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Current and future electron and neutrino scattering experiments will be greatly aided by a better
understanding of the role played by short-range correlations in nuclei. Two-body physics, including
nucleon-nucleon correlations and two-body electroweak currents, is required to explain the body
of experimental data for both static and dynamical nuclear properties. In this work, we focus on
examining nucleon-nucleon correlations from a chiral effective field theory perspective and provide
a comprehensive set of new variational Monte Carlo calculations of one- and two-body densities
and momentum distributions based on the Norfolk many-body nuclear Hamiltonians for A ≤ 12
systems. Online access to detailed tables and figures is available.

PACS numbers:

I. INTRODUCTION

The coordinate and momentum distributions of nucle-
ons in nuclei are one of the key indicators of short-range
correlations (SRCs) in multinucleon systems. SRCs rep-
resent a fascinating aspect of nuclear dynamics; under-
standing their formation mechanisms and specific charac-
teristics is required to obtain a comprehensive description
of nuclei and nucleonic matter. SRCs tell us much about
i) nuclear forces at short distances and how they are
generated from quantum chromodynamics; ii) the limita-
tions of mean-field models and how to ameliorate them;
iii) the properties of matter at high densities, such as
those found in compact stellar objects and in relativistic
heavy ion collisions; iv) the response functions in hadron
and lepton scattering from nuclei; v) the origin of the
EMC effect, and vi) the sensitivity of neutrinoless dou-
ble beta decay matrix elements to short-range dynamics.

Since the 1950s, many efforts have been devoted to
the study of SRCs and the short-range properties of the
nuclear force. It was only recently that experimental
and theoretical studies of these phenomena were placed
on solid ground, thanks to sophisticated high-energy and
large momentum transfer electron and proton scattering
experiments [1–9], allowing for precision measurements
of small cross sections, together with the enormous
progress made by many-body theories [10–18]. For in-
stance, experiments involving high-energy, semi-inclusive
triple coincidence measurements that successfully probed
the isospin composition of nucleon-nucleon (NN) SRCs
in the relative momentum range of 300–600 MeV/c
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discovered a strong (by a factor of 20) dominance of
neutron-proton (np) pair SRCs in nuclei when compared
with proton–proton (pp) and neutron–neutron (nn)
correlations in both light and heavy nuclei [6–8]. This
was explained on the basis of the large tensor force in
the NN interaction at the above-mentioned momentum
range. As a result of this finding, it was predicted
that the single momentum distributions of the proton
and neutron, weighted by their respective fractions,
are nearly equal, and that the probability of a proton
or neutron being in high momentum NN correlation
is inversely proportional to their relative fractions in
the nucleus. The validity of these predictions were
confirmed by results of ab-initio variational Monte Carlo
(VMC) calculations of the momentum distributions of
light nuclei [16] and of approximate schemes like cluster
expansions [11, 13, 19] and correlated basis function
theory [20–22] for medium to heavy nuclei. Moreover,
calculations of the momentum distributions of different
light nuclei showed high momentum tails that resembled
those of the deuteron, demonstrating a universal nature
of SRCs [11, 13, 16, 19–22].

An extensive library of VMC one- and two-body densi-
ties and momentum distributions for many different light
nuclei using the phenomenological Argonne v18 (AV18)
two-nucleon (NN) [23], and Urbana X (UX) three-
nucleon (3N) interactions was previously constructed
and posted online for the benefit of the nuclear physics
community at large [16]. Additionally, these calculations
have contributed to a novel study of many-body factor-
ization and the position-momentum equivalence of nu-
clear short-range correlations, using a Generalized Con-
tact Formalism (GCF), which was reported in Nature
Physics [24].

In this paper, we provide a comprehensive set of new
results of one- and two-body densities and momentum
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distributions over a wide range of nuclei from 2H up to
12C, using the Norfolk NN and 3N (NV2+3) forces [25–
29]. These results feature new calculations of the pair
density as a function of both the pair separation and
pair center-of-mass, and calculations of the two-body
momentum distribution coming from short- and long-
range pairs differentiated by a pair separation bound-
ary. The full set of calculations is accessible in graphical
and tabular forms online at www.phy.anl.gov/theory/
research/QMCresults.html.

The paper is structured as follows: a brief review of
Norfolk interactions is given in Sec. II. In Sec. III we
present results for the one- and two-body densities cal-
culated for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C. The pair
density as a function of both the pair separation and pair
center-of-mass is presented for 4He and 12C. In Sec. IV
the results for the one- and two-body momentum distri-
bution are provided for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and
12C. Results for momentum distributions as functions of
the relative momentum and center-of-mass momentum
without and with pair separation boundary are displayed
for 4He and 12C. Additional results are available online.

II. NORFOLK MANY-BODY INTERACTIONS

The Norfolk interactions are obtained from a chiral
effective field theory (χEFT) that uses pions, nucleons
and ∆’s as fundamental degrees of freedom, and con-
sists of long-range parts mediated by one- and two-
pion exchange, and contact terms specified by unknown
low-energy constants (LECs). The LECs entering the
NN contact interactions are constrained to reproduce
NN scattering data from the most recent and up-to-
date database collected by the Granada group [30–32].
The contact terms are regularized via a Gaussian cut-
off function with RS as the Gaussian parameter [25–
27]. The divergences at high-value of momentum trans-
fer in the pion-range operators are removed via a spe-
cial radial function characterized by the cutoff RL [25–
27]. There are two classes of NV2 potentials. Class I
(II) has been fitted to data up to 125 MeV (200 MeV).
For each class, two combinations of short- and long-range
regulators have been used, namely (RS , RL)=(0.8, 1.2)
fm (models NV2-Ia and NV2-IIa) and (RS , RL)=(0.7,
1.0) fm (models NV2-Ib and NV2-IIb). Class I (II) fits
about 2700 (3700) data points with a χ2/datum <∼ 1.1
(<∼ 1.4) [25, 26]. The short-range component of the 3N
interactions is parametrized in terms of two LECs, cD
and cE . In the first generation of Norfolk potentials
(NV2+3-Ia/b and NV2+3-IIa/b), these LECs have been
determined by simultaneously reproducing the experi-
mental trinucleon ground-state energies and nd doublet
scattering length [33]. Within the χEFT framework, cD
is related to the LEC entering the axial two-body con-
tact current [34–36]. This allows one to adopt a dif-
ferent strategy to constrain cD and cE . In particular,
in Ref. [27] they have been constrained to reproduce the

trinucleon binding energies and the empirical value of the
Gamow-Teller matrix element in tritium β decay. Nor-
folk models that use this fitting procedure are designated
with a ‘*’ namely, NV2+3-Ia*/b* and NV2+3-IIa*/b*.

These interactions have been recently employed in the
VMC and Green’s function Monte Carlo (GFMC) ap-
proaches [37, 38] to calculate energies [33], charge radii
and electromagnetic form factors [38], beta-decay transi-
tions [27, 39, 40], neutrinoless double beta-decay [41, 42]
of light nuclei, beta decay spectra [43], muon-capture
rates [44] and with the auxiliary field diffusion Monte
Carlo (AFDMC) [38] to study the equation of state of
pure neutron matter [45, 46].

III. DENSITY DISTRIBUTIONS

The one- and two-body densities are evaluated as sim-
ple δ-function expectation values given by

ρN (r) =
1

4πr2
〈
Ψ
∣∣∑

i

PNiδ(r − |ri −Rcm|)
∣∣Ψ〉 ,(1)

ρNN (r) =
1

4πr2
〈
Ψ
∣∣∑
i<j

PNiPNjδ(r − |ri − rj|)
∣∣Ψ〉 ,(2)

where PNi
represents the projector operator onto protons

(+) or neutrons (−) defined as PNi
= (1 ± τzi)/2, ri is

the position of nucleon i and Rcm is the coordinate of
the center of mass.

A detailed survey of one- and two-body densities have
been calculated for a variety of nuclei in the range
A = 2 − 12 using variational Monte Carlo wave func-
tions developed for the AV18+UX and the Norfolk local
chiral interactions. The corresponding tables and fig-
ures are available online at www.phy.anl.gov/theory/
research/density/, for the one-nucleon densities, and
at www.phy.anl.gov/theory/research/density2/, for
the two-nucleon densities.

A. One-body density results

In Fig. 1 we present the neutron and proton densities
calculated for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C us-
ing the AV18+UX and the NV2+3-Ia, NV2+3-Ia*, and
NV2+3-IIb* local chiral interactions. Additional den-
sities for 2H, 6He, 8,9Li, 8,10,12Be, 11B and 10,11C may
be found in the online tables, as well as results for the
NV2+3-Ib* and NV2+3-IIa* interactions. We also give
neutron and proton rms radii there.

The VMC wave functions are treated as states of
unique isospin T . Thus for N = Z nuclei, proton and
neutron densities are the same and only proton densi-
ties are given in the online tables. However, the wave
functions for nuclei with T > 0 can be different for dif-
ferent isospin projections Tz, so mirror nuclei are not
isospin symmetric. This allows the proton-rich nuclei to

www.phy.anl.gov/theory/research/QMCresults.html
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FIG. 1: One-body neutron (left panel) and proton (right panel) densities are shown for 3H, 3,4,8He, 6,7Li, 9Be, 10B,
and 12C using the phenomenological AV18+UX and the local chiral NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb*
interactions.

be slightly more diffuse than neutron-rich nuclei due to
their greater repulsive Coulomb interaction.

Spin-up and spin-down densities are also provided in
the online tables. In J = 0 nuclei, spin-up and spin-down
densities are identical, but not for J > 0 nuclei. If spin-up
and spin-down projections are the same, as in 0+ states,
we give only totals. The total number of spin-up/down
protons and neutrons in J > 0 nuclei with MJ = J
are reported in Table I. Unless otherwise indicated by
an error in parentheses, variation among the different
interaction models is less than 0.01. We note that for
these nuclei, the subset with an odd number of neutrons
has (n↑−n↓) ≈ 0.7-0.9, while those with an even number
of neutrons have (n↑−n↓) ≈ -0.02. Similar results hold
for nuclei with odd and even proton numbers. The sole
exception is 9Li which has an exceptionally large error
bar.

We also note that the s-shell nuclei (A ≤ 4) exhibit
large peaks at small separation, while the p-shell nuclei
(A ≥ 6) are much reduced at small r and more spread
out. This can be attributed to the cluster structure of
these light p-shell nuclei, e.g., αd in 6Li, αt in 7Li, ααn in
9Be, and 3α in 12C. This puts the center of mass of these
nuclei in between clusters and thus reduces the central
density.

B. Two-body density results

In Fig. 2, we present the relative-distance pair den-
sities, with neutron-proton (np) in the left panel and
proton-proton (pp) in the right panel, for 3H, 3,4,8He,
6,7Li, 9Be, 10B, and 12C using the phenomenological
AV18+UX and the local chiral NV2+3-Ia, NV2+3-Ia*,
and NV2+3-IIb* interactions. The online tables contain
additional results for the NV2+3-Ib* and NV2+3-IIa*
interactions.

TABLE I: Total number of spin-up/down protons and
neutrons in J > 0 nuclei with MJ = J for the local
chiral Norfolk NV2+3 interactions. Variation among
the different interactions NV2+3-Ia, -Ia*, -Ib*, -IIa*,
and -IIb* is less than 0.01 unless otherwise indicated by
an error in parentheses.

Nucleus N↑p N↓p N↑n N↓n
2H(1+) 0.96 0.04 0.96 0.04
3He( 1

2

+
) 0.98 1.02 0.94 0.06

6Li(1+) 1.93 1.07 1.93 1.07
7Li( 3

2

−
) 1.94 1.06 1.99 2.01

8Li(2+) 1.91 1.09 2.85(1) 2.15(1)
9Li( 3

2

−
) 1.91 1.09 3.12(7) 2.88(7)

9Be( 3
2

−
) 2.00 2.00 2.85(2) 2.15(2)

10B(3+) 2.90(1) 2.10(1) 2.90(1) 2.10(1)
11B( 3

2

−
) 2.87(2) 2.13(2) 2.99(1) 3.01(1)

We can see that within a fixed interaction model, the
two-nucleon densities at r <∼ 1.5 fm for various nuclei
exhibit a similar behavior, generated by the cooperation
of the short-range repulsion and the intermediate-range
tensor attraction of the NN interaction, with the tensor
force governing the large overshoot at r ∼ 1.0 fm between
np pairs.

As shown in Fig. 3, where all calculations are scaled to
have the same value at ∼ 1 fm, the two-nucleon densities
at short separations appears to be the same for all values
of A, which leads to the nontrivial conclusion that at
short ranges the two-nucleon motion is not affected by
the presence of the other particles. This is what has
been called universality of SRCs [12]. Moreover, at large
separation the asymptotic behavior of the two-nucleon
densities for different nuclei differs due to the different
surface effects.
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FIG. 2: Relative-distance np (left panel) and pp (right panel) pair densities for several nuclei. Distributions are
shown for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C using the phenomenological AV18+UX and the local chiral
NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* interactions.

0.2

0.4

0.6

0.8

1

 ρ
np

(r
)

3H
3He
4He
6Li
7Li
8He
9Be
10B
12C

1 2 3
r (fm)

0.2

0.4

0.6

0.8

1

 ρ
np

(r
)

1 2 3
r (fm)

AV18+UX

NV2+3-Ia*

NV2+3-Ia

NV2+3-IIb*

0.2

0.4

0.6

0.8

1
 ρ

pp
(r

)

3He
4He
6Li
7Li
8He
9Be
10B
12C

1 2 3
r (fm)

0.2

0.4

0.6

0.8

1

 ρ
pp

(r
)

1 2 3
r (fm)

AV18+UX

NV2+3-Ia*

NV2+3-Ia

NV2+3-IIb*

FIG. 3: Relative-distance np (left panel) and pp (right panel) pairs densities for several nuclei. Distributions are
shown for 3H, 3,4,8He, 6,7Li, 9Be, 10B, and 12C using the phenomenological AV18+UX and the local chiral
NV2+3-Ia, NV2+3-Ia*, and NV2+3-IIb* interactions. For each potential, all calculations are scaled to have the
same value at ∼ 1 fm.

While the short-distance behaviour is the same for all
nuclei, it differs for each interaction. Indeed, the proba-
bility of finding two nucleons at short distances is finite
for the ”soft” NV2+3-Ia and NV2+3-Ia* chiral models,
but approaches zero as we progress to the ”hard” local
chiral interaction NV2+3-IIb* and the ”hardest” phe-
nomenological AV18+UX.

Nucleon pair distributions in different combinations of
ST for different nuclei can also be found online. In Ta-
ble II, we report the number of pairs NST for 3,4,6,8He,
6,7,8,9Li, 8,9,10Be, 10,11B, and 12C using the NV2+3 po-
tentials. We show both independent pair (IP) numbers
for the highest spatial symmetry states and for the fully
correlated (cor) wave functions. Correlated pair counts
for the AV18+UX interaction fall within these ranges for

all but two cases.

A common feature in the ST pair counts is that there
is a moderate 10-15% depletion of the ST = 01 pairs
going from IP to correlated wave functions, with a cor-
responding increase in the number of ST = 11 pairs.
This is attributable to the many-body tensor correla-
tions, which can flip spins (in exchange for orbital an-
gular momentum) but not change isospin. Because the
ST = 01 interactions are more attractive than ST = 11,
this depletion mechanism is a source of saturation of the
nuclear binding. The ST = 10 pairs also show a deple-
tion going from IP to correlated wave functions, with an
increase of ST = 00 pairs, but the effect is much smaller,
probably because ST = 00 interaction is generally much
more repulsive than ST = 11.
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TABLE II: Total number of spin-isospin ST pairs in
different nuclei for the NV2+3 potentials, showing both
independent pair (IP) for the highest spatial symmetry
states and the fully correlated (cor) wave functions.
Correlated pair counts for AV18+UX are consistent
within error bars for all but a few cases.

Nucleus Ψ N01 N11 N10 N00

3He( 1
2

+
) IP 1.5 0.0 1.5 0.0

cor 1.37 0.13 1.49 0.01
4He(0+) IP 3.0 0.0 3.0 0.0

cor 2.57(1) 0.43(1) 2.99 0.01
6He(0+) IP 5.5 4.5 4.5 0.5

cor 4.95(1) 5.05(1) 4.49 0.51
6Li(1+) IP 4.5 4.5 5.5 0.5

cor 4.07(2) 4.93(2) 5.47 0.53
7Li( 3

2

−
) IP 6.75 6.75 6.75 0.75

cor 6.13(2) 7.37(2) 6.73 0.77
8He(0+) IP 9.0 12.0 6.0 1.0

cor 8.16(2) 12.84(2) 6.00 1.00
8Li(2+) IP 8.0 11.0 8.0 1.0

cor 7.42(3) 11.58(3) 7.94 1.06
8Be(0+) IP 9.0 9.0 9.0 1.0

cor 8.09(3) 9.91(3) 8.97 1.03
9Li( 3

2

−
) IP 10.5 15.0 9.0 1.5

cor 9.46(12) 16.04(11) 8.99(1) 1.51(1)
9Be( 3

2

−
) IP 10.5 13.5 10.5 1.5

cor 9.57(4) 14.43(4) 10.46 1.54
10Be(0+) IP 13.0 18.0 12.0 2.0

cor 11.73(4) 19.27(4) 11.98 2.02
10B(3+) IP 12.0 18.0 13.0 2.0

cor 11.01(7) 18.99(7) 12.94(1) 2.06(1)
11B( 3

2

−
) IP 15.0 22.5 15.0 2.5

cor 13.84(2) 23.66(3) 14.91(3) 2.59(3)
12C(0+) IP 18.0 27.0 18.0 3.0

cor 16.54(6) 28.46(6) 17.91(1) 3.09(1)

The probability of finding two nucleons with rela-
tive separation r and center-of-mass distance R is de-
scribed by the calculation of the full probability density
ρNN (r,R). These densities are computationally demand-
ing and are not available for all nuclei and interactions,
but they can be generated upon request.

In Fig. 4, we present the the np and pp densities, mul-
tiplied by r2R2, as a function of r and R for 4He and
12C using the phenomenological AV18+UX interaction.
The curves are normalized to obtain the corresponding
np and pp pairs, 4 np and 1 pp pairs in 4He, 36 np and
15 pp pairs in 12C.

IV. MOMENTUM DISTRIBUTIONS

A. One-body momentum distributions

The probability of finding a nucleon with momentum
k and spin-isospin projection σ,τ in a given nuclear state
is obtained by the Fourier transform of the one-nucleon

nondiagonal density matrix

ρστ (k) =

∫
dr′1 dr1 dr2 · · · drA ψ

†
JMJ

(r′1, r2, . . . , rA)

× e−ik·(r1−r
′
1) Pστ (1)ψJMJ

(r1, r2, . . . , rA) .(3)

where Pστ (i) is the spin-isospin projection operator for
nucleon i, and ψJMJ

is the nuclear wave function with
total spin J and spin projection MJ . The normalization
is

Nστ =

∫
dk

(2π)3
ρστ (k) , (4)

where Nστ is the number of spin-up or spin-down protons
or neutrons.

Monte Carlo (MC) integration is used to construct the
Fourier transform in Eq. (3). A conventional Metropo-
lis walk, guided by |ψJMJ

(r1, . . . , ri, . . . , rA)|2, is used to
sample configurations [47]. We average across all par-
ticles i in each configuration, and for each particle, the
Fourier transform is computed using a grid of Gauss-
Legendre points xi. Instead of just moving the position
r′i in the left-hand wave function away from a fixed po-
sition ri in the right-hand wave function, both positions
are moved symmetrically away from ri, so Eq. (3) be-
comes

ρστ (k) =
1

A

∑
i

∫
dr1 · · · dri · · · drA

∫
dΩx

∫ xmax

0

x2dx

ψ†JMJ
(r1, . . . , ri + x/2, . . . , rA) e−ik·x (5)

× Pστ (i)ψJMJ
(r1, . . . , ri − x/2, . . . , rA) .

Here the polar angle dΩx is also sampled by MC
integration, with a randomly chosen direction for each
particle in each MC configuration. This approach is
analogous to that used in studies of the nucleon-pair
momentum distribution, see Refs. [10, 16], and has
the benefit of significantly decreasing statistical er-
rors caused by the rapidly oscillating nature of the
integrand for large values of k. To reach momenta
k ∼ 10 fm−1 in 4He with good statistics requires inte-
grating to xmax=20 fm using 200 Gauss-Legendre points.

The results for a variety of nuclei in the range A =
2−12 are available on the web page at www.phy.anl.gov/
theory/research/momenta/. They are generated as dis-
tributions for neutron spin-down ρn↓(k), neutron spin-
up ρn↑(k), proton spin-down ρp↓(k), and proton spin-up
ρp↑(k), for the MJ = J state. Where proton and neu-
tron momentum distributions are the same, as in T = 0
nuclei, only one set is given, and similarly, if spin-up and
spin-down projections are the same, as in 0+ states, we
give totals only.

In Fig. 5 we show the total one-body neutron (left
panel), ρn↓(k)+ρn↑(k), and proton (right panel), ρp↓(k)+
ρp↑(k), momentum distributions for 3H, 3,4He, 6,7Li,
8He, 9Be, 10B, and 12C using the phenomenological

www.phy.anl.gov/theory/research/momenta/
www.phy.anl.gov/theory/research/momenta/
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AV18+UX, and the local chiral NV2+3-Ia, NV2+3-Ia*,
and NV2+3-IIb* interactions. Additional results for 2H,
6He, 8,9Li, 8,10Be, and 11B are shown in the online tables.

All models show the progressive high-momentum be-
havior in k as the number of nucleons increases. Adding
nucleons to the p-shell widens the distribution at low mo-
menta and creates a peak at a finite k. All of these nuclei
have a dramatic shift in slope at k = 2 fm−1 to a broad
shoulder, which is attributed to the large tensor corre-
lation caused by the pion-exchange component of the
nuclear force. As expected, the differences between the
models are most noticeable in the high-momentum tails,
which decay more rapidly with increasing k for the ”soft”
NV2+3-Ia and NV2+3-Ia* interactions than the ”hard”
NV2+3-IIb* and AV18+UX potentials. The difference in
momentum distributions observed for the NV2+3-Ia and
NV2+3-Ia* models, which have the same two-body inter-
action but different the three-nucleon force parametriza-
tion, is small. For NV2+3-Ia, there is a minor overall
shift in ρn(k) and ρp(k) toward bigger k.

B. Two-body momentum distributions

The probability of finding two nucleons in a nucleus
with relative momentum q = (k1 − k2)/2 and total
center-of-mass momentum Q = k1 + k2 in a given spin-
isospin state is given by:

ρST (q,Q) =

∫
dr′1dr1dr

′
2dr2dr3 · · · drA

ψ†JMJ
(r′1, r

′
2, r3, . . . , rA) (6)

e−iq·(r−r
′)e−iQ·(R−R

′)

PST (12)ψJMJ
(r1, r2, r3, . . . , rA) ,

where r = r1 − r2, R = (r1 + r2)/2, and PST (12) is a
projector onto pair spin S = 0 or 1, and isospin T = 0 or
1. The total normalization is:

NST =

∫
dq

(2π)3
dQ

(2π)3
ρST (q,Q) , (7)

where NST is the total number of nucleon pairs with
given spin-isospin. Alternate projectors can also be used,
e.g., for NN pairs pp, np, and nn (and each of these with
spin S) with corresponding normalizations.

The nucleon-pair momentum distributions can be ex-
amined in a number of different ways. One way is to
integrate over all values of Q and reduce the total pair
density to a function ρNN (q) of the relative momentum
q only. In this case, Eq.(6) reduces to a form similar to
Eq.(5), with a sum over all configurations in the Monte
Carlo walk controlled by |ΨJMJ

|2, and a Gauss-Legendre
integration over the relative separation x = r−r′. Again,
the polar angle Ωx is sampled by randomly choosing the
direction of x in space, and an average over all pairs in
every MC configuration is made.

Many results for ρST (q) and ρNN (q) obtained for vari-
ous light nuclei in the range A = 3−12 are recorded in the

online tables at www.phy.anl.gov/theory/research/
momenta2/. These are from VMC calculations using dif-
ferent Norfolk NV2+3 potentials, including -Ia, -Ia*, -
Ib*, -IIa*, and -IIb*, as well as results obtained with
the AV18+UX. The nuclei covered include 3H, 3,4,6,8He,
6,7,8,9Li, 8,9Be, 10B, and 12C.

In Fig. 6, we display the np and pp momentum dis-
tributions for selected nuclei using the AV18+UX phe-
nomenological potentials, and the NV2+3-Ia, NV2+3-
Ia*, and NV2+3-IIb* local chiral interactions. They have
been calculated for relative momentum q from 0 to 10
fm−1 and integrated over all values of Q. All the four
Hamiltonians show the high-momentum tail in q, but it
decays more rapidly for the soft NV2+3-Ia and NV2+3-
Ia*.

In Fig. 7, we show the ratio of the np and pp momen-
tum distributions for several nuclei relative to the total
np/pp ratio. For q ≤ 2 fm−1 the ratios are virtually iden-
tical for the different interactions and close to the total
number of np/pp pairs. Beyond that point, the np/pp ra-
tio gets larger, with the soft interactions showing a larger
peak at smaller q, while the hard interactions interactions
show a lower but broader peak at larger q. This behav-
ior is probably due to the strong tensor correlations in
the np channel. Note these ratios are integrated over all
Q, while the much larger np/pp ratios, mentioned above
from Refs. [6–8] are for small Q.

We can also integrate Eq.(6) over all q, leaving a func-
tion ρNN (Q) of the total pair momentum Q only. In
general, the ρNN (Q) for a given nucleus has a smaller
falloff at large momenta than the ρNN (q) and the ratios
of different NN components vary less over the range of
Q. These distributions are generally not as interesting,
but they can be generated on request.

Calculations of the full ρNN (q,Q) are more challeng-
ing as they require a double Gauss-Legendre integral over
two randomly chosen directions for each pair in each MC
sample: x for r and X for R. In Fig. 8, we display the
surface plots of ρnp(q,Q) and ρpp(q,Q) as functions of
the relative momentum q and center-of-mass momentum
Q for 4He using the NV2+3-Ia* and AV18+UX interac-
tions. In Fig. 9 we show similar plots for 12C but only
for the AV18+UX interaction. In the online tables we
present ρNN (q,Q) results for 3,4He, 6Li, 12Be, and 12C
for the AV18+UX and one or both of the NV2+3-Ia* and
NV2+3-IIb* interactions.

In addition, we can differentiate between short-range
(SR) and long-range (LR) pair contributions by simply
sorting our MC samples into two sets, where r < a for
SR pairs and r > a for LR pairs. For example, in 4He,
a boundary of a = 2 fm divides the six NN pairs into
approximately two equal groups. Fig. 10 shows the np
(left panels) and pp (right panels) SR and LR pair distri-
butions for the alpha particle using the NV2+3-Ia* and
AV18+UX interactions. Taking the integral of these dis-
tributions we find that in the case of the NV2+3-Ia* the
number of np SR and LR pairs are 2.04 and 1.96, respec-
tively, while the number of pp SR and LR pairs are 0.53

www.phy.anl.gov/theory/research/momenta2/
www.phy.anl.gov/theory/research/momenta2/
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and 0.47. For the case of the AV18+UX the of np SR
and LR pairs are 2.06 and 1.94 while the number of pp
SR and LR pairs are 0.48 and 0.52.

Similarly, The np and pp SR and LR pair distribu-
tions for 12C employing the AV18+UX interactions are
shown in Fig. 11 for a = 2.5 fm. By integrating these
distributions, we find that the number of np SR and LR
pairings is 12.9 and 23.1 respectively, while the number
of pp SR and LR pairs is 4.3 and 10.7, respectively. In
the online figures and tables we also provide the break-
down for 3,4He and 6Li for the AV18+UX, NV2+3-Ia*,
and NV2+3-IIb* with the break point a = 2.5 fm. These
figures clearly show that the LR pairs dominate at low
pair momenta but fall off rapidly beyond q ≈ 1.5 fm−1,
while the SR pairs provide the high-momentum tail. For
the pair center of mass momentum, the total number of
pairs declines significantly beyond Q ≈ 2 fm−1 but there
continues to be a high-momentum tail in q.

V. CONCLUSIONS

We have performed VMC calculations of one- and two-
body density distributions and one- and two-body mo-
mentum distributions for a wide variety of nuclei from 2H
up to 12C, using the ∆-full Norfolk interactions obtained
from χEFT. Results are compared to those obtained with
the conventional AV18+UX interaction, some of which
were previously reported in Ref. [16]. New features in
the present work include i) calculations of the pair den-
sity ρNN (r,R) as a function of both the pair separation r
and pair center-of-mass R; and ii) calculations of the two-
body momentum distribution ρNN (q,Q, a) coming from
short- and long-range pairs differentiated by a pair sepa-
ration boundary a.

Comparing results among the different NV2+3 and
AV18+UX interactions, we find the one-body densities
ρN (r) for a given nucleus are very similar for all cases.
Also, the total number of spin-up/down protons and neu-
trons is remarkably constant. In contrast, the two-body
densities ρNN (r) vary significantly at short distances, de-
pending on whether the interaction is ‘soft’ like NV2+3-
Ia or ‘hard’ like NV2+3-IIb*. However, the total number
of spin-isospin ST pairs for a given nucleus shows little
variation among the different interactions.

One-body momentum distributions ρ(k) all share the
same characteristics, with a maximum at k = 0 fm−1,
a rapid fall off to k ≈ 2 fm−1, followed by a high-
momentum tail that is more prominent for ‘hard’ inter-
actions, and less so for ‘soft’ interactions. For a given
interaction, the low-k behavior varies with the nucleus,
but the high-k tails are essentially parallel for all A = 2-

12 nuclei. Two-body momentum distributions ρNN (q)
are similar, but tend to change slope near q ≈ 1.5 fm−1.
Again, the high-q tail is larger for ‘hard’ interactions. We
also note that the ratio ρnp(q)/ρpp(q) is relatively flat and
proportional to the number of pairs of each type at lower
q, but much larger at higher q, reflecting the importance
of the stronger tensor correlations in np versus pp pairs.
Finally, our studies of ρNN (q,Q, a), which separates the
contributions of short- from long-range pairs, clearly in-
dicates the high-q tails are due to SRCs.

Concurrent to these studies, are QMC studies of nu-
clear electroweak response densities and response func-
tions [48–50] where the interaction of the external probes
(both electron and neutrinos) is accounted for at one- and
two-body level along with SRCs. In particular, within the
Short-Time-Approximation [48] it is possible to analyze
electroweak nuclear responses in terms of the kinematic
variables, that is relative and center of mass momenta,
associated with a pair of correlated nucleons struck by the
probe. Many-body effects in the coupling of electroweak
probes with correlated nucleons are being vigorously in-
vestigated due to their relevance to both electron and
neutrino scattering processes.

While this paper provides examples of the densities and
momentum distributions, the full set of results is acces-
sible in graphical and tabular forms online at www.phy.
anl.gov/theory/research/QMCresults.html. We ex-
pect to continue expanding and updating these results in
future.
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[30] R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola,

Phys. Rev. C 88, 064002 (2013), [Erratum: Phys.
Rev.C91,no.2,029901(2015)], 1310.2536.
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