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Root-mean-square charge radii are discussed in terms of spherical Energy Density Functional
(EDF) models corrected for quadrupole deformations. We discuss the specific examples for the
isotope shifts of the calcium isotopes and the isotonic shift between tin and cadmium.

INTRODUCTION

Root-mean-square (rms) charge radii of nuclei provide
one of the most precise insights into nuclear structure.
New experiments are being carried out on long chains of
isotopes, and theoretical models are being improved, see
[1], [2], [3], [4] and references therein. Fig. (1) shows
the measured rms charge radii for even-even nuclei from
calcium to tellurium. One observes kinks in the isotopic
trends at neutron numbers N = 28 and N = 50, as well
as kinks in the isotonic trends at the proton numbers
Z = 28 and Z = 50. To set the scale for understanding
the data, we show in Fig. (2) experimental rms charge
radii compared to the simple two parameter formula from
[5].

One of the most famous and challenging data for rms
charge radii is that for the calcium isotopes where, as
observed in Figs. (1) and (3), there is a strong odd-even
oscillation in the rms charge radii with 42,44,46Ca being
relatively large compared to those for the ”closed-shell”
nuclei 40Ca and 48Ca. It is notable that the experimental
rms charge radii of 40Ca and 48Ca are nearly the same
[6]. This data has led to many theoretical ideas [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17]. It was noted
by Zamick [7] and Talmi [9] that a two-body effective
operator for a correction to rms radii contains odd-even
oscillations.

In the letter, we focus on calculations for the relative
charge radii of the calcium isotopes [6], [18] shown in
Fig. (3), and the isotopic shift between the charge radii
of tin [19] and cadmium [20] (Sn-Cd) shown in Fig. (4).
The data are compared to spherical density-functional-
theory (DFT) calculations obtained with the Sv-min [21]
and Fy(∆r) [3] energy-density functional (EDF) used for
comparison in those experimental papers. The Sv-min
results for the calcium data do not show the observed
oscillations. This result is similar to those obtained in
Covariant Density Functional (CODF) models (see Fig.
24 in Ref. [2]). The Sv-min results for the Sn-Cd isotonic
shift are too large compared to experiment. The Fy(∆r)
results for Ca are in better agreement with the exper-
imental oscillations due to the addition of the Fayans
pairing term with a parameter adjusted to fit data for
the oscillations including the data for Ca [3]. The Fy(∆r)
results for the Sn-Cd isotonic shift do not agree with the

FIG. 1. Measured rms charge radii for nuclei from Z = 20
(calcium) to Z = 52 (tellurium). The data are taken from
compilations [22] and [23] with updated results for Ca [6],
[18], Fe [24], Ni [25], Cd [20]. and Sn [19].

data.

It is well known that deformation plays a key role in
understanding shell effects in the rms radii [26]. The rea-
son is that the deformed intrinsic shape has a larger rms
radius compared to the spherical shape. In the deformed
Bohr model of an incompressible fluid, the increase in
rms radius is connected to the deformation parameter β2
and to the B(E2) values between the ground state and
low-lying states. Usually this is applied to well deformed
even-even nuclei. We will show that the Bohr-model
equation can be used to describe the rms-radius data for
nuclei that are not so well deformed, with the two exam-
ples shown in Figs. 3 and 4, by using experimental data
for the B(E2) for the even-even nuclei. Furthermore, we
will derive a more general result that includes odd-even
nuclei. We carry out configuration-interaction calcula-
tions for the calcium isotopes that reproduce the exper-
imental B(E2) values for the even-even nuclei. These
can also be applied to the odd-even nuclei. The resulting
trends in the rms charge radii are in good agreement with
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FIG. 2. ∆ch = Rch(exp) − Rch(2p) with the two-parameter

formula Rch(2p) = r0A
1/3 + r1A

−1/3 with r0=0.9071 fm and
r1=1.105 fm from [5].

experiment. In particular, the odd-even oscillations are
reproduced. We interpret the oscillation in the effective
β2 values as being due to a blocking effect of the odd
neutron.

In the Bohr model of a deformed incompressible fluid
with a quadrupole deformation parameter β2, one obtains
an increase in the mean-square matter radius

< r2 >=< r2 >0

[
1 +

5β2
2

4π

]
, (1)

where < r2 >0=
3R2

0

5 is the mean-square radius with no
deformation. β2

2 is obtained from

β2
2 =

< i | [Q(2) ·Q(2)] | i >
[ 3
4πAR

2
0]2

, (2)

with A = Z+N . The quadrupole operator is a sum over
all nucleons with

Q(2) =
∑
i

r2i Y
(2)(r̂i) e, (3)

One can evaluate the numerator by inserting intermedi-
ate states |c >

< i [[Q(2) ·Q(2)] | i >

=
1

(2Ji + 1)

∑
c

< i||Q(2)||c >< c||Q(2)||i > . (4)

|c > are excited states that are connected by the rota-
tional model to the ground state. For even-even nuclei
with Ji = 0, one obtains

< i | [Q(2) ·Q(2)] | i >=
∑
c

B(E2, 0+ → 2+c ). (5)

An extension of these equations to protons and neutrons
is discussed in [27].

These equation are usually used for protons, where the
sum in Eq. (3) is restricted to protons, and the A in Eq.
(2) is replaced by Z, to relate the increase in the rms
charge radius to the measured B(E2, 0+ → 2+1 ), as was
done, for example, in Ref. [28]. The results for increase
in the charge radii for calcium are shown in Fig. (3). The
B(E2) data are given in Table I. For 42Ca we include the
2+2 state that contains about 10% of the E2 strength.
The agreement with experiment is excellent.

The Sn-Cd isotonic charge radius shift is shown in Fig.
(4). The The experimental data are compared to the re-
sults of spherical DFT calculations obtained the Sv-min
[21] EDF as given in the experimental papers [20], [19].
The experimental isotonic shifts are about halfway be-
tween zero and the Sv-min results. The β2 corrections
are then calculated using the experiment B(E2) from
[29]. When this is added to the Sv-min results, the agree-
ment with exeriment is good. The reason for the shift is
simply that the B(E2) for the Cd isotopes are 2-3 times
larger than those for the Sn isotopes (all of the data used
for Fig. (4) is provided in the supplementary material).

When deformed DFT calculations are carried out, the
isotopes of calcium, cadmium and tin have an energy
minimum near β2 ≈ 0 resulting in B(E2) that are small
compared to experiment. Zero-point fluctuations around
these small β2 are required to obtain B(E2) that are
closer to experiment. Ref. [30] includes fluctuations with
the five-dimensional collective Hamiltonian (5DCH), us-
ing the Gogny D1S interaction [31], [32] for the EDF.
The fluctuations result in larger B(E2) values for nuclei
where the deformation minimum is small. Overall, this
improves the agreement with the experimnetal B(E2)
for small deformations, see Fig. 11 of Ref. [30]. There
is a corresponding increase in the rms charge radii that
closely follows the expectation of the Bohr model. How-
ever, the 5DCH results for the calcium B(E2) given in
Table I do not agree with the trend in the experiment
data. This may be due to inaccuracies in the EDF single-
particle energies and resulting shell gaps near N = 28.
Fayans et al. [14], discuss the zero-point fluctuations for
the calcium isotopes using results from the random-phase
approximation (RPA) as an addition to spherical DFT
calculations. The RPA results for the calcium B(E2)
given in Table I are much smaller than experiment.

An alternative proposal for improving the calculated
rms radii for spherical DFT calculations is the Fayans-
type EDF [14], [17] where a pairing-type term is added.
An advantage is that this can rather easily be applied to
both even-even and odd-even nuclei. A specific Fayans-
type EDF with parameters fitted to nuclear data is call
Fy(∆r) [3]. The results for the calcium isotopes shown
in panel (c) of Fig. (3) are in fair agreement with ex-
periment. The Fy(∆r) results for Sn-Cd isotopic shift
shown in Fig. (4) are in poor agreement with agreement.
In the these Fayans-type calculations there is no explicit
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FIG. 3. ∆Rch for the calcium isotopes. The black circles are
the experimental results from [6] with error bars about the
size of the circles. The calculations shown in panel (c) are
the results from the EDF calculations with the Sv-min and
Fy(∆r,HFB) EDF as given in [18]. The red crosses in panels
(a) and (b) are based on experimental B(E2) values in the
text. The lines shown in panels (a) and (b) are based on the
B(E2) calculations discussed in the text.

connection between rms radii and B(E2).

For odd-even nuclei in the Bohr model there is not ac-
curate enough experimental B(E2) data for the interme-
diate states of Eq. (4). Also, 5DCH calculations have not
been made for odd-even nuclei. An alternative is to carry
out configuration-mixing (CI) calculations which can be
applied to the B(E2) for both even-even and odd-even
nuclei. The minimal requirement is that such calculations
reproduce experimental data for the B(E2) in even-even
nuclei.

The large experimental B(E2) for 42,44,46Ca cannot
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FIG. 4. Cd-Sn isotonic shifts. The experimental results from
[20], and [19] are compared to the Sv-min and Fr(∆r) EDF
calculations given in [20] and [19].

be described by calculations in the fp model space [36].
They are a result of admixtures from configurations with
proton excitations from the sd shell to the pf shell. The
CI calculations that include these cross shell excitation
are challenging. In [15] the ZBM2 Hamiltonian for the
(1s1/2, 0d3/2, 0f7/2, 1p3/2) model space was used to cal-
culate the rms charge radii of the calcium isotopes us-
ing harmonic-oscllator radial wavefunctions. The num-
ber of protons excited from (1s1/2, 0d3/2) to (0f7/2, 1p3/2)
showed an odd-even effect. When these orbital occu-
pations were used with harmonic-oscllator radial wave-
functions one obtained an increase in the rms charge
radii with odd-even oscillations that were in qualitative
agreement with experiment. However, in [37] when the
monopole orbital occupation numbers from these calcu-
lations were used to constrain the spherical EDF calcu-
lations, the increase in the rms charge radii was small
compared to experiment. An example from [37] are the
results from the s18 EDF shown in panel (b) of Fig. (3).
The s18 EDF is taken from [38], and is typical of group
(A) of Skyrme-type EDF shown in Fig. 5 of [37] which
have effective masses of m∗/m = 0.7 − 0.8. Results are
also shown in Fig. 5 of [37] for another group (B) of
Skyrme-type EDF which have m ∗ /m ≈ 1.0. The cal-
culated kink in the rms radii at N = 28 depends on the
effective mass. These results for group (A) are in better
agreement with experiment.

To explore the β2
2 contributions to the charge radii

we will use the ZBM2-modified Hamiltonian for the
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TABLE I. B(E2 ↑) for the calcium isotopes in units of e2 fm4. For those with (a), the B(E2) includes the sum for the first
two 2+ statesm with the details shown in Fig. (5).

N exp 5dch [30] RPA [14] ZBM2 ZBM2*
22 494(23)[14](a) 466 53 440(a) 433(a)
24 470(21)[14] 601 71 624(a) 455(a)
26 182(13)[14] 607 48 474 157

(1s1/2, 0d3/2, 0f7/2, 1p3/2) model space as described in
[39]. The corrections for the rms charge radii using the
B(E2) values from these calculations are shown by the
green line in panel (b) of Fig. (3) as ZBM2. In CI cal-
culations one must use effective charges in Eq. (3) that
account for the missing admixtures from the 2~ω giant
quadrupole configurations [40]. We use effective charges
of ep = 1.22 and en = 0.78 from [27]. The results for the
rms charge radii shown in Fig. (3) panel (b) are in reason-
able agreement with experiment. The calculated shifts
are generally too large, especially 45,46Ca. For 46Ca this
is due to a disagreement between the calculated and ex-
perimental B(E2). This can be traced to the location of
the 2p− 2h proton intruder state that comes at 1.8 MeV
in the calculations. Experimentally it is observed at 2.4
MeV [35]. ZBM2-modified Hamiltonian was designed for
the region of 40Ca. When it is used for the region of 48Ca
the proton shell gap is too small. This can be fixed by
adding a monopole term to the Hamiltonian that moves
the proton 2p−2h state in 46Ca up to 2.4 MeV. The pro-
ton 2p− 2h state in 48Ca is suggested to be at 4.28 MeV
[41] compared to the calculated excitation energy of 4.45
MeV. The results for the β2

2 correction are shown by the
green line in panel (a) of Fig. (3) as ZBM2*. The results
up to 48Ca are in excellent agreement with experiment.
In this model we see an example of how the rms charge
radii can be related to detailed changes of structure.

The odd-even oscillation in the rms charge radii re-
flects the odd-even oscillations β2

2 . The odd-even oscil-
lations in β2

2 can be interpreted as a blocking effect of
the odd-neutron on the deformation compared to that of
the neighboring even-even nuclei. In Fig. (5) details of
the calculations for the B(E2) compared to experiment
for 42−45Ca are shown. The energy and fragmentation of
the E2 strength in 42,44Ca differs from experiment, but
the total is consistent with experiment. The Hamilto-
nian in the (1s1/2, 0d3/2, 0f7/2, 1p3/2) model space needs
to be improved with regard to this level of detail. There
is fragmentation of strength in 43Ca that agrees with ex-
periment within the uncertainties. There is also fragmen-
tation in 45Ca, but there is no data to compare with.

The difference in mirror rms charge radii is highly
correlated with the symmetry energy parameter L with
spherical DFT [43] and CODF [44] calculations. This was
applied to recent data for rms 54Ni and 54Fe [27]. Due to
the low-lying 2+ state in 54Ni and 54Fe, β2

2 corrections to
the rms radii had to be included. When the β2 correc-
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FIG. 5. Summed B(E2, ↑) strengths in 42−45Ca where ZBM2*
results (in black) are compared with the experimental upper
and low limits (in red). The experimental data are from [33]
for 42Ca, [42] for 43Ca and [34] for 44Ca.

tions are replaced by the Fy(∆r) EDF it was shown in
[45] that some of correlation between the mirror charge
radii and L is lost [45].

As observed in Fig. (3), spherical EDF with our β2
2 cor-

rections do not account for the rapid increase observed
in the rms charge radii just after N = 28. As discussed
above, the kink at the magic numbers are correlated with
the effective mass in the EDF. But the existing Skyrme
EDF can only account for about half of the increase in
the rms radii when one neutron is added after the magic
numbers. The reason for this needs to be explored. It is
noted in [46] that the occupation of the 1p3/2 orbital is



5

associated with a sudden change in the octupole instabil-
ities via its large B(E3) value with the 0g9/2 orbitals that
differ by ∆j = 3. The β2

3 octupole contributions to rms
radii in an EDF model that includes octupole degrees of
freedom [46], [47] needs to be explored. Or perhaps the
present generation of EDF are insufficient to take into
account the sudden change in central density associated
with the node in the 1p3/2 orbital. This idea was ex-
plored in [48] to qualitatively understand the increase in
radii. The kinks for higher magic numbers are also asso-
ciated with the addition of one neutron to an orbital with
a node: N = 50 (1d5/2), N = 82 (1f7/2) and N = 126
(1g9/2).

The kink at N = 126 has been widely discussed (see
[49] and references therein). Most od the previous discus-
sions have focused on the 210−208Pb shift that depends
on the DFT results for the mixing of the 1g9/2 and 0i11/2
orbitals in 210Pb from pairing. However, one should first
focus on the 209−208Pb shift comes only from the occu-
pation of one neutron in the 1g9/2 orbital.

In this letter we considered the β2
2 corrections to rms

radii provided by the Bohr model for the calcium isotopes
and the cadmium-tin isotonic shifts. We showed that the
experimental B(E2) values can account for the rms data
for even-even nuclei. For the odd-even calcium isotopes
we used CI models to evaluate β2

2 for both even-even and
odd-even nuclei. The odd-even oscillations are accounted
for by this method. The rapid increase in the observed
charge radii after N = 28 are not accounted for. We
suggest additions to DFT calculations that need to be
explored.

This work was supported by NSF grants PHY-2110365
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