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Optical-model potentials (OMPs) continue to play a key role in nuclear reaction calculations.
However, the uncertainty of phenomenological OMPs in widespread use — inherent to any para-
metric model trained on data — has not been fully characterized, and its impact on downstream
users of OMPs remains unclear. Here we assign well-calibrated uncertainties for two representative
global OMPs, those of Koning-Delaroche and Chapel Hill ’89, using Markov-Chain Monte Carlo for
parameter inference. By comparing the canonical versions of these OMPs against the experimental
data originally used to constrain them, we show how a lack of outlier rejection and a systematic
underestimation of experimental uncertainties contributes to bias of, and overconfidence in, best-
fit parameter values. Our updated, uncertainty-quantified versions of these OMPs address these
issues and yield complete covariance information for potential parameters. Scattering predictions
generated from our ensembles show improved performance both against the original training cor-
pora of experimental data and against a new “test” corpus comprising many of the experimental
single-nucleon scattering data collected over the last twenty years. Finally, we apply our uncertainty-
quantified OMPs to two case studies of application-relevant cross sections. We conclude that, for
many common applications of OMPs, including OMP uncertainty should become standard practice.
To facilitate their immediate use, digital versions of our updated OMPs and related tools for forward
uncertainty propagation are included as Supplemental Material.

I. INTRODUCTION

For more than fifty years, optical-model potentials
(OMPs) have played an important role in nuclear scat-
tering calculations by providing effective projectile-target
interactions. Early successes in fitting basic phenomeno-
logical OMPs to elastic scattering data [1] motivated
continuing theoretical improvements on several fronts,
including construction of (semi-)microscopic OMPs via
the local density approximation [2–5], extension to de-
formed and actinide systems [6, 7], and formal connection
with the single-particle Green’s function via application
of relevant dispersion relations [8–15]. The recent de-
velopment of a global microscopic OMP [16] based on
several χEFT nucleon-nucleon (NN) potentials opens a
promising new avenue for making predictions of scatter-
ing on unstable nuclides with a minimum of phenomenol-
ogy. For recent reviews of OMP topics, see [17, 18].

Despite these advances, a number of basic questions
remain about the uncertainty and generality of OMPs.
First are questions of interpolation and extrapolation:
how far can OMPs be trusted to generate reliable scat-
tering predictions where experimental data are not avail-
able, especially away from β-stability? As new rare iso-
tope beam facilities come online, reliable estimates of
scattering on unstable targets will be needed to make
sense of the wealth of new data that are anticipated. For
meaningful comparison with these new data, OMP pre-
dictions should come equipped with well-calibrated un-
certainty estimates, estimates that are typically absent
from widely used phenomenological OMPs, such as the
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Chapel-Hill 89’ OMP [19] (intended for 40 ≤ A ≤ 209
from 10 to 65 MeV) and Koning-Delaroche OMP [20]
(intended for 24 ≤ A ≤ 209 from 0.001 to 200 MeV). In
principle, a global microscopic OMP based on a χEFT-
derived NN potential, such as [16], come “naturally”
equipped with uncertainties from truncation in the chiral
expansion and should be less prone to under- or overfit-
ting problems that affect phenomenological potentials.
To date, however, microscopic models do not achieve the
accuracy of phenomenological OMPs in regions where ex-
perimental data do exist, especially for inelastic scatter-
ing observables, which may diminish their utility for nu-
clear data applications. Were it available, knowledge of
OMP uncertainties would help evaluators rank the rela-
tive importance of OMPs among other sources of uncer-
tainty that enter reaction models, such as nuclear level
densities and γ-ray strength functions [21].

The second type of questions concern the functional
form of potentials and their capacity to realistically de-
scribe the underlying physics. As a simple example, the
Koning-Delaroche OMP includes an imaginary spin-orbit
term, but the Chapel Hill ’89 OMP does not. Does in-
clusion of this term result in meaningful differences in
scattering predictions, and if so, which experimental data
actually constrain its parameters? The form of nonlocal
terms [22–24], shape of the hole potential and relation to
dispersive correctness [13], and the correct dependence
of parameters on nuclear asymmetry [25] are important
open topics that would benefit from a firmer understand-
ing of uncertainty in extant OMPs.

To clarify these issues, several recent studies have
investigated uncertainty-quantification (UQ) techniques
for phenomenological OMPs, including direct compar-
isons of frequentist and Bayesian methods for model cal-
ibration [26, 27], introduction of Gaussian process priors
for energy-dependent parameters [28], and introduction
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of an ad-hoc dedicated “model uncertainty” term in a dis-
persive OMP analysis [29]. The ambitious study of [21]
confronts the mature reaction code TALYS [30] with vir-
tually the entire EXFOR experimental reaction database
[31] with the specific intent of generating uncertainties for
evaluations. Such theoretical studies are being comple-
mented by the creation of templates for experimental-
ists for capturing the many (often undercharacterized)
sources of uncertainty in experimental measurement [32–
34], designed specifically so that newly collected data will
be maximally useful for theory and evaluation efforts go-
ing forward. Most recently, the work of [28] proposes a
statistically sound, reproducible pipeline for nuclear data
evaluations, including characterization of OMP uncer-
tainties, demonstrating the potential to accelerate and
standardize the challenging process of evaluation.

Despite these methodological improvements over the
last decade, many OMP users do not yet consider the
OMP contribution to the uncertainty budget of their ap-
plications, either because it is assumed to be negligible or
because tools to do so are difficult to use. Those that do
(e.g. [35, 36]) typically estimate uncertainty qualitatively
by manually varying a handful of parameters thought to
be important and by comparing predictions from a hand-
ful non-UQ OMPs against each other by eye. Even when
OMP parameter uncertainty estimates are available (e.g.,
[30]), they are more often based on hard-earned evalua-
tor intuition rather than on detailed tests of empirical
performance. In the ideal case, each OMP would ship
with complete covariance information for potential pa-
rameters, be tested against trusted, easily-accessed data
libraries, be based on reproducible statistical practices
and stated assumptions, and make it easy for any down-
stream user to forward-propagate OMP uncertainty into
their research application. Robust OMP UQ of this type
would be a building block for larger UQ efforts such as
the evaluation efforts mentioned earlier [21, 28] or im-
proved experimental analysis pipelines. Motivating and
demonstrating such a framework for phenomenological
OMP UQ is the main goal of the present work.

To demonstrate our approach, we apply it to both
the Koning-Delaroche global OMP (KD) [20] and the
Chapel-Hill ’89 OMP (CH89) [19], yielding two new
uncertainty-quantified OMP ensembles we designate
KDUQ and CHUQ, respectively. To train these OMPs,
we recompiled the same training data corpora as used in
the original treatments (we refer to our recompilations
as the CHUQ corpus and KDUQ corpus). The result-
ing UQ OMPs can be directly inserted into existing user
codes to incorporate the parametric uncertainty of these
OMPs. By applying our approach to multiple OMPs and
comparing with microscopic and semi-microscopic alter-
natives, we can develop insight into how the next gener-
ation of uncertainty-equipped potentials can be gainfully
constructed. In particular, we will emphasize the impor-
tance of two key steps in fitting phenomenological OMPs
— managing outliers and experimental uncertainty un-
derestimation — that are paramount for empirical UQ,
both in OMPs and otherwise.

Our findings are organized in the following sections.
Section II introduces the generic parameter inference
problem and its application to OMP fitting, including
challenges faced in the original CH89 and KD anal-
yses. Section III proposes a new likelihood function
and inference strategy based on Markov-Chain Monte
Carlo (MCMC) that we argue is better suited for gen-
erating realistic OMP uncertainties. Section IV applies
this strategy to retrain the KD and CH89 OMP forms
against their original training data, yielding updated,
uncertainty-quantified OMPs: KDUQ and CHUQ. Sec-
tion V illustrates the impact of KDUQ and CHUQ both
on Hauser-Feshbach calculations for two radiative cap-
ture test cases and on the reliability of OMP extrapola-
tion along neutron-proton asymmetry. Section VI sum-
marizes our findings. Following the main text, further
technical details appear in the Appendix and three sec-
tions of Supplemental Material [37], including explicit
definitions of the OMPs and scattering formulae, all ex-
perimental data used for training and testing, and our
recommended KDUQ and CHUQ parameter values for
future use. We hope that by providing thorough docu-
mentation, readers will be able to reproduce or extend
our results without guesswork.

II. CHALLENGES IN OMP PARAMETER
INFERENCE

In this section, we first present a generic parameter
inference problem, illustrating some common challenges
with a pedagogical example. We then turn to the original
KD and CH89 analyses, showing that certain assump-
tions, while necessary for making these canonical anal-
yses tractable, can result in overconfidence in the fitted
parameters.

A. Generic parameter inference

The goal of a parameter inference problem is to de-
termine optimal parameters for a given functional form,
where “optimal” usually means best matching a corpus
of training data. In the specific case of OMP optimiza-
tion, the OMP constitutes a model M with unknown,
possibly correlated potential parameters θ, and the task
is to determine an optimal set of parameters θopt that
minimizes the residuals between experimental scattering
data and scattering-code predictions made using M . (In
these and all following definitions, we use bold typeface
to denote a vector or matrix quantity.) A natural start-
ing point for the probability density function of θ is to
use a k-dimensional normal distribution:

p(θ) =
1√

(2π)k|Σ|
e−

1
2r

ᵀΣ−1r

r = θ − θopt.
(1)

Here, Σ is the k× k covariance matrix associated with



3

θ. If θopt and Σ were known, the inference problem
would be solved (at least up to the assumption of multi-
variate normality), with Σ holding the variance informa-
tion enabling downstream uncertainty propagation. Be-
cause we do not have direct measurements of θ, only ex-
perimental scattering measurements, we cannot use Eq.
1 directly to train the model. Instead, we need to con-
struct a likelihood function that connects the probabil-
ity of observing a given experimental value given a can-
didate parameter vector. For OMP optimization, this
involves mapping a candidate θ to predicted scattering
observables via a scattering code, evaluated at the rel-
evant experimental indices (e.g, scattering energy, an-
gle, target). This mapping is highly nonlinear in θ as it
involves, among other things, solving for the scattering
matrix. Because the covariance matrix between experi-
mental measurements is rarely known (discussed in detail
in [21]), connecting OMP parameters with experimental
data via selection of a likelihood function requires mak-
ing certain assumptions about the scattering data. The
overwhelming majority of past OMP analyses (includ-
ing CH89 and KD) use a maximum likelihood approach
based on some version of weighted-least-squares for their
likelihood function:

L(y|x, δy, θ) = e
− 1

2

∑
i

r2i
δyi

2

ri = yi −M(θ, xi).
(2)

In this expression, for the ith training data point, xi
are the experimental conditions (such as energy, angle,
etc.), yi is the observed value, such as the cross section,
and δyi is the reported uncertainty of the observed value.
Thus (x, y, δy) denotes the entire training corpus. Ex-
perimental data also often include an estimate of uncer-
tainty in the experimental conditions δx but these are
usually omitted from the OMP analysis as they are more
difficult to incorporate using standard optimization ap-
proaches. The predicted values, M(θ,x), are an output
of the scattering code evaluated at each x and using the
OMP realization M(θ) for the projectile-target interac-
tion.

If several conditions apply, including model linearity
in the parameters, experimental uncertainties character-
ized by a known, positive-definite covariance matrix, and
measurement samples being drawn from the same un-
derlying distribution, the weighted least-squares estima-
tor (Eq. 2) guarantees an analytic solution that min-
imizes bias in θopt [38]. Unfortunately for OMP ana-
lysts, each of these conditions is violated in traditional
OMP optimization analyses that are concerned primarily
with θ, and these violations are especially problematic for
the present UQ task (Σ estimation). Most impactful is
the weighted-least-squares assumption that experimen-
tally reported uncertainties are independent and com-
plete (that is, that the vector of individual data point
uncertainties δy fully represents the true, unknown data
covariance matrix). In effect, this assumption assigns
more independent information to residuals than they ac-

tually have, making the inference problem erroneously
overdetermined and causing bias in θopt and underesti-
mation of θopt uncertainty. Even if the full experimental
data covariance were known, the OMP, by definition, is
a projection of the true projectile-target interaction onto
a reduced space of simple potential forms. As such we
should expect it to suffer at least somewhat from “model
defects” that, if unaccounted for during inference, may
lead to overconfidence in an incorrect θopt, as demon-
strated for a simple physical model in [39]. Further,
model nonlinearity in θ means that the likelihood func-
tion surface is not guaranteed to be convex, which can
stymie simple optimization approaches such as gradient
descent but which may be tractable with other optimiza-
tion algorithms such as, e.g., simulated annealing.

B. A toy model

To illustrate how outliers and uncertainty underesti-
mation impact parameter inference, we present a toy
problem using a simple linear model. Imagine we wish
to describe some generic phenomenon, T (x), that occurs
on a domain x ∈ [−1, 1]. The true T (x) is:

T (x) = 2.5P0(x) + 2.0P1(x) + 1.5P2(x) + 1.0P3(x), (3)

where Pn is the nth Legendre polynomial. Suppose we
know the functional form of T (x) but not the values of
the coefficients, which we would like to learn through
inference against data. So we collect i observations y
at experimental conditions x, using a device subject to
measurement uncertainty. Aware of this uncertainty, we
estimate measurement imprecision for each data point as
δy. We then define a model, M , and compare model
predictions M(x, θ) to the measured data, where θ are
the n unknown coefficients that we want to learn. Be-
cause our model is linear in θ and our data measure-
ments are independent and uncorrelated, Eq. 2 provides
the best unbiased estimator of the true coefficients, de-
noted θtrue. We can find an optimum set of parameter
values θopt analytically using maximum likelihood esti-
mation or numerically using, e.g., gradient descent until
we reach some threshold for convergence. The covari-
ance matrix at θopt is the inverse of the Hessian matrix
H(θopt), which can be easily assessed numerically.

So far, we have described a simple, generic inference
problem and its solution. We now consider four possible
scenarios for solving this problem, each involving a dif-
ferent possible distribution for y and δy. These differing
distributions are plotted in panels (a) to (d) of Fig. 1,
and defined according to:

yi ∼ N (T (xi), 0.322)

δyi = 0.32T (xi)
(4)

yi ∼ N (T (xi), 0.322)

δyi = 0.10T (xi)
(5)
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FIG. 1: The four data-fitting scenarios for the toy model discussed in the text are compared. Panel (a) shows a fit to data
with accurate uncertainty estimates and no outliers. Panel (b) shows a fit to data with underestimated uncertainties and no
outliers. Panel (c) shows a fit to data with accurate uncertainty estimates but with outliers. Panel (d) shows a fit using data
with both underestimated uncertainties and with outliers. The simulated data used for fitting are shown as black bars, the
“true” underlying function used to generate the data is shown as a blue line, and the fit to the “experimental” data is shown in
red. In panels (e) to (h), the normalized residuals for data in the corresponding plots are histogrammed. A normal distribution
with µ = 0 and σ2 = 1 (gray dashed line) is shown for reference.

yi ∼ N (T (xi), 0.322) + α

δyi = 0.32T (xi)
(6)

yi ∼ N (T (xi), 0.322) + α

δyi = 0.10T (xi),
(7)

for each i, where

α

{
∼ N (3, 0.62), 10% probability,

= 0, 90% probability.

In this notation, ∼ N (µ, σ2) refers to sampling from a
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normal distribution of mean µ and variance σ2.

We begin with the first scenario, shown in panel (a)
of 1. This is the best-case scenario, given the assump-
tions appropriate for weighted-least-squares: our measur-
ing device suffers from zero bias and the true mean mea-
surement uncertainties δy are known (Eq. 4). For exam-
ple, our measuring device exhibits independent statistical
and systematic uncertainties of 10% and 30%, yielding a
total 32% total uncertainty via addition in quadrature.
Because both the measured data and their uncertainties
are faithful to the true underlying distribution, our es-
timated θopt match θtrue, up to the estimated uncer-
tainty of θopt. Panel (e) shows that the distribution of
standardized residuals between our model’s predictions
and the corresponding experimental data are distributed
according to a normal distribution with unit variance.

Panel (b) of Fig. 1 shows the outcome of the second
scenario: our measuring device performs identically as in
the first scenario, but now our estimates of δy are too
small (Eq. 5). This could arise if, for instance, both
statistical and systematic uncertainty contribute to the
overall uncertainty of our measuring device, but we have
only recognized and reported the statistical uncertainty.
Because the minimum of our weighted-least-squares like-
lihood function is not affected by overall rescalings of δy,
we recover the same θopt as in the first scenario. How-
ever, our uncertainty estimates of θopt have shrunk by
a factor of three — the same factor by which we under-
estimated the measurement uncertainty – because the
Hessian H(θopt) scales proportionally with δy. Panel (f)
shows that while the standardized residuals remain nor-
mally distributed with a mean of zero, they are more
dispersed than the reference distribution. Thus, under-
estimation of experimental uncertainties directly causes
underestimation of parametric uncertainties. This is a
generic feature of parameter inference and, as we will
show in the following section, affects most previous OMP
analyses.

Panel (c) of Fig. 1 presents a third scenario: as in the
first scenario, we have accurately estimated the experi-
mental uncertainty δ, but now our experimental device
occasionally returns anomalous measurements (so-called
“outliers”). The simulated data y have been drawn ac-
cording to 6: each measurement has a 10% chance of
being shifted upward by α, which is an artificial “outlier
factor”. This is meant to represent a more realistic sit-
uation in which some fraction of experimental data are
inconsistent with the model, either because of model de-
fects or because of problems during experimental data
collection. The outliers “pull” on the likelihood func-
tion, causing our recovered θopt to differ from those of
the previous scenarios, but, because our δy are the same
as in the first scenario, our uncertainty estimates of θopt
do not change. The parameter bias appears in panel (g)
as asymmetry in the standardized residuals with respect
to the reference distribution, even as the variance of the
residuals is the same as in the first scenario. We note
that even if our measuring device returned no outliers, if
our underlying model was incorrect (i.e., model defect),

certain data would appear to be outliers, and we would
obtain a similar result.

Finally, panel (d) of Fig. 1 combines the second and
third scenarios: y contains occasional outliers and δy are
overconfident (Eq. 7). Accordingly, our estimated θopt is
biased and our uncertainty estimates of θopt are overcon-
fident about the biased estimates. Both the bias and the
dispersion of the normalized residuals are visible in panel
(h). This scenario is the best analog to the OMP opti-
mization task. For us to obtain well-calibrated uncertain-
ties that span the experimental data, our loss function
and optimization strategy must address both challenges:
namely, underestimation of experimental (co)variances,
and fundamental discrepancies between the model and
data either due to model defects or problems with ex-
perimental data collection (which we do not attempt to
disentangle).

C. Challenges for CH89 and KD

The difficulties of using weighted-least-squares estima-
tors are well-known to OMP designers, including those
of CH89 and KD. A common symptom is that initial
fits to experimental data are often grossly unsatisfac-
tory, clearly missing “the physics” present in the scatter-
ing data, leading to manual parameter adjustment. The
authors of CH89 comment that, early in their analysis,
there were often “significant contributions from the data
that the model is not able to describe” even when train-
ing to a single scattering data set. They tested several
alternative loss functions but found that in “reduc[ing]
the emphasis of outlying points” they “lost sensitivity to
even the good data”. After testing various functions,
their compromise was to introduce a weight factor to
their likelihood function for each data set s, equal to the
minimum loss for that data set obtained in a fit to only
that data set, i.e.,

L(y|x, δy, θ) =
∑
s

Ls(θ|xs,ys)
min(Llocs (θ|xs,ys))

, (8)

where Ls is the contribution from data set s to the overall
weighted-least-squares fit as in Eq. 2. By deemphasizing
data sets that were poor matches to the form of their
OMP, they achieved a better visual fit to their training
data. However, this solution also introduces problems:
the introduced weights are not easily interpreted nor do
they preserve the normalization of the likelihood func-
tion, which is important for estimating Σ. However, be-
cause finding θopt is insensitive to overall rescalings of L,
most past authors have been willing to sacrifice the pos-
sibility of accurately estimating Σ in order to improve
their single “best-fit” parameter vector.

Koning and Delaroche identified this issue in their
global OMP characterization as well and also provided
extensive quantitative evidence that traditional OMPs
are incapable of reproducing the bulk of experimental
data within the range of reported experimental uncer-
tainties. In Table 12 of their OMP analysis [20], they
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present sums of uncertainty-weighted square residuals
per degree of freedom (a reduced-χ2 metric) for several
prominent OMPs against a variety of experimental data
sets. In their analysis, a value near unity was taken as an
indication of good model-data agreement. For the widely
used global OMPs they considered, they found values of
χ2/N ranging from 6.3 to 11.2 for differential elastic scat-
tering cross sections and from 2.3 to 9.2 for neutron to-
tal cross sections. Using their new potential (KD), they
found values of χ2/N ranging from 4.5 to 7.4 for differ-
ential elastic scattering cross sections and from 1.2 to
6.7 for neutron total cross sections, depending on the ex-
perimental data corpus tested against. They echoed the
comments of the CH89 authors, noting that “the opti-
mization procedure is very sensitive” to underestimations
in reported experimental uncertainties such that “even a
slightly incorrect error estimation can easily vitiate an
automated fitting procedure”. In [21], Koning further
analyzed model-experiment discrepancies across the EX-
FOR database and combined several proposed remedies
into an “evaluated” χ2 expression meant to overcome the
issues of using näıve weighted least squares.

To better understand these discrepancies between the
trained model and training data, we began by reproduc-
ing the original CH89 and KD analyses. Figure 2 summa-
rizes the performance of the standard CH89 and KD po-
tentials against the experimental data used to train them,
as reconstructed in the present work. For each experi-
mental datum, the normalized residual for that datum
(r/δy) was tabulated, then all residuals histogrammed
according to data type. In addition, in panel (b), two
dotted curves show the performance of CH89 when the
CH89 parameters are resampled according to the param-
eter covariance matrix presented in the original publi-
cation. If the assumptions underpinning weighed-least-
squares were fulfilled, each line should follow the gray
dashed line (a normal distribution with unit variance),
indicating that the CH89 and KD predictions match the
mean of the experimental data used to train them, and
that the training data are dispersed about the predictions
in keeping with their reported uncertainties. In reality,
all types of scattering data show a variance several times
larger than unity, an indication either of underestimation
of experimentally reported uncertainties or of significant
model deficiencies, or both. The means of the distri-
butions are offset to varying degree, indicating that the
canonical θopt for these OMPs retain some bias with re-
spect to the underlying experimental data. Table I lists
the mean, standard deviation, and skewness of these ob-
served distributions for each data type used to train the
CH89 and KD OMPs. This confirms the issues identi-
fied by past authors: clearly, these OMPs do not span
the variance of their training data, and for some data
types, predictions show systematic bias with respect to
experiment.

The comparison of these canonical OMPs with their
training data led us to investigate the self-consistency of
the training data themselves. We discovered that these
training data sets were often inconsistent, in the sense

FIG. 2: The distribution of normalized residuals (r/δy) be-
tween the original KD and CH89 OMPs and their training
data, as reconstructed in this work. KD is shown in panel (a)
and CH89 in panel (b). Residuals are histogrammed by data
type, with all available proton and neutron data for that data
type included (in contrast with Table I which discriminates
by projectile). In panel (b), CH89 UQ refers to a version of
the CH89 OMP that includes the parametric uncertainties re-
ported in the original work, which we have sampled here as
θ ∼ N (θCH89,ΣCH89), with θCH89 being the canonical CH89
“best fit” parameter vector, and ΣCH89 being the canonical
CH89 covariance matrix published in the original treatment.

that no plausible model could simultaneously fit them.
This implies that for data routinely used in OMP train-
ing, the reported experimental uncertainties may be sig-
nificantly underestimated. Figure 3 illustrates the prob-
lem: in panel (a), five independent, representative elastic
scattering data sets for neutrons on 40Ca at 14±0.1 MeV
from the EXFOR database [31] are shown. Each is com-
parable to the elastic scattering data sets used to train
the KD and CH89 OMPs. To facilitate comparison be-
tween these data sets, which were measured at different
angles, we describe their mean behavior as:

f(θ) =

10∑
n=0

cnpn(θ) (9)

where pn(x) are Legendre polynomials. A simple
weighted-least-squares fit was performed to optimize the
polynomial coefficients cn. When the fit and training
data are compared, the normalized residuals are incon-
sistent with one another at the several-σ level, as shown
in panel (b) of the same figure, due to underestimation
of experimental uncertainties. Considering that these
data were all collected for the same projectile-target sys-
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TABLE I: Mean (µ1), standard deviation (µ2), and skewness
(µ3) for the distribution of standardized residuals between the
original KD and CH89 OMPs and their training data, as re-
constructed in this work. Results are tabulated separately for
protons and neutrons. The columns labeled CH89 UQ refer
to a version of the CH89 OMP that includes the paramet-
ric uncertainties reported in the original work, which we have
sampled here as θ ∼ N (θCH89,ΣCH89), with θCH89 being the
canonical CH89 “best fit” parameter vector, and ΣCH89 be-
ing the canonical CH89 covariance matrix estimate published
in the original treatment.

Proton data

CH89 CH89 UQ KD
dσ
dΩ

Ay
dσ
dΩ

Ay
dσ
dΩ

Ay σrxn

µ1 0.5 -3.2 1.1 0.7 0.7 -0.4 -2.4

µ2 29.8 30.7 9.6 7.0 18.6 18.4 3.7

µ3 -2.1 -3.2 -1.6 0.6 -1.0 -3.3 -1.0

Neutron data

CH89 CH89 UQ KD
dσ
dΩ

Ay
dσ
dΩ

Ay
dσ
dΩ

Ay σtot

µ1 -1.9 1.4 -1.7 1.2 -2.1 0.8 -0.3

µ2 5.0 6.5 4.0 4.4 4.8 6.8 25.2

µ3 -0.7 0.5 -0.8 0.3 -0.7 -19.9 -17.5

tem and at the same energy but are inconsistent at the
several-σ level, even larger discrepancies may be expected
when comparing many types of scattering observables on
different nuclei and energies during global OMP param-
eter inference. (It is worth mentioning that, of the data
types considered for training OMPs, such experimental
uncertainty underestimation appears to be most acute
for differential elastic scattering data.) To be reliable,
any data-driven assessment of OMP uncertainty must ad-
dress this unaccounted-for dispersion of the experimen-
tal data. Moreover, if we can determine how large such
unaccounted-for uncertainty must be to bring the opti-
mized OMP and experimental data into agreement, we
gain insight into the degree of mutual consistency be-
tween the OMP and the data libraries used to train the
OMP.

FIG. 3: Five experimental data sets for 40Ca(n,n)40Ca at
14 MeV show significant variability, despite being collected
under similar kinematic conditions. In panel (a), each data
set is shown as a series of black points with the reported
experimental uncertainties. A weighted-least-squares fit of all
points, using the sum of the first ten Legendre polynomials
as a model, is shown in gray. Panel (b) shows the normalized
residuals for the experimental data points as a histogram (red
line). A Gaussian distribution with unit variance is shown for
reference (gray dashed line).

III. IMPROVED INFERENCE FOR OMPS

In this section, we present our implementation for im-
proved OMP parameter inference. We propose a mod-
ified likelihood function that addresses the problems of
canonical OMP analysis as identified in the previous sec-
tion. We then describe our implementation of the CH89
and KD OMPs, our scattering code, and the MCMC tools
we used for performing parameter inference.

A. Likelihood function

For a training corpus consisting of N experimental
data, denoted (x, y, δy), and an OMP with k free pa-
rameters θ, we define our likelihood function as follows:

L(y|x, δy, θ, δu) =
1√

(2π)k|Σ̃|
e−

1
2r

ᵀΣ̃−1r,

r ≡ y −M(θ,x).

(10)
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In place of the true (unknown) data covariance matrix Σ,
we have introduced a diagonal covariance matrix ansatz
Σ̃:

Σ̃ ≡ k

N


∆1

. . .

∆N

 ; ∆1,...,N ∈∆. (11)

In this prescription, the augmented variances ∆ combine
the experimentally reported uncertainties δy with an new
unaccounted-for uncertainty for each datum, δu:

∆ = {(δ2
y + δ2

u) : δy ∈ δy, δu ∈ δu}, (12)

where each δu is calculated as follows:

δu = {y +M(θ, x)

2
× δt : x ∈ x, y ∈ y, δt ∈ δT=t̂(y)}.

(13)
To clarify these expressions, we start with the terms

in Eq. 13. As discussed in the previous section, the re-
ported uncertainties for experimental measurements are
often too small to be self-consistent, hindering robust
OMP UQ assessment. As such, we need a way of in-
creasing our uncertainty in the experimental data that
is consistent with the expectation that different types of
experimental data (differential elastic cross sections, neu-
tron total cross sections) will have different degrees of
uncertainty underestimation. At the same time, we want
to respect the reported experimental uncertainty, as it
represents the measurer’s informed judgement about un-
certainty affecting the measurement, even if in aggregate,
they are often underestimated. Our solution is to create
a random variable δT , representing unaccounted-for un-
certainty, for each type of experimental data appearing
in the training corpus. For example, in the CHUQ train-
ing corpus, there are four types of experimental data:
differential elastic scattering cross sections and analyz-
ing powers, each for protons and neutrons. As such, we
create four random variables, each representing some de-
gree of unaccounted-for uncertainty for measured data of
that type. At present, we do not know the value of these
random variables δT , so we treat them as parameters to
be learned alongside the OMP parameters θ.

Returning to Eq. 13, for each experimental da-
tum in the training set, we calculate a datum-specific
unaccounted-for uncertainty term δu, which is the prod-
uct of the average of the model prediction M(θ, x) and
the experimental datum value y with the unaccounted-
for uncertainty δT of that datum’s data type. (The term
δT=t̂(y) should be read as “a N -long vector of δT values,
each corresponding to the data type of experimental mea-
surement y”.) Thus for each datum of the same type, the
individual unaccounted-for uncertainty δu is calculated
using the same δT .

With δu defined, we proceed to Eq. 12. For each ex-
perimental training datum, the reported uncertainty δy
is added in quadrature with that datum’s δu yielding the
overall uncertainty ∆ for that training datum. The vec-
tor of these augmented uncertainties, ∆, enters Eq. 11,

which defines the covariance matrix ansatz. The entries
of Σ̃ are scaled by k/N in recognition that, by replacing
the k × k-matrix Σ with an N × N covariance matrix
ansatz Σ̃, a scaling factor is required to approximately
preserve the matrix determinant that features in the over-
all normalization. This is equivalent to saying that the
N training data cannot all be independent random vari-
ables, as the information they contain can span, most,
the k dimensions of θ.

In sum, our likelihood function (Eq. 10) replaces
the unknown covariance matrix Σ with a diagonal ma-
trix of variance terms ∆, each of which has been aug-
mented based on the unaccounted-for-uncertainty δT for
each data type. If reasonable values can be learned for
unaccounted-for uncertainties δT in tandem with θ, this
approach will yield both a fitted OMP with good cover-
age of the training data and also a sense of the missing
uncertainty required to bring the experimental data into
agreement with the model. We remain agnostic about
about the source of the unaccounted-for uncertainty, be
it underestimation of experimental uncertainty, model
deficiencies, errors in the tabulation of experimental re-
sults, insufficient numerical precision during model calcu-
lations, or an “unknown unknown”. The practical effect
of each ∆ is the same as in traditional weighted-least-
squares, namely, to reduce the contribution of residuals
to the overall likelihood.

If we place the likelihood function in the the log-
likelihood form relevant for optimization,

logL(y|x, δy, θ, δT ) = −1

2

[
rT r

|Σ̃|
+ log |Σ̃|+ k log (2π)

]
.

(14)
it becomes clear that minimizing the log-likelihood in-
volves a competition between the first and second terms
inside the brackets. Larger δT values make for larger ∆
and a larger covariance determinant |Σ̃|, which reduces
the first term but increases the second term. At the opti-
mum, where θ minimizes the contribution from residuals,
both terms should be equal,

rT r = |Σ̃| log |Σ̃|. (15)

This implies that, at the start of training our OMP, our
unaccounted-for uncertainty random variables δT will
grow rapidly, to counterbalance the large residuals be-
tween model and data, but, as the fit improves and the
residuals shrink, δT will grow smaller.

We note that the factor k/N in the covariance ansatz
is the simplest but not the only choice to account for the
unknown degree of correlation between individual data.
For example, one might expect a priori that experimental
data of each type (such as proton reaction cross section,
neutron analyzing powers, etc.) will correlate strongly
with each other, due to common features of the experi-
mental design or ease of certain types of measurement,
but correlate more weakly with data of other data types.
Accordingly, one might want to ensure that each data
type contributes equally to the overall likelihood, inde-
pendent of how many data points it contains, so that
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data types with fewer data points are not outvoted by
data types with better experimental coverage. In that
case, Σ̃ could be modified to be:

Σ̃ ≡ k

nt



1
N1

∆1

...
1
N1

∆N1

1
N2

∆N1+1

...
1
N2

∆N1+N2

1
N3

∆N1+N2+N3

...
1
NT

∆N



× IN (16)

where nt is the number of unique data types t, and Nt
is the number of data points of type t, and IN is the
identity matrix of dimension N . With this choice for Σ̃,
all data points of a given data type would be given equal
influence for that type, and each data type would be
given equal influence on the overall likelihood. Any ad-
ditional information about the covariance structure of the
experimental data, such as knowledge of the systematic
error for one or more specific data sets, can be directly
inserted to turn Σ̃ into a more-realistic block-diagonal
matrix. We experimented with a handful of alternatives,
including Eq. 16, and found that their impact on the
final uncertainty-quantified OMPs was small except in
situations where one training data type had far fewer
data points than the other types (see Fig. 13 in Section
IV C). Unless noted otherwise, all results in the following
sections were generated using Eq. 10 as the likelihood
function.

Finally, as discussed in toy-model scenarios two and
four of Section II B, we still need a way of identifying out-
liers in the training data corpora. By outlier, we mean
a datum that should not be used to train the model, ei-
ther because the model is missing physics that the data
capture (e.g., effects of deformation if the model assumes
sphericity), or because the data are erroneous. In either
of these cases, training the model to the datum would
bias model parameters. To identify outliers, we imple-
mented a procedure similar to that by Pérez, Amaro, and
Arriola in their analysis of the NN interaction via par-
tial wave analysis of NN scattering data [40], and first
suggested by Gross and Stadler [41]. Briefly, in a stan-
dard NN scattering database they examined, they found
that certain data collected in similar kinematic condi-
tions were mutually inconsistent up to the experimentally
reported uncertainties. Rather than reject all inconsis-
tent data as outliers, they used an iterative procedure to
simultaneously train a model to these data while updat-
ing the outlier status of each datum used for training. In
the initial step, their model was fit to the full corpus of
NN-scattering data. Any data lying > 3σ away from the
model, where σ was taken to be the reported experimen-
tal uncertainty, were flagged as outliers and not included
in the following round of fitting. In the second round,

the model was fitted to the smaller set of “inlier” data,
then the outlier status of each datum was assessed again,
based on the second fit. The process was repeated until
the model fit and the outlier status of each data point
became stable, yielding a mutually-consistent database,
up to the fitted model. Certain data that were initially
incompatible with the others were thus recovered as the
model fit improved over multiple iterations.

Our procedure was the same except in two respects.
In our case, for σ we included both the variance of the
model prediction from MCMC and the experimental un-
certainty, summed in quadrature:

σ2 = {δ2
y + var[M(θ, x)] : δy ∈ δy, x ∈ x} (17)

Second, because MCMC involves sampling noise, many
walker steps are often required before walkers have time
to react to changes in the outlier status of the experi-
mental data. Thus, we updated the outlier status of the
training data only at 100-step intervals during MCMC,
rather than at every step.

B. CH89 and KD implementation

We turn now to the implementation of the OMPs we
retrained according to our proposed approach. Both the
CH89 and KD OMPs assume a spherical optical poten-
tial, smooth in scattering energy Elab and target A, for
modeling the projectile-target interaction. CH89 [19] was
restricted to proton and neutron elastic scattering cross
sections and analyzing powers on nuclei “in the valley
of stability” with 40 ≤ A ≤ 209 and for scattering en-
ergies of 10 ≤ E ≤ 65 MeV (assumed to be the lab
frame). The potential consists of five terms: a real cen-
tral potential, an imaginary central potential, an imag-
inary surface potential, a real spin-orbit potential, and
for protons, a Coulomb potential (see the Appendix for
detailed functional forms). In all, these components em-
ploy 22 free parameters. To perform comparisons with
experimental data, the authors of CH89 used a joint
scattering-optimization code called MINOPT, a hybrid
of the scattering code OPTICS [42] and the CERN opti-
mization code MINUIT [43]. For the wave equation, the
original treatment used the non-relativistic Schrödinger
equation. Because the lowest considered scattering data
energy was 10 MeV, the original treatment took the
compound-nucleus contribution to be zero.

The KD global OMP [20] was fitted not only to proton
and neutron elastic scattering cross sections and analyz-
ing powers, but also to proton reaction (or “non-elastic”)
and neutron total cross sections. The authors define its
domain as “(near)-spherical” nuclei with 24 ≤ A ≤ 209
for incident scattering energies of 0.001 ≤ E ≤ 200
MeV in the lab frame. In addition to the potential
component types used in CH89, KD adds an imagi-
nary spin-orbit component. Each component was made
substantially more flexible in energy- and asymmetry-
dependence, bringing the total number of free parameters
to 46. To perform comparisons with experimental data,
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the developers used the scattering code ECIS-97, as ac-
cessed through a visual interface called ECISVIEW. For
the wave equation, the authors “[employed] the relativis-
tic Schrödinger equation throughout”, using “the true
masses of the projectile and target expressed in atomic
mass units”. To manage optimization in this higher-
dimensional space, they developed a new approach they
called “computational steering”: a user manually ad-
justed parameters in real time to achieve a good visual fit,
which was followed by an automated simulated anneal-
ing procedure using the program SIMANN to achieve a
quantitative optimum.

For our recharacterization of these OMPs, we adhered
to the original potential forms and scattering assump-
tions as described above but with a few minor differences.
First, scattering calculations for CH89 were performed
according to the same relativistic-equivalent Schrödinger
equation used for KD calculations rather than the non-
relativistic treatment of the original. The effect was to
slightly improve the fidelity of calculated cross sections at
the highest scattering energies included in the CHUQ cor-
pus (65 MeV). Second, for differential elastic scattering
cross sections at scattering energies below roughly 10-15
MeV the elastic contribution from the compound nucleus
becomes significant compared to the direct contribution
from the OMP and must be included for comparison to
experimental data. The authors of CH89 restricted their
data corpus to scattering energies ≥ 10MeV for this rea-
son. For the KDUQ corpus, however, roughly 10% of
the elastic scattering data were collected below 10 MeV.
To enable comparison with these data, Koning and De-
laroche used the compound cross section values generated
by ECIS-97, the same code they used for direct scatter-
ing calculations. In our case, we generated compound
elastic cross sections using the LLNL Hauser-Feshbach
code YAHFC [44], using the canonical parameters of KD
to generate the transmission coefficients needed for the
calculation.

C. Scattering code and MCMC

For scattering calculations and parameter inference,
we combined the MCMC utility emcee [45] with a new,
lightweight C++ and Python library, tomfool, that we
developed to perform single-nucleon scattering calcula-
tions. Cross sections were generated via a calculable-R-
matrix Lagrange-mesh method after [46, 47] detailed in
the Appendix. The use of a Lagrange-Legendre basis in-
stead of a radial basis accelerates calculations severalfold
but at the cost of a small loss of precision, depending on
the number of basis elements and chosen R-matrix chan-
nel radius. To ensure fair comparison with the original
CH89 and KD analyses, we applied several measures to
validate our calculation pipeline. First, wherever possi-
ble, we drew mathematical functions from the Gnu Scien-
tific Library (GSL) [48]. Any necessary functions unavail-
able in GSL (such as optical potential functional forms
and relativistic kinematics equations) were subjected to

a suite of unit and integration tests, including compar-
ison against results from the well-tested scattering code
frescox [49, 50] and lise++ [51, 52]. For relativis-
tic calculations, in addition to treating scattering ener-
gies and angles relativistically, we use the wavenumber
and optical-potential rescaling approximations given by
Eqs. 17 and 20/21 of [53], the same formulae used for
this purpose in frescox and talys. Using frescox we
prepared a set of cross section benchmarks covering a
range of scattering energies, angles and targets represen-
tative of the KDUQ corpus. Using an N = 30 Lagrange-
Legendre basis, an R-matrix channel radius of 15 fm, a
maximum partial wave angular momentum lmax = 80,
and a convergence threshold of 10−6 for the magnitude
of S-matrix elements, we achieved agreement with the
frescox benchmarks to 1% or better, both for our rel-
ativistic and non-relativistic implementations for CH89
and KD. This configuration was used for all scattering
calculation results in our analysis. Finally, we performed
numerous spot checks against the figures in the original
CH89 and KD papers to confirm that our implementa-
tion of their OMPs generates the same cross sections to
within the graphical resolution of the original publica-
tions.

For each OMP parameter, we assigned a weakly infor-
mative truncated Gaussian prior centered on the canon-
ical parameter value (that is, centered on the parame-
ter values from the original KD and CH89 publications).
For each prior we set the variance based on our estimates
about the sensitivity of scattering observables to changes
in that type of parameter. For example, a change of 20%
in a Woods-Saxon radius or diffuseness would result in
large changes to the location of elastic scattering diffrac-
tion minima and would thus be relatively unlikely, but
not impossible, given the level of consistency among the
experimental data. In contrast, the energy-dependence of
the depth of the imaginary spin-orbit potential is likely
only very weakly sensitive to available experimental data,
so a deviation by a factor of 2 or more from the canoni-
cal value in KD would not be surprising. Absolute upper
and lower limits of the truncated Gaussian priors were
set to prevent any single parameter from becoming non-
physical, resulting in, for example, a negative radius. For
the unaccounted-for uncertainty random variables δT , we
assigned truncated Gaussian priors as

δt ∼ N (µ = 0.2, σ = 0.2; δt > 0), (18)

for differential elastic observables and

δt ∼ N (µ = 0.02, σ = 0.02; δt > 0), (19)

for integral observables σrxn and σtot. This corresponds
to an expectation of 20% unaccounted-for uncertainty
in differential data types and 2% unaccounted-for uncer-
tainty in integral data types. We based these priors on
the observed degree of agreement of the canonical KD
and CH89 potentials against their training corpora and
on the typical range experimentally reported uncertain-
ties for these types of data. To begin MCMC, 8 × k
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walkers were initialized according to

θ, δt ∼ N (µ = µprior, σ = 0.1σprior) (20)

for CHUQ and

θ, δt ∼ N (µ = µprior, σ = 0.01σprior) (21)

for KDUQ, with k the number of parameters subject
to inference. For the MCMC proposal distribution, we
used the emcee [45] default proposal distribution, the
affine-invariant Goodman-Weare sampling prescription,
but with a scaling parameter a = 1.4, reduced from the
default value of a = 2 to improve the acceptance fraction
given the high dimensionality of the parameter space.
Sampling continued for roughly 10,000 samples until en-
semble means no longer exhibited movement in any pa-
rameter dimension and the percentage of each data type
that were flagged as outliers ceased to change (excepting
≈ 0.1% fluctuations due to the Monte Carlo nature of
sampling). Due to our expectation of very long autocor-
relation times among walkers, we used only the terminal
sample from each walker for all results shown below.

Our reassembly of the training data corpora used to
train the canonical OMPs is detailed in the Supplemen-
tal Material [37]. While we were able to recompile and
verify almost all of the training data as originally used,
there were a handful of discrepancies between data as
reported in the referenced literature, the data as listed
in the canonical CH89 and KD treatments, and the data
as listed in the EXFOR experimental reaction database.
Details of these differences and references to the EXFOR
accession number for the data set in question (or, if the
data were not available through EXFOR, to the origi-
nal literature) are provided in the Supplemental Material
[37]. Because our approach involves outlier-rejection and
unaccounted-for uncertainties that were as large or larger
than experimentally reported uncertainties, the few dis-
crepancies were unlikely to have any appreciable effect
on our analysis.

IV. RESULTS

Our results are organized in three parts. First, we
compare the performance of CHUQ against that of CH89
with respect to their training data. To assess predictive
power, CHUQ and CH89 are compared against a Test
corpus of new scattering data collected from 2003-2020
(after the publication of the original treatment). Next,
we present a similar comparison for KDUQ and KD. Last,
we discuss the comparative uncertainty of the potentials,
including comparison of volume integrals and how alter-
native likelihood functions could affect our results.

A. CH89 vs CHUQ performance

Figures 4 and 5 show the performance of CHUQ and
the canonical CH89 OMP with respect to several repre-
sentative experimental data sets in the CHUQ training

corpus. Figures comparing CHUQ and CH89 over the en-
tire CHUQ corpus are provided in the Supplemental Ma-
terial [37]. Overall, the median predictions of CHUQ are
very similar to the canonical CH89 predictions, with the
largest differences being slightly lower predicted differen-
tial elastic cross sections from CHUQ compared to those
from CH89 around 10-11 MeV, the lowest scattering en-
ergies considered in the CHUQ corpus. Compared to the
canonical CH89 analysis, our use of a fully relativistic-
equivalent Schrödinger equation in the present work and
our relaxation of the fixed Coulomb radius parameters rc
and r

(0)
c for CHUQ improves the angular dependence of

proton differential elastic scattering predictions at higher
energies on high-A targets, as shown in Fig. 6.

Figure 7 summarizes the overall performance of CHUQ
against the full CHUQ corpus and against the Test cor-
pus. The means, standard deviations, and skewnesses
of the residual distributions shown in Fig. 7 are listed
in Table II. Using the CHUQ corpus, we can directly
compare the original treatment’s uncertainty estimation
(CH89 UQ in Fig. 2 and Table I) and that of the present
work (CHUQ in Fig. 7, panel (a), and Table 7). Across
the data types in the CHUQ corpus, CHUQ yields sim-
ilar mean residuals: between -1.0 and 1.0, versus -1.7 to
1.1 for CH89 UQ. This suggests that both the canonical
CH89 parameters and CHUQ’s central parameter values
do well at reproducing average trends of training data. In
CHUQ, there is apparent tension between neutron differ-
ential elastic scattering cross sections, which are slightly
underpredicted (µ1 = −1.0) and proton and neutron dif-
ferential elastic scattering analyzing powers, which are
slightly overpredicted (µ1 = 1.0 and µ1 = 0.9).

The main difference is that compared to CH89 UQ,
CHUQ yields much smaller residual standard deviations:
between 1.7 to 2.1 across data types, versus 4.0 to 9.6
for CH89 UQ. That the variance of the residuals is much
closer to unity indicates that the larger parametric uncer-
tainty of CHUQ more faithfully represents the spread of
the experimental data in the CHUQ corpus. Further, the
fact that the variance of CHUQ-corpus residuals remains
larger than unity shows that the priors we assigned to
the unaccounted-for uncertainties δT are preventing δT
from becoming even larger, which would further reduce
the constraining power of the training data.

Panel (b) of Fig. 7 illustrates performance of CHUQ
against the Test corpus. The Test corpus includes many
scattering data far beyond the prescribed range of va-
lidity given by the authors of CH89, including data col-
lected at scattering energies from 1-10 MeV and from 65-
295 MeV, proton σrxn and neutron σtot data, and data
from targets with A < 40. The performance of CHUQ is
moderately degraded on the Test corpus compared to the
CHUQ corpus, with mean residuals ranging from -1.8 to
2.0 across data types, and residual standard deviations
ranging from 1.3 to 3.1 for elastic observables. Though
the CHUQ corpus used for training did not include ei-
ther proton σrxn or neutron σtot data, CHUQ’s average
performance against the Test corpus in these data sec-
tors is surprisingly good, with mean residuals of 0.3 for
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FIG. 4: Representative experimental and calculated neutron differential elastic cross sections are plotted for 54Fe, 60Ni and
120Sn at selected energies. Experimental data are shown as points with reported experimental uncertainties. The outlier status
of each point (as defined previously) is indicated by color: black points are inliers, and white points are outliers. Calculations
from the canonical CH89 parameters are shown as a blue dashed line. The CHUQ 68% and 95% uncertainty intervals are
shown as dark and light red bands, respectively. The data sets are labeled by scattering energy (MeV, in the lab frame) and
offset vertically for legibility.

FIG. 5: Representative experimental and calculated proton analyzing powers are plotted for 54Fe, 60Ni and 120Sn at selected
energies. See caption of Fig. 4 for key.
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FIG. 6: CH89 and CHUQ predictions are compared against
experimental proton elastic scattering observables on 208Pb
and 209Bi at 65 MeV. See caption of Fig. 4 for key.

proton σrxn and -0.3 for neutron σtot. This indicates
that despite substantial unaccounted-for uncertainty in
the training data, fits that employ only elastic scatter-
ing data can still provide meaningful constraints on the
imaginary terms in the potential.

B. KD vs KDUQ performance

Figures 8, 9, and 10 show the performance of KDUQ
and the canonical KD Global OMP with respect to sev-
eral representative experimental data sets in the KDUQ
corpus used for training. Figures comparing KDUQ and
KD over the entire KDUQ corpus are provided in the
Supplemental Material [37]. For elastic scattering observ-
ables, the median predictions of KDUQ are very similar
to the canonical KD predictions at low angles, with mod-
erate deviations appearing at higher angles and scatter-
ing energies. Predicted neutron σtot of KDUQ and KD
are nearly identical, and both achieve excellent agree-
ment with the training data above the resolved-resonance
region. (At lower energies where resonance structure is
resolved, the OMP assumption of smooth, resonance-
averaged behavior is no longer expected to hold). The
most significant difference between KDUQ and KD is
the improved reproduction of proton σrxn cross sections
in KDUQ, where predictions are roughly 10% smaller for

FIG. 7: Normalized residuals (ri/δi) between CHUQ’s pre-
dictions and the CHUQ corpus and Test corpus are his-
togrammed by data type. Panel (a) shows performance
against the CHUQ corpus. Panel (b) shows performance
against the Test corpus.

TABLE II: Mean (µ1), standard deviation (µ2), and skewness
(µ3) for the distributions of standardized residuals between
CHUQ and experimental data, as shown in Fig. 7. Here the
distributions are tabulated separately for protons and neu-
trons (cf. with Tables III and I).

Proton data

CHUQ Corpus Test Corpus
dσ
dΩ

Ay
dσ
dΩ

Ay σrxn

µ1 0.0 1.0 -0.3 -1.8 0.3

µ2 2.1 2.1 3.1 1.3 0.2

µ3 -0.1 1.6 -0.9 -2.8 0.1

Neutron data

CHUQ Corpus Test Corpus
dσ
dΩ

Ay
dσ
dΩ

Ay σtot

µ1 -1.0 0.9 -1.2 2.0 -0.3

µ2 1.7 1.9 1.8 2.3 2.2

µ3 -0.7 0.5 -0.2 0.1 -2.1

low-A targets such as 27Al and 40Ca compared to the pre-
dictions of KD. In addition, at scattering energies > 100
MeV across all masses, the slope of predicted proton σrxn
cross sections differs between KDUQ and KD, with KD
predictions exhibiting a steeper decrease with respect to
energy, whereas KDUQ predictions remain roughly flat
with respect to energy. Past analyses with dispersive op-
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FIG. 8: Representative experimental and calculated neutron differential elastic cross sections are plotted for 56Fe, 90Zr and
209Bi at selected energies. Experimental data are shown as points with associated uncertainties. The outlier status of each point
(as defined previously) is indicated by color: black points are inliers, and white points are outliers. Cross sections calculated
using the original KD formulation are shown via blue dashed line. The KDUQ 68% and 95% uncertainty intervals are shown
as dark and light red bands, respectively. The data sets are labeled by scattering energy (MeV, in the lab frame) and offset
vertically for legibility.

FIG. 9: Representative experimental proton reaction cross section data and KD and KDUQ calculations are plotted for
selected nuclei in the KDUQ corpus. See caption of Fig. 8 for additional information on the legend.
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FIG. 10: Representative experimental neutron total cross section data and KD and KDUQ calculations are plotted for selected
nuclei in the KDUQ corpus. See caption of Fig. 8 for additional information on the legend.
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FIG. 11: Normalized residuals (ri/δi) between KDUQ’s
predictions and the KDUQ corpus and Test corpus are his-
togrammed by data type. Panel (a) shows performance
against the KDUQ corpus. Panel (b) shows performance
against the Test corpus.

TABLE III: Mean (µ1), standard deviation (µ2), and skew-
ness (µ3) for the distributions of standardized residuals shown
in Fig. 11, shown separately for protons and neutrons (cf.
with Tables II and I).

Proton data

KDUQ Corpus Test Corpus
dσ
dΩ

Ay σrxn
dσ
dΩ

Ay σrxn

µ1 -0.1 0.5 -0.9 0.1 -0.8 -0.2

µ2 2.2 2.1 1.5 0.9 1.8 0.7

µ3 -0.6 1.5 -2.5 0.6 9.3 0.6

Neutron data

KDUQ Corpus Test Corpus
dσ
dΩ

Ay σtot
dσ
dΩ

Ay σtot

µ1 -1.1 0.5 -0.1 -1.5 1.2 -0.8

µ2 2.1 2.3 1.2 2.0 3.3 1.5

µ3 -0.6 0.3 -5.3 -0.8 1.1 -0.7

tical potentials have connected the energy dependence
of σrxn cross sections in this region with the behavior
of deeply bound, highly correlated nucleons, as probed
in (e,e’p) reactions [14], and potentially correlated with
neutron skins in neutron-rich nuclei [54, 55]. Such a re-
lationship could be quantitatively assessed with a global
dispersive OMP (à la [56]), but treated fully non-locally
to maintain good particle number and equipped with UQ

as shown here.

Figure 11 summarizes the performance of KDUQ
against both the KDUQ corpus training data and the
Test corpus. The mean, standard deviation, and skew-
ness of the distribution of residuals shown in Fig. 11 are
listed in Table III for both protons and neutrons. Over-
all, KDUQ performance differs little between the KDUQ
corpus and Test corpus, an indication that our MCMC-
based approach has avoided overfitting the training data.
Compared to KD, KDUQ has a lower bias with respect
to proton reaction cross section data (mean normalized
residual of -0.9; cf. with -2.4 for KD in Table I). Both KD
and KDUQ exhibit minimal bias for neutron total cross
sections (mean normalized residuals of -0.3 and -0.1, re-
spectively). Apparently, our inclusion of unaccounted-for
uncertainty terms in KDUQ is sufficient to account for
almost all of the excess data variance seen for KD in
Fig. 2 (neutron σtot normalized residual standard de-
viations of 1.2 for KDUQ, compared to 25.2 for KD).
For differential elastic observables, the mean predictions
from KDUQ perform similarly to those of KD against
both the KDUQ corpus and the Test corpus, with the
parametric uncertainty of KDUQ reducing the normal-
ized residual standard deviations to approximately 2 for
both protons and neutrons. That the normalized residual
variances for differential elastic quantities are still larger
than one indicates additional variance among the exper-
imental data that the assumptions of our analysis are
unable to account for. One likely source is assumption
of sphericity leading to poorer agreement with differen-
tial data on more-deformed targets in the KDUQ corpus.
It is well-known that, especially at low energies, only a
deformation-cognizant, dispersive OMP such as those in-
troduced by Soukhovitskii et al. [7] and Capote et al.
[57] will be capable of reproducing scattering behavior.
Equipping these deformed OMPs with UQ is a natural,
if labor-intensive, extension. In the meantime, by exam-
ining which data are flagged as outliers in our approach,
one could garner a quantitative idea of how where, and
how badly, a spherical OMP fails to capture the effects
of deformation on scattering.

C. Parameter comparison and discussion

In this section, we interpret the mean parameter values
and uncertainties of our new UQ OMPs. Besides provid-
ing a natural way to forward-propagate OMP uncertainty
via resampling, the parameter (co)variances provide in-
formation about the extrapolability of CH89- and KD-
like OMPs away from their training data (e.g., away from
β-stability). The optimized parameter estimates and as-
sociated uncertainties are compared in Table IV for CH89
and CHUQ and in Table V for KD and KDUQ. In ad-
dition, for a metric for the overall degree of parametric
uncertainty in CH89 and CHUQ, we list the determinants
of the covariance matrices for CH89 UQ and CHUQ (ex-
cluding the Coulomb radius parameters, which were fixed
in the original CH89 treatment) at the bottom of Table
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TABLE IV: The CH89 and CHUQ central parameter values
and uncertainty intervals are listed. For CH89, the central
values are the mean values reported in the original treatment,
and the uncertainties are the estimated parameter standard
deviations as calculated from a bootstrap analysis in the origi-
nal treatment. For CHUQ, the central values are the posterior
50th percentile value and the uncertainties are the difference
between the central value and the posterior 16th and 84th

percentile values. The final row lists the determinant of the
parameter covariance.

CH89 CHUQ

V0 52.9+0.2
−0.2 56.19+1.43

−1.82

Vt 13.1+0.8
−0.8 13.82+7.03

−5.25

Ve −0.299+0.004
−0.004 −0.36+0.03

−0.02

r0 1.25+0.002
−0.002 1.20+0.03

−0.03

r
(0)
0 −0.225+0.009

−0.009 −0.20+0.12
−0.13

a0 0.69+0.006
−0.006 0.73+0.03

−0.02

rc 1.24+0
−0 1.25+0.12

−0.12

r
(0)
c 0.12+0

−0 0.13+0.09
−0.12

Vso 5.9+0.1
−0.1 5.58+0.52

−0.58

rso 1.34+0.03
−0.03 1.29+0.11

−0.11

r
(0)
so −1.2+0.1

−0.1 −1.12+0.45
−0.51

a
(0)
so 0.63+0.02

−0.02 0.61+0.04
−0.04

Wv0 7.8+0.3
−0.3 9.92+4.63

−2.92

Wve0 35.0+1
−1 33.15+25.03

−19.82

Wvew 16.0+1
−1 24.00+11.32

−9.52

Ws0 10.0+0.2
−0.2 10.59+3.99

−3.39

Wst 18.0+1
−1 27.09+12.28

−8.72

Wse0 36.0+2
−2 20.00+21.69

−20.82

Wsew 37.0+2
−2 36.38+23.75

−13.66

rws 1.33+0.01
−0.01 1.32+0.08

−0.08

r
(0)
ws −0.42+0.03

−0.03 −0.41+0.36
−0.32

aws 0.69+0.01
−0.01 0.69+0.05

−0.05

|Σ| 5.76× 10−49 1.08× 10−12

IV.
Overall, the estimated central parameter values CHUQ

are similar to the original values of CH89, but in most
cases, the median value from CHUQ lies well outside the
estimated uncertainty of CH89 UQ. In addition, CHUQ’s
parametric uncertainty estimates are between two and
twenty times larger than the estimates from CH89 UQ.
Most notable are changes in terms affecting the potential
magnitudes, including the asymmetry-dependent param-
eters Vt and Wst and the imaginary central and surface
terms’ A-dependent parameters Wve0, Wvew, Wse0, and
Wsew, all of which indicate far greater uncertainty with
respect to target asymmetry and A than in the canon-
ical treatment. These increased uncertainties manifest
as uncertainty in the imaginary-part volume integrals as
shown in Fig. 12.

The much-larger uncertainty recovered in CHUQ vs
CH89 UQ is indicative of a better match of CHUQ to the
breadth of the CHUQ corpus compared to the canonical
CH89. However, some important details of the CHUQ
corpus and Test corpus are still not captured by CHUQ,

TABLE V: The KD and KDUQ parameter values are com-
pared and the KDUQ uncertainties listed. For KDUQ, the
listed values are the posterior 50th percentile (median) value
and the uncertainties are the difference between the median
value and the posterior 16th and 84th percentile values.

KD KDUQ

v1,0 5.93× 101 5.86+0.21
−0.18 × 101

v1,α 2.10× 101 1.34+0.54
−0.47 × 101

v1,A 2.40× 10−2 2.61+1.06
−0.99 × 10−2

vn2,0 7.23× 10−3 6.35+0.71
−1.05 × 10−3

vn2,A 1.48× 10−6 1.82+5.44
−4.74 × 10−6

vn3,0 1.99× 10−5 1.08+0.88
−0.93 × 10−5

vn3,A 2.00× 10−8 1.45+3.30
−2.77 × 10−8

vp2,0 7.07× 10−3 6.76+1.12
−1.32 × 10−3

vp2,A 4.23× 10−6 2.91+6.99
−8.20 × 10−6

vp3,0 1.73× 10−5 1.40+1.00
−0.94 × 10−5

vp3,A 1.14× 10−8 1.43+4.53
−4.47 × 10−8

v4,0 7.00× 10−9 −4.30+25.60
−20.30 × 10−9

rV,0 1.30× 100 1.27+0.03
−0.04 × 100

rV,A 4.05× 10−1 3.61+1.55
−1.34 × 10−1

aV,0 6.78× 10−1 6.89+0.24
−0.27 × 10−1

aV,A 1.49× 10−4 −0.42+2.56
−2.69 × 10−4

rC,0 1.20× 100 1.19+0.11
−0.12 × 100

rC,A 6.97× 10−1 6.72+7.36
−6.60 × 10−1

rC,A2 1.30× 101 1.30+1.40
−1.26 × 101

vSO1,0 5.92× 100 5.99+0.96
−0.90 × 100

vSO1,A 3.00× 10−3 1.95+9.63
−8.55 × 10−3

vSO2,0 4.00× 10−3 4.75+4.07
−2.17 × 10−3

rSO,0 1.19× 100 1.21+0.06
−0.06 × 100

rSO,A 6.47× 10−1 7.35+2.58
−2.58 × 10−1

aSO,0 5.90× 10−1 6.00+0.39
−0.39 × 10−1

wSO1,0 −3.10× 100 −3.79+2.08
−2.10 × 100

wSO2,0 1.60× 102 2.19+0.84
−0.89 × 102

wn1,0 1.22× 101 2.09+0.39
−0.42 × 101

wn1,A 1.67× 10−2 0.61+3.35
−2.94 × 10−2

wp1,0 1.47× 101 1.86+0.56
−0.49 × 101

wp1,A 9.63× 10−3 32.50+45.92
−36.72 × 10−3

w2,0 7.35× 101 10.29+3.45
−2.58 × 101

w2,A 7.95× 10−2 2.43+19.45
−16.23 × 10−2

d1,0 1.60× 101 1.67+0.72
−0.39 × 101

d1,α 1.60× 101 1.11+1.01
−0.79 × 101

d2,0 1.80× 10−2 2.34+2.56
−3.29 × 10−2

d2,A 3.80× 10−3 3.73+30.69
−26.67 × 10−3

d2,A2 8.00× 100 8.57+7.31
−7.36 × 100

d2,A3 1.56× 102 2.51+1.21
−2.48 × 102

d3,0 1.15× 101 1.38+0.39
−0.31 × 101

rD,0 1.34× 100 1.35+0.07
−0.08 × 100

rD,A 1.58× 10−2 1.75+1.72
−1.63 × 10−2

anD,0 5.45× 10−1 5.43+0.41
−0.38 × 10−1

anD,A 1.66× 10−4 −2.14+4.06
−4.51 × 10−4

apD,0 5.19× 10−1 5.08+0.42
−0.42 × 10−1

apD,A 5.21× 10−4 14.10+6.55
−6.57 × 10−4
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FIG. 12: Volume integrals J/A are plotted for CH89, KD,
CHUQ, and KDUQ evaluated for neutron scattering on 90Zr
(all spin-orbit terms are excluded). The CHUQ and KDUQ
bands show the 68% uncertainty interval. The ranges of CH89
and CHUQ are restricted to the nominal validity range of
CH89 of 10-65 MeV.

FIG. 13: A comparison of KDUQ versions trained using Eq.
11 and Eq. 16 is shown for proton σrxn on 40Ca. The 68%
and 95% credible intervals of appear as the dark and light
bands, respectively. The experimental data of [58], [29], and
[59] appear as black points with associated errors.

due to the relative simplicity of the CH89 potential form.
The choice of likelihood in the canonical analysis (Eq. 8)
made for good performance of the canonical CH89 pa-
rameters with respect to the experimental data, but the
lack of normalization in their likelihood function resulted
in an underestimation of parametric uncertainty. CHUQ
performs moderately well against the Test corpus, con-
sidering that the majority of Test corpus data lie outside
the nominal validity range of the CH89 potential form,
but it is clear that other OMPs should be preferred at
energies below 10 MeV.

We now turn to KD and KDUQ. For forty-two out of
forty-six parameters, the the canonical value of KD lies
within one estimated standard deviation of the KDUQ

mean value; of the remaining four, three (V HF1,α , V HF,n2,0 ,

and V HF,n3,0 ) are within two estimated standard devi-
ations, and the most discrepant, Wn

1,0, lies just over
two estimated standard deviations away. Notably, many
sub-term parameters which are coefficients in E- and
A-dependent polynomial expansions are strongly anti-
correlated (see KDUQ parameter correlogram in the Sup-
plemental Material [37]), and their estimated uncertain-
ties are many times larger than their median values. Both
these observations indicate overparameterization of E-
and A-dependence in those subterms, so some of these
higher-order expansion terms could likely be eliminated
without impacting observables. Taken as a whole, the pa-
rameter estimates we recover are highly consistent with
the canonical ones, which we take as evidence that our
replication attempt, though not identical to the canoni-
cal treatment, was successful. Further, it confirms that
even without the benefit of the computational advances
of the last twenty years, the canonical KD analysis was
remarkably close to global minimum we recover here.

In the KD/KDUQ functional form, Lane-like
asymmetry-dependence appears only in two terms:
the first-order energy dependence of the depth of the
real volume potential as a function of asymmetry, V HF1,α ,
and the first-order energy-dependence of the depth of the
imaginary surface potential as a function of asymmetry,
D1,α. For each of these parameters, KDUQ recovers
significantly smaller median asymmetry-dependences
than those from the canonical treatment. This implies
that KD’s real and imaginary surface asymmetry-
dependences are weaker than previously assumed, and
that the real and imaginary-surface parts of the OMP
may be more reliable than previously thought when
extrapolated to exotic (near-spherical) targets. At the
same time, for D1,α, the uncertainties we estimate
are almost as large as the median value we recover,
indicating that the training data we used (coupled
with our analysis assumptions) provides only a weak
constraint on the behavior of the imaginary surface term
away from the valley of β-stability. Considering that
many downstream applications, such as r-process nucle-
osythesis calculations, fission neutron spectra modeling,
and planned transfer and knockout studies at NSCL and
FRIB, rely on OMP-informed evaluations of low-energy
inelastic cross sections on neutron-rich targets, the fact
that D1,α is poorly constrained is a pressing problem.
A global, UQ-equipped phenomenological OMP analysis
that incorporates isovector-sensitive observables, such
as quasi-elastic charge exchange cross sections that have
already yielded insight into OMP isovector dependence
(e.g., [60]), is a natural next step.

Besides these terms with explicit asymmetry-
dependence, the imaginary volume term, which is
separately parameterized for protons and neutrons,
contains information about isovector dependence of
imaginary strength. For both neutrons and protons, our
median-value estimates for first-order imaginary volume
strength (Wn

1,0 and W p
1,0 terms) are moderately larger

than the canonical KD value, suggesting enhanced imag-
inary volume strength overall. Coupled with the smaller
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overall imaginary surface depth D1,0, these result in a
reduction in predicted neutron/proton reaction cross
sections at low energies (associated with the surface)
and an increase at higher energies associated with the
volume — in improved agreement with experimental
trends for protons shown in Fig. 9. This trend is also
visible for neutrons in Fig. 12, where above 100 MeV,
the imaginary volume integral grows more rapidly for
KDUQ than for KD. If verified, this additional imagi-
nary volume strength would further quench bound-state
spectroscopic factors available from dispersive optical
models, as discussed in [14, 55].

Lastly, to assess the effect of our data covariance ma-
trix ansatz on these interpretations, we compared two
different versions of KDUQ: one trained using the “demo-
cratic” covariance ansatz of Eq. 11 and one trained us-
ing the “federal” covariance ansatz of Eq. 16. Figure
13 shows results from both treatments on predictions of
proton σrxn above 50 MeV, where the effects of changing
the covariance ansatz is largest. Overall, these differ-
ent ansatzes have little effect on the median parameter
values. However, in the case where one training data
type has far fewer data than others, the federal ansatz
leads to a moderate reduction of unaccounted-for uncer-
tainty required to reproduce data of that type, which
leads to more precise predictions for data of that type.
This agrees with our expectation that the more realistic
the experimental data covariance matrix ansatz is, the
less unaccounted-for uncertainty is required to achieve
good reproduction of the data.

V. IMPACT

In this section, we apply our UQ-equipped OMPs to
two case studies: predicting neutron σtot evolution with
respect to asymmetry, and propagation of OMP UQ into
Hauser-Feshbach calculations of of (n,γ) on 95Mo and
(p,γ) on 87Sr.

A. Case study 1: evolution of neutron total cross
sections in isotopic pairs

Cross sections for neutron-induced reactions on β-
unstable targets are a key input for several nuclear
data applications, e.g., r-process nucleosynthesis net-
work calculations [61]. Because of the experimental dif-
ficulty in performing cross section measurements in this
regime, cross sections estimations rely on either (semi-
)microscopic OMPs [2, 5] or phenomenological potentials
fitted solely to stable-target data, such as the KD global
OMP, that are then extrapolated according to their as-
sumed asymmetry-dependence. For incident neutrons at
lower energies (< 10 MeV), the asymmetry-dependence
of the imaginary surface term strongly affects capture
cross sections [25], but the magnitude of this asymmetry-
dependence remains poorly known. More broadly, such
isovector components of optical potentials are connected

to other poorly constrained but important nuclear quan-
tities, such as neutron skins in finite nuclei [14, 55, 59]
and the density-dependence of the symmetry energy, L,
in nuclear matter, which influences both the theoretical
limit to neutron star radii and the dynamics of neutron
star mergers, among other properties [62]. As such, im-
proving our knowledge of the appropriate asymmetry-
dependence of OMPs remains an important task.

To constrain asymmetry-dependent terms of phe-
nomenological OMPs, past analyses have focused mainly
on two types of experimental data: quasielastic charge
exchange cross sections to the isobaric analog state (as
analyzed in [60] using a KD-like potential), and ra-
tios of neutron cross sections measured on different iso-
topes along an isotopic or isotonic chain (as studied by
[29, 58, 59, 63, 64]). Quasielastic charge exchange is
an ideal probe in that measured cross sections are sen-
sitive specifically to isovector strength, but analysis of
these data may require more sophisticated theoretical
machinery (as compared to straightforward elastic and
total cross section calculations) to correct for contamina-
tion from ∆Jπ 6= 0+ channels, as demonstrated in [65].
The second type, ratios of neutron cross sections, has
the advantage that by taking a cross section ratio, many
systematic uncertainties (such as detector efficiency) are
divided out. Further, if more than two isotopic targets
are available, multiple ratios can be constructed and ad-
ditional quantities, such as degree of deformation, can
be extracted [63, 64]. In addition, because neutron to-
tal cross sections can be simultaneously collected from a
few to a few hundred MeV[66, 67] at precisions of ≈ 1%,
ratios of neutron total cross sections can provide informa-
tion about OMP isovector features across broad regime
of energies relevant for OMP construction and applica-
tion. The main drawback of this type of measurement is
the often-prohibitive expense of obtaining large, isotopi-
cally pure targets with precisely known areal densities.
Even when isotopically pure targets are available along
an isobar or isotopic chain, because they must be stable
or at least long-lived to be suitable for target fabrication,
they can span only a small range of asymmetries, which
diminishes the isovector signal in the cross section ratio.

The importance of constraining isovector terms war-
rants a future, global OMP analysis including both of
these data types as well as neutron strength functions
(as used by [5]) to characterize isovector dependence. As
a precursor to such an analysis, in Fig. 14 we consider
canonical KD OMP and KDUQ predictions against neu-
tron total cross section isotopic ratios on 40,48Ca [58],
58,64Ni, 112,124Sn, [29], 182,186W [59]. In all instances,
the median predicted value from KDUQ closely follows
the canonical KD predictions. Due to the small reported
uncertainties of the experimental data shown in Fig. 14,
the canonical KD predictions are discrepant with the ex-
perimental data at the several-σ level in many places,
e.g., the 64Ni-58Ni relative difference below 20 MeV in
panel (b). As such, if one considers just the canonical
KD curve, one might conclude that the KD potential
form is missing some important asymmetry-dependent
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FIG. 14: Relative differences of neutron total cross sections from 5 to 250 MeV for several isotopic pairs are plotted.
Calculations using the standard KD global potential are shown via the blue dashed line. The 68% and 95% credible intervals
of KDUQ appear as the dark and light red bands, respectively. The experimental data of [58], [29], and [59] appear as black
points with associated errors.

physics that are present in the data. However, when
OMP parametric uncertainties are considered (as shown
in the KDUQ curve), it is clear that most of the discrep-
ancies between the canonical KD predictions and exper-
imental data are not statistically meaningful. That is,
once parameter uncertainties are included, the KD po-
tential form is quite effective at predicting these cross
section ratios to which it was never trained. Moreover,
any discrepancies that remain after parametric uncer-
tainty is considered (for example, the overprediction of
the Sn isotopic ratios, shown in panel (c), between 30
and 50 MeV), become even more interesting: they do
indicate residual physics that has been captured by the
measurement, but not by the assumptions of our OMP.
In the specific case of Sn and W isotopic ratios, the likely
cause for the significant discrepancy between predictions
and measurements is that the KD form, by definition,
neglects the differing density profiles for neutron and
protons in the Sn and W isotopes. Indeed, Dietrich et
al. [59] who collected the W data found that accurately
reproducing the W isotopic ratio data between 20 and
40 MeV required a Jeukenne-Lejeune-Mahaux-inspired
coupled-channel OMP analysis that featured an increas-
ing neutron skin from 182W to 186W. If more isotopically
resolved neutron total cross section ratios were available,
a similar analysis across many isotopic chains could pro-
vide neutron skin thicknesses and additional information

on L, though the potential would need to be deformation-
aware and not spherical, as assumed here. The apparent
(but, in light of the parametric uncertainty, insignificant)
discrepancy between the canonical KD calculation and
the Ni isotopic ratio data is an example of how well-
calibrated UQ helps avoid mistaking noise in the exper-
imental data for signal. At the very least, the KDUQ
predictions make clear that in order for neutron total
cross section ratios to constrain asymmetry-dependent
OMP terms for a KD-like potential, the relative differ-
ence measurement must achieve 1% precision or better.

B. Case study 2: 95Mo(n,γ)96Mo and 87Sr(p,γ)88Y
cross sections

One of the most common applications for OMPs is
as an input for radiative capture calculations. While
direct and pre-equilibrium capture mechanisms play an
important role for light and near-dripline nuclei [70], the
Hauser-Feshbach model, which assumes equilibration of
the excited composite nucleus before de-excitation, is ap-
propriate for most nucleon capture reactions. In this pic-
ture, both the probability of creating a compound nu-
cleus in the entrance channel and the evaporation of nu-
cleons from an excited nucleus depend on energy- and
angular-momentum-dependent transmission coefficients
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FIG. 15: Transmission coefficients and cross sections for 87Sr(p,γ)88Y and 95Mo(n,γ)96Mo are plotted. All calculations were
performed using the statistical reaction code YAHFC [44] with default structure inputs. Calculations using the canonical KD
OMP are shown via blue lines; calculations using CH89 are shown as red lines. Calculations using 100 samples each from the
KDUQ and CHUQ posterior distributions are shown as diffuse blue and red bands, respectively. In panels (a) and (b), both
S-wave (L=0, J= 1

2
) and P -wave (L=1, J= 3

2
) transmission coefficient curves are shown. Panel (c) includes experimental data

from Gyürky et al. [36] (scaled upward by a factor of 2.5 to agree with the 88Sr(p,γ)89Y data of [68], as indicated by Vagena
et al. [69]).

Tlj(E) that are determined by an OMP. To illustrate
the relative impact of OMP uncertainty on nucleon cap-
ture within the Hauser-Feshbach model, we propagated
CHUQ and KDUQ uncertainties through two represen-
tative reactions: 95Mo(n,γ)96Mo and 87Sr(p,γ)88Y at
incident nucleon energies up to 5 MeV. Calculations
were carried out using the LLNL Hauser-Feshbach code
YAHFC [44], modified to accept KD-like and CH89-like
potentials with arbitrary parameters, and using YAHFC
default configuration information, discrete level data, nu-
clear level densities (LDs), and γ-ray strength functions
(γSFs). For each reaction, we ran YAHFC once using the
canonical KD and once using the canonical CH89 poten-
tial and then performed one hundred YAHFC runs each
for CHUQ and KDUQ, with each run using a unique
sample of the OMP parameter posterior. Results of
these calculations are shown in Fig. 15. Panels (a) and
(b) show transmission coefficients Tlj(E) generated by
YAHFC’s invocation of frescox [50] for protons inci-
dent on 87Sr and for neutrons incident on 95Mo. Panels
(c) and (d) display the corresponding capture cross sec-
tions, where the uncertainty shown is due to the trans-
mission coefficients of panels (a) and (b). As YAHFC

uses a Monte Carlo approach for de-exciting compound
nuclei, we drew 106 samples at each scattering energy
to ensure that YAHFC’s statistical uncertainty due to
Monte Carlo sampling was less than 1% for the calcu-
lated capture cross sections.

For p+87Sr, the CH89, CHUQ, and KDUQ transmis-
sion coefficients show overall consistency across all de-
picted energies, whereas the KD transmission coefficients
are slightly lower than the other OMPs between 3 and
10 MeV. The principle difference for KD was reduced s-
wave strength and a more rapid rise in p-wave strength.
Below 3 MeV the Coulomb barrier manifests as a steep
reduction across the board. Above 10 MeV (the mini-
mum energy included in the CHUQ corpus), the Tlj(E)
generated from all four OMPs are consistent within ap-
proximately 10%, an indication that the OMP uncer-
tainty is likely a minor source of uncertainty in cross
section predictions above this energy.

This reaction was one of those considered by Vagena et
al. in their recent study [69] of systematic effects of the
proton OMP on p-process nucleosynthesis. In their ap-
proach, using talys they sought to improve the Bruyére-
le-Châtel version of the Jeukenne-Lejeune-Mahaux semi-
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microscopic proton OMP [5] by tuning its parameters
to better reproduce experimental cross sections for spe-
cific reactions. In the case of 87Sr(p,γ)88Y, experimental
data were available from 1.6 to 3 MeV as collected by
Gyürky et al., shown here in panel (c) of Fig. 15. Fol-
lowing Vagena et al., we have scaled the data up by a
factor of 2.5 from the original publication to comport
with 88Sr(p,γ)89Y data subsequently published by [68].
In their analysis, they argued that below roughly 3 MeV,
this reaction can be considered independent of the 88Sr
LD and γSF, so any remaining discrepancy between pre-
dictions and measured data serves as a basis for adjust-
ing OMP parameters. In our case, while we did not
perform calculations using any microscopic OMPs, all
four global phenomenological OMPs we did consider –
CH89, CHUQ, KD, and KDUQ – generate predictions
within a few tens of percent of the experimental cross
sections. This suggests that unless both the LD and γSF
are known within a few tens of percent precision for a
given reaction, constraining OMP parameters by work-
ing backwards from measured capture cross sections may
not be feasible. A consistent joint treatment combining
all of these sources of uncertainty is a next step in which
the yet-unknown correlations between OMPs, LDs, and
γSFs will be critically important. We hope to engage in a
systematic study following the logic of [69] that compares
microscopic OMPs with UQ-equipped phenomenological
ones for astrophysically relevant reactions. At the very
least, we argue that the intuition provided here on stan-
dard phenomenological OMPs can guide analysts inter-
ested in manually tuning microscopic OMP parameters
to reproduce experimental scattering observables. Given
our finding that the CH89 and KD uncertainty effect on
capture cross sections between 1-5 MeV that we exam-
ined is on the order of tens of percent, a practitioner who
encounters a larger discrepancy between their prediction
and experimental data should consider other sources of
uncertainty beyond the OMP parameters, such as defor-
mation or level density uncertainty.

Finally, we consider n+95Mo in panels (b) and (d).
Throughout the depicted energy range, CHUQ calcula-
tions are highly consistent with CH89 and KDUQ calcu-
lations with KD, but both KD-type OMPs have a much
slower rise in s-wave strength with respect to energy than
do the CH89-type OMPs. At energies above 100 keV the
slower s-wave rise is offset by a correspondingly faster
rise in p-wave strength such that resulting neutron cross
section predictions, which include contributions over all
incident partial waves, differ by only 20-30%, highly con-
sistent with the degree of uncertainty seen for p+87Sr.
Importantly, for any reactions at energies below 100 keV
involving primarily the s-wave transmission coefficients,
CH89 and CHUQ are expected to yield a cross section
two to three times higher than KD and KDUQ. In such
case, the OMP uncertainty should indeed dominate the
cross section, as uncertainty in the LDs and γSFs have
minimum impact at lower energies (again shown in Fig.
1 and 2 of Vagena et al. [69]). Such OMP-driven un-
certainty could impact both weak and strong r-process

network calculations. Comparison of the canonical KD
OMP’s s- and p-wave strength functions against exper-
imental data, as shown in Fig. 47 of Koning and De-
laroche’s original analysis, suggest that at energies below
100 keV, KD-type OMPs may have a more realistic en-
ergy dependence than the CH89-type OMPs. A detailed
study of OMPs uncertainty at nucleosynthetic “bottle-
necks” seems a worthy follow-up.

VI. CONCLUSIONS

Phenomenological OMPs continue to play an impor-
tant role in nuclear reaction calculations but lack well-
calibrated UQ. Without reliable uncertainty estimates, it
is difficult to assess the relative importance of OMPs on
the overall uncertainty budget of applications dependent
on reaction data. To address this issue, we identified two
main obstacles – systematic underestimation of experi-
mental (co)variance and a lack of outlier rejection – and
developed a generic pipeline for performing UQ on phe-
nomenological OMPs. We then applied it to the widely-
used CH89 and KD global OMPs, yielding two new po-
tential ensembles, CHUQ and KDUQ, with full covari-
ance information between potential parameters. CHUQ
and KDUQ perform favorably against their training cor-
pora, with KDUQ showing superior performance on the
Test corpus, especially for proton σrxn and neutron σtot.
Accordingly, we recommend using KDUQ over CHUQ
for non-elastic calculations and for calculations below 10
MeV (the stated threshold of validity for CH89). In the
case of proton σrxn data, KDUQ shows improved per-
formance compared to the canonical KD global OMP.
Further, by training two versions of KDUQ with differ-
ent assumed forms of data covariance, we demonstrated
how small changes in underlying covariance assumptions
can impact the uncertainty of predictions in data-sparse
regions, as shown for high-energy proton σrxn in Fig. 13.
These results caution against näıve use of a weighted-
least-squares likelihood function when experimental data
used for training are known to have underestimated un-
certainties and non-trivial covariance structure. In the
case we presented, an MCMC-based inference strategy
made sense so that we could include our unaccounted-for
uncertainty estimates as priors, but the need for a de-
fensible likelihood function is just as important in any
approach, Bayesian or not, involving training a model to
data.

As a demonstration of their utility, we forward-
propagated CHUQ and KDUQ’s parameter covariances
in two case studies. In the first, we showed that KDUQ
accurately predicts neutron σtot evolution with respect
to asymmetry, auguring well for neutron-scattering pre-
dictions beyond the valley of β-stability, at least along
closed shells in Z. Because our uncertainty-quantified
model was designed to incorporate the observed variance
of its training data, a discrepancy between our model
and experimental data is not easily explained away as
arbitrariness in the model parameters. For example, in
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our examination of isotopic relative differences of neu-
tron σtot, we saw KDUQ underpredicted the oscillations
present in the experimental relative differences for Sn and
W isotopes between 20 and 50 MeV (panels (c) and (d)
of Fig. 14). These oscillations can be reproduced by
an OMP analysis only if the different proton and neu-
tron density distributions of the target are taken into ac-
count, as shown in [59]. Although this physics is absent
from the KD or CH89 pictures, it implies that, provided
one uses an uncertainty-quantified OMP and fits to rel-
ative σtot differences rather than absolute cross sections,
neutron σtot data are useful for extracting neutron skin
thickness information. As new reactions are pursued at
modern radioactive beam facilities, this kind of compari-
son between uncertainty-equipped data and uncertainty-
equipped models is important for calibrating our “de-
gree of surprise” to avoid chasing down spurious signals.
Systematic comparison against isovector data, including
(p,n) cross sections and σtot relative differences along iso-
topic and isotonic chains, is a promising meeting-ground
for phenomenological and microscopic OMPs.

Finally, we explored the impact of KDUQ and CHUQ
on representative radiative capture calculations for 87Sr
and 95Mo. The capture cross sections between 1-5 MeV
computed using KDUQ are somewhat lower (≈ 20−30%)
than those using CHUQ, though with substantial uncer-
tainty overlap. Given the systematic assessment of pro-
ton capture rate uncertainty of [69], we argue that in the
few-MeV range, the fraction of overall cross section un-
certainty due to the OMP is comparable to that in the
γ-ray strength function and level density, and at ener-

gies below 1 MeV the OMP uncertainty may dominate.
Moreover, while the partition of strength between s- and
p-wave below 10 MeV are different, particularly for neu-
trons, the contributions from each to the overall cross
sections were countervailing for 95Mo. If angular mo-
mentum transfer is restricted to a single partial wave,
the differences between (and uncertainty in) OMPs can
be much larger, as shown for n+95Mo below 100 keV,
and the effect on cross sections correspondingly larger.
This is another region where comparison between (semi)-
microscopic and phenomenological OMPs is likely to be
fruitful, both for improving existing OMPs and for pro-
viding more stringent reaction rates to astrophysical nu-
cleosynthesis calculations. To support such efforts, we
enclose copies of CHUQ and KDUQ in the Supplemental
Material [37].
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Appendix A: Definition of optical potentials and
scattering formulae

Reproduced here are the definition of the Chapel Hill
’89 [19] and Koning-Delaroche [20] optical potentials,
starting from the overall potential form and ending with
the definitions for form subterms. Free parameters (those
subject to Bayesian inference via MCMC) are denoted in
this section using a bold typeface. For brevity we set
~ = c = 1.

1. CH89 definition

The CH89 global optical potential for single-nucleon
scattering consists of five terms:

U(r, E) =Vr(r, E)− iWv(r, E)− iWs(r, E)

−Vso(r, E)(` · σ) + VC(r),
(A1)

where

• Vr is the real central potential,

• Wv is the imaginary central (or “volume”) poten-
tial,

• Ws is the imaginary surface potential,

• Vso is the real spin-orbit potential, and

• VC is the Coulomb potential (for protons only).

As with the Koning-Delaroche potential defined below,
each component (except Coulomb) consists of an energy-
dependent depth coupled with a radius-dependent spatial
form:

Vr(r, E) = Vr(E)× f(r,R0,a0),

Wv(r, E) = Wv(E)× f(r,Rw,aw),

Ws(r, E) = Ws(E)×−4aw
d

dr
f(r,Rw,aw),

Vso(r, E) = 2Vso ×
−1

r

d

dr
f(r,Rso,aso),

VC(r) =

{
Zze2

2RC

(
3− r2

R2
C

)
, if r < RC

Zze2

r , if r ≥ RC
.

(A2)

The spatial form f(r,R, a) is the standard Woods-Saxon
potential

f(r,R, a) =
1

1 + e(r−R)/a
,

d

dr
f(r,R, a) =

1

a

[
−e(r−R)/a

(1 + e(r−R)/a)2

]
.

(A3)

Here R and a are radius and diffuseness parameters, re-
spectively. The usual R = r0A

1/3 dependence is assumed
(see Eq. A6 below for equations defining r0 for each
component), with A the nucleon number of the target.
We note that for a natural-abundance target, the value

that should be taken for A is not explicitly discussed in
the original formulation of CH89 or KD. A simple choice
would be to use the A of the most abundant isotope,
which works well for many elements but is unsatisfying in
cases where the lightest or heaviest isotope is most abun-
dant. For example, in natNi the most abundant isotope
is 58Ni, but the abundance-weighted nucleon number is
58.76 (a difference of 1.3% from 58). In this work, for
natural targets we took for A the target’s atomic weight,
which for the targets we used agrees with the abundance-
weighted nucleon number to within ≈ 0.1%.

The CH89 energy-dependent depths are given by:

Vr(E) = V0 + Ve∆E ± αVt

Wv(E) = Wv0

[
1 + e

Wve0−∆E
Wvew

]−1

Ws(E) = (Ws0 + αWst)
[
1 + e

∆E−Wse0
Wsew

]−1

Vso(E) = Vso0

(A4)

The nuclear asymmetry α is defined (N −Z)/A. As with
the definition of A, for natural targets a definition for
α is not given in the original potential formulation. For
these targets, we took α = (A − 2Z)/Z, consistent with
our definition of A. The energy argument ∆E is the
difference between the scattering energy and the volume-
averaged Coulomb energy:

∆E = Elab − Ec

Ec =

{
6Ze2

5Rc
, for protons

0, for neutrons
.

(A5)

Lastly, the radial form parameters Ri are defined as
follows:

R0 = r0A
1/3 + r0

0,

Rw = rwA
1/3 + r0

w,

Rso = rsoA
1/3 + r0

so,

RC = rcA
1/3 + r0

c .

(A6)

In total there are 22 free potential parameters: 11 asso-
ciated with the potential depths and 16 associated with
the radius-dependent spatial forms. We comment that
in the original CH89 treatment, only 20 parameters were
free, as the authors fixed the Coulomb parameters rc and

r
(0)
c based on a separate assessment.

2. Koning-Delaroche definition

Similar to CH89, the Koning-Delaroche optical poten-
tial for single-nucleon scattering is defined as a function
of radius r and energy E:

U(r, E) = −VV (r, E)− iWV (r, E)− iWD(r, E)

+ VSO(r, E)(` · σ) + iWSO(r, E)(` · σ) + VC(r),

(A7)

where
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• VV is the real central potential,

• WV is the imaginary central potential,

• WD is the imaginary surface potential,

• VSO is the real spin-orbit potential,

• WSO is the imaginary spin-orbit potential, and

• VC is the Coulomb potential (for protons only).

In the spin-orbit components, ` is the orbital angular
momentum quantum number for each partial wave asso-
ciated with the incident projectile and σ is the spin of
the incident projectile. Except Coulomb, each compo-
nent consists of an energy-dependent depth coupled with
a radius-dependent spatial form:

VV (r, E) = VV (E)× f(r,RV , aV ),

WV (r, E) = WV (E)× f(r,RV , aV ),

WD(r, E) = WD(E)×−4aD
d

dr
f(r,RD, aD),

VSO(r, E) = VSO(E)

(
~

mπc

)2

× 1

r

d

dr
f(r,RSO, aSO),

WSO(r, E) = WSO(E)

(
~

mπc

)2

× 1

r

d

dr
f(r,RSO, aSO),

VC(r) =

{
Zze2

2RC

(
3− r2

R2
C

)
, if r < RC

Zze2

r , if r ≥ RC
.

(A8)

The spatial form f(r,R, a) is the same Woods-Saxon
defined earlier in the CH89 case (Eq. A3), with R =
r0A

1/3. In the spin-orbit subcomponent definitions, mπ

is the charged pion mass. In the Coulomb component
definition, z is the projectile charge, Z is the target
charge, and e2 is the elementary charge squared (≈ 1.44
MeV·fm).

Depending on whether the user is modeling neutron or
proton scattering, the energy-dependent depths appear-
ing in Eq. A8 are given by:

VV (E) = vn,p1 [1− vn,p2 ∆En,p

+ vn,p3 (∆En,p)2 − vn,p4 (∆En,p)3]

+V c × vp1 [vp2 − 2vp3∆Ep + 3vp4(∆E)2]

WV (E) = wn,p1

(∆E)2

(∆E)2 + (wn,p2 )2
,

WD(E) = dn,p1

(∆E)2

(∆E)2 + (dn,p3 )2
e−d

n,p
2 ∆E ,

VSO(E) = vn,pSO1e
−vn,pSO2∆E ,

WSO(E) = wn,pSO1

(∆E)2

(∆E)2 + (wn,pSO2)2
,

(A9)

where the superscripts n, p denote different parameters
used for neutrons and protons, respectively. The en-
ergy variable ∆En,p is the difference between the inci-
dent scattering energy in MeV in the lab frame and the

Fermi energy for neutrons or protons:

∆En,p = E − En,pf
Enf = −11.2814 + 0.02646A

Epf = −8.4075 + 1.01378A.

(A10)

The potential depth parameters from Eq. A9 are de-
fined as:

vn,p1 = v1,0 − v1,AA± v1,αα

vn,p2 = vn,p
2,0 ± vn,p

2,A

vn,p3 = vn,p
3,0 ± vn,p

3,A

vn,p4 = v4,0

wn,p1 = wn,p
1,0 + wn,p

1,AA

wn,p2 = w2,0 + w2,AA

dn,p1 = d1,0 ± d1,αα

dn,p2 = d2,0 +
d2,A

1 + e(A−d2,A3)/d2,A2

dn,p3 = d3,0

vn,pSO1 = vSO1,0 + vSO1,AA

vn,pSO2 = vSO2,0

wn,pSO1 = wSO1,0

wn,pSO2 = wSO2,0

V C =
VCZ

rCA1/3
=

6Ze2

5rCA1/3
.

(A11)

In these expressions, ± should be taked as − for neutrons
and + for protons. Our definitions for A and for the
nuclear asymmetry α for natural targets are the same as
used above for CH89.

Finally, the radial form parameters entering Eqs. A3
and A8 are defined

rV = rV,0 − rV,AA
−1/3

aV = aV,0 − aV,AA

rD = rD,0 − rD,AA
−1/3

aD = an,p
D,0 ± an,p

D,AA

rSO = rSO,0 − rSO,AA
−1/3

aSO = aSO,0

rC = rC,0 + rC,AA
−2/3 + rC,A2A

−5/3.

(A12)

As in Eq. A11, ± should be taken as − for neutrons and
+ for protons. In total there are 47 free potential parame-
ters: 31 associated with the energy-dependent depths and
16 associated with the radius-dependent spatial forms.

3. Scattering formulae

In this section we list the expressions we used to calcu-
late proton and neutron scattering observables. Our pro-
cedure follows the calculable R-matrix method outlined
in Descouvement and Baye (DB) [46], but modified (as
discussed below) to be suitable for relativistic-equivalent
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calculations. The scattering observables we considered
can all be calculated from the scattering matrix for inci-
dent partial waves. The S matrix for the incident pro-
jectile partial wave with angular momentum l is (DB Eq.
3.24):

Sl = e2iδl = e2iφl
1− (L∗l −B)Rl(E,B)

1− (Ll −B)Rl(E,B)
. (A13)

The S-matrix terms are equivalent to the partial wave
phase shifts δl. Here Ll is the logarithmic derivative of
the outgoing partial wave, evaluated at channel radius a.
It can be expressed in terms of Coulomb functions (DB
Eqs. 3.28-3.30):

Ll =
ka

Fl(ka)2 +Gl(ka)2

× [Fl(ka)F ′l (ka) +Gl(ka)G′l(ka) + i] .

(A14)

The hard-sphere phase shift, φl, is (DB Eq. 3.26)

φl = − tan−1(Fl(ka)/Gl(ka)). (A15)

In these expressions, Fl and Gl are the regular and irreg-
ular Coulomb functions, with F ′l and G′l their derivatives.
(In the Coulomb function notation, we have omitted the
implied Sommerfeld parameter η.) Rl(E,B) are the R-
matrix elements, discussed below, and B is a dimension-
less boundary parameter associated with the Bloch oper-
ator. As shown in Eq. 3.27 and appendix B of DB, the
scattering matrix is unaffected by the choice of boundary
parameter B, so B can be set to 0 to simplify the S- and
R-matrix calculation algebra.

To calculate the R matrix, we used the finite-basis ap-
proximation (Eq. 3.15 in DB):

Rl(E,B) =
1

2µa

N∑
i,j=1

φi(a)(C−1)ijφj(a). (A16)

Here E is the center-of-mass energy, µ is the reduced
mass, a is the channel radius, N is the number of basis
states φ, and C is the symmetric matrix containing so-
lutions to the inhomogenous Bloch-Schrödinger equation
(Eq. 3.7 in DB),

Ci,j(E,B) = 〈φi|Tl + L(B) + V − E |φj〉 (A17)

To solve this equation, we employed the Lagrange-mesh
method of Baye [47] on an N = 30 Legendre-polynomial
mesh. The kinetic energy Tl and Bloch L(B) operators
on this Lagrange-Legendre mesh (which we do not repro-
duce here) are given by Eqs. 3.127 and 3.129 of [47]. In
our case, V is the optical potential, with E the center-of-
mass energy. Note, however, that the energy argument
of the optical potential, e.g., E in U(r, E) of Eq. A7, is
the projectile energy in the lab frame, per the definition
of CH89 and KD.

The above formulation is appropriate for the non-
relativistic limit, but above a few tens of MeV, an ap-
proximate relativistic-equivalent version should be used,

requiring modification of several elements in the calcula-
tion. First, the center-of-mass energies, angles, and the
relative velocity appearing in the Sommerfeld parame-
ter should be calculated according to relativistic kine-
matics. Second, in the relativistic picture the reduced
mass and center-of-mass wavenumber are no longer suit-
able to describe the relative motion between projectile
and target, so approximations are required. We used the
relativistic approximations of Eqs. 17 and 20 in Inge-
marsson’s topical study [53] that base the wavenumber
on the relativistic momentum in the center-of-momentum
frame and treat the center-of-momentum motion of the
target as non-relativistic. These approximations modify
the wavenumber and reduced mass appearing throughout
this section as:

k → m1[E(E + 2m2)]1/2

[(m1 +m2)2 + 2m1E)]1/2

µ→ k2 E′

E′2 −m2
2
.

(A18)

Here, m1 is the target rest mass, m2 is the projectile rest
mass, E is the incident projectile energy in the laboratory
frame, and E′ is the sum of center of mass energies of the
target and projectile, plus the rest mass of the projectile.
These approximations for k and µ can be inserted in the
preceding equations to yield the relativistic-approximate
forms that we actually used to perform calculations.

To generate scattering observables for spin-1/2 parti-
cles, two S-matrix terms, corresponding to j = l ± 1/2,
must be calculated for each partial wave l > 0. From
these terms the non-spinflip amplitude A(θ) and spinflip
amplitude B(θ) can be calculated for scattering angle θ:

A(θ) =
i

2k

∞∑
l=0

e2iσl(2l + 1− (l + 1)S+
l − lS

−
l )Pl(cos θ)

− η

2k sin2 1
2θ
e2i(σ0−η log sin 1

2 θ)

(A19)

B(θ) =
i

2k

∞∑
l=0

e2iσl(S−l − S
+
l )P 1

l (cos θ). (A20)

Here, S+
l is the S-matrix element for j = l+ 1

2 and S−l is

the S-matrix element for j = l− 1
2 (setting S−0 ≡ 0). Pl is

the Legendre polynomial of degree l, P 1
l is the associated

Legendre polynomial of degree l and order m, and σl is
the Coulomb phase shift:

σl = arg Γ(l + 1 + iη), (A21)

Γ being the gamma function. Equations A19 and A20
combine Eqs. 8 and 9 of Ingemarsson, which are for spin-
1/2 neutral particles, with the spinless, charged particle
scattering amplitudes of DB Eq. 2.23. Specifically, the
final term of Eq. A19 that involves η is the Coulomb
scattering amplitude (DB Eq. 2.13).
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Finally, from the scattering amplitudes, the differential
elastic cross section is simply

dσ(θ)

dΩ
= |A(θ)|2 + |B(θ)|2, (A22)

and the analyzing power is

Ay =
A∗(θ)B(θ) +A(θ)B∗(θ)

dσ(θ)
dΩ

, (A23)

per Eqs. 10 and 11 of Ingemarsson. The reaction (non-
elastic) and total cross sections can be computed directly
from the S matrix:

σrxn =
π

k2

∞∑
l=0

(l + 1)(1− |S+
l |

2) + l(1− |S−l |
2) (A24)

σtot =
2π

k2

∞∑
l=0

(l+ 1)(1−Re[S+
l ]) + l(1−Re[S−l ]). (A25)
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