
π −

µ2

4

]
ln

(
µ+ 2mπ

µ− 2mπ

)
+ (1 + 2g2

A)µmπ

}
, (A60)

ImW
(a)
T (iµ) = − 1

µ2

g4
A(µ2 − 4m2

π)

π(4fπ)6
(1 + 2g2

A)µmπ , (A61)

ImW
(b)
T (iµ) = − 1

µ2

g4
A(µ2 − 4m2

π)

π(4fπ)6

[
m2
π −

µ2

4

]
ln

(
µ+ 2mπ

µ− 2mπ

)
. (A62)

Position-space potentials:

W̃S(r) =
g4
Am

7
π

6144π3f6
π

e−2x

x7

{
(15 + 30x+ 24x2 + 8x3)(ln(4x) + γE)

+(−15 + 30x− 24x2 + 8x3)e4xEi(−4x)

−4x(15 + 15x+ 8x2 + 2x3)

−8g2
Ax(3 + 6x+ 5x2 + 2x3)

}
, (A63)

W̃
(a)
T (r) =

g4
A(1 + 2g2

A)m7
π

1536π3f6
π

e−2x

x6
(3 + 6x+ 4x2 + x3) , (A64)

W̃
(b)
T (r) = − g4

Am
7
π

49152π3f6
π

e−2x

x7

{
− 324x− 228x2 − 48x3

+5(21 + 42x+ 30x2 + 4x3)(ln(4x) + γE)

+5(−21 + 42x− 30x2 + 4x3)e4xEi(−4x)

}
− g4

Am
7
π

2048π3f6
π

1

x3
Ī−1(2x) . (A65)

c. Leading relativistic corrections

The leading relativistic corrections, which are shown in Fig. 8(c), count as N3LO and are given by [79]:
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Momentum-space potentials:

VC(q) =
3g4
A

128πf4
πMN

[
m5
π

2w2
+ (2m2

π + q2)(q2 −m2
π)A(q)

]
, (A66)

WC(q) =
g2
A

64πf4
πMN

{
3g2
Am

5
π

2w2
+
[
(g2
A(3m2

π + 2q2)− q2 − 2m2
π

]
(2m2

π + q2)A(q)

}
,(A67)

VT (q) = − 1

q2
VS(q) =

3g4
A

256πf4
πMN

(5m2
π + 2q2)A(q) , (A68)

WT (q) = − 1

q2
WS(q) =

g2
A

128πf4
πMN

[
g2
A(3m2

π + q2)− w2
]
A(q) , (A69)

VLS(q) =
3g4
A

32πf4
πMN

(2m2
π + q2)A(q) , (A70)

WLS(q) =
g2
A(1− g2

A)

32πf4
πMN

w2A(q) . (A71)

Spectral functions:

ImVC(iµ) =
3g4
A

512f4
πMN

[
2m5

πδ(µ
2 − 4m2

π)− (2m2
π − µ2)(m2

π + µ2)

µ

]
, (A72)

ImWC(iµ) =
g2
A

256f4
πMN

{
6g2
Am

5
πδ(µ

2 − 4m2
π) +

(2m2
π − µ2)

[
µ2 − 2m2

π + g2
A(3m2

π − 2µ2)
]

µ

}
,

(A73)

ImVS(iµ) = µ2 ImVT (iµ) =
3g4
Aµ

1024f4
πMN

(5m2
π − 2µ2) , (A74)

ImWS(iµ) = µ2 ImWT (iµ) =
g2
Aµ

512f4
πMN

(g2
A(3m2

π − µ2) + µ2 − 4m2
π) , (A75)

ImVLS(iµ) =
3g4
A

128µf4
πMN

(2m2
π − µ2) , (A76)

ImWLS(iµ) =
g2
A(1− g2

A)

128µf4
πMN

(4m2
π − µ2) . (A77)
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(a)

(b)

(c)

= + + +

+ + + . . .

= + + +

+ + + +

+ + + + . . .

FIG. 9: Relativistic corrections of NNLO diagrams. Notation as in Fig. 1. Open circles are relativistic 1/MN corrections.

Position-space potentials:

ṼC(r) =
3g4
Am

6
π

1024π2f4
πMN

e−2x

x6
(24 + 48x+ 46x2 + 28x3 + 10x4 + x5) , (A78)

W̃C(r) =
g2
Am

6
π

512π2f4
πMN

e−2x

x6
(24(2g2

A − 1)(1 + 2x) + (82g2
A − 40)x2 +

(36g2
A − 16)x3 + (10g2

A − 4)x4 + 3g2
Ax

5) , (A79)

ṼS(r) = − g4
Am

6
π

512π2f4
πMN

e−2x

x6
(24 + 48x+ 43x2 + 22x3 + 6x4) , (A80)

ṼT (r) =
g4
Am

6
π

1024π2f4
πMN

e−2x

x6
(48 + 96x+ 76x2 + 31x3 + 6x4) , (A81)

W̃S(r) = − g2
Am

6
π

1536π2f4
πMN

e−2x

x6
(24(g2

A − 1)(1 + 2x)

+2(21g2
A − 20)x2 + 4(5g2

A − 4)x3 + 4g2
Ax

4) , (A82)

W̃T (r) =
g2
Am

6
π

3072π2f4
πMN

e−2x

x6
(48(g2

A − 1)(1 + 2x)

+8(9g2
A − 8)x2 + 2(13g2

A − 8)x3 + 4g2
Ax

4) , (A83)

ṼLS(r) = − 3g4
Am

6
π

64π2f4
πMN

e−2x

x6
(1 + x)(2 + 2x+ x2) , (A84)

W̃LS(r) =
g2
A(g2

A − 1)m6
π

32π2f4
πMN

e−2x

x6
(1 + x)2 . (A85)

In all 1/MN corrections, we use the average nucleon mass, i. e. MN = M̄N (cf. Table II), to avaoid randomly generated
charge-dependence.

5. Relativistic ci/MN corrections

At N3LO, we add the 1/MN correction of the NNLO 2PE proportional to ci. This correction is proportional to
ci/MN (Fig. 9) and appears nominally at fifth order. As discussed, the 2PE bubble diagram proportional to c2i that
appears at N3LO is unrealistically attractive, while the ci/MN correction is large and repulsive. Therefore, it makes
sense to group these diagrams together to arrive at a more realistic intermediate attraction at N3LO. The contribution
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is given by [78]:

Momentum-space potentials:

VC(q) = − g2
AL(q)

32π2MNf4
π

[
(c2 − 6c3)q4 + 4(6c1 + c2 − 3c3)q2m2

π

+6(c2 − 2c3)m4
π + 24(2c1 + c3)m6

πw
−2

]
, (A86)

WC(q) = − c4q
2L(q)

192π2MNf4
π

[
g2
A(8m2

π + 5q2) + w2

]
, (A87)

WT (q) = − 1

q2
WS(q) = − c4L(q)

192π2MNf4
π

[
g2
A(16m2

π + 7q2)− w2

]
, (A88)

VLS(q) =
c2g

2
A

8π2MNf4
π

w2L(q) , (A89)

WLS(q) = − c4L(q)

48π2MNf4
π

[
g2
A(8m2

π + 5q2) + w2
]
. (A90)

Spectral functions:

ImVC(iµ) =
g2
A

64πMNf4
π

√
µ2 − 4m2

π

µ

[
(c2 − 6c3)µ4 − 4(6c1 + c2 − 3c3)µ2m2

π

+6(c2 − 2c3)m4
π − 24(2c1 + c3)

m6
π

µ2 − 4m2
π

]
, (A91)

ImWC(iµ) = − c4
384πMNf4

π

µ
√
µ2 − 4m2

π

[
g2
A(8m2

π − 5µ2)− µ2 + 4m2
π

]
, (A92)

ImWT (iµ) =
1

µ2
ImWS(iµ) =

c4
384πMNf4

π

√
µ2 − 4m2

π

µ

[
µ2 − 4m2

π + g2
A(16m2

π − 7µ2)

]
, (A93)

ImVLS(iµ) =
c2g

2
A

16πMNf4
π

(µ2 − 4m2
π)3/2

µ
, (A94)

ImWLS(iµ) =
c4

96πMNf4
π

√
µ2 − 4m2

π

µ

[
g2
A(8m2

π − 5µ2) + 4m2
π − µ2

]
. (A95)
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Position-space potentials:

ṼC(r) =
3g2
Am

7
π

32π3MNf4
π

1

x6

[(
20(c2 − 6c3)− 4(6c1 − c2 + 9c3)x2

−2(2c1 + c3)x4

)
xK0(2x) +

(
20(c2 − 6c3)− 2(12c1 − 7c2 + 48c3)x2

−(16c1 − c2 + 10c3)x4

)
K1(2x)

]
, (A96)

W̃C(r) =
c4m

7
π

32π3MNf4
π

1

x5

[(
5 + 25g2

A + 4g2
Ax

2

)
xK1(2x)

+2

(
5 + 25g2

A + (1 + 8g2
A)x2

)
K2(2x)

]
, (A97)

W̃S(r) =
c4m

7
π

48π3MNf4
π

1

x5

[(
5− 35g2

A − 4g2
Ax

2

)
xK1(2x)

+2

(
5(1− 7g2

A) + (1− 10g2
A)x2

)
K2(2x)

]
, (A98)

W̃T (r) =
c4m

7
π

192π3MNf4
π

1

x5

[
2

(
− 8 + 59g2

A + 4g2
Ax

2

)
xK1(2x)

−
(

35(1− 7g2
A) + 4(1− 13g2

A)x2

)
K2(2x)

]
, (A99)

ṼLS(r) =
3c2g

2
Am

7
π

8π3MNf4
π

1

x5

[
K2(2x) + 2xK3(2x)

]
, (A100)

W̃LS(r) = − c4m
7
π

16π3MNf4
π

1

x5

[
(1 + 6g2

A)2xK1(2x) + (5 + 25g2
A + 4g2

Ax
2)K2(2x)

]
. (A101)

Appendix B: The LECs of the contact terms

In this Appendix, we show in Table VII the LECs of the contact terms defined in Sec. II D for our N3LO potentials.
The shown LECs are the coefficients of the various contact operators displayed in Sec. II D.

For the fitting of the phase shifts of the different states, it is more convenient to fit to states with well-defined total
spin S and total isospin T , the (charge-independent) LO coefficients of which we denote by CST . From these CST ,
one obtains the LECs for the operators used in Eq. (2.22) via:

Cc
Cτ
Cσ
Cστ

 =
1

16


1 3 3 9

−1 1 −3 3

−1 −3 1 3

1 −1 −1 1



C00

C01

C10

C11

 (B1)

Similar relations apply to the central force LECs of higher order, like the C1 to C4 of Eq. (2.27) and the D1 to D4 of

Eq. (2.35); as well to the coefficients of the four ~L2 terms, D11 to D14 [Eq. (2.35)].
Vice versa, the spin-isospin coefficients can be obtained from the operator LECs via:

C00

C01

C10

C11

 =


1 −3 −3 9

1 1 −3 −3

1 −3 1 −3

1 1 1 1



Cc
Cτ
Cσ
Cστ

 (B2)

Tensor, spin-orbit, and quadratic spin-orbit terms exist only in S = 1 states, such that one needs to distinguish
only between a T = 0 and T = 1 channel. For example, in the case of the NLO tensor force, the relations are:

C5 ≡ CS12
=

1

4

(
C

(S12)
10 + 3C

(S12)
11

)
,

C6 ≡ CS12τ =
1

4

(
−C(S12)

10 + C
(S12)
11

)
, (B3)
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TABLE VII: Values for the contact LECs of the N3LO potentials with cutoff combination (Rπ, Rct) = (1.2, 0.75) fm, (1.1, 0.72)
fm, and (1.0, 0.70) fm. In the column headings, we use the Rπ value to identify the different cases. The notation (±n) stands
for ×10±n.

LECs Rπ = 1.2 fm Rπ = 1.1 fm Rπ = 1.0 fm

Cc (fm2) 0.28808881 (+1) 0.39582494 (+1) 0.68583069 (+1)

Cτ (fm2) 0.26865444 0.37170364 0.84621879

Cσ (fm2) 0.37304419 (-1) 0.13087859 0.45593912

Cστ (fm2) 0.99745306 0.86768636 0.9008921

C1 (fm4) 0.20339187 (-1) -0.69958000 (-1) -0.19849806

C2 (fm4) -0.26911188 (-1) -0.73932500 (-2) 0.27128125 (-2)

C3 (fm4) -0.78260937 (-1) -0.57466500 (-1) -0.26448938 (-1)

C4 (fm4) -0.35220625 (-2) -0.13702250 (-1) -0.89698125 (-2)

C5 (fm4) -0.10596750 (-1) -0.80355000 (-2) -0.54697500 (-2)

C6 (fm4) 0.31287500 (-2) 0.39985000 (-2) 0.48457500 (-2)

C7 (fm4) -0.84559075 -0.83002375 -0.82673000

C8 (fm4) -0.11612925 -0.10974825 -0.10887000

D1 (fm6) 0.27843312 (-1) 0.31251437 (-1) 0.35406750 (-1)

D2 (fm6) -0.11181250 (-3) 0.30660625 (-2) 0.64797500 (-2)

D3 (fm6) 0.17309375 (-2) 0.39478125 (-2) 0.28025000 (-2)

D4 (fm6) -0.25564375 (-2) -0.11373125 (-2) -0.84200000 (-3)

D5 (fm6) -0.22787500 (-2) -0.17605000 (-2) 0.13175000 (-3)

D6 (fm6) -0.76425000 (-3) -0.58650000 (-3) 0.44250000 (-4)

D7 (fm6) 0.40027500 (-2) 0.11374250 (-1) 0.70485000 (-2)

D8 (fm6) -0.26426750 (-1) -0.22689250 (-1) -0.29755500 (-1)

D9 (fm6) -0.42584000 (-1) -0.50699750 (-1) -0.57539750 (-1)

D10 (fm6) -0.14453000 (-1) -0.16889250 (-1) -0.19163250 (-1)

D11 (fm6) -0.18565375 (-1) -0.27816625 (-1) -0.63730625 (-2)

D12 (fm6) 0.16119625 (-1) 0.11181125 (-1) 0.20284813 (-1)

D13 (fm6) 0.54308750 (-2) 0.25901250 (-2) 0.77255625 (-2)

D14 (fm6) 0.92428750 (-2) 0.76783750 (-2) 0.10042688 (-1)

CCD
T12

(fm2) 0.30527375 (-2) 0.3081975 (-2) 0.2791292 (-2)

CCD
σT12

(fm2) -0.30527375 (-2) -0.3081975 (-2) -0.2791292 (-2)

CCA
τz (fm2) 0.17322500 (-2) 0.20032500 (-2) 0.1817375 (-2)

CCA
στz (fm2) -0.17322500 (-2) -0.20032500 (-2) -0.1817375 (-2)

and vice versa

C
(S12)
10 = CS12

− 3CS12τ = C5 − 3C6 ,

C
(S12)
11 = CS12

+ CS12τ = C5 + C6 , (B4)

and similarly for the other cases that appear only at S = 1.
To reproduce the three charge dependent 1S0 scattering lenghts, the LO contact LEC with (S, T ) = (0, 1) is fit in

a charge-dependent way. Thus, this LEC comes in three versions: Cpp01 , Cnp01 , and Cnn01 . In tune with Eqs. (2.22) and
(2.23), the charge-dependent LEC can be represented by

CNN01 = C01 + CCD
01 T12 + CCA

01 (τ1z + τ2z) (B5)

with T12 defined in Eq. (2.21). C01 denotes the charge-independent value, which is fixed by

C01 =
1

3
(Cpp01 + Cnp01 + Cnn01 ) , (B6)
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while the charge-dependent ones are

CCD
01 =

1

6

[
1

2
(Cpp01 + Cnn01 )− Cnp01

]
and (B7)

CCA
01 =

1

4
(Cpp01 − Cnn01 ) . (B8)

By analogy to Eqs. (B3), the operator LECs used in Eq. (2.23) can be obtained from the channel LECs through:

CCD
T12

=
1

4

(
CCD

01 + 3CCD
11

)
,

CCD
σT12

=
1

4

(
−CCD

01 + CCD
11

)
. (B9)

We do not assume any charge dependence for the contacts in S = 1, T = 1 states (triplet P -waves); therefore, we
have CCD

11 = 0. Thus,

CCD
T12

=
1

4

(
CCD

01

)
,

CCD
σT12

=
1

4

(
−CCD

01

)
. (B10)

Similar relations apply to charge asymmetry,

CCA
τz =

1

4

(
CCA

01 + 3CCA
11

)
,

CCA
στz =

1

4

(
−CCA

01 + CCA
11

)
. (B11)

Also here, we do not assume any charge asymmetry for the contacts in S = 1, T = 1 states; thus, CCA
11 = 0; hence

CCA
τz =

1

4

(
CCA

01

)
,

CCA
στz =

1

4

(
−CCA

01

)
. (B12)

A final aspect to discuss is the question to what extend the LECs are natural. LECs may be perceived as natural
if they are of the following magnitudes:

|Cc,τ,σ,στ | ∼
1

f2
π

≈ 5 fm2 , (B13)

|Ci| ∼
1

f2
π Λ2

b

≈ 0.4 fm4 , (B14)

|Di| ∼
1

f2
π Λ4

b

≈ 0.03 fm6 , (B15)

with Λb ≈ mρ ≈ 0.7 GeV the breakdown scale [19].
Comparing these estimates with the values shown in Table VII reveals that our contact LECs are, in general,

natural. At zeroth order, Cc is certainly of the right order, and the Cτ,σ,στ are around one, which is close enough to
the estimate. At second order, C1 and the LS force parameters, C7 and C8 are of the right size, while the other LECs
are on the smaller side. Finally at fourth order, D1, the LS parameter D8, the (LS)2 parameters D9 and D10, and
the L2 LECs D12 and D14 come out natural, whereas the other Di emerge in small format.

Appendix C: Potential plots

In this appendix, we show figures for the various components of the chiral NN potentials and contrast them with
some well known traditional phenomenology.

In Fig. 10, we compare the four central-potential components (notation as in Eq. (A2), but without the tilde)
as predicted by the chiral potentials at NNLO and N3LO (green dashed and red solid lines, respectively) with two
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phenomenological potentials, namely, the AV18 potential [33] and a one-boson-exchange potential (OBEP) [80] (black
dotted and blue dash-dotted lines, respectively). The chiral potentials apply the cutoff combination (Rπ, Rct) =
(1.0, 0.70) fm. While at short range (r < 1 fm) there are large differences between the models, there is qualitative
agreement between most models in the (more important) intermediate range (1 < r < 2 fm) as revealed in the right
side of Fig. 10. In particular, there is good agreement between the N3LO potential and AV18, providing support from
chiral EFT for the AV18 potential.

From the left VC panel of Fig. 10, it may appear that OBEP (blue dash-dotted curve) does not create a hard core
(repulsive short range force). This is misleading, because a hard core is needed for the S-wave states. For the 1S0

state, the VS and the WS potentials are multiplied by a factor of (−3), which creates strong short-range repulsion (cf.
Fig. 13 below). For 3S1, WC and WS are multiplied by (−3) producing the hard core.

Tensor potentials as shown in Fig. 11. It is clearly seen that the chiral tensor potentials are much weaker than,
particularly, the AV18. Note that, in the case of OBEP (blue dash-dotted lines), the negative short-range potential
of VT is essentially due to the ω meson and a similar curve in WT is due to the ρ meson. Both these heavy vector
mesons have no place in chiral EFT, which is why the chiral EFT predictions are essentially flat in the short-range
region (unless there were large tensor contact contributions, which our chiral potentials do not carry). The WT tensor
force in the intermediate- and long-range region is generated from 1PE for all models, which is why there is agreement
between all models above r > 1 fm.

The eight potential components that depend on the orbital angular momentum operator ~L are displayed in Fig. 12.
For VLS and WLS there is qualitative agreement between all models. Triplet P waves cannot be described quanti-
tatively without a proper strong spin-orbit force, which is presumably the reason for this agreement. Note that the

chiral potential at NNLO and OBEP do not have (~L · ~S)2 and ~L2 components. For the (~L · ~S)2 potentials, there is

rough agreement between N3LO and AV18 for r > 0.5 fm. On the other hand, the four ~L2 potentials appear erratic.
Obviously, these components of the nuclear force are not well pinned down. They are also small, which may be why
they are not so relevant and hard to pin down.

Some important partial-wave potentials are shown in Fig. 13. In the 1S0 state, all models exhibit a strong short-
range repulsion, the size of which, however, differs dramatically. Nevertheless, there is agreement between the models
in the (more relevant) range above 0.5 fm as demonstrated in the second 1S0 frame of the figure. The differences in
size of the tensor forces of different models is best demonstrated by way of the 3S1-3D1 transition potential, which we
show in the third panel of Fig. 13. The AV18 potential has the strongest tensor force, OBEP is second, and NNLO
and N3LO have the weakest. As discussed, for r > 1 fm, 1PE is the dominant tensor force in all models, which is why
all models agree in that region.

Finally, we also wish to provide some idea for the cutoff dependence of the chiral potentials. For that purpose we
show, in Fig. 14, the 1S0 and 3S1-3D1 potentials at N3LO for the cutoff combinations (Rπ, Rct) = (1.0, 0.70) fm,
(1.1, 0.72) fm, and (1.2, 0.75) fm (solid, dashed, and dotted curves, respectively). The short-range parts of the 1S0

potentials exemplify the effect of the short-range cutoff on the central forces, Eqs. (2.24), (2.29), and (2.36), (ruled by
Rct), while the 3S1-3D1 potentials demonstrate the impact of the long-range regulator function, Eq. (2.52), (governed
by Rπ).

[1] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[2] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
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FIG. 12: The LS and (LS)2 potentials.
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FIG. 13: The 1S0 potential in the range 0 to 2 fm and 0.5 to 2 fm, as well as the 3S1-3D1 potential in the range 0 to 2 fm.
Notation as in Fig. 10.

0

400

800

1200

1600

Po
te

nt
ia

l (
M

eV
)

0 0.5 1 1.5 2
r (fm)

 1S0 

-160

-120

-80

-40

0

40

Po
te

nt
ia

l (
M

eV
)

0 0.5 1 1.5 2
r (fm)

 3S1-3D1

FIG. 14: Cutoff dependence of the 1S0 and 3S1-3D1 chiral potentials at N3LO. The cutoff combinations (Rπ, Rct) = (1.0, 0.70)
fm, (1.1, 0.72) fm, and (1.2, 0.75) fm are shown by the solid, dashed, and dotted curves.



37

[33] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38-51 (1995).
[34] G. J. M. Austin and J. J. de Swart, Phys. Rev. Lett. 50, 2039 (1983).
[35] J. R. Bergervoet, P. C. van Campen, W. A. van der Sanden, and J. J. de Swart, Phys. Rev. C 38, 15 (1988).
[36] U. van Kolck, M. C. M. Rentmeester, J. L. Friar, T. Goldman, and J. J. de Swart, Phys. Rev. Lett. 80, 4386 (1998).
[37] R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
[38] M. M. Nagels, Baryon-Baryon Scattering in a One-Boson-Exchange Potential Model, Ph.D. thesis, University of Nijmegen

(1975).
[39] H. Shimoyama, Chiral Symmetry and the Nucleon-Nucleon Interaction: Developing a Chiral NN Potential in Configuration

Space, Ph.D. thesis, University of Idaho (2005).
[40] P. Herd, Local Nucleon-Nucleon Potentials Based upon Chiral Effective Field Theory, Master of Science Thesis, University

of Idaho (2015).
[41] Prog. Theor. Phys. (Kyoto), Suppl. 3 (1956).
[42] T. E. O. Ericson and M. Rosa-Clot, Nucl. Phys. A 405, 497 (1983).
[43] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
[44] R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).
[45] R. Vinh Mau, “The Paris Nucleon-Nucleon Interaction”, in: Mesons in Nuclei, Vol. I, eds. M. Rho and D. H. Wilkinson

(North-Holland, Amsterdam, 1979) pp. 151-196.
[46] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart, Phys. Rev. C 48, 792 (1993).
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