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Background: The generator coordinate method (GCM) is an important tool of choice for modeling large-amplitude collective
motion in atomic nuclei. Recently, it has attracted increasing interest as it can be exploited to extend ab initio methods to the
collective excitations of medium-mass and heavy deformed nuclei, as well as the nuclear matrix elements (NME) of candidates
for neutrinoless double-beta (0νββ) decay.

Purpose: The computational complexity of the GCM increases rapidly with the number of collective coordinates. It imposes
a strong restriction on the applicability of the method. We aim to exploit statistical machine-learning (ML) algorithms to speed
up GCM calculations and ultimately provide a more efficient description of nuclear energy spectra and other observables such
as the NME of 0νββ decay without loss of accuracy.

Method: In this work, we propose a subspace-reduction algorithm that employs optimal statistical ML models as surrogates
for exact quantum-number projection calculations for norm and Hamiltonian kernels. The model space of the original GCM is
reduced to a subspace relevant for nuclear low energy spectra and the NME of ground state to ground state 0νββ decay based on
the orthogonality condition (OC) and the energy-transition-orthogonality procedure (ENTROP), respectively. Nuclear energy
spectra are determined by the GCM through the configuration mixing within this subspace. For simplicity, the polynomial
ridge regression (RR) algorithm is used to learn the norm and Hamiltonian kernels of axially deformed configurations. The
efficiency and accuracy of this algorithm are illustrated for Ge76 and Se76 by comparing results obtained using the optimal
RR models to direct GCM calculations. The non-relativistic Gogny force D1S and relativistic energy density functional PC-
PK1, a valence-space shell-model Hamiltonian, and a modern nuclear interaction derived from chiral effective field theory are
employed.

Results: The low-lying energy spectra of 76Ge and 76Se, as well as the 0νββ-decay NME between their ground states, are com-
puted. The results show that the performance of the GCM+OC/ENTROP+RR is more robust than that of the GCM+RR alone,
and the former can reproduce the results of the original GCM calculation accurately with a significantly reduced computational
cost.

Conclusions: Statistical ML algorithms, when implemented properly, can accelerate GCM calculations without loss of ac-
curacy. In applications with axially deformed states, the computation time can be reduced by a factor of three to nine for
energy spectra and NMEs, respectively. This factor is expected to increase significantly with the number of employed generator
coordinates.

I. INTRODUCTION

The core idea of the generator coordinate method (GCM)
is that the wave functions of nuclear states can be represented
as a superposition of a set of nonorthogonal basis functions,
such as Slater determinants, that are generated by some con-
tinuously changing parameters called generator coordinates
[1, 2]. In practical applications, one often chooses macro-
scopic quantities that define global nuclear properties such
as deformation, and discretizes the associated coordinates on
meshes. The dynamics are then described by the Ritz vari-
ational principle, where the variation is usually performed
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with respect to the expansion coefficients in the chosen ba-
sis, and sometimes the basis configurations themselves [3, 4],
resulting in a generalized eigenvalue equation (GEE). In this
way, the GCM provides a general approach for solving many-
body problems in both nuclear physics [3] and quantum chem-
istry [5–7] due to the great flexibility of choosing basis func-
tions or generator coordinates. In nuclear physics, the GCM
combined with quantum number projections has been exten-
sively employed in studies of the energies and transition rates
of low-lying states (see, for instance, Refs. [8–12]). State-
of-the-art GCM applications range from the structure of nu-
clei with triaxial deformation [13–16], to quadrupole-octupole
deformed even-even nuclei [17–19], certain odd-mass nu-
clei [14, 20] to the the computation of nuclear matrix ele-
ments (NMEs) of 0νββ decay [17, 21–27]. The latter are vital

mailto:Corresponding author: yaojm8@sysu.edu.cn


2

for interpreting and planning the current- and next-generation
tonne-scale experiments for 0νββ decays (see the recent re-
views [28–30]). GCM calculations most frequently use mod-
ern energy density functionals (EDFs) and effective Hamilto-
nians as inputs, but there have been several works that employ
nuclear forces from chiral Effective Field Theory (EFT) in re-
cent years, as the GCM has attracted interest as an pathway
for extending nuclear ab initio calculations to deformed nu-
clei [26, 27, 31–35].

The exact wave functions of nuclear states can in princi-
ple be well represented with the GCM ansatz if one chooses
a sufficient number of generator coordinates, but this comes
at the price of increasing both complexity and computational
time. It makes the problem hard to handle exactly because the
kernels in the GEE usually require multidimensional integrals
of overlap functions over the collective coordinates. For this
reason, it is a challenge to extend multi-dimensional GCM to
atomic nuclei throughout the nuclear chart. Practical applica-
tions are usually limited to only one or two generator coor-
dinates [36, 37]. Therefore, a good choice of generator co-
ordinates or a subset defined by the basis functions becomes
important, and this choice is usually based on an educated
guess, unfortunately.

In applications, one often observes that many of the ba-
sis functions connected by the generator coordinates have
little contribution to the wave functions of low-lying states
and can therefore be safely omitted — see, for instance,
Refs. [31, 38, 39]. In other words, a careful selection of
the basis functions can reduce the dimensions of the GEE,
and therefore the computational cost. It is worth noting that
similar considerations apply to the eigenvector continuation
(EC) method [40, 41], which finds the eigenvalues and eigen-
vectors of a Hamiltonian with one or more control parame-
ters, usually the coupling constants of chiral Hamiltonians. In
this context, the EC method has been extensively applied to
emulate few- and many-body calculations for nuclear struc-
ture and scattering [42–46] in recent years. These param-
eters of EC are analogous to the generator coordinates in
GCM, hence finding an efficient way for sampling the ba-
sis functions that define a subspace to represent the states
of interest is important for both EC and GCM [38]. Sev-
eral algorithms have been proposed, including the variation-
after-projection algorithm [47–49], the stochastic sampling
with Monte-Carlo techniques [50–52], the choice of low-
lying quasiparticle Tamm-Dancoff modes [53], the energy-
transition-orthogonality procedure (ENTROP) [31], and the
discrete nonorthogonal shell model (DNO-SM) [54]. We note
that many of these algorithms still require a substantial com-
putational effort for the subspace determination.

In the past decade, machine learning (ML) techniques com-
bined with statistical methods have been applied to a variety
of nuclear physics problems, ranging from the smallest con-
stituents of matter to the physics of dense astronomical objects
— see, for instance, the recent review [55] and the references
therein. In some of these applications, a specific statistical
ML model is trained to predict nuclear observables directly,
including nuclear masses [56–60], charge radii [61–63], β-
decay half-lives [64, 65], fission yields [66] and many oth-

ers. In other approaches, statistical ML can be used to en-
hance nuclear many-body calculations as a surrogate model
for expensive computational steps. Examples are the use of a
deep neural network committee to optimize collective Hamil-
tonians for low-lying nuclear states [67], or back-propagation
neural networks [68] and kernel Ridge regression [69] to de-
termine density profiles as inputs for nuclear radii and binding
energies in the framework of density functional theory.

In the present work, we present the first application of sta-
tistical ML techniques to optimize GCM calculations for the
low-lying states and the NMEs of 0νββ decay of realistic can-
didate nuclei. The norm and Hamiltonian kernels will be
learned by a statistical model. Here, we are confronted with
several challenges originating from the norm kernels, which
are nonlocal in the collective coordinate space and vary by
several orders of magnitude. The solutions of GCM are sen-
sitive to any noise in the norm kernels, which may affect the
linear dependence among basis functions and their nontrivial
coherence with Hamiltonian kernels, and potentially spoil the
GCM description entirely. To tackle these challenges, we pro-
pose a subspace reduction algorithm, that uses statistical ML
models together with an orthogonality condition (OC) method
as an efficient tool to determine the subspace in which the
wave functions of nuclear low-lying states can be well repre-
sented. Its efficiency and accuracy are illustrated for nuclear
energy spectra and 0νββ decay NMEs starting from two differ-
ent EDFs, a valence-space shell-model interaction, and a real-
istic two- plus three-nucleon Hamiltonian from chiral EFT.

The article is organized as follows. In Sect. II A, the formal-
ism for the GCM, the NME of 0νββ decay, and the statistical
ML model are introduced. In Sect. III, the performance of
the subspace reduction algorithm is illustrated with two dif-
ferent EDFs, and two different Hamiltonians. A summary of
our findings and an outlook are given in Sect. IV.

II. FORMALISM

A. The generator coordinate method

In a GCM calculation with quantum-number projections,
the nuclear wave function is constructed as follows:

∣∣∣ΨJMNZ
α

〉
=

Nq∑
q=1

J∑
K=−J

f Jα
K (q) |J(MK)NZ, q〉 (1)

where α = 1, 2, . . . distinguishes the states with the same an-
gular momentum J and the numbers of nucleons. The ba-
sis functions |J(MK)NZ, q〉 are quantum-number projected
Hartree-Fock-Bogoliubov (HFB) states labeled by the gener-
ator coordinate q

|J(MK)NZ, q〉 = P̂J
MK P̂N P̂Z |Φ (q)〉 . (2)

The operator P̂J
MK extracts from the HFB wave function

|Φ (q)〉 the component whose angular momentum along the in-
trinsic z axis is given by K. The P̂N,Z are the particle number
projection (PNP) operators that extract the component with
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the appropriate neutron number N and proton number Z, re-
spectively. The weight function f Jα

K (q) in the GCM states
given by Eq. (1) is determined by the variational principle,
which leads to the discretized Hill-Wheeler-Griffin (HWG)
equation [1, 2],∑

q′K′

[
H J

KK′
(
q, q′

)
− EJ

αN
J
KK′

(
q, q′

)]
f Jα
K′ (q′) = 0. (3)

The Hamiltonian and norm kernelsH and N are defined as

H J
KK′

(
q, q′

)
≡ 〈J(MK)NZ, q| Ĥ |J(MK′)NZ, q′〉 , (4a)

N J
KK′

(
q, q′

)
≡ 〈J(MK)NZ, q| 1̂l |J(MK′)NZ, q′〉 , (4b)

where Ĥ and 1̂l are the Hamiltonian and identity operators,
respectively. We note that in the subsequent EDF-based cal-
culations, the Hamiltonian kernels are evaluated based on
the mixed density prescription: the Hamiltonian overlaps be-
tween two different configurations are replaced with the en-
ergy which is a functional of mixed densities and currents de-
fined by the two configurations [11].

The HWG equation (3) is solved as follows. We first di-
agonalize the norm kernel matrix N J

KK′ (q, q′) and use its
eigenvalues and eigenvectors to construct a set of orthonor-
mal bases {|k〉}, called ’natural states’. To remove the over-
completeness of the original basis functions |J(MK)NZ, q〉
that stems from the use of continuous quantum numbers,
only eigenvectors whose corresponding eigenvalue is larger
than a chosen cutoff are included. Then we evaluate the el-
ements of the Hamiltonian matrix in this new subspace Hkk′ ,

whose eigenvalues then define the energies EJNZ
α of the GCM

states. The corresponding eigenvectors are used to determine
the weight function f Jα

K (q). More details can be found in
Refs. [3, 29], for instance.

B. The nuclear matrix element of 0νββ decay

Here, we only consider the NME of 0νββ decay corre-
sponding to the transition from the ground state of an even-
even nucleus to that of a neighboring even-even nucleus. The
spin-parity of both ground states is 0+. Their wave functions
are given by Eq. (1) with J = K = 0. For convenience, we
simply use the symbol f (q) to replace f J=0,α=1

K=0 (q) and N for
N J=0

K=0,K′=0. Therefore, one finds the following expression for
the NME:

M0ν =
∑
qF ,qI

f ∗(qF) f (qI)〈Φ(qF)|Ô0νP̂NI P̂ZI P̂J=0|Φ(qI)〉

=
∑
qF ,qI

f ∗(qF) f (qI)N1/2 (
qI , qI

)
N1/2 (

qF , qF
)
M0ν(qF , qI),

(5)

where the kernelM0ν(qF , qI) for the NME can be computed
with the help of two-body transition matrix elements O0ν

pp′nn′
in a spherical harmonic oscillator basis,

M0ν(qF , qI) =
1
4

∑
pp′nn′

O0ν
pp′nn′ρpp′nn′ (qF , qI). (6)

The two-body transition density ρpp′nn′ (qF , qI) is determined
by

ρpp′nn′ (qF , qI) =
1

N1/2(qI , qI)N1/2(qF , qF)

∫ 2π

0

e−iNIϕN

2π
dϕN

∫ 2π

0

e−iZIϕZ

2π
dϕZ

×

∫
dΩ 〈Φ(qF)| c†pc†p′cn′cneiϕN N̂eiϕZ ẐR̂(Ω) |Φ(qI)〉 . (7)

where the rotation operator reads R̂(Ω) = eiϕĴz eiθĴy eiψĴz ,
(ϕ, θ, ψ) are the three Euler angles, and ϕN/Z are the gauge
angles that define the projection operators P̂N/Z . The sym-
bols NI ,ZI are the neutron and proton numbers of the initial
nucleus. The |Φ(qI/F)〉 are the HFB wave functions for the ini-
tial and final nucleus, respectively. In the present work, only
the long-range transition operator O0ν in the standard mecha-
nism of light Majorana neutrino exchange is considered. See
Ref. [29] for details.

C. Learning kernels with the polynomial ridge regression

For the present proof-of-concept study, we only consider
the quadrupole deformation parameter β as a generator coor-
dinate q in Eq.(1), and we will switch labels in the basis con-
figurations accordingly in the following discussion. Because

of this specialization, we have K = 0 and the norm kernel
simplifies into the following form,

N J
00

(
β, β′

)
= 〈J(MK = 0)NZ, β| 1̂l |J(MK′ = 0)NZ, β′〉

=
2J + 1

2

∫ π

0
dθdJ

00(θ) 〈Φ(β)| eiθĴy P̂Z P̂N |Φ(β′)〉 ,(8)

where dJ
00(θ) = 〈J0|eiθĴy |J0〉 is the Wigner (small) d-matrix.

This norm kernel will be learned with a statistical ML model
in the following.

Previous GCM studies have established the following fea-
tures of the norm kernel:

• For the diagonal element of the norm kernel with β = β′

but without PNP operators, the overlap function can be
well approximated with a Gaussian function [3, 70, 71],

〈Φ(β)| eiθĴy |Φ(β)〉 ' exp
(
−
θ2

2
〈Φ(β)| Ĵ2

y |Φ(β)〉
)
. (9)
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The non-diagonal overlap with β , β′ can be param-
eterized with an extension of the Gaussian overlap ap-
proximation [72, 73].

• For the non-diagonal element with β , β′ and without
any projections, the norm kernel can also be approxi-
mated with a Gaussian function [3, 4, 74],

N
(
β, β′

)
' exp

[
−
γ(q)

2
(β − β′)2

]
, (10)

where γ(q) is a function of the deformation parameter
q = (β + β′)/2 that can be calculated using the corre-
sponding HFB wave functions.

Of course, the actual norm kernels with the projections of
particle-number and angular momentum are expected to have
a much more complicated expression that is to be learned by
statistical ML models.

In light of the Gaussian structure that was found in the
aforementioned results, it is reasonable to attempt to train the
logarithm of the norm kernels to avoid dealing with data that
spans several orders of magnitude. We expect this logarithm
to be well approximated with a polynomial function of the
quadrupole deformation parameters β and β′. Therefore, a
basic machine-learning algorithm, i.e., the polynomial ridge
regression (RR) [75, 76] is adopted for our purpose. As a test,
we have validated that this algorithm exactly reproduces the
kernels of a simple model with quadratic approximation [2].
We have also employed other algorithms such as support vec-
tor regression, which yielded similar results, but at the cost of
significantly increased training time.

Here we present some details on our implementation of the
polynomial RR model. In the data preparation, we compute
all the kernels N J(β, β′) and H J(β, β′) exactly with (4) for a
specific nucleus (Z, A) and a given interval in β large enough
to include all the relevant configurations. There are N2

q norm
kernels and N2

q Hamiltonian kernels, where Nq is the number
of mesh points in the deformation parameter β. For simplic-
ity, these mesh points are equally distributed with step size ∆β.
Among all the kernels, those equally distributed in the entire
deformation space with the step size of 2∆β or 4∆β are se-
lected as a training set, while the remaining data are used for
testing and validation. The number of training data and the
number of test data are denoted Mtrain and Mtest, respectively.
Thus, we have the relation N2

q = Mtrain + Mtest.
The i-th predicted value ŷ(i) in the polynomial RR is given

by the following hypothetical N-degree polynomial function

ŷ(i)(θ; N) = X(i)
N θN , (11)

where the i-th input vector X(i)
N is defined as

X(i)
N =

(
1, β, β′, · · · , βN , βN−1β′, · · · , ββ′N−1, β′N

)(i)

(12)

with (N + 2)(N + 1)/2 features, and the corresponding weight
parameters

θT
N =

(
θ0

0, θ
1
0, θ

0
1 · · · , θ

N
0 , θ

N−1
1 · · · θ1

N−1, θN

)
. (13)

The degree N of the polynomial is a hyper-parameter con-
trolling the complexity of the model. We note from (12) that
the polynomial RR is more flexible than the ridge regression
with the N-degree polynomial kernel [75, 76]. Besides, one
can see that the polynomial RR fits the single, high-degree
polynomial function (11) to all of the values in the training set.
Compared to the spline interpolation which fits low-degree
polynomials to small subsets of the training set, the polyno-
mial RR works equally well when the degree of polynomi-
als is chosen appropriately. However, the polynomial RR is
easier to be extended to the case with multiple coordinates
and the possible overfitting problem is avoided by adding the
Tikhonov regularization term [75] to the mean-square error
(MSE) in the definition of loss function,

L(θ; N, α) =

Mtrain∑
i=1

[
ŷ(i)(θ; N) − y(i)

]2
+ αθT

NθN

= (Ŷ − Y)T (Ŷ − Y) + αθT
NθN , (14)

where the vector Y is defined by

Y =
(
y(1), · · · , y(Mtrain)

)T
, (15)

with y(i) chosen as the logarithmic value of the i-th norm ker-
nel, and ŷ(i) is the output (11) of the RR model. The summa-
tion in (14) runs through all the kernels in the training set.

The minimization of the above loss function leads to a nor-
mal equation with the solution given by [76]

θN = (XT X + αI)−1XT Y, (16)

where I is the identity matrix. The ridge parameter α ≥ 0 con-
trols how much one wants to regularize the model. When the
α is zero, the RR is simplified into the linear regression [77].
With the increase of α, the regularization term dominates the
squared loss function and the weight coefficients θN tend to be
small, providing a way to prevent the overfitting problem. In
practice it is necessary to tune α in such a way that a balance is
maintained between both. Instead of determining the weight
coefficients θN analytically according to Eq. (16) by comput-
ing the inverse of the normal matrix (XT X + αI), the vector
parameters θN can also be determined by minimizing the loss
function L with the gradient descent (GD) method for given
hyperparameters (N, α). We note that in general both methods
give the same solution to the model parameters. Compared
to the GD method, the normal-equation method is usually
employed in the regression with a small number of features.
However, with the increase of the hyperparameter N and the
size of training set, the inverse of the normal matrix becomes
difficult to compute. In contrast, the computation complex-
ity of the GD method grows moderately with the number of
model parameters. In this work, we employ the GD method to
determine the weight parameters in the polynomial RR. More
detailed introduction to ML models in physics can be found
in, for instance, Ref. [78].
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FIG. 1. (Color online) Comparison of the flowcharts for the full
GCM, GCM+RR and GCM+OC/ENTROP+RR approaches. The
area of different shapes represents the domain of kernels obtained
from different methods indicated with colored arrows. The vertical
line indicates the diagonal elements of kernels. See text for details.

III. ILLUSTRATIONS

In the following, we will study three different procedures
for implementing the polynomial RR into GCM calculations,
starting from two EDFs, a shell-model interaction, and a chi-
ral NN+3N interaction. They are illustrated with a flow chart
shown in Fig. 1. In the GCM+RR, a small portion (about 1/4)
of the norm and Hamiltonian kernels are calculated exactly
with quantum number projection (QNP) method, providing
inputs for training the RR model parameters. Once the model
parameters are optimized, they are used to predict all the norm
and Hamiltonian kernels which serve as inputs of the GCM
calculation. In the GCM+RR procedure, the noise introduced
by the RR model is expected to generate errors in the final
results. To mitigate these errors, we propose a combination
of GCM, OC/ENTROP, and RR, in which a subset is selected
based on either the OC method or ENTROP algorithm. An
exact GCM calculation is carried out within this subset after-
ward.

The procedure of the GCM+OC+RR method for nuclear
low-lying states is as follows:

(i) All the configurations |Φ(β)〉 are sorted by their
projected energies, i.e., the ratios of the kernels
H J

00(β, β)/N J
00(β, β) for the nucleus of interest. To this

end, one needs to calculate these ratios for all the con-
figurations, which requires O(Nq) computational effort.
We note that the ordering of the configurations is differ-
ent for different angular momenta J.

(ii) Starting from the configuration with the lowest energy

and stepping from low to high energy, the (n + 1)-th
configuration |n + 1〉 is added into the subspace if its
projection onto the subspace spanned by the already se-
lected n configurations, defined by

L(n, n + 1) =

〈
n + 1

∣∣∣P(n)
∣∣∣ n + 1

〉
〈n + 1 | n + 1〉

=
γ(n)†

(
S(n)

)−1
γ(n)

〈n + 1 | n + 1〉
, (17)

is smaller than a pre-selected cutoff parameter Lc [31].
This implies that the new configuration is approxi-
mately orthogonal to the previous configurations, hence
the name of this stage. In Eq. (17), S (n)

i j = 〈i | j〉 and

γ(n)
i = 〈i | n + 1〉 are nothing but the matrix elements

of the norm kernel N J
00(β, β′). Using the orthogonal-

ity criterion, a subspace SLc = {|1〉 , |2〉 , . . . , |n〉}Lc
is

eventually determined for a given value of Lc. In prac-
tice, we employ the pre-calculated norm kernels by the
QNP method with the rest given by the RR model in the
subspace-selection procedure.

(iii) The norm kernels and Hamiltonian kernels for the con-
figurations within the subspace SLc are determined by
the QNP method and they are used in the solution of
the HWG equation (3). The convergence of each ob-
servable against the cutoff parameter Lc is examined.

In the calculation of the NME of 0νββ decay, for compar-
ison, we also employ the recently developed ENTROP algo-
rithm to select the subspaces for the initial and the final nuclei
simultaneously. Details about the ENTROP algorithm can be
found in Ref. [31].

A. EDF-based GCM calculations

1. A non-relativistic EDF: Gogny D1S

Figures 2 and 3 show the distributions of the norm ker-
nels N J(β, β′) and the ratio of kernels H J(β, β′)/N J(β, β′)
with different angular momentum J from quantum-number-
projection calculations for the HFB states based on the Gogny
D1S force [79, 80]. The norm kernels with different angular
momenta J are distributed differently, but they share a com-
mon feature in that they are mainly concentrated along the
diagonal line with β = β′. For the J = 0 case, the norm kernel
is dominated by a product of two Gaussian functions centered
at β = β′ = 0. It can be understood that the spherical state
only contains a J = 0 component. The distributions of the di-
agonal element N J

00(β, β) with J , 0 share the similar feature
that the peak locates at a deformed state, approximately sym-
metric with respect to β = 0. This is a general feature of norm
kernels [81]. One may expect that this feature can be well
captured by the polynomial regression on their logarithmic
values. Nevertheless, as shown in Fig. 3(a) and (c), the matrix
elements of norm kernels vary by several orders of magnitude
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(a) 0+ of 76Ge(D1S) (b) 2+ of 76Ge(D1S) (c) 4+ of 76Ge(D1S)

(d) 0+ of 76Se(D1S) (e) 2+ of 76Se(D1S) (f) 4+ of 76Se(D1S)

FIG. 2. (Color online) The distribution of norm kernels N J
00(β, β′) for 76Ge (a,b,c) and 76Se (d,e,f) from the HFB calculation using the Gogny

D1S force as a function of the quadrupole deformation parameters β, β′, where the angular momentum is J = 0 (a,d), 2 (b,c), and 4 (e,f),
respectively.

FIG. 3. (Color online) The distributions of norm kernels ln(N) and
the ratio of kernels H(β, β′)/N(β, β′) with J = 0 for 76Ge (a,b) and
76Se (c,d) as a function of the quadrupole deformation parameters
(β, β′) from the HFB calculation using the Gogny D1S force.

in the entire deformation space, which is a challenge for ML
algorithms. A small error in the norm kernel may degrade the
description of GCM, as discussed in detail later on. In con-
trast, the variation of the ratios H J=0

00 (β, β′)/N J=0
00 (β, β′) with

β and β′ is moderate and thus expected to be more readily
learned by ML algorithms.

FIG. 4. (Color online) The root-mean-square error (RMSE) of the
RR models for the training set and test set of the norm kernels lnN
(a,c) and the ratio of kernels H(β, β′)/N(β, β′) (b,d) with J = 0 for

Ge76 (a,b) and Se76 (c,d) as a function of the degree parameter N of
the polynomials, where the results with the ridge parameter α chosen
as 10−14 and 10−1 respectively are given for comparison.

The parameters of our polynomial RR models for norm ker-
nels N and the ratios H/N are optimized as explained in
Sec. II C. Our findings in the training processes are as follows:

• The optimal RR model captures the Hermiticity of the
kernels, even though it is not strictly enforced in the
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FIG. 5. (Color online) The covariance matrix of the RR model (14)
for the norm kernels of Ge76 with J = 0 by the Gogny D1S force,
where the degree parameter N = 12 and ridge parameter α = 10−14.
The number of features (β′)i(β)n−i in (12) is (N + 2)(N + 1)/2, where
the integer number n ∈ [0,N] is shown in the bottom of the figure
with the integer number i varying from 0 to n.

FIG. 6. (Color online) The relative deviation δ of the kernels pre-
dicted by the optimal RR model for (a,b) Ge76 and (c,d) Se76 , where
the δ is defined as δ(i) = (ŷ(i) − y(i))/y(i) with y being the (a,c) norm
kernel N or (b, d) the ratio of kernels H/N , respectively. See main
text for details.

model’s construction at present.

• Selecting training data that are uniformly distributed in
the (β, β′) plane usually leads to a smaller MSE in (14)
than random sampling. We note that this approach does
not scale well to larger numbers of generator coordi-
nates, for which a more robust sampling strategy needs
to be explored in future.

• As shown in Figs. 2 and 3, the norm kernels with J = 0

FIG. 7. (Color online) The energies of states with angular momentum
J = 0 as a function of (a,c) the number of natural states and (b,d)
the cutoff parameter Lc from different calculations for (a,b) 76Ge and
(c,d) 76Se respectively. See main text for details.

of strongly deformed configurations (|β| > 0.4) are usu-
ally small (less than 10−3). Including these kernels in
the training procedure may spoil the description of the
model. For kernels with J , 0, we exclude configu-
rations around the spherical shape with |β| < 0.06 to
guarantee good performance of the model because they
are negligible.

Figure 4 shows the RMSE of the kernels lnN and the ra-
tios H/N with J = 0 for both the training set and test set
as a function of the degree N of the polynomials in the RR
model. For comparison, the results by the RR models with a
small (10−14) and large (10−1) value of the ridge parameter α
are presented. First, we find that the RR model with α = 10−14

works much better than the RR model with α = 0, which is
the simple linear regression. With the nonzero regularization
term in the RR model, the overfitting problem becomes mod-
erate, even though it still appears for N > 12. Second, with
the choice of a larger value of α(= 10−1), the occurrence of
overfitting problem is extended to a larger value of N(= 20).
Compared to the RR model with α = 10−14, the RMSE in the
model with α(= 10−1) is systematically larger. Therefore, in
this work, the hyperparameters N = 12, α(= 10−14) are em-
ployed in the RR model if not mentioned explicitly. Selecting
the value of N giving the best description of the test set, we
show the covariance matrix of the RR model for the norm ker-
nels of Ge76 with J = 0 in Fig. 5. One can see that the features
(β′)i(β)n−i with the even (odd) values of i and n(≤ N) exhibit
strong correlation with each other. It indicates that the opti-
mal RR model is still reducible. We will examine the impact
of different choices of N on nuclear energy spectra later.

The relative deviations of the norm and Hamiltonian ker-
nels by the optimal RR model are displayed in Fig. 6. The
deviation for the norm kernels can be up to 10% for Se76 ,
while that for the ratio H0/N0 is less than 0.05%. The noise
introduced by the RR model into the norm kernels may spoil
the correlation relations among different kernels and thus the
orthogonality property of different configurations. It is shown
in Fig. 7 that the energy plateau (in particular for the excited
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FIG. 8. (Color online) The distribution of eigenvalues λk (normalized
to the maximal one) of the norm kernelsN J=0

00 (β, β′) in the full GCM,
GCM+RR and GCM+OC+RR calculations for 76Ge (a) and 76Se (b),
where different subspaces are used in the three calculations.

FIG. 9. (Color online) Comparison of the convergence of the ground-
state wave function (a, c) and energy (b, d) with respect to that by the
full GCM calculation as a function of the number of HFB configu-
rations in both GCM and GCM+OC+RR calculations for (a,b) Ge76

and (c,d) Se76 . In the GCM+OC+RR calculation, the Lc value is cho-
sen as 0.872 and 0.824 for (a,b) Ge76 and (c,d) Se76 , respectively.

FIG. 10. (Color online) The energies of the first three 0+ states for
76Ge (a) and 76Se (b) as a function of the degree parameter N of the
polynomials from the GCM+RR and GCM+OC+RR calculations
using the D1S force. The black dashed lines indicate the energies
from the original GCM calculations using the exactly calculated ker-
nels.

states of Se76 ) becomes slightly worse when the RR-model-
predicted kernels, instead of the exactly-calculated ones, are
used in the GCM calculations. The impact of noise in the ker-
nels of a generalized eigenvalue problem has also been dis-
cussed recently in the EC method [82], where a trimmed sam-
pling algorithm was proposed to mitigate this issue. We also
find that the energy plateau is much worse for the RR model
with α = 0 (not shown here), demonstrating the important role
of the regularization term played in the optimization of GCM
with the polynomial RR model.

To mitigate the impact of the noise introduced by the RR
model on energy spectra, we employ the OC method to select
the subspace SLc based on the RR-model-predicted kernels, as
discussed before. Fig. 7 shows the convergence of the energies
of the first three 0+ states as a function of the cutoff parameter
Lc. For comparison, the results from the GCM+OC calcu-
lations based on the exactly-calculated norm kernels are also
given. One can see that the GCM+OC+RR can reasonably
reproduce the convergence behavior of the GCM+OC. The
value of Lc is determined based on the convergence behavior,
which in principle varies with each state. We note that if the
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FIG. 11. (Color online) The energies of low-lying states in 76Ge (a)
and 76Se (b) from the GCM (horizontal lines), GCM+OC (circles)
and GCM+OC+RR (triangles) calculations, respectively. From left
to right columns shows the results from the calculations with the step
size ∆β = 0.02, ∆β = 0.04 and ∆β = 0.08, respectively. The number
shown nearby each triangle is determined by the ratio NS/NF , where
NS is the number of kernels for the configurations within the selected
subspace for a give Lc and those for the training set, while NF is the
number of kernels for the configurations in the full space.

same Lc value is taken for all the states, as in the examples
discussed later, the performance of OC is slightly worse for
the excited states. This can probably be attributed to the fact
that the selection of candidate configurations for the subspace
follows their energy ordering. The selected subspace is thus
expected to be more complete for the ground state than for
the excited states. Once the subspace is defined, we calculate
both norm kernels and Hamiltonian kernels within this sub-
space and use them to carry out GCM calculations. Interest-
ingly, but perhaps not unexpectedly, we find that the subspaces
for different low-lying states differ from each other only by a
few configurations. Fig. 7 shows that the energy of each state
terminates at the number of natural states defined by the di-
mension of the corresponding subspace.

Figure 8 shows the distributions of the eigenvalues of the
norm kernels with J = 0 from the exact quantum-number pro-
jection calculation and from the RR model prediction. The
eigenvalues of the norm kernels within the selected subspace
for the ground state are also given for comparison. We see that

eigenvalues with values smaller than 10−3 from the RR model
prediction are different from the exactly calculated ones. This
explains the degradation of the energy plateaus in Fig. 7. In
contrast, the eigenvalues obtained with GCM+OC+RR match
the full GCM eigenvalues until the limit of the subspace is
reached. Thus, the introduction of noise by the RR model is
avoided in the GCM+OC+RR approach.

Figure 9 displays the measure of the distance in the ground-
state wave function ||Ψ(n)−Ψ

(full)
GCM|| and in energy, |E(n)−E(full)

GCM|

with respect to that by the full GCM calculation (with Nq HFB
states) as a function of the number of HFB states in both GCM
and GCM+OC+RR calculations for Ge76 and Se76 , where the
HFB states are ordered in energy, and the measure of the dis-
tance in the wave function is defined as [38]

||Ψ(n) − Ψ
(full)
GCM|| =

√
2
[
1 − Re

(
〈Ψ(n)|Ψ

(full)
GCM〉

)]
(18)

with

〈Ψ(n)|Ψ
(full)
GCM〉 =

n∑
i=1

Nq∑
j=1

f (n)∗ (βi)N J=0
(
βi, β j

)
f (full)
GCM(β j). (19)

Here, f (n)(βi) and f (full)
GCM(β j) are the weight functions (1) of the

ground states in the GCM calculations based on the first n and
all Nq HFB states, respectively. One can see that the ground-
state wave function converges faster to the wave function of
the full GCM calculation in the GCM+OC+RR than that in
the pure GCM. In the GCM+OC+RR calculation, the residual
norm difference between the subspace-projected wave func-
tion and the full GCM solution is typically smaller than 0.05,
which corresponds to 〈Ψ(n)|Ψ

(full)
GCM〉 ' 0.999.

To check how the hyperparameters (N, α) in our RR models
affect nuclear energy spectra, we show the energies of the first
three 0+ states from both the GCM+RR and GCM+OC+RR
calculations for both Ge76 and Se76 as a function of N in
Fig. 10, where two different values of α are employed for
comparison. It is shown that the energies are generally sta-
ble under the variations of N for all cases, and consistent with
the full GCM results. The observed fluctuations occasionally
in the results of GCM+RR calculations can be removed when
the OC method is implemented additionally. In other words,
the GCM+OC+RR method works well for a large range of
values for the hyperparameter (N, α).

The low-energy spectra from different calculations are
shown in Fig. 11. One can see that the decrease of the step
size ∆β in the deformation parameter from 0.08 (total 9 con-
figurations) to 0.02 (total 33 configurations) only weakly af-
fects the spectrum. Quantitatively, the energy difference in
the ground state of Ge76 introduced by the OC+RR is less
than 50 keV for all cases. This error is slightly larger for the
0+

3 state, but it is still around 150 keV for Ge76 and around
200 keV for Se76 . In both nuclei, the energy difference be-
tween the GCM+OC+RR and GCM+OC is about 20 keV. In
other words, with the application of the OC to GCM calcula-
tion, the error introduced by the RR model is negligible. In
the current application, the use of the RR model reduces the
computational time by a factor of up to three; detailed num-
bers for each state are included in Fig. 11. As expected, the
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FIG. 12. (Color online) The Fermi, GT, and total NMEs of 0νββ
decay for Ge76 . The solid line is obtained from the exact GCM cal-
culation of 76Ge and 76Se, while the circles, triangles, and squares are
by GCM+ENTROP, GCM+OC+RR and GCM+ENTROP+RR cal-
culations, respectively. The numbers represent the percentage of cost
in computation time compared to the full GCM calculation using all
the configurations, and they are obtained from the multiplication of
the ratios for Ge76 and Se76 in Fig. 11. See main text for details.

FIG. 13. (Color online) Same with Fig.7, but for the relativistic EDF
PC-PK1.

FIG. 14. (Color online) Same as Fig. 11, but for the relativistic EDF
PC-PK1.

denser the mesh for discretizing the quadrupole deformation
parameter β in the original set, the more computational time
one can save with the statistical ML technique.

Next, we examine the performance of the method for the
NME of 0νββ decay. In addition to the use of the OC
method, the ENTROP algorithm [31] is also employed for
comparison. As the calculation of the NME of 0νββ de-
cay requires the ground-state wave functions of two nu-
clei, it imposes a more stringent test on the RR model
than energy spectra. Fig. 12 shows the NMEs of 0νββ
decay for Ge76 from GCM+ENTROP, GCM+OC+RR, and
GCM+ENTROP+RR calculations. The cost of computa-
tional time compared to the full GCM calculation is indi-
cated in each case. One can see that the values by the
GCM+OC+RR and GCM+ENTROP+RR are generally close
to each other, both are slightly different from those by the
GCM+ENTROP and full GCM calculations. Quantitatively,
the total NME M0ν from the GCM+OC+RR calculation with
∆β = 0.02, 0.04, 0.08 is 4.61, 4.53, and 4.52, respectively,
which should be compared to the values 4.61, 4.62, 4.66
from the full GCM calculation without the use of the sta-
tistical ML technique. If the subspaces for Ge76 and Se76

are selected based on the ENTROP+RR, the total NME be-
comes 4.55, 4.46 and 4.55, respectively. The difference in the
three numbers is negligibly small. It implies that the NME
in the GCM+ENTROP+RR calculation is less sensitive to the
choice of the step size in the deformation parameter β than
the GCM+OC+RR calculations. In many cases, the predicted
NMEs are essentially close to each other and consistent with
the value of 4.60 given in Ref. [21].

2. The relativistic EDF: PC-PK1

In this subsection, we present results for 76Ge and 76Se
starting from the relativistic EDF PC-PK1 [84] . Again, only
axially deformed configurations are employed. The short-
range correlation that has been taken into account in Ref. [85]
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FIG. 15. (Color online) Same as Fig.7, but for the shell-model inter-
action GCN2850.

is not included here. More details about the calculations can
be found in Ref. [17].

Figure 13 shows the convergence behavior of the energies
of states with J = 0 in three different calculations with the
PC-PK1. Similar to the case of the Gogny D1S, the energy
plateaus in the GCM+RR are slightly worse than those by the
full GCM with the increase of the number of natural states
due to the errors in the kernels introduced by the RR mod-
els. With the OC method, the energy plateaus terminate at
the number defined by the selected subspace. Fig. 14 dis-
plays the low-energy spectra for Ge76 from the GCM+OC
and GCM+OC+RR calculations. In the ∆β = 0.2 case,
the energies of states are underestimated evidently by the
GCM+OC+RR compared to the full GCM calculation. We
note that in the case with sparsely distributed HFB states, the
results are somewhat sensitive to the choice of the degree N in
the polynomial regression. When a set of denser mesh points
with ∆β = 0.1 or ∆β = 0.05 is employed, the GCM+OC+RR
can reproduce the results of the full GCM calculation, and
the results are much more robust against variations of the pa-
rameter N. In short, the main findings in the results of the
relativistic PC-PK1 EDF are generally similar to those of the
Gogny D1S force.

FIG. 16. (Color online) Same as Fig. 7, but for the chiral 2N+3N
interaction EM1.8/2.0 with eMax = 6 and ~ω = 12 MeV.

B. Hamiltonian-based GCM calculations

In this subsection, we present results for Hamiltonian-
based GCM calculations, where the shell-model interaction
GCN2850 [86] and the magic chiral NN +3N interaction
EM1.8/2.0 [87, 88] are employed. The EM1.8/2.0 interaction
provides excellent empirical agreement between ground-state
energies and data through at least the A ∼ 60 − 70 mass re-
gion [89], which is why it has been frequent used in recent ab
initio studies, including the in-medium GCM studies of light
nuclei [90, 91] and 48Ca [27] by some of the authors of this
work. This interaction, together with the decay operator, is
evolved with the multi-reference in-medium similarity renor-
malization group [92, 93] with a reference ensemble compris-
ing prolate, spherical, and oblate HFB minima in both 76Ge
and 76Se and with emax = 6. Here, only axially deformed con-
figurations are employed in the GCM calculations. Therefore,
the results are somewhat different from those published in
Ref. [31], where triaxially deformed configurations and those
with neutron-proton pairing correlations are also included.

Figure 15 displays the energies of states from the GCM cal-
culations based on the shell-model interaction GCN2850 for

Ge76 and Se76 as a function of the number of natural states.
The energy plateaus are much worse than those found in the
two EDF-based cases. It is even difficult to determine the
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FIG. 17. (Color online) The low-lying energy spectra of (a) 76Ge and (b) 76Se from GCM+OC+RR calculations based on two different nuclear
Hamiltonian and two EDFs. The solid lines are the results of calculations using the configurations within the subspace (S J) for each state. The
dashed lines are the results of calculations for all the states using the configurations in the same subspace (S 0) as that for the ground state. The
results are compared to data from Ref. [83].

FIG. 18. (Color online) The convergence of the NME for the 0νββ
decay of Ge76 against the number of states in Ge76 and Se76 from the
GCM+ENTROP (red line) and GCM+ENTROP+RR (blue dotted
line) with (a) D1S, (b) PC-PK1, (c) GCN2850, (d) EM1.8/2.0 (eMax =

6), respectively. The results by the original GCM calculation in full
space for both nucleus are indicated with dashed lines.

energies of the states in the GCM+RR calculations. This is
especially true for Se76 . The inclusion of the OC method
improves the situation, and the energies of both nuclei by
the full GCM calculations are reasonably reproduced by the
GCM+OC+RR.

Figure 16 displays the energies of the first three 0+ states
starting from the chiral nuclear force EM1.8/2.0. We find that
the energy plateaus in the full GCM calculation are compa-
rable to those found in the EDF-based calculations, and they
are well reproduced in the GCM+OC+RR calculations. The
energies of the states in Se76 can hardly be reproduced by the

FIG. 19. (Color online) Comparison of NMEs for the 0νββ decay of
Ge76 from the full GCM, GCM+OL+RR and GCM+ENTROP+RR

calculations.

GCM+RR only, demonstrating again the necessity and suc-
cess of implementing the OC method additionally.

C. Energy spectra and nuclear matrix elements of 0νββ decay

Figure 17 shows the data on the low-energy spectra of both
Ge76 and Se76 , in comparison with the GCM+OC+RR cal-

culations based on two EDFs and two Hamiltonians. Results
of calculations using the configurations tailored for each state
and those of calculations using the same configurations as that
for the ground state are shown. One can see that with the mix-
ing of axially deformed configurations, the main feature of the
sequences (0+

1 , 2
+
1 , 4

+
1 ) in the energy spectra is reasonably re-

produced, even though the predicted energy spectra from the
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calculations with the EDFs (D1S, PC-PK1), and chiral inter-
action EM1.8/2.0 are more spread out, in contrast to the re-
sults of GCN2850. Besides, it is shown that the two different
subspace selection strategies yield only slightly different exci-
tation energies for the high-lying states in all the calculations
except for GCN2850, where the excited 0+ states are shifted
much higher when restricted to the configurations of the sub-
space for the ground state. This is probably due to the limited
number of valence single-particle states based on which one
cannot sample the configurations with large quadrupole defor-
mation.

Figure 18 displays the convergence of the NME for the
0νββ decay of Ge76 with respect to the total number of config-
urations in Ge76 and Se76 from the calculations with different
EDFs and interactions for a given cutoff value Lc. The Lc
is determined in such a way that the convergent value of the
NME is rather stable with the increase of the Lc, see Ref. [31].
It is shown in Fig. 18 that the NME in each case converges rea-
sonably well with the increase of the number of states within
the subspace, even though the convergence behavior is slightly
worse for the PC-PK1 case. Fig. 19 summarizes all the NMEs
from different calculations. One can see that the NMEs by
the GCM calculations in full space can be excellently repro-
duced in the GCM+OC/ENTROP+RR, with about one order
of magnitude reduced computational cost. Again, it should be
emphasized that these NMEs cannot be interpreted as the fi-
nal NME by each EDF or interaction as only axially deformed
configurations are considered here.

IV. CONCLUDING REMARKS

The representation of wave functions for the nuclear states
of interest in terms of a set of nonorthogonal basis functions
is the core idea of GCM. In this approach, the nuclear many-
body problem is transformed into a generalized eigenvalue
problem, where the dimension of the norm and Hamiltonian
kernels grows significantly with the number of the collective
coordinates in the GCM. Therefore, finding an efficient way
to sample the basis functions in the multi-dimensional param-
eter space is important to accelerate or emulate nuclear model
calculations without loss of accuracy.

In this work, we have explored different procedures for im-
plementing statistical ML techniques into GCM calculation
to reduce its computational complexity. To mitigate the im-

pact of noise in the predicted kernels by the RR model, we
have proposed a subspace-reduction algorithm in which op-
timal ML models are used as a surrogate method for the ex-
act quantum-number-projection calculation of the norm and
Hamiltonian kernels. The efficiency and accuracy of each pro-
cedure are demonstrated with both non-relativistic and rela-
tivistic EDFs, a valence-space shell-model Hamiltonian, and a
chiral nuclear interaction in calculations for the low-lying en-
ergy spectra of 76Ge and 76Se, as well as the 0νββ-decay NME
between their ground states. For the present proof-of-concept
study, only axially deformed configurations have been consid-
ered. A polynomial RR model was used to learn the norm and
Hamiltonian kernels. The results have shown that the noise in-
troduced by the optimal RR model may spoil the description
of GCM for nuclear spectra, but this issue can be overcome
by applying the subspace-reduction algorithms based on the
linear dependence/orthogonality conditions for the basis func-
tions. For the NME of ground-state to ground-state 0νββ de-
cay, which requires the wave functions of two different nuclei,
we have used both the OC and ENTROP methods to select the
subspace, which produce similar results. We have found that
in the present study the space-reduction algorithm can speed
up the GCM calculation by a factor up to about three to nine
for the energy spectra and NME, respectively, with negligible
loss in accuracy. One can anticipate that this factor will be
significantly larger in GCM calculations with multiple gener-
ator coordinates. Extensions of our approach in this direction
are in progress.
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[9] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,
519 (2011).

[10] J. L. Egido, Physica Scripta 91, 073003 (2016).
[11] L. M. Robledo, T. R. Rodríguez, and R. R. Rodríguez-Guzmán,

J. Phys. G 46, 013001 (2019), arXiv:1807.02518 [nucl-th].

https://doi.org/10.1103/PhysRev.89.1102
https://doi.org/10.1103/PhysRev.108.311
https://doi.org/10.1088/0034-4885/50/1/001
https://doi.org/10.1088/0034-4885/50/1/001
https://doi.org/10.1063/1.1593014
https://doi.org/10.1103/PhysRevB.71.125113
https://doi.org/10.1103/PhysRevB.71.125113
https://doi.org/10.1063/1.2768368
https://doi.org/10.1063/1.2768368
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1088/0031-8949/91/7/073003
https://doi.org/ 10.1088/1361-6471/aadebd
http://arxiv.org/abs/1807.02518


14

[12] J. A. Sheikh, J. Dobaczewski, P. Ring, L. M. Robledo, and
C. Yannouleas, Journal of Physics G: Nuclear and Particle
Physics 48, 123001 (2021).

[13] J. M. Yao, K. Hagino, Z. P. Li, J. Meng, and P. Ring, Phys. Rev.
C 89, 054306 (2014), arXiv:1403.4812 [nucl-th].

[14] B. Bally, B. Avez, M. Bender, and P. H. Heenen, Phys. Rev.
Lett. 113, 162501 (2014), arXiv:1406.5984 [nucl-th].

[15] T. R. Rodríguez, Phys. Rev. C 90, 034306 (2014),
arXiv:1408.5170 [nucl-th].

[16] J. L. Egido, M. Borrajo, and T. R. Rodríguez, Phys. Rev. Lett.
116, 052502 (2016).

[17] J. M. Yao, L. S. Song, K. Hagino, P. Ring, and J. Meng, Phys.
Rev. C 91, 024316 (2015).

[18] E. F. Zhou, J. M. Yao, Z. P. Li, J. Meng, and P. Ring, Phys.
Lett. B 753, 227 (2016), arXiv:1510.05232 [nucl-th].

[19] R. N. Bernard, L. M. Robledo, and T. R. Rodríguez, Phys. Rev.
C 93, 061302 (2016), arXiv:1604.06706 [nucl-th].

[20] M. Borrajo and J. L. Egido, Phys. Lett. B 764, 328 (2017),
arXiv:1611.06982 [nucl-th].

[21] T. R. Rodríguez and G. Martínez-Pinedo, Phys. Rev. Lett. 105,
252503 (2010).

[22] N. L. Vaquero, T. R. Rodríguez, and J. L. Egido, Phys. Rev.
Lett. 111, 142501 (2013).

[23] L. S. Song, J. M. Yao, P. Ring, and J. Meng, Phys. Rev. C 90,
054309 (2014).

[24] J. M. Yao and J. Engel, Phys. Rev. C 94, 014306 (2016).
[25] C. F. Jiao, J. Engel, and J. D. Holt, Phys. Rev. C 96, 054310

(2017).
[26] J. M. Yao, J. Engel, L. J. Wang, C. F. Jiao, and H. Hergert,

Phys. Rev. C 98, 054311 (2018).
[27] J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, and

H. Hergert, Phys. Rev. Lett. 124, 232501 (2020).
[28] J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301 (2017).
[29] J. M. Yao, J. Meng, Y. F. Niu, and P. Ring, Prog. Part. Nucl.

Phys. 126, 103965 (2022), arXiv:2111.15543 [nucl-th].
[30] M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and

F. Vissani, (2022), arXiv:2202.01787 [hep-ex].
[31] A. M. Romero, J. M. Yao, B. Bally, T. R. Rodríguez, and J. En-

gel, Phys. Rev. C 104, 054317 (2021), arXiv:2105.03471 [nucl-
th].

[32] M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, H. Hergert, T. R.
Rodríguez, R. Roth, J. Yao, and V. Somà, Eur. Phys. J. A 58,
64 (2022), arXiv:2111.01461 [nucl-th].

[33] M. Frosini, T. Duguet, J. P. Ebran, B. Bally, T. Mongelli, T. R.
Rodríguez, R. Roth, and V. Somà, Eur. Phys. J. A 58 (2022).

[34] M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, H. Hergert, T. R.
Rodríguez, R. Roth, J. M. Yao, and V. Somà, Eur. Phys. J. A
58, 64 (2022), arXiv:2111.01461 [nucl-th].

[35] T. Duguet, J. P. Ebran, M. Frosini, H. Hergert, and V. Somà,
(2022), arXiv:2209.03424 [nucl-th].

[36] M. Bender, G. F. Bertsch, and P. H. Heenen, Phys. Rev. Lett.
94, 102503 (2005), arXiv:nucl-th/0410023.

[37] T. R. Rodríguez, A. Arzhanov, and G. Martínez-Pinedo, Phys.
Rev. C 91, 044315 (2015), arXiv:1407.7699 [nucl-th].

[38] J. Broeckhove and E. Deumens, Z. Phys. A 292, 243 (1979).
[39] J. Martínez-Larraz and T. R. Rodríguez, (2022),

arXiv:2208.10870 [nucl-th].
[40] D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, and E. Rrapaj, Phys.

Rev. Lett. 121, 032501 (2018).
[41] A. Sarkar and D. Lee, Phys. Rev. Lett. 126, 032501 (2021).
[42] A. Ekström and G. Hagen, Phys. Rev. Lett. 123, 252501 (2019),

arXiv:1910.02922 [nucl-th].
[43] S. König, A. Ekström, K. Hebeler, D. Lee, and A. Schwenk,

Physics Letters B 810, 135814 (2020).

[44] R. J. Furnstahl, A. J. Garcia, P. J. Millican, and X. Zhang, Phys.
Lett. B 809, 135719 (2020), arXiv:2007.03635 [nucl-th].

[45] C. Drischler, M. Quinonez, P. G. Giuliani, A. E. Lovell,
and F. M. Nunes, Phys. Lett. B 823, 136777 (2021),
arXiv:2108.08269 [nucl-th].

[46] D. Bai and Z. Ren, Phys. Rev. C 103, 014612 (2021),
arXiv:2101.06336 [nucl-th].

[47] Y. Kanada-En’yo, Phys. Rev. Lett. 81, 5291 (1998).
[48] H. Ohta, K. Yabana, and T. Nakatsukasa, Phys. Rev. C 70,

014301 (2004).
[49] Z.-C. Gao, Phys. Lett. B 824, 136795 (2022), arXiv:2102.04044

[nucl-th].
[50] T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, and Y. Utsuno,

Prog. Part. Nucl. Phys. 47, 319 (2001).
[51] S. Shinohara, H. Ohta, T. Nakatsukasa, and K. Yabana, Phys.

Rev. C 74, 054315 (2006), arXiv:nucl-th/0607004.
[52] T. Ichikawa and N. Itagaki, Phys. Rev. C 105, 024314 (2022),

arXiv:2110.12869 [nucl-th].
[53] C. Jiao and C. W. Johnson, Phys. Rev. C 100, 031303 (2019).
[54] D. D. Dao and F. Nowacki, Phys. Rev. C 105, 054314 (2022).
[55] A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler,

C. Fanelli, M. Hjorth-Jensen, T. Horn, M. P. Kuchera, D. Lee,
W. Nazarewicz, P. Ostroumov, K. Orginos, A. Poon, X.-N.
Wang, A. Scheinker, M. S. Smith, and L.-G. Pang, Rev. Mod.
Phys. 94, 031003 (2022).

[56] R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93,
014311 (2016), arXiv:1508.06263 [nucl-th].

[57] Z. M. Niu and H. Z. Liang, Phys. Lett. B 778, 48 (2018),
arXiv:1801.04411 [nucl-th].

[58] L. Neufcourt, Y. Cao, W. Nazarewicz, and F. Viens, Phys. Rev.
C 98, 034318 (2018), arXiv:1806.00552 [nucl-th].

[59] Z. M. Niu and H. Z. Liang, Phys. Rev. C 106, L021303 (2022),
arXiv:2208.04783 [nucl-th].

[60] X. H. Wu, Y. Y. Lu, and P. W. Zhao, Phys. Lett. B 834, 137394
(2022), arXiv:2208.13966 [nucl-th].

[61] R. Utama, W.-C. Chen, and J. Piekarewicz, J. Phys. G 43,
114002 (2016), arXiv:1608.03020 [nucl-th].

[62] D. Wu, C. L. Bai, H. Sagawa, and H. Q. Zhang, Phys. Rev. C
102, 054323 (2020), arXiv:2006.09677 [nucl-th].

[63] X.-X. Dong, R. An, J.-X. Lu, and L.-S. Geng, Phys. Rev. C
105, 014308 (2022), arXiv:2109.09626 [nucl-th].

[64] N. J. Costiris, E. Mavrommatis, K. A. Gernoth, and J. W. Clark,
Phys. Rev. C 80, 044332 (2009).

[65] Z. M. Niu, H. Z. Liang, B. H. Sun, W. H. Long, and Y. F. Niu,
Phys. Rev. C 99, 064307 (2019), arXiv:1810.03156 [nucl-th].

[66] Z.-A. wang, J. Pei, Y. Liu, and Y. Qiang, Phys. Rev. Lett. 123,
122501 (2019), arXiv:1906.04485 [nucl-th].

[67] R.-D. Lasseri, D. Regnier, J.-P. Ebran, and A. Penon, Phys.
Rev. Lett. 124, 162502 (2020), arXiv:1910.04132 [nucl-th].

[68] Z.-X. Yang, X.-H. Fan, T. Naito, Z.-M. Niu, Z.-P. Li, and
H. Liang, (2022), arXiv:2205.15649 [nucl-th].

[69] X. H. Wu, Z. X. Ren, and P. W. Zhao, Phys. Rev. C 105,
L031303 (2022), arXiv:2105.07696 [nucl-th].

[70] S. Islam, H. Mang, and P. Ring, Nucl. Phys. A 326, 161 (1979).
[71] J. M. Yao, J. Meng, P. Ring, and D. P. Arteaga, Phys. Rev. C

79, 044312 (2009).
[72] K. Hagino, G. F. Bertsch, and P.-G. Reinhard, Phys. Rev. C 68,

024306 (2003).
[73] B. Sabbey, M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys.

Rev. C 75, 044305 (2007).
[74] D. M. Brink and A. Weiguny, Nucl. Phys. A 120, 59 (1968).
[75] S. Shalev-Shwartz and S. Ben-David, Understanding Machine

Learning - From Theory to Algorithms. (Cambridge University
Press, 2014) pp. I–XVI, 1–397.

https://doi.org/ 10.1088/1361-6471/ac288a
https://doi.org/ 10.1088/1361-6471/ac288a
https://doi.org/ 10.1103/PhysRevC.89.054306
https://doi.org/ 10.1103/PhysRevC.89.054306
http://arxiv.org/abs/1403.4812
https://doi.org/ 10.1103/PhysRevLett.113.162501
https://doi.org/ 10.1103/PhysRevLett.113.162501
http://arxiv.org/abs/1406.5984
https://doi.org/10.1103/PhysRevC.90.034306
http://arxiv.org/abs/1408.5170
https://doi.org/10.1103/PhysRevLett.116.052502
https://doi.org/10.1103/PhysRevLett.116.052502
https://doi.org/ 10.1103/PhysRevC.91.024316
https://doi.org/ 10.1103/PhysRevC.91.024316
https://doi.org/ 10.1016/j.physletb.2015.12.028
https://doi.org/ 10.1016/j.physletb.2015.12.028
http://arxiv.org/abs/1510.05232
https://doi.org/10.1103/PhysRevC.93.061302
https://doi.org/10.1103/PhysRevC.93.061302
http://arxiv.org/abs/1604.06706
https://doi.org/10.1016/j.physletb.2016.11.037
http://arxiv.org/abs/1611.06982
https://doi.org/10.1103/PhysRevLett.105.252503
https://doi.org/10.1103/PhysRevLett.105.252503
https://doi.org/10.1103/PhysRevLett.111.142501
https://doi.org/10.1103/PhysRevLett.111.142501
https://doi.org/ https://doi.org/10.1103/PhysRevC.90.054309
https://doi.org/ https://doi.org/10.1103/PhysRevC.90.054309
https://doi.org/10.1103/PhysRevC.94.014306
https://doi.org/10.1103/PhysRevC.96.054310
https://doi.org/10.1103/PhysRevC.96.054310
https://doi.org/ 10.1103/PhysRevC.98.054311
https://doi.org/ 10.1103/PhysRevLett.124.232501
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/ 10.1016/j.ppnp.2022.103965
https://doi.org/ 10.1016/j.ppnp.2022.103965
http://arxiv.org/abs/2111.15543
http://arxiv.org/abs/2202.01787
https://doi.org/10.1103/PhysRevC.104.054317
http://arxiv.org/abs/2105.03471
http://arxiv.org/abs/2105.03471
https://doi.org/10.1140/epja/s10050-022-00694-x
https://doi.org/10.1140/epja/s10050-022-00694-x
http://arxiv.org/abs/2111.01461
https://doi.org/10.1140/epja/s10050-022-00693-y
https://doi.org/ 10.1140/epja/s10050-022-00694-x
https://doi.org/ 10.1140/epja/s10050-022-00694-x
http://arxiv.org/abs/2111.01461
http://arxiv.org/abs/2209.03424
https://doi.org/10.1103/PhysRevLett.94.102503
https://doi.org/10.1103/PhysRevLett.94.102503
http://arxiv.org/abs/nucl-th/0410023
https://doi.org/10.1103/PhysRevC.91.044315
https://doi.org/10.1103/PhysRevC.91.044315
http://arxiv.org/abs/1407.7699
https://doi.org/10.1007/BF01547468
http://arxiv.org/abs/2208.10870
https://doi.org/ 10.1103/PhysRevLett.121.032501
https://doi.org/ 10.1103/PhysRevLett.121.032501
https://doi.org/10.1103/PhysRevLett.126.032501
https://doi.org/10.1103/PhysRevLett.123.252501
http://arxiv.org/abs/1910.02922
https://doi.org/https://doi.org/10.1016/j.physletb.2020.135814
https://doi.org/10.1016/j.physletb.2020.135719
https://doi.org/10.1016/j.physletb.2020.135719
http://arxiv.org/abs/2007.03635
https://doi.org/ 10.1016/j.physletb.2021.136777
http://arxiv.org/abs/2108.08269
https://doi.org/10.1103/PhysRevC.103.014612
http://arxiv.org/abs/2101.06336
https://doi.org/10.1103/PhysRevLett.81.5291
https://doi.org/10.1103/PhysRevC.70.014301
https://doi.org/10.1103/PhysRevC.70.014301
https://doi.org/10.1016/j.physletb.2021.136795
http://arxiv.org/abs/2102.04044
http://arxiv.org/abs/2102.04044
https://doi.org/ https://doi.org/10.1016/S0146-6410(01)00157-0
https://doi.org/10.1103/PhysRevC.74.054315
https://doi.org/10.1103/PhysRevC.74.054315
http://arxiv.org/abs/nucl-th/0607004
https://doi.org/10.1103/PhysRevC.105.024314
http://arxiv.org/abs/2110.12869
https://doi.org/10.1103/PhysRevC.100.031303
https://doi.org/10.1103/PhysRevC.105.054314
https://doi.org/10.1103/RevModPhys.94.031003
https://doi.org/10.1103/RevModPhys.94.031003
https://doi.org/10.1103/PhysRevC.93.014311
https://doi.org/10.1103/PhysRevC.93.014311
http://arxiv.org/abs/1508.06263
https://doi.org/10.1016/j.physletb.2018.01.002
http://arxiv.org/abs/1801.04411
https://doi.org/10.1103/PhysRevC.98.034318
https://doi.org/10.1103/PhysRevC.98.034318
http://arxiv.org/abs/1806.00552
https://doi.org/10.1103/PhysRevC.106.L021303
http://arxiv.org/abs/2208.04783
https://doi.org/10.1016/j.physletb.2022.137394
https://doi.org/10.1016/j.physletb.2022.137394
http://arxiv.org/abs/2208.13966
https://doi.org/10.1088/0954-3899/43/11/114002
https://doi.org/10.1088/0954-3899/43/11/114002
http://arxiv.org/abs/1608.03020
https://doi.org/ 10.1103/PhysRevC.102.054323
https://doi.org/ 10.1103/PhysRevC.102.054323
http://arxiv.org/abs/2006.09677
https://doi.org/ 10.1103/PhysRevC.105.014308
https://doi.org/ 10.1103/PhysRevC.105.014308
http://arxiv.org/abs/2109.09626
https://doi.org/10.1103/PhysRevC.80.044332
https://doi.org/ 10.1103/PhysRevC.99.064307
http://arxiv.org/abs/1810.03156
https://doi.org/ 10.1103/PhysRevLett.123.122501
https://doi.org/ 10.1103/PhysRevLett.123.122501
http://arxiv.org/abs/1906.04485
https://doi.org/10.1103/PhysRevLett.124.162502
https://doi.org/10.1103/PhysRevLett.124.162502
http://arxiv.org/abs/1910.04132
http://arxiv.org/abs/2205.15649
https://doi.org/10.1103/PhysRevC.105.L031303
https://doi.org/10.1103/PhysRevC.105.L031303
http://arxiv.org/abs/2105.07696
https://doi.org/ https://doi.org/10.1016/0375-9474(79)90373-7
https://doi.org/ 10.1103/PhysRevC.79.044312
https://doi.org/ 10.1103/PhysRevC.79.044312
https://doi.org/10.1103/PhysRevC.68.024306
https://doi.org/10.1103/PhysRevC.68.024306
https://doi.org/10.1103/PhysRevC.75.044305
https://doi.org/10.1103/PhysRevC.75.044305
https://doi.org/10.1016/0375-9474(68)90059-6


15

[76] A. Geron, Hands-on machine learning with Scikit-Learn and
TensorFlow : concepts, tools, and techniques to build intelli-
gent systems (O’Reilly Media, Sebastopol, CA, 2017).

[77] R. J. Barlow, Statistics. A guide to the use of statistical methods
in the physical sciences (WileyBlackwell, 1989).

[78] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson,
C. K. Fisher, and D. J. Schwab, Physics Reports 810, 1 (2019).

[79] J. Decharge and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[80] J. Berger, M. Girod, and D. Gogny, Comp. Phys. Comm. 63,

365 (1991).
[81] J. M. Yao, (2022), arXiv:2204.12126 [nucl-th].
[82] C. Hicks and D. Lee, (2022), arXiv:2209.02083 [nucl-th].
[83] National Nuclear Data Center, “NuDat 2 Database,” (2020),

https://www.nndc.bnl.gov/nudat2.
[84] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82,

054319 (2010).

[85] L. S. Song, J. M. Yao, P. Ring, and J. Meng, Phys. Rev. C 95,
024305 (2017).

[86] J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, Nuclear
Physics A 818, 139 (2009).

[87] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and
A. Schwenk, Phys. Rev. C 83, 031301 (2011).

[88] A. Nogga, S. K. Bogner, and A. Schwenk, Phys. Rev. C 70,
061002 (2004).

[89] S. R. Stroberg, J. D. Holt, A. Schwenk, and J. Simonis, Phys.
Rev. Lett. 126, 022501 (2021).

[90] J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R.
Stroberg, H. Hergert, and J. D. Holt, Phys. Rev. C 103, 014315
(2021).

[91] J. M. Yao, I. Ginnett, A. Belley, T. Miyagi, R. Wirth, S. Bogner,
J. Engel, H. Hergert, J. D. Holt, and S. R. Stroberg, Phys. Rev.
C 106, 014315 (2022), arXiv:2204.12971 [nucl-th].

[92] H. Hergert, Physica Scripta 92, 023002 (2016).
[93] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and

K. Tsukiyama, Physics Reports 621, 165 (2016).

https://doi.org/ https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1103/PhysRevC.21.1568
https://doi.org/10.1016/0010-4655(91)90263-K
https://doi.org/10.1016/0010-4655(91)90263-K
http://arxiv.org/abs/2204.12126
http://arxiv.org/abs/2209.02083
https://www.nndc.bnl.gov/nudat2
https://www.nndc.bnl.gov/nudat2
https://doi.org/ 10.1103/PhysRevC.82.054319
https://doi.org/ 10.1103/PhysRevC.82.054319
https://doi.org/ 10.1103/PhysRevC.95.024305
https://doi.org/ 10.1103/PhysRevC.95.024305
https://doi.org/10.1016/j.nuclphysa.2008.12.005
https://doi.org/10.1016/j.nuclphysa.2008.12.005
https://doi.org/ 10.1103/PhysRevC.83.031301
https://doi.org/10.1103/PhysRevC.70.061002
https://doi.org/10.1103/PhysRevC.70.061002
https://doi.org/10.1103/PhysRevLett.126.022501
https://doi.org/10.1103/PhysRevLett.126.022501
https://doi.org/ 10.1103/PhysRevC.103.014315
https://doi.org/ 10.1103/PhysRevC.103.014315
https://doi.org/10.1103/PhysRevC.106.014315
https://doi.org/10.1103/PhysRevC.106.014315
http://arxiv.org/abs/2204.12971
https://doi.org/10.1088/1402-4896/92/2/023002
https://doi.org/ http://dx.doi.org/10.1016/j.physrep.2015.12.007

	Optimization of generator coordinate method with machine-learning techniques for nuclear spectra and neutrinoless double-beta decay: ridge regression for nuclei with axial deformation
	Introduction
	Formalism
	The generator coordinate method
	The nuclear matrix element of 0 decay
	Learning kernels with the polynomial ridge regression

	Illustrations
	EDF-based GCM calculations
	A non-relativistic EDF: Gogny D1S
	The relativistic EDF: PC-PK1

	Hamiltonian-based GCM calculations
	Energy spectra and nuclear matrix elements of 0 decay 

	Concluding remarks
	Acknowledgments
	References


