

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Azimuthal anisotropy measurement of (multi)strange hadrons in Au+Au collisions at math xmlns="http://www.w3.org/1998/Math/MathML">mrow>ms qrt>msub>mi>s/mi>mrow>mi>N/mi>mi>N/mi>/mrow>/ msub>/msqrt>mo>=/mo>mn>54.4/mn>/mrow>/math> GeV

> M. S. Abdallah et al. (STAR Collaboration) Phys. Rev. C **107**, 024912 — Published 22 February 2023 DOI: 10.1103/PhysRevC.107.024912

Azimuthal anisotropy measurement of (multi-)strange hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}} = 54.4 \text{ GeV}$

M. S. Abdallah,¹ B. E. Aboona,² J. Adam,³ L. Adamczyk,⁴ J. R. Adams,⁵ J. K. Adkins,⁶ I. Aggarwal,⁷ 3 M. M. Aggarwal,⁷ Z. Ahammed,⁸ D. M. Anderson,² E. C. Aschenauer,³ J. Atchison,⁹ V. Bairathi,¹⁰ W. Baker,¹¹ J. G. Ball Cap,¹² K. Barish,¹¹ R. Bellwied,¹² P. Bhagat,¹³ A. Bhasin,¹³ S. Bhatta,¹⁴ J. Bielcik,¹⁵ J. Bielcikova,¹⁶ 5 J. D. Brandenburg,³ X. Z. Cai,¹⁷ H. Caines,¹⁸ M. Calderón de la Barca Sánchez,¹⁹ D. Cebra,¹⁹ I. Chakaberia,²⁰ 6 P. Chaloupka,¹⁵ B. K. Chan,²¹ Z. Chang,²² A. Chatterjee,²³ S. Chattopadhyay,⁸ D. Chen,¹¹ J. Chen,²⁴ J. H. Chen,²⁵ X. Chen,²⁶ Z. Chen,²⁴ J. Cheng,²⁷ S. Choudhury,²⁵ W. Christie,³ X. Chu,³ H. J. Crawford,²⁸ 8 M. Csanád,²⁹ M. Daugherity,⁹ I. M. Deppner,³⁰ A. Dhamija,⁷ L. Di Carlo,³¹ L. Didenko,³ P. Dixit,³² X. Dong,²⁰ 9 J. L. Drachenberg,⁹ E. Duckworth,³³ J. C. Dunlop,³ J. Engelage,²⁸ G. Eppley,³⁴ S. Esumi,³⁵ O. Evdokimov,³⁶ A. Ewigleben,³⁷ O. Eyser,³ R. Fatemi,⁶ F. M. Fawzi,¹ S. Fazio,³⁸ C. J. Feng,³⁹ Y. Feng,⁴⁰ E. Finch,⁴¹ Y. Fisyak,³ 10 11 A. Francisco,¹⁸ C. Fu,⁴² C. A. Gagliardi,² T. Galatyuk,⁴³ F. Geurts,³⁴ N. Ghimire,⁴⁴ A. Gibson,⁴⁵ K. Gopal,⁴⁶ 12 X. Gou,²⁴ D. Grosnick,⁴⁵ A. Gupta,¹³ W. Guryn,³ A. Hamed,¹ Y. Han,³⁴ S. Harabasz,⁴³ M. D. Harasty,¹⁹ 13 J. W. Harris,¹⁸ H. Harrison,⁶ S. He,⁴² W. He,²⁵ X. H. He,⁴⁷ Y. He,²⁴ S. Heppelmann,¹⁹ N. Herrmann,³⁰ 14 E. Hoffman,¹² L. Holub,¹⁵ C. Hu,⁴⁷ Q. Hu,⁴⁷ Y. Hu,²⁰ H. Huang,³⁹ H. Z. Huang,²¹ S. L. Huang,¹⁴ T. Huang,³⁹ 15 X. Huang,²⁷ Y. Huang,²⁷ T. J. Humanic,⁵ D. Isenhower,⁹ M. Isshiki,³⁵ W. W. Jacobs,²² C. Jena,⁴⁶ 16 A. Jentsch,³ Y. Ji,²⁰ J. Jia,^{3,14} K. Jiang,²⁶ C. Jin,³⁴ X. Ju,²⁶ E. G. Judd,²⁸ S. Kabana,¹⁰ M. L. Kabir,¹¹ 17 S. Kagamaster,³⁷ D. Kalinkin,^{22,3} K. Kang,²⁷ D. Kapukchyan,¹¹ K. Kauder,³ H. W. Ke,³ D. Keane,³³ M. Kelsey,³¹ 18 Y. V. Khyzhniak,⁵ D. P. Kikoła,²³ B. Kimelman,¹⁹ D. Kincses,²⁹ I. Kisel,⁴⁸ A. Kiselev,³ A. G. Knospe,³⁷ 19 H. S. Ko,²⁰ L. K. Kosarzewski,¹⁵ L. Kramarik,¹⁵ L. Kumar,⁷ S. Kumar,⁴⁷ R. Kunnawalkam Elayavalli,¹⁸ 20 J. H. Kwasizur,²² R. Lacey,¹⁴ S. Lan,⁴² J. M. Landgraf,³ J. Lauret,³ A. Lebedev,³ J. H. Lee,³ Y. H. Leung,²⁰ 21 N. Lewis,³ C. Li,²⁴ C. Li,²⁶ W. Li,³⁴ W. Li,¹⁷ X. Li,²⁶ Y. Li,²⁶ Y. Li,²⁷ Z. Li,²⁶ X. Liang,¹¹ Y. Liang,³³ 22 R. Licenik,^{16,15} T. Lin,²⁴ Y. Lin,⁴² M. A. Lisa,⁵ F. Liu,⁴² H. Liu,²² H. Liu,⁴² T. Liu,¹⁸ X. Liu,⁵ Y. Liu,² 23 T. Ljubicic,³ W. J. Llope,³¹ R. S. Longacre,³ E. Loyd,¹¹ T. Lu,⁴⁷ N. S. Lukow,⁴⁴ X. F. Luo,⁴² L. Ma,²⁵ R. Ma,³ Y. G. Ma,²⁵ N. Magdy,³⁶ D. Mallick,⁴⁹ S. Margetis,³³ C. Markert,⁵⁰ H. S. Matis,²⁰ J. A. Mazer,⁵¹ G. McNamara,³¹ 24 25 S. Mioduszewski,² B. Mohanty,⁴⁹ M. M. Mondal,⁴⁹ I. Mooney,¹⁸ A. Mukherjee,²⁹ M. I. Nagy,²⁹ A. S. Nain,⁷ 26 J. D. Nam,⁴⁴ Md. Nasim,³² K. Nayak,⁴⁶ D. Neff,²¹ J. M. Nelson,²⁸ D. B. Nemes,¹⁸ M. Nie,²⁴ T. Niida,³⁵ R. Nishitani,³⁵ T. Nonaka,³⁵ A. S. Nunes,³ G. Odyniec,²⁰ A. Ogawa,³ S. Oh,²⁰ K. Okubo,³⁵ B. S. Page,³ R. Pak,³ 27 28 J. Pan,² A. Pandav,⁴⁹ A. K. Pandey,³⁵ A. Paul,¹¹ B. Pawlik,⁵² D. Pawlowska,²³ C. Perkins,²⁸ J. Pluta,²³ 29 B. R. Pokhrel,⁴⁴ J. Porter,²⁰ M. Posik,⁴⁴ V. Prozorova,¹⁵ N. K. Pruthi,⁷ M. Przybycien,⁴ J. Putschke,³¹ 30 Z. Qin,²⁷ H. Qiu,⁴⁷ A. Quintero,⁴⁴ C. Racz,¹¹ S. K. Radhakrishnan,³³ N. Raha,³¹ R. L. Ray,⁵⁰ R. Reed,³⁷ 31 H. G. Ritter,²⁰ M. Robotkova,^{16,15} J. L. Romero,¹⁹ D. Roy,⁵¹ P. Roy Chowdhury,²³ L. Ruan,³ A. K. Sahoo,³² 32 N. R. Sahoo,²⁴ H. Sako,³⁵ S. Salur,⁵¹ S. Sato,³⁵ W. B. Schmidke,³ N. Schmitz,⁵³ F-J. Seck,⁴³ J. Seger,⁵⁴ 33 M. Sergeeva,²¹ R. Seto,¹¹ P. Seyboth,⁵³ N. Shah,⁵⁵ P. V. Shanmuganathan,³ M. Shao,²⁶ T. Shao,²⁵ R. Sharma,⁴⁶ 34 A. I. Sheikh,³³ D. Y. Shen,²⁵ K. Shen,²⁶ S. S. Shi,⁴² Y. Shi,²⁴ Q. Y. Shou,²⁵ E. P. Sichtermann,²⁰ R. Sikora,⁴ 35 J. Singh,⁷ S. Singha,⁴⁷ P. Sinha,⁴⁶ M. J. Skoby,^{56,40} N. Smirnov,¹⁸ Y. Söhngen,³⁰ W. Solyst,²² Y. Song,¹⁸ 36 B. Srivastava,⁴⁰ T. D. S. Stanislaus,⁴⁵ M. Stefaniak,²³ D. J. Stewart,³¹ B. Stringfellow,⁴⁰ A. A. P. Suaide,⁵⁷ 37 M. Sumbera,¹⁶ C. Sun,¹⁴ X. M. Sun,⁴² X. Sun,⁴⁷ Y. Sun,²⁶ Y. Sun,⁵⁸ B. Surrow,⁴⁴ Z. W. Sweger,¹⁹ P. Szymanski,²³ A. H. Tang,³ Z. Tang,²⁶ T. Tarnowsky,⁵⁹ J. H. Thomas,²⁰ A. R. Timmins,¹² D. Tlusty,⁵⁴ T. Todoroki,³⁵ 38 39 C. A. Tomkiel,³⁷ S. Trentalange,²¹ R. E. Tribble,² P. Tribedy,³ S. K. Tripathy,²⁹ T. Truhlar,¹⁵ B. A. Trzeciak,¹⁵ 40 O. D. Tsai,²¹ C. Y. Tsang,^{33,3} Z. Tu,³ T. Ullrich,³ D. G. Underwood,^{60,45} I. Upsal,³⁴ G. Van Buren,³ J. Vanek,^{3,15} I. Vassiliev,⁴⁸ V. Verkest,³¹ F. Videbæk,³ S. A. Voloshin,³¹ F. Wang,⁴⁰ G. Wang,²¹ J. S. Wang,⁵⁸ P. Wang,²⁶ 41 42 X. Wang,²⁴ Y. Wang,⁴² Y. Wang,²⁷ Z. Wang,²⁴ J. C. Webb,³ P. C. Weidenkaff,³⁰ G. D. Westfall,⁵⁹ D. Wielanek,²³ 43 H. Wieman,²⁰ S. W. Wissink,²² R. Witt,⁶¹ J. Wu,⁴² J. Wu,⁴⁷ Y. Wu,¹¹ B. Xi,¹⁷ Z. G. Xiao,²⁷ G. Xie,²⁰ W. Xie,⁴⁰ H. Xu,⁵⁸ N. Xu,²⁰ Q. H. Xu,²⁴ Y. Xu,²⁴ Z. Xu,³ Z. Xu,²¹ G. Yan,²⁴ Z. Yan,¹⁴ C. Yang,²⁴ Q. Yang,²⁴ S. Yang,⁶² 44 45 Y. Yang,³⁹ Z. Ye,³⁴ Z. Ye,³⁶ L. Yi,²⁴ K. Yip,³ Y. Yu,²⁴ H. Zbroszczyk,²³ W. Zha,²⁶ C. Zhang,¹⁴ D. Zhang,⁴² 46 J. Zhang,²⁴ S. Zhang,²⁶ S. Zhang,²⁵ Y. Zhang,⁴⁷ Y. Zhang,²⁶ Y. Zhang,⁴² Z. J. Zhang,³⁹ Z. Zhang,³ Z. Zhang,³⁶ F. Zhao,⁴⁷ J. Zhao,²⁵ M. Zhao,³ C. Zhou,²⁵ J. Zhou,²⁶ Y. Zhou,⁴² X. Zhu,²⁷ M. Zurek,⁶⁰ and M. Zyzak⁴⁸ 47 48 (STAR Collaboration) 49 ¹American University of Cairo, New Cairo 11835, New Cairo, Egypt 50 ² Texas A&M University, College Station, Texas 77843 51 ³Brookhaven National Laboratory, Upton, New York 11973 52 ⁴AGH University of Science and Technology, FPACS, Cracow 30-059, Poland 53

⁵Ohio State University, Columbus, Ohio 43210 54 ⁶University of Kentucky, Lexington, Kentucky 40506-0055 55 ⁷Panjab University, Chandigarh 160014, India 56 ⁸ Variable Energy Cyclotron Centre, Kolkata 700064, India 57 ⁹Abilene Christian University, Abilene, Texas 79699 58 ¹⁰Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile 59 ¹¹University of California, Riverside, California 92521 60 ¹² University of Houston, Houston, Texas 77204 61 ¹³University of Jammu, Jammu 180001, India 62 ¹⁴State University of New York, Stony Brook, New York 11794 63 ¹⁵Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic 64 ¹⁶Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic 65 ¹⁷Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 66 ¹⁸ Yale University, New Haven, Connecticut 06520 67 ¹⁹ University of California, Davis, California 95616 68 ²⁰Lawrence Berkeley National Laboratory, Berkeley, California 94720 69 ²¹University of California, Los Angeles, California 90095 70 ²²Indiana University, Bloomington, Indiana 47408 71 ²³ Warsaw University of Technology, Warsaw 00-661, Poland 72 ²⁴Shandong University, Qingdao, Shandong 266237 73 ²⁵ Fudan University, Shanghai, 200433 74 ²⁶ University of Science and Technology of China, Hefei, Anhui 230026 ²⁷ Tsinghua University, Beijing 100084 75 76 ²⁸ University of California, Berkeley, California 94720 77 ²⁹ ELTE Eötvös Loránd University, Budapest, Hungary H-1117 78 ³⁰ University of Heidelberg, Heidelberg 69120, Germany 79 ³¹ Wayne State University, Detroit, Michigan 48201 80 ³²Indian Institute of Science Education and Research (IISER), Berhampur 760010, India 81 ³³Kent State University, Kent, Ohio 44242 82 ³⁴Rice University, Houston, Texas 77251 83 ³⁵University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan 84 ³⁶ University of Illinois at Chicago, Chicago, Illinois 60607 85 ³⁷Lehigh University, Bethlehem, Pennsylvania 18015 86 ³⁸University of Calabria & INFN-Cosenza, Italy 87 ³⁹National Cheng Kung University, Tainan 70101 88 ⁴⁰Purdue University, West Lafayette, Indiana 47907 89 ⁴¹Southern Connecticut State University, New Haven, Connecticut 06515 90 ⁴²Central China Normal University, Wuhan, Hubei 430079 91 ⁴³ Technische Universität Darmstadt, Darmstadt 64289, Germany 92 ⁴⁴ Temple University, Philadelphia, Pennsylvania 19122 93 ⁴⁵ Valparaiso University, Valparaiso, Indiana 46383 94 ⁴⁶Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India 95 ⁴⁷Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000 96 ⁴⁸ Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany 97 ⁴⁹National Institute of Science Education and Research, HBNI, Jatni 752050, India 98 ⁵⁰University of Texas, Austin, Texas 78712 99 ⁵¹Rutgers University, Piscataway, New Jersey 08854 100 ⁵²Institute of Nuclear Physics PAN, Cracow 31-342, Poland 101 ⁵³Max-Planck-Institut für Physik, Munich 80805, Germany 102 ⁵⁴Creighton University, Omaha, Nebraska 68178 103 ⁵⁵Indian Institute Technology, Patna, Bihar 801106, India 104 ⁵⁶Ball State University, Muncie, Indiana, 47306 105 ⁵⁷ Universidade de São Paulo, São Paulo, Brazil 05314-970 106 ⁵⁸ Huzhou University, Huzhou, Zhejiang 313000 107 ⁵⁹ Michigan State University, East Lansing, Michigan 48824 108 ⁶⁰Argonne National Laboratory, Argonne, Illinois 60439 109 ⁶¹United States Naval Academy, Annapolis, Maryland 21402 110 ⁶²South China Normal University, Guangzhou, Guangdong 510631 111 Azimuthal anisotropy of produced particles is one of the most important observables used to 112 113

Azimuthal anisotropy of produced particles is one of the most important observables used to access the collective properties of the expanding medium created in relativistic heavy-ion collisions. In this paper, we present second (v_2) and third (v_3) order azimuthal anisotropies of K_S^0 , ϕ , Λ , Ξ and Ω at mid-rapidity (|y| < 1) in Au+Au collisions at $\sqrt{s_{\rm NN}} = 54.4$ GeV measured by the STAR detector. The v_2 and v_3 are measured as a function of transverse momentum and centrality. Their

114

115

116

energy dependence is also studied. v_3 is found to be more sensitive to the change in the centerof-mass energy than v_2 . Scaling by constituent quark number is found to hold for v_2 within 10%. This observation could be evidence for the development of partonic collectivity in 54.4 GeV Au+Au collisions. Differences in v_2 and v_3 between baryons and anti-baryons are presented, and ratios of $v_3/v_2^{3/2}$ are studied and motivated by hydrodynamical calculations. The ratio of v_2 of ϕ mesons to that of anti-protons $(v_2(\phi)/v_2(\bar{p}))$ shows centrality dependence at low transverse momentum, presumably resulting from the larger effects from hadronic interactions on anti-proton v_2 .

INTRODUCTION I.

117

118

119

120

121

122

123

124

125 126 very high temperature (T) and/or large baryonic chemi-127 ons is expected to be present, while at low T and low 128 μ_B quarks and gluons are known to be confined inside 129 hadrons [1]. High energy heavy-ion collisions provide a 130 unique opportunity to study QCD matter at extremely ¹⁷⁹ 131 high temperature and density. Experiments at the Rel-132 ¹³³ ativistic Heavy Ion Collider (RHIC) have shown that a ¹⁸⁰ ¹³⁴ very dense medium of deconfined quarks and gluons is ¹⁸¹ events at $\sqrt{s_{\rm NN}} = 54.4$ GeV recorded by the STAR ex-¹³⁵ formed in Au+Au collisions at the center-of-mass energy ¹³⁶ of $\sqrt{s_{\rm NN}} = 200 \text{ GeV} [2-9]$. Azimuthal anisotropy param-137 eters (v_n) , which quantify the azimuthal asymmetries of ¹³⁸ particle production in momentum space, are an excellent 139 tool to study the properties of the deconfined medium ¹⁴⁰ created in these collisions [10–17]. Observations of large v_n magnitudes and their constituent quark scaling in 200 ¹⁴² GeV Au+Au collisions ($\mu_B \sim 20$ MeV) have been consid-¹⁴³ ered a signature of partonic collectivity of the system [18]. To study the QCD phase structure over a large range in 144 T and μ_B , a beam energy scan program has been carried 145 out by RHIC. The first phase of this program (BES-I) was carried out in 2010-14. Measurements of azimuthal 147 anisotropies of light flavor hadrons made during during 148 the BES-I program by the STAR experiment indicate 149 ¹⁵⁰ the formation of QCD matter dominated by hadronic interactions in Au+Au collisions at $\sqrt{s_{\rm NN}}$ < 11.5 GeV 151 $(\mu_B > 200 \text{ MeV})$ [20, 21]. 152

Strange hadrons, especially those containing more than 153 one strange quark, are considered a good probe to study 154 the collective properties of the medium created in the 155 early stage of heavy-ion collisions [2, 22–26]. The mea-156 surement of average transverse momentum $\langle p_T \rangle$ of ϕ ¹⁵⁸ mesons shows weak centrality dependence while $\langle p_T \rangle$ of ¹⁵⁹ protons increases significantly from peripheral to central 160 collisions. This could be due to the fact that ϕ mesons ¹⁶¹ have relatively small hadronic interaction cross-section ¹⁶² compared to that of proton [27]. Measurements of (multi-) strange hadron v_n is limited by the available statistics in 163 ¹⁶⁴ BES-I. In this paper, we report high precision measure-165 ments of azimuthal anisotropy parameters, v_2 and v_3 , of ¹⁶⁶ strange and multi-strange hadrons at mid-rapidity (|y| <¹⁶⁷ 1) in Au+Au collisions at $\sqrt{s_{\rm NN}} = 54.4 \text{ GeV} (\mu_B \sim 90)$ ¹⁶⁸ MeV). v_2 and v_3 of K_S^0 , ϕ , Λ , Ξ and Ω are measured as a ¹⁶⁹ function of particle transverse momentum (p_T) and col-¹⁷⁰ lision centrality. Such measurements will provide deep ¹⁹⁸ 171 insights into properties of the hot and dense medium, 199 $_{\rm 172}$ such as partonic collectivity, transport coefficients, and $_{\rm 200}$

173 hadronization mechanisms.

This paper is organized in the following manner. In 174 According to Quantum ChromoDynamics (QCD), at 175 sections II, III and IV, we describe the dataset, the anal-176 ysis method, and systematic studies respectively. In seccal potential (μ_B) a deconfined phase of quarks and glu- 177 tion V we report the results. Finally, a summary is given 178 in section VI.

EXPERIMENTAL SETUP II.

In this analysis, a total of 600 M minimum bias Au+Au 182 periment are used. Events for analysis are selected based 183 on the collision vertex position. Along the beam direc-184 tion, a vertex position cut of $|V_z| < 30$ cm is applied. A 185 radial vertex position cut (defined as $V_r = \sqrt{V_x^2 + V_y^2}$) of $_{186}$ $V_r < 2.0$ cm is used in order to avoid collision with beam ¹⁸⁷ pipe whose radius is 3.95 cm.

The trajectory of a charged particle through STARs 188 189 magnetic field can be reconstructed, and thus its mo-¹⁹⁰ mentum determined, using the Time Projection Cham-¹⁹¹ ber (TPC) [28]. To ensure good track quality, the num-¹⁹² ber of TPC hit points on each track is required to be ¹⁹³ larger than 15, and the ratio of the number of used TPC ¹⁹⁴ hit points to the maximum possible number of hit points $_{195}$ along the trajectory should be larger than 0.52. The ¹⁹⁶ transverse momentum of each particle is limited to $p_T >$ ¹⁹⁷ 0.15 GeV/c.

The uncorrected multiplicity distribution of recon-FIG. 1. structed charged particles in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 54.4 GeV. Glauber Monte Carlo simulation is shown as the solid red curve.

The collision centrality is determined by comparing the

²⁰¹ uncorrected charged particle multiplicity within a pseu- ²⁵⁴ where the angle-bracket represents the average over all $_{202}$ dorapidity range of $|\eta| < 0.5$ measured by the TPC with $_{255}$ the particles in each event and over all the events, Φ_i is ²⁰³ a Glauber Monte Carlo (MC) [29] simulation as shown in ²⁵⁶ the azimuthal angle of the i^{th} particle in an event and 204 205 multiplicity and Glauber simulation at low multiplicity 258 of an event [36]. The R_n denotes the resolution of the 206 207 ciency. This is corrected by taking the ratio of the simu- 260 determined based on the azimuthal distribution of parti-208 ²⁰⁹ factor. The detailed procedure to obtain the simulated ²⁶² order event plane angle is given by ²¹⁰ multiplicity distribution using Glauber MC is similar to that described in Ref. [30]. Central (peripheral) events 211 correspond to collisions of large (small) nuclear overlap 212 ²¹³ and thus large (small) charged particle multiplicities.

214 215 the 216 217 full azimuth coverage. Long-lived charged particles, e.g. 267 due to the azimuthally non-uniform detection efficiency $_{218}$ π , K, and p, are identified directly using specific ioniza- $_{268}$ of the TPC, the reconstructed event plane angle distribu-²¹⁹ tion energy loss in the TPC and time of flight informa- ²⁶⁹ tion is usually not isotropic. This is corrected for using ²²⁰ tion in TOF [21]. Short-lived strange hadrons (K_S^0 , ϕ , ₂₇₀ the Φ -weight method, details of which can be found in ²²³ Λ, Ξ, Ω) are reconstructed through two-body hadronic ²⁷¹ the ref. [36]. ²²² decay channels: $K_S^0 \longrightarrow \pi^+ + \pi^-, \phi \longrightarrow K^+ + K^-, {}_{272}$ To suppress the auto-correlation between particles of ²²³ $\Lambda(\bar{\Lambda}) \longrightarrow p(\bar{p}) + \pi^-(\pi^+), \Xi^{\pm} \longrightarrow \Lambda + \pi^{\pm}$ and $\Omega^{\pm} \longrightarrow {}_{273}$ interest and those used for event plane angle determi-²²⁴ $\Lambda + K^{\pm}$. K_S^0, Λ, Ξ , and Ω decay weakly and therefore ${}_{274}$ nation [30, 36], calculations of the v_n coefficients for $_{225}$ decay topology cuts are applied to reduce the combinato- $_{275}$ particles in the positive pseudorapdity region (0 < η < 226 rial background. Cuts on the following topological vari- 276 1) utilize the sub-event plane determined using particles $_{227}$ ables are used: (1) Distance of Closest Approach (DCA) $_{277}$ in the negative pseudorapdity region (-1 < η < -0.05), ²²⁸ between the two daughter tracks, (2) the DCA of the ₂₇₈ and vice versa. Its definition is the following: ²²⁹ daughter tracks to the collision vertex, (3) the DCA of ²³⁰ the reconstructed parent strange hadron to the collision ²³¹ vertex, (4) the decay length of the strange hadrons, and $_{232}$ (5) the angle between the spatial vector pointing from the collision vertex to the decay vertex and the momentum 233 vector of the parent strange hadron. Since the ϕ meson 234 decays strongly, its daughter kaons appear to originate 235 from the collision vertex. The DCAs of kaon tracks from the collision vertex are required to be less than 3 cm for 237 ϕ meson reconstruction. 238

An event mixing technique is used for the subtraction 239 $_{240}$ of combinatorial background for the ϕ mesons [32] and different polynomial functions (1st and 2nd order) are $_{285}$ in which ψ_R is the reaction plane angle. Resolution 242 243 to estimate the background and for Ξ and Ω , the rota- 288 different centrality bins are given in Table I 244 tional background method is used [33–35]. The invari-245 246 ant mass distributions of K_S^0 , ϕ , Λ , Ξ^- , Ω^- and their 290 cles that are detected directly and whose azimuthal dis-247 anti-particles are shown in Fig. 2. The invariant mass 291 tributions are known in every event. But the particles 248 ²⁵⁹ combinatorial Λ background [33].

III. ANALYSIS METHOD

251

The n^{th} order flow coefficient with respect to the event 252 ²⁵³ plane is given by

$$v_n = \frac{\langle \cos n(\Phi_i - \psi_n) \rangle}{R_n},\tag{1}$$

Fig. 1. The significant difference between the measured $257 \psi_n$ is the event plane angle for the n^{th} order anisotropy values is due to trigger and primary vertex finding ineffi- $259 n^{th}$ order event plan angle. The event plane angle can be lated multiplicity distribution to that in data as a weight $_{261}$ cles in the plane transverse to the collision axis. The n^{th}

$$\psi_n = \frac{1}{n} \tan^{-1} \frac{\sum_i w_i \sin(n\Phi_i)}{\sum_i w_i \cos(n\Phi_i)}.$$
 (2)

²⁶³ Here w_i is the weight factor taken as p_T of the particle for Particle identification is done using the TPC and $_{264}$ optimal resolution. The n^{th} order event plane has a sym-Time-of-Flight (TOF) detectors [31] at mid- $_{265}$ metry of $2\pi/n$ and one would expect an isotropic distripseudorapidity ($|\eta| < 1.0$). Both the TPC and TOF have 266 bution of the event plane angle from 0 to $2\pi/n$. However,

$$v_n = \frac{\langle \cos n(\Phi_i - \psi_n^{A/B}) \rangle}{R_n},\tag{3}$$

 $_{\rm 279}$ where ψ^A_n and ψ^B_n are the sub-event planes in negative $_{280}$ (-1 < η < -0.05) and positive (0.05 < η <1) pseudora-281 pidity regions, respectively. In addition to that, auto-282 correlation has been removed in the case when decay ²⁸³ daughters are distributed in sub-events.

²⁸⁴ The event plane resolution R_n is estimated using:

$$R_n = \langle \cos n(\psi_n - \psi_R) \rangle = \sqrt{\langle \cos n(\psi_n^A - \psi_n^B) \rangle}, \quad (4)$$

used to fit the background after mixed-event background 286 corrections for wide centrality bins are done using the subtraction. For K_S^0 and Λ , the like-sign method is used 287 method described in Ref. [37]. ψ_2 and ψ_3 resolution in

By using equation 3, one can calculate the v_n of partidistribution for $\Xi^{-}(\bar{\Xi}^{+})$ has a small bump due to the 292 used in this analysis are short-lived and can't be detected ²⁹³ directly. To calculate the v_n of such particles, the invari-²⁹⁴ ant mass method is used [38], in which the v_n of the ²⁹⁵ particle of interest is calculated as a function of the in-²⁹⁶ variant mass of the decayed daughter particles. Figure 3, ²⁹⁷ taking K_S^0 as an example, shows v_2 and v_3 as a function $_{\rm 298}$ of the $\pi^+\pi^-$ pair invariant mass in the 10-40% central-³⁰⁰ ity bin. The total v_n of the signal+background can be 301 decomposed into two parts.

l

$$v_n^{S+B} = v_n^S \frac{S}{S+B} + v_n^B \frac{B}{S+B}.$$
 (5)

FIG. 2. Invariant mass distributions for K_S^0 , ϕ , Λ , Ξ^- , Ω^- and their anti-particles in minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV. The combinatorial background is shown as gray shaded histograms. No background subtraction was included in any of the 8 panels.

FIG. 3. The upper panel shows v_2 as a function of the invariant mass of $\pi^+ \pi^-$ pairs and the lower panel shows the same for v_3 . Red lines represent fit functions given in Eq. 5

Centrality	ψ_2 resolution	ψ_3 resolution
0-5%	0.3462 ± 0.0002	0.2284 ± 0.0003
5-10%	0.4549 ± 0.0001	0.2360 ± 0.0002
10-20%	0.54179 ± 0.00007	0.2257 ± 0.0002
20-30%	0.56211 ± 0.00007	0.1981 ± 0.0002
30-40%	0.51865 ± 0.00008	0.1636 ± 0.0003
40-50%	0.4338 ± 0.0001	0.1234 ± 0.0003
50-60%	0.3289 ± 0.0001	0.0863 ± 0.0005
60-70%	0.2295 ± 0.0002	0.0564 ± 0.0008
70-80%	0.1578 ± 0.0003	0.028 ± 0.002

TABLE I. Resolution for ψ_2 and ψ_3 in different centrality bins.

Here v_n^S is the v_n of the signal (K_S^0) , v_n^B is the v_n of the background, S is the raw signal counts and B is the background counts. v_n^B is approximated with a first order polynomial function. v_n^S is a free parameter and can be obtained by fitting v_n using Eq. 5, shown as solid red lines in Fig. 3. The v_2 and v_3 of other strange hadrons are calculated in a similar way except for Ξ . For Ξ , Eq. 5 has been modified as follows:

$$v_n^{S+B} = v_n^S \frac{S}{S+B+b} + v_n^b \frac{b}{S+B+b} + v_n^B \frac{B}{S+B+b},$$
(6)

³¹⁰ where *b* denotes the yield of the residual bump observed ³¹¹ in the low invariant mass region (see Fig. 2), and v_n^b de-³¹² notes the v_n of the residual candidates in the bump re-³¹³ gion. Systematic checks have been carried out to examine ³¹⁴ the effect of the bump in Ξv_n extraction by changing fit ³¹⁵ ranges and the shape of the background v_n^b at the bump ³¹⁶ region. The effect is found to be negligibly small, less ³¹⁷ than 1%, on the v_n values of Ξ particles.

Particle/Centrality	0-10%	10-40%	40-80%	0-80%
K_S^0	2%	2%	2%	2%
ϕ	10%	3%	3%	5%
Λ	2%	2%	2%	2%
Ξ	4%	3%	3%	3%
Ω	22%	6%	15%	8%

TABLE II. Average systematic uncertainties on v_2 of K_S^0 , ϕ , Λ , Ξ and Ω in different centrality bins.

Particle/Centrality	0-10%	10-40%	40-80%	0-80%
K_S^0	3%	3%	3%	3%
ϕ	15%	10%	N.A.	10%
Λ	3%	3%	3%	3%
[1]	12%	10%	N.A.	8%
Ω	30%	30%	N.A.	30%

TABLE III. Average systematic uncertainties on v_3 of K_S^0 , ϕ , Λ , Ξ and Ω in different centrality bins.

SYSTEMATIC UNCERTAINTY

319 $_{320}$ event selection cuts, track selection cuts, and background $_{376}$ in the partonic medium in Au+Au collisions at $\sqrt{s_{\rm NN}}$ 321 322 323 324 325 the default background construction method is the like- 381 to constrain various models, for example, in extracting $_{326}$ sign method. As an alternative to estimate the back- $_{382}$ transport properties of the medium created at $\sqrt{s_{\rm NN}}$ ground fraction, polynomial functions are used to model 383 54.4 GeV. 327 328 the residual background in fitting the invariant mass dis- $_{329}$ tributions. The resulting differences in v_n between using 330 the default and alternative background estimation methods are included in the systematic uncertainties. For 331 weakly decaying particles, topological cuts are varied as $_{385}$ 332 333 $_{334}$ neously to keep the raw yield of the particle of inter- $_{387}$ and 6 show v_2 and v_3 , respectively, as a function of p_T 335 est similar. This helps to reduce the effect of statistical 388 for three different centrality classes, 0-10%, 10-40% and ³³⁶ fluctuations in estimating systematic uncertainties. Fi- ₃₈₉ 40-80%. For ϕ , Ξ and Ω measurements are only possible $_{337}$ nally, the Barlow's method [39] is used to determine the $_{390}$ for v_3 for the 0-10% and 10-40% centralities due to data 338 systematic uncertainties arising from analysis cut varia- 391 sample size. We observe a strong centrality dependence $_{339}$ tions. If the resulting changes (Δv_n) in v_n are smaller $_{392}$ of v_2 for all the particles, with the magnitude increasing than the change in statistical errors ($\Delta \sigma_{stat}$) on v_n , such $_{393}$ from central to peripheral collisions. This is expected if $_{341}$ changes are not included in the uncertainties. Otherwise, $_{394}$ v_2 is driven by the shape of the initial overlap of the two ³⁴² the systematic error (σ_{sys}) on v_n is calculated as σ_{sys} ³⁹⁵ colliding nuclei [30]. $_{343} = \sqrt{(\Delta v_n)^2 - (\Delta \sigma_{stat})^2}$. Finally, systematic uncertain- 396 We observe a weak centrality dependence for v_3 com- $_{344}$ ties from different sources, which pass the Barlow check, $_{397}$ pared to v_2 . This observation is consistent with the sce- $_{345}$ are added in quadrature. Final systematic uncertainties $_{398}$ nario in which v_3 mostly originates from event-by-event $_{346}$ are calculated as a function of p_T and centrality. They $_{399}$ fluctuations of participant nucleon distributions [40], in- $_{347}$ are found to be nearly p_T independent but larger in cen- $_{400}$ stead of the impact parameter dominated average par-348 tral collisions compared to peripheral collisions. Table II 401 ticipant anisotropy distributions. Our measurements $_{349}$ and III show the average systematic uncertainties on v_2 $_{402}$ demonstrate that such scenario also works well for 54.4 $_{350}$ and v_3 for K_S^0 , ϕ , Λ , Ξ and Ω in different centrality bins. $_{403}$ GeV Au+Au collisions.

V. **RESULTS AND DISCUSSION**

35:

352

384

p_T dependence of v_2 and v_3

The transverse momentum dependence of v_2 and v_3 for $K^0_S, \phi, \Lambda, \Xi^-, \Omega^-$ (and their anti-particles) is shown 354 ³⁵⁵ in Fig. 4. The measurements are done at mid-rapidity, |y| < 1.0, in minimum bias Au+Au collisions at $\sqrt{s_{\rm NN}}$ 356 = 54.4 GeV. The non-zero magnitude of v_3 is consistent 357 ³⁵⁸ with the picture of event-by-event fluctuations in the ini- $_{359}$ tial density profile of the colliding nuclei [40]. Both v_2 $_{360}$ and v_3 initially increase with p_T and then tend to satu-³⁶¹ rate. This may be due to the interplay of hydrodynamic $_{362}$ flow as well as viscous effects [41]. The magnitude of v_3 $_{363}$ is found to be less than that of v_2 for all particles in 0- $_{364}$ 80% centrality. This is the first v_3 measurement of the 365 multi-strange baryons Ξ and Ω in relativistic heavy-ion collisions. The v_n of heavy multi-strange baryons like Ω 366 $_{367}$ are similar to that of the lighter mass, strange baryon Λ . 368 The v_n of ϕ mesons, which consist of strange and anti-³⁶⁹ strange quark pairs, is similar to that of light, strange $_{370} K_S^0$. If v_n is developed through hadronic interactions, $_{371}$ v_n should depend on the cross-sections of the interact-³⁷² ing hadrons and therefore those (e.g. ϕ , Ω) with smaller ³⁷³ cross-sections should develop less momentum anisotropy. ³⁷⁴ Therefore the observed large v_n of ϕ and Ω are consis-Systematic uncertainties are evaluated by varying 375 tent with the scenario that the anisotropy is developed subtraction methods. Track selection cuts used for event 377 = 54.4 GeV. We also observe a difference in v_n between plane angle calculation are also varied. For particles like 378 baryon and anti-baryon which is discussed separately in a Ξ and Ω the default background construction method is 379 later section. The high precision measurements of v_n for the rotational method and for particles like K_S^0 and $\Lambda_{300} K_S^0$, ϕ , Λ , Ξ , and Ω presented in this paper can be used

Centrality dependence of v_2 and v_3 B.

The centrality dependence of v_2 and v_3 of K_S^0 , ϕ , Λ , well. Different topological variables are varied simulta- $_{366} \equiv^-, \Omega^-$ (and their anti-particles) are studied. Figures 5

FIG. 4. v_2 and v_3 as a function of p_T at mid-rapidity(|y| < 1) for minimum bias events. The vertical lines represent the statistical error bars and the shaded bands represent the systematic uncertainties. Data points for anti-particles are shifted by 0.1 GeV/c towards right for better visibility.

FIG. 5. v_2 as function of p_T for 0-10%, 10-40% and 40-80% centrality events. The vertical lines represent the statistical error bars and the shaded bands represent the systematic uncertainties.

C. Energy dependence of v_2 and v_3

The high statistics data at 54.4 GeV from the STAR 407 experiment offer an opportunity to study the collision 408 energy dependence of v_2 and v_3 of strange hadrons. Fig-409 ure 7 upper panels show v_2 of K_S^0 , ϕ , $\bar{\Lambda}$, $\bar{\Xi}^+$, and Ω^- as 410 a function of p_T in 0-80% centrality at $\sqrt{s_{\rm NN}} = 39$, 54.4, 411 and 200 GeV. Lower panels show the ratios with polyno-412 mial fits to the 200 GeV data points. $K_S^0 v_2$ at 54.4 GeV 413 is smaller than at 200 GeV, and higher than at 39 GeV. 414 The maximum difference is at intermediate p_T . For $\bar{\Lambda}$ 415 and $\bar{\Xi}^+$, v_2 at 54.4 GeV (as well as at 39 GeV) is higher 416 than at 200 GeV at very low p_T . This could be due to the 417 effect of large radial flow at 200 GeV compared to 54.4 418 and 39 GeV. This effect is only visible in heavier hadrons 419 like $\bar{\Lambda}$ and $\bar{\Xi}^+$. For ϕ and Ω^- , statistical errors at low

⁴²⁰ p_T are too large to draw any conclusions. Figure 8 upper ⁴²² panels shows v_3 of K_S^0 , ϕ , and $\bar{\Lambda}$ as a function of p_T in ⁴²³ 0-80% centrality at $\sqrt{s_{\rm NN}} = 54.4$, and 200 GeV. Lower ⁴²⁴ panels show the ratios of fits to the 200 GeV data points. ⁴²⁵ We observe that the difference in v_3 between 54.4 and ⁴²⁶ 200 GeV is almost p_T independent for all the particles ⁴²⁷ studied. In Fig. 8, the v_3 shows greater variation as a ⁴²⁸ function of beam energy than that of v_2 . The measured ⁴²⁹ ratio of $v_3(54.4 \text{ GeV})/v_3(200 \text{ GeV})$ for K_S^0 is ~0.8 while ⁴³⁰ the same ratio for v_2 is approaching 0.9. This suggests ⁴³¹ that the dynamics responsible for v_3 , presumably fluc-⁴³² tuations dominated, are more sensitive to beam energy ⁴³³ than the v_2 .

FIG. 6. v_3 as function of p_T for 0-10%, 10-40% and 40-80% centrality events. The vertical lines represent the statistical error bars and the shaded bands represent the systematic uncertainties. 40-80% centrality data points are not shown for Ξ and Ω due to less statistics.

FIG. 7. v_2 of K_S^0 , ϕ , $\bar{\Lambda}$, $\bar{\Xi}^+$, and Ω^- as a function of p_T in 0-80% centrality events at $\sqrt{s_{\rm NN}} = 39$, 54.4, and 200 GeV. The dotted line represents the fit to the 200 GeV data points. The vertical lines represent the sum of statistical and systematic uncertainties in quadrature. The data points for 39 and 200 GeV are taken from refs. [18, 20, 42]

D. v_n of particles and anti-particles

In the upper panels Fig 9, we show the ratio of v_2 and v_3 of particles $(v_n(X))$ to the corresponding antiparticles $(v_n(\bar{X}))$ for Λ , Ξ , and Ω in 10-40% centrality as a function of p_T . We also present the difference between v_2 and v_3 of particles and anti-particles in the lower panels of Fig. 9. We can not establish a clear p_T depen-

⁴⁴¹ dence in the ratio or difference of multi-strange parti-⁴⁴² cle and anti-particle. The Λ and $\bar{\Lambda} v_n$ data seem to be ⁴⁴³ consistent with a relatively smaller v_n for $\bar{\Lambda}$ in the low ⁴⁴⁴ p_T region. We have calculated the p_T integrated aver-⁴⁴⁵ age difference in v_n between baryon and anti-baryon by ⁴⁴⁶ fitting the $v_n(X) - v_n(\bar{X})$ versus p_T with a zeroth or-⁴⁴⁷ der polynomial function as done in Ref. [20]. Figure 10 ⁴⁴⁸ shows the average difference between v_n of baryons and

FIG. 8. v_3 of K_S^0 , ϕ and $\bar{\Lambda}$ as a function of p_T in 0-80% centrality events at $\sqrt{s_{\rm NN}} = 54.4$, and 200 GeV. The vertical lines represent the sum of statistical and systematic uncertainties in quadrature. The data points for 200 GeV are taken from ref. [43].

⁴⁴⁹ anti-baryons for Λ , Ξ , and Ω in 10-40% centrality as a ⁴⁸² calculations will shed more light on the dynamics. ⁴⁵⁰ function of mass. The difference is independent of baryon $_{451}$ species within the measured uncertainty for both v_2 and $_{452}$ v_3 . The magnitude of the observed difference between $_{483}$ F. Number of constituent quark scaling of v_2 and v_3 ⁴⁵³ particle and anti-particle is similar to that in 62.4 GeV ⁴⁵⁴ published by the STAR experiment [21]. However, uncer-456 457 and anti-particles could arise due to the effect of trans- 487 part on the observation that the elliptic flow for identi-459 460 Lasinio (NJL) model [45, 46] can also qualitatively ex- 490 verse kinetic energy of the particles. plain the differences between particles and anti-particles 491 461 $_{462}$ by considering the effect of the vector mean-field poten- $_{492}$ of n_q scaled transverse kinetic energy in 10-40% central $_{463}$ tial, which is repulsive for quarks and attractive for anti- $_{493}$ Au+Au collisions at $\sqrt{s_{\rm NN}} = 54.4$ GeV. The transverse $_{464}$ quarks. We also measure the difference between Ω^- and $_{494}$ kinetic energy is $m_{\underline{T}}$ - m_0 where m_T is the transverse mass $_{465}$ $\overline{\Omega}^+$, however the observed difference is not statistically $_{495}$ given by $m_T = \sqrt{m_0^2 + p_T^2}$ and m_0 is the rest mass of 466 significant ($< 1\sigma$ significance).

467

E.
$$v_3/v_2^{3/2}$$
 ratio

The ratios between different orders of flow harmonics 468 469 are predicted to be sensitive probes of transport prop-470 erties of the produced medium in heavy-ion collisions. 471 According to hydrodynamic model calculations, the ra v_{472} tio $v_3/v_2^{3/2}$ is independent of p_T and its magnitude de- v_{506} cles. The observed scaling in v_2 can be interpreted as v_{473} pends on the transport properties (e.g., viscosity) of the v_{506} cles. The observed scaling in v_2 can be interpreted as v_{507} due to the development of substantial collectivity in the ⁴⁷⁴ medium [47–49]. We have calculated the ratio $v_3/v_2^{3/2}$ as 508 partonic phase [52] and as evidence that coalescence is ⁴⁷⁵ a function of p_T for K_S^0 , Λ , Ξ^- , Ω^- , ϕ , $\bar{\Lambda}$, $\bar{\Xi}^+$ and $\bar{\Omega}^+$ for 509 the dominant mechanism of particle production for the $_{476}$ 10-40% centrality, as shown in Fig. 11. Our measurement $_{510}$ intermediate p_T range. $_{477}$ for K_S^0 clearly demonstrates a p_T dependence of the ra- $_{511}$ The scaling properties in v_3 have also been examined ⁴⁷⁸ tio. The p_T dependence of the ratios for Λ is weak and ⁵¹² by plotting $v_3/(n_q)^{3/2}$ as a function of $(m_T - m_0)/n_q$ as 479 ratios for other strange hadrons are limited by statisti- 513 shown in panels (a) and (b) of Fig. 13. From the ratios 480 cal errors. Detailed comparisons with other RHIC mea- 514 shown in the lower panels, we note that the scaling of 481 surements [50, 51] and with more hydrodynamic model ${}_{515} v_3/(n_q)^{3/2}$ is clearly violated for Λ particles and the sta-

Elliptic flow measurements at top RHIC energy suggest tainties on the measured values are significantly reduced 485 that a strongly-interacting partonic matter is produced at 54.4 GeV. The observed difference between particles 486 in Au+Au collisions [18]. This conclusion is based in ported quarks at low beam energies as predicted in [44]. 488 fied baryons and mesons when divided by the number of Alternatively, a calculation based on the Nambu-Jona- $_{489}$ constituent quarks (n_q) is found to scale with the trans-

> Figure 12(a) and (b) show the v_2/n_q as a function 496 the particle. Due to the observed difference in parti-⁴⁹⁷ cle and anti-particle v_n we plot v_2/n_q vs. $(m_T - m_0)/n_q$ ⁴⁹⁸ for particle and anti-particle separately. The n_q -scaled v_2 for identified hadrons including multi-strange hadrons ⁵⁰⁰ are found to scale with the scaled kinetic energy of the ⁵⁰¹ particles. To quantify the validity of scaling we have fit-502 ted the scaled v_2 of K_S^0 with a 4th order polynomial, ⁵⁰³ and ratios to the fit for different particles have shown in ⁵⁰⁴ lower panels of Fig. 12. It is found that the scaling holds ⁵⁰⁵ within a maximum deviation of 10% for all the parti-

FIG. 9. Three upper panels, a, b, and c show the ratio of v_n of particles to anti-particles for Λ , Ξ and Ω respectively in 10-40% centrality. The lower panels show the difference between v_n of particles to anti-particles. The vertical lines represent the statistical error bars and the shaded bands represent the systematic uncertainties. Data points for v_3 are shifted by 0.15 GeV/c towards the left for better visibility. For the Ω , data points for v_3 were not shown due to fewer statistics.

FIG. 10. The difference of v_n of particles and anti-particles is plotted as a function of mass. The result is compared with 62.4 GeV. Uncertainties represent the sum of statistical and systematic in quadrature.

⁵¹⁷ draw a conclusion regarding scaling.

G. $v_2(\phi)/v_2(\bar{p})$ ratio

519 520 It has a mass of 1.019 GeV/c² which is comparable to the 555 centrality. In addition, $v_2(\phi)/v_2(\bar{p})$ ratios in 10-40% cen- $_{521}$ mass of the lightest baryon, the proton (0.938 GeV/c²). $_{556}$ tral collisions are found to be systematically higher than 522 A hydrodynamical inspired study of transverse momen- 557 in peripheral 40-80% events. This observed centrality $_{523}$ tum distribution of ϕ meson seems to suggest that it $_{558}$ dependence is consistent with the scenario of significant $_{524}$ freezes out early compared to other hadrons such as the $_{559}$ hadronic rescattering effect on v_2 of \bar{p} while the effect for 525 proton [2]. Therefore, the kinematic properties of ϕ are 500 ϕ is considerably smaller [22, 63]. Comparison of the ra- $_{526}$ expected to be less affected by the later stage hadronic $_{561}$ tios for 0-80% collision centrality from $\sqrt{s_{\rm NN}} = 54.4$ GeV ₅₂₇ interactions compared to the proton.

Hydrodynamical model calculations predict that v_2 of 563 uncertainties for $p_T < 1.0$ GeV/c. 528

⁵²⁹ identified hadrons as a function of p_T will follow mass $_{530}$ ordering, where the v_2 of lighter hadrons is higher than 531 that of heavier hadrons. A phenomenological calcula-⁵³² tion [53], based on ideal hydrodynamics together with a ⁵³³ hadron cascade (JAM), shows that because of late-stage 534 hadronic rescattering effects on the proton, the mass ordering in v_2 will be violated between ϕ and proton at very low p_T . This model calculation was done by assum- $_{537}$ ing a small hadronic interaction cross-section for the ϕ 538 meson and a larger hadronic interaction cross-section for protons, which is likely true for scatterings off the most 539 540 abundant pions in the final state. However, several experimental and theoretical works on the ϕ -nucleon interac-⁵⁴² tion that suggest that the magnitude of the cross section ⁵⁴³ may not be negligible and more quantitative evaluations will be needed [54-62]. 544

The breaking of mass ordering in v_2 between ϕ and pro-545 546 ton was observed in central Au+Au collisions at $\sqrt{s_{\rm NN}}$ $_{547} = 200 \text{ GeV}$ and reported by the STAR experiment in 516 tistical errors for multi-strange particles are too large to 548 Ref. [18]. Figure 14(a) shows $v_2(\phi)/v_2(\bar{p})$ vs. p_T for $_{549}$ 10-40% and 40-80% centralities at $\sqrt{s_{\rm NN}} = 54.4$ GeV. ⁵⁵⁰ The result for 0-10% is not shown due to very large un-⁵⁵¹ certainties. Anti-protons, which consist of all produced ₅₅₂ quarks $(\bar{u}\bar{u}d)$, are used instead of protons to avoid the ⁵⁵³ effect of transported quarks. At $p_T = 0.5 \text{ GeV/c}$, the ra-Among many mesons, the $\phi(s\bar{s})$ has unique properties. 554 tio is greater than one with 1σ significance in 10-40% ⁵⁶² and 200 GeV shows consistency with each other within

FIG. 11. $v_3/v_2^{3/2}$ is plotted as a function of p_T for K_S^0 , Λ , Ξ^- , Ω^- , ϕ , $\bar{\Lambda}$, $\bar{\Xi}^+$ and $\bar{\Omega}^+$ in 10-40% central Au+Au collisions at $\sqrt{s_{\rm NN}} = 54.4$ GeV.

FIG. 12. Panel (a) shows the n_q -scaled v_2 as a function of n_q -scaled transverse kinetic energy for K_S^0 , ϕ , Λ , Ξ^- and Ω^- in 10-40% centrality class events. Panel (b) shows the same for K_S^0 , ϕ , $\bar{\Lambda}$, $\bar{\Xi}^+$ and $\bar{\Omega}^+$. The red line shows the polynomial fit to the K_S^0 data points. Panels (c) and (d) show the ratio of n_q -scaled v_2 of all the particles to the fit function.

SUMMARY VI.

In summary, we have reported the azimuthal 565 anisotropic flow parameters, v_2 and v_3 , of strange and 578 566 567 568 569 570 571 baryons Ξ and Ω is found to be similar to that of the 583 measured v_2 and v_3 values at $\sqrt{s_{\rm NN}} = 54.4$ GeV are also $_{572}$ lighter strange baryon Λ . The non-zero magnitude of v_3 $_{584}$ compared with available published results in Au+Au col- $_{573}$ indicates the presence of event-by-event fluctuations in $_{585}$ lisions at $\sqrt{s_{\rm NN}} = 39$ and 200 GeV to examine the energy $_{574}$ the initial energy density profile of colliding nuclei and $_{586}$ dependence. We observed that the change in v_3 with

 $_{575}$ large values of v_2 and v_3 of multi-strange hadrons indi-576 cate that the observed collectivity is mainly developed 577 through partonic rather than hadronic interactions.

The centrality dependence of v_3 is weak relative to multi-strange hadrons, K_S^0 , ϕ , Λ , Ξ^- , Ω^- (and their anti- 579 that of v_2 which is consistent with the scenario that v_3 particles) measured at mid-rapidity as a function of p_T 500 does not arise from impact parameter driven average spafor various collision centralities in Au+Au collisions at 581 tial configurations, rather it originates dominantly from $\sqrt{s_{\rm NN}} = 54.4$ GeV. The magnitude of v_3 of multi-strange 552 event-by-event fluctuation present in the system. The

FIG. 13. Panel (a) shows $v_3/n_q^{3/2}$ as a function of n_q -scaled transverse kinetic energy for K_S^0 , ϕ , Λ , Ξ^- and Ω^- in 10-40% centrality class events. Panel (b) shows the same for K_S^0 , ϕ , $\bar{\Lambda}$, $\bar{\Xi}^+$ and $\bar{\Omega}^+$. The red line shows the polynomial fit to the K_S^0 data points. Panels (c) and (d) show the ratio of $v_3/n_q^{3/2}$ of all the particles to the fit function.

FIG. 14. Left panel shows the ratio of v_2 of \bar{p} to v_2 of \bar{p} as a function of p_T for 10-40% and 40-80% centralities at $\sqrt{s_{\rm NN}}$ = 54.4 GeV. Data points for 10-40% centrality are shifted by 0.05 GeV/c to the right for better visibility. The right panel shows the comparison of the ratio at $\sqrt{s_{\rm NN}} = 54.4$ GeV and 200 GeV in 0-80% centrality. For 200 GeV [18], the measured ratio is $v_2(\phi)/v_2(p+\bar{p})$. The vertical lines represent the statistical error bars and the shaded bands represent the systematic uncertainties. Data points at 200 GeV are taken from ref. [18]

 $_{588}$ namics have stronger energy dependence compared to v_2 . $_{598}$ hadronization at mid-rapidity and the development of ⁵⁸⁹ A difference in $v_n(p_T)$ between baryons and correspond-⁵⁹⁹ collectivity occurs during the partonic stage of the sys-⁵⁹⁰ ing antibaryons was observed. The observed difference is ⁶⁰⁰ tem evolution. The ratio $v_3/v_2^{3/2}$, which is sensitive to ⁵⁹¹ found to be baryon-type independent within uncertain- ₆₀₁ the medium properties according to hydrodynamic cal-592 ties.

We have studied the n_q scaling for both v_2 and v_3 593 $_{594}$ and found that the scaling holds for v_2 of all the parti- $_{\tt 595}$ cles while the scaling for v_3 seems to be violated. One 596 interpretation of the observed n_q scaling in v_2 is that

 $_{587}\sqrt{s_{\rm NN}}$ is more than that in v_2 . This suggests that v_3 dy- $_{597}$ parton recombination is the dominant mechanism for ₆₀₂ culations, shows weak p_T dependence for $p_T > 1$ GeV/c, ⁶⁰³ similar to the behaviour of this ratio was found in the ⁶⁰⁴ previous study with U+U collisions at 193 GeV. The $v_2(\phi)/v_2(\bar{p})$ ratio was presented as a function of p_T for $_{606}$ two different centrality classes 10-40% and 40-80%. The $_{614}$ ing and earlier freeze out of the ϕ mesons.

ACKNOWLEDGMENTS

615

616 617 618 ⁶¹⁹ This work was supported in part by the Office of Nu- ⁶³⁷ (BMBF), Helmholtz Association, Ministry of Education, 620 clear Physics within the U.S. DOE Office of Science, the 638 Culture, Sports, Science, and Technology (MEXT) and U.S. National Science Foundation, National Natural Sci- 639 Japan Society for the Promotion of Science (JSPS).

 $_{607}$ $v_2(\phi)/v_2(\bar{p})$ ratio shows a decreasing trend as a function $_{622}$ ence Foundation of China, Chinese Academy of Science, p_{T} for both collision centralities. The $v_2(\phi)/v_2(\bar{p})$ ratio p_{T} the Ministry of Science and Technology of China and 609 is also found to be systematically higher for central col- 624 the Chinese Ministry of Education, the Higher Education 610 lisions 10-40% than non-central collisions 40-80%. This 625 Sprout Project by Ministry of Education at NCKU, the 611 could be due the effect of more hadronic rescattering on 626 National Research Foundation of Korea, Czech Science $_{612}$ v_2 of \bar{p} compared to ϕ and hence our measurements are $_{627}$ Foundation and Ministry of Education, Youth and Sports 613 consistent with the picture of smaller hadronic rescatter- 628 of the Czech Republic, Hungarian National Research, De-629 velopment and Innovation Office, New National Excel-630 lency Programme of the Hungarian Ministry of Human 631 Capacities, Department of Atomic Energy and Depart-632 ment of Science and Technology of the Government of ⁶³³ India, the National Science Centre and WUT ID-UB of We thank the RHIC Operations Group and RCF at 634 Poland, the Ministry of Science, Education and Sports BNL, the NERSC Center at LBNL, and the Open Science 635 of the Republic of Croatia, German Bundesministerium Grid consortium for providing resources and support. 636 für Bildung, Wissenschaft, Forschung and Technologie

- [1] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. 680 640 Phys. 53, 43 (1981). 641
- [2] J. Adams et al., (STAR Collaboration) Nucl. Phys. A757, 642 102(2005).643
- [3] K. H. Ackermann *et al.*, (STAR Collaboration), Phys. 644 Rev. Lett. 86, 402 (2001). 645
- [4] J. Adams *et al.*, (STAR Collaboration), Phys. Rev. Lett. 646 92, 052302 (2004). 647
- [5] J. Adams et al., (STAR Collaboration), Phys. Rev. C 72, 648 649 014904 (2005).
- [6] B. I. Abelev et al., (STAR Collaboration), Phys. Rev. 650 Lett. 99,112301 (2007). 651
- [7] S. S. Adler *et al.*, (PHENIX Collaboration), Phys. Rev. 652 Lett. 91, 182301 (2003). 653
- [8] S. S. Adler et al., (PHENIX Collaboration), Phys. Rev. 654 Lett. 94, 232302 (2005). 655
- [9] B. Alver et al. (PHOBOS Collaboration), Phys. Rev. 656 Lett. 98, 242302 (2007). 657
- J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992). [10]658
- P. Huovinen, P. F. Kolb, U. Heinz, P. V. Ruuskanen, and [11] 659 S.A. Voloshin et al., Phys. Lett. B 503, 58 (2001). 660
- C. Shen and U. Heinz, Phys. Rev. C 85, 054902 (2012). [12]661
- [13] R. Snellings, New J. Phys. 13, 055008 (2011). 662
- H. Appelshauser et al., (NA49 Collaboration), Phys. Rev. [14] 663 Lett. 80, 4136 (1998). 664
- K. Aamodt et al., (ALICE Collaboration), Phys. Rev. [15]665 Lett. 105, 252302 (2010). 666
- 667 [16]G. Aad et al., (ATLAS Collaboration), Phys. Lett. B 707, 330 (2012). 668
- S. Chatrchyan *et al.* (CMS Collaboration), Phys. Rev. C 669 [17] 89,044906 (2014) 670
- L. Adamczyk et al., (STAR Collaboration), Phys. Rev. 711 671 [18] 672 Lett. 116, 062301 (2016).
- M.M. Aggarwal etal., (STAR Collaboration), 673 [19]arXiv:1007.2613. 674
- L. Adamczyk et al., (STAR Collaboration) Phys. Rev. 715 675 [20]Lett. 110, 142301 (2013). 676
- 677 [21] L. Adamczyk *et al.*, (STAR Collaboration) Phys. Rev. C 88, 014902 (2013). 678
- 679 [22] A. Shor, Phys. Rev. Lett. 54, 1122 (1985).

- [23] X. Luo, et al. Particles 3, no.2, 278 (2020).
- B. Mohanty and N. Xu, J. Phys. G 36, 064022 (2009). [24]681
- [25]J.H. Chen, et al., Phys. Rev. C 74, 064902 (2006). 682
- [26]M. Nasim, B. Mohanty, and N. Xu, Phys. Rev. C 87, 683 014903 (2013). 684
- J. Adam et al., (ALICE Collaboration), Eur. Phys. J. C [27]685 76, 245 (2016). 686
- K.H. Ackermann et al., Nucl. Instrum. Methods Phys. 687 |28|Res., Sect. A 499, 624 (2003). 688
- R. J. Glauber, Nucl. Phys. A 774, 3 (2006). 689 [29]
- [30]L. Adamczyk et al., (STAR Collaboration) Phys. Rev. C 690 86, 054908 (2012). 691
- W. J. Llope (STAR TOF Group), Nucl. Instrum. Meth-692 [31]ods Phys.Res., Sect. B 241, 306 (2005). 693
- [32]D. Drijard, H.G. Fischer and T. Nakada, Nucl. Inst. 694 Meth. in Phys. Res. A 225, 367 (1984). 695
- J. Adams et al., (STAR Collaboration) Phys. Rev. Lett. [33] 696 95. 122301 (2005). 697
- C. Adler et al., (STAR Collaboration) Phys. Rev. Lett. [34] 698 89, 132301 (2002). 699
- M. S. Abdallah et al., (STAR Collaboration) Phys. Rev. [35]700 C 103, 064907, (2021). 701
- [36] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 702 1671 (1998). 703
- H. Masui, A. Schmah, A. M. Poskanzer, Nucl. Instrum. [37] 704 Meth. A833, 181 (2016). 705
- N. Borghini and J.-Y. Ollitrault, Phys. Rev. C 70, 064905 [38]706 707 (2004).
- R. Barlow, arXiv:hep-ex/0207026. 708 [39]
- [40]B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010); 709 82, 039903(E) (2010); 710
- M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 [41]712 (2008).
- [42]B. I. Abelev et al., (STAR Collaboration) Phys. Rev. C 713 77, 054901 (2008). 714
- M. S. Abdallah et al., (STAR Collaboration) arXiv:nucl-[43]ex/2203.07204 716
- 717 [44] J. C. Dunlop, M. A. Lisa, and P. Sorensen, Phys. Rev. C 84, 044914 (2011). 718
- [45] C. M. Ko et al., Nucl. Phys. A 928, 234 (2014). 719

- 720 [46] Jun Xu, Taesoo Song, Che Ming Ko, and Feng Li, Phys. 735 [55] A. Polyanskiy et al., Phys. Lett. B 695, 74 (2011). Rev. Lett. 112, 012301 (2014). 721
- 722 [47] E. Retinskaya, M. Luzum, and J.-Y. Ollitrault, 737 Phys.Rev. C 89, 014902 (2014). 723
- [48] E. Retinskaya, M. Luzum, and J.-Y. Ollitrault, Nucl. 739 724 Phys. A 926, 152 (2014). 725
- C. Lang and N. Borghini, Eur.Phys.J. C 74, 2955 (2014). 741 [49]726
- [50] J. Adams et al., (STAR Collaboration), Phys. Rev. Lett. 742 [59] 727 92, 062301 (2004). 728
- [51] A. Adare et al., (PHENIX Collaboration), Phys. Rev. 744 729 Lett. 105, 062301 (2010). 730
- [52] D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 731 (2003).732
- [53] T. Hirano and Y. Nara, Phys. Rev. C 69, 034908 (2004). 748 [63] H. van Hecke et al., Phys. Rev. Lett. 81, 5764 (1998). 733
- 734 [54] A. Sibirtsev et al., Eur. Phys. J. A 37, 287301 (2008).

- [56] S. Acharya et al., (ALICE Collaboration) Phys. Rev. 736 Lett. 127, 172301 (2021).
- R. Muto et al., (KEK-PS-E325 Collaboration), Phys. 738 [57] Rev. Lett. 98, 042501 (2007).
- 740 [58] M. Wood et al., (CLAS Collaboration), Phys. Rev. Lett. 105, 112301 (2010).
- J. Adamczewski-Musch et al., (HADES Collaboration), Phys. Rev. Lett. 123, 022002 (2019). 743
- [60] S. Leupold et al., Int. J. Mod. Phys. E 19, 147 (2010).
- [61] D. Cabrera et al., Phys. Rev. C 96, 034618 (2017). 745
- 746 [62]Y. Koike and A. Hayashigaki, Prog. Theor. Phys. 98, 631 (1997).747