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Neutrinoless double beta decay searches can determine the Majorana nature of neutrinos, the
absolute neutrino mass, and provide invaluable insights on the matter dominance of the universe.
However, the uncertainty in the nuclear matrix elements that govern the decay limits the physics
reach of these experiments. We devise a novel framework based on the generalized contact formal-
ism that combines the nuclear shell model and quantum Monte Carlo methods and compute the
neutrinoless double-beta decay of nuclei used in the most advanced experiments, including "*Ge,
130Te, and '®%Xe. Our results cover all relevant terms, including the leading order short-range op-
erator recognized recently. We validate our method in light nuclei by comparing against accurate
variational Monte Carlo results. On heavy systems we obtain reduced nuclear matrix elements
compared to previous calculations due to additional correlations captured by quantum Monte Carlo
and introduced within the generalized contact formalism, suggesting longer decay half-lives than
previously considered. On the other hand, we find an enhancement of the nuclear matrix elements

due to the new short-range operator.

I. INTRODUCTION

Neutrinoless double-beta decay (0vf3f) is a hypothet-
ical transition of atomic nuclei, forbidden by the Stan-
dard Model of particle physics, in which two neutrons
are transmuted into two protons and two electrons are
emitted with no accompanying antineutrinos [1]. The
measurement of OvB3 decay would have profound im-
plications, demonstrating that lepton number is not a
symmetry of nature, proving that the neutrino mass has
a Majorana component [2]—so that neutrinos and an-
tineutrinos are the same particle—and, since two matter
particles are created without the corresponding antimat-
ter ones, illuminating the matter dominance in the uni-
verse. In addition, assuming the decay is mediated by the
exchange of light neutrinos—the best motivated scenario
both experimentally and theoretically— it would provide
invaluable insight on the neutrino mass scale and order-
ing [3, 4].

Because OvSp is a second-order decay, in practice it
can only be detected in the few nuclei where 3 decay
is either energetically forbidden or strongly suppressed
by spin change. Current best limits are given for "6Ge
(T, > 1.8 x 10%% yr [5]) and **Xe (177, > 1.07 x 10%°
yr [6]), which in this decade next-generation ton-scale ex-
periments plan to reach Tf/”z ~ 10%8 yr, mainly in "6Ge,
100Mo, 130Te, or 136Xe [7-10]. Since the decay involves
physics beyond the Standard Model, its rate is propor-
tional to a parameter describing the lepton number viola-
tion in that beyond Standard Model mechanism. In addi-
tion, the decay rate is also governed by a nuclear matrix
element (NME) that encodes the structure of the initial
and final nuclei. Thus, extracting specific new physics in-

formation from half-life measurements demands reliable
NMEs and hence high-quality nuclear structure studies
of heavy nuclei, such as "°Ge and 3%Xe.

Most NME calculations use the quasiparticle random-
phase approximation (QRPA) [11-14], nuclear shell
model (SM) [15-18], energy-density functional the-
ory [19-22], or the interacting-boson model [23, 24].
Among them, the SM describes very well a variety of
nuclear structure properties of medium and heavy nuclei
including those involved in OvS38 decay [25-27]. These
properties are mostly dictated by nucleons around the
Fermi surface, and therefore dominated by mid- and long-
range correlations. However, the SM and the many-body
methods listed above show deficiencies related to the in-
consistent treatment of the Ov35-decay operator—for an
extensive review see Ref. [28]. These may appear as miss-
ing nuclear correlations or two-nucleon currents in the
decay operator.

Ab initio many-body methods, in contrast, treat tran-
sition operators consistently, as they describe nuclear
properties emerging from the bare interaction between
protons and neutrons. This way they reproduce well (-
decay rates in light- and medium-mass nuclei [29] with-
out any adjustments—usually known as “quenching”—,
a feature required by the less sophisticated many-body
approaches mentioned above [23, 30-33]. The challenge
for ab initio approaches is to describe heavy nuclei like
the ones that 85 decay. Ab initio methods relying on
single-particle basis expansion have calculated reliably
the OvB3B-decay NME for 48Ca [34-36], and have even
been extended to the heavier "®Ge and #2Se [37] but with
nuclear properties not yet of the same quality as in SM
calculations. On the other hand, quantum Monte Carlo



(QMC) methods [38] use coordinate-space representation
of many-body wave functions and are well-suited for the
description of nuclear states with complex intrinsic struc-
tures [39]. In particular, they treat accurately short-
range nuclear dynamics, a key aspect for Ovgf transi-
tions where decaying neutrons are typically a few fm
apart. This is even more critical for the contribution
to the NME recently recognized in Refs. [40, 41], which
is of even shorter-range character. QMC calculations de-
scribe well 8 decays [42], but so far have been limited
to light nuclei with up to A < 12 nucleons for Ovgs
NMEs [40, 43].

The generalized contact formalism (GCF) is a powerful
tool to model the short-range behavior of nuclear distri-
butions, both in coordinate and momentum space [44—
47]. Nuclear wave functions show a universal short-range
behavior determined by the nuclear interaction; the only
dependence on the specific nucleus comes about as an
overall normalization factor, proportional to the number
of short-range correlated (SRC) pairs. Hence, the GCF is
applicable across the nuclear chart, provided that these
normalization factors are known. The GCF has been
used to describe quantities that are governed by short-
range physics, with negligible long-range contribution.

In this work, we develop a framework that combines
the GCF with QMC and the SM to capture both short-
and long-range nuclear dynamics that is applicable for
a wide range of processes, including Ov33 decay. This
framework is based on the observation that the ratio
of the GCF normalization factors for different nuclei is
largely independent of the specific nuclear Hamiltonian.
Therefore, the short-range behavior of Ovj35 transition
densities of a given heavy nucleus can be completely de-
termined from state-of-the art variational Monte Carlo
(VMC) and SM calculations of light nuclei, supplemented
by SM results for the heavy nucleus of interest. To ob-
tain the full transition density, we rescale the SM predic-
tions so that they continuously match the GCF at short
distances. Although similar in spirit to correcting SM
transition densities with Jastrow correlations [48-51], our
approach is more systematic, and can exactly reproduce
the transition density at short distance.

First we validate our method in light nuclei, where ac-
curate QMC calculations are available. We then make
NME predictions for nuclei used in Ovf3S experiments,
including 48Ca, %Ge, 13°Te, and 36Xe. Our results in-
clude estimates of the theoretical uncertainty associated
with our method, although not all uncertainty sources
can be currently accounted for. In addition to the contri-
bution of long-range operators to the NME, calculated in
most previous works, we include the contribution of the
recently acknowledged short-range operator, for which
our approach may be particularly reliable. This is the
first calculation of this contribution based on ab initio
correlations in “6Ge, 3%Te, and '3%Xe. We follow recent
analyses and estimate the hadronic coupling associated
with this short-range term by the charge-independence-
breaking (CIB) term of the Argonne v1g (AV18) potential

used in the VMC calculations. While for this work we
use the phenomenological AV18 plus the three-nucleon
Urbana X (UX) force, our method is general and can
readily be applied to interactions derived within chiral
effective field theory.

The manuscript is organized as follows. First, we intro-
duce the Ov3p transition potentials in Sec. II. Section ITI
describes the many-body methods, while Sec. IV presents
our NME results. Finally, Sec. V summarizes our main
conclusions and future perspectives.

II. O0vBB TRANSITION POTENTIALS

Under the closure approximation [52, 53], the OvBpS
NME between the initial and final nuclear states |¥;)
and |¥y) reads

M = (0, |0%|T;). (1)

SM and QRPA results obtained using this approxima-
tion differ by less than 10% with respect to those in-
cluding intermediate states explicitly [52-55]. This small
error is consistent with the effective field theory analy-
sis of Ref. [56]. We focus on the light Majorana neu-
trino exchange. For this mechanism the long-range tran-
sition operator can be cast as a sum of Fermi (F),
Gamow-Teller (GT) and tensor (T) contributions O =
O¥ + 0% + O%, where

O¥ = (4R ,) Z V¥ (rap) T T

a#b

O = (47Ra) Y Vi (rap) oap 7 7if
a#b

OF = (47Ra) > VP (rap)San 7y 7' - (2)
a#b

Here 7, is the nucleon isospin raising operator, o, rep-
resents the nucleon spin operator, o, = o, - 03, and
the tensor operator is Sqp = 3(6a * Tab) (O * Tab) — Cab
with r4, the internucleon distance. The nuclear radius
R4 = 1.2 AY/3 fm is inserted by convention to make the
NME dimensionless. The coordinate-space neutrino po-
tentials above are obtained from the standard Fourier
transform:

1 d3q .
VC?V Tap) = 7/ ezq-rabvo?u q2 , 3

where q is the momentum transfer, a indicates F, GT,
and T, and we take g4 = 1.27 for the axial-vector cou-
pling.

Defining V% (q?) = %va(qQ) the relevant functions
can be given in terms of the nucleon isovector vec-
tor, axial, induced pseudoscalar and magnetic form fac-



tors [28, 43]:
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where my = 938.9 MeV is the nucleon mass. Consistent
with the OvS5p literature, for the single-nucleon form fac-
tors we adopt the simple dipole parameterization:

_ gv
gV(q2) - (1 + q2/A%/)2 )
gm (@) = (1 + k1)gv(a®),
ga(@®) = — 2
(1+q%/A%)
0p(0®) = Y ga(a?), (5)

_q2+m72TgA

with vector coupling gy = 1, anomalous nucleon isovec-
tor magnetic moment x; = 3.7, and pion mass m, =
138 MeV. The cutoff values are Ay = 0.85 GeV and
Ay = 1.04 GeV. More sophisticated functional forms
for these form factors exist [57], including some based
on a systematic z-expansion [58]. However, for the rel-
atively small momentum transfer at play in Ovg83 pro-
cesses, |q| ~ 200 MeV, no significant differences are ex-
pected with respect to the simple dipole ansatz.

Fig. 1 displays the radial dependence of the transition
potentials, and shows that the T component is clearly
much smaller than both the F and GT ones. This be-
havior is reflected in the magnitude of the corresponding
NMESs, as highlighted in a number of previous calcula-
tions [15, 59, 60]. Including the form factors regularizes
the potentials at short interparticle distances, while the
typical 1/74, behavior at large rqp is preserved.

The authors of Ref. [40] have demonstrated that an
effective field theory approach of the light-neutrino ex-
change Ov3 decay requires a leading-order counter-term
to absorb the divergences induced by the long-range neu-
trino potential and ensure renormalizability. This new
short-range (SR) operator is associated with a Fermi spin
structure and a SR neutrino potential:

OY = (47Ra) > V& (rap)ri (6)
a#b
NN

VO (rap) = 25;”—26?@@) : (7)
A

where 555’)(1'@;,) is a regularized three-dimensional Dirac
delta function. In contrast to Ref. [41], the above defini-
tion includes a factor 1/¢% so that the full light-Majorana
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FIG. 1: Fermi (solid blue curve), Gamow-Teller (dashed
orange curve), tensor (dot-dashed green curve), and
short-range (dot red curve) transition potentials.

transition operator is 0% = O% + 0%, + O% + OY.
Consistent with the opposite sign in the definition of the
F, GT and T contributions, the sign of the SR potential
is also different to Ref. [41]. We note that the need of in-
troducing the SR term was shown using Eq. (1), which is
obtained under the closure approximation, thereby with-
out including intermediate states explicitly.

The value of the new coupling ¢g)'™ arises from non-
perturbative QCD dynamics and could in principle be
found by matching to lattice-QCD calculations of light-
neutrino exchange amplitudes [61, 62]. It can also be ob-
tained by reproducing the synthetic 2n — 2p + 2¢ data
provided by Refs. [63, 64]. Alternatively, Ref. [41] notes
that renormalizing the nucleon-nucleon (NN) scattering
amplitude with Coulomb photon exchange also requires
a short-range interaction with coupling (Cy + C2)/2, and
connects Ov3B3 and CIB SR couplings: g8~ = C;. Fur-
ther, assuming the same value for the two couplings en-
tering the CIB of NN potentials, so that gi'~N ~ (Cy +
C3)/2, describes well synthetic 2n — 2p + 2e data [64].
We follow this approach, which allows us to evaluate
short range Ov/33-decay NMEs for a variety of nuclei.

We compute the short-range behavior of nuclear states
from the high-quality AV18 NN potential. Hence, when
evaluating NMEs we make the consistent replacement

6 Ci
g Mo (ra) = — 5 uiira) (8)
(see Eq. 163 in Ref. [41]). The full expression for
the short-range component of the CIB term of AV18,
vng(rab), for the spin S = 0, isospin T" = 1 chan-
nel can be found in Eq. (32) of Ref. [65] and it is dis-

played in Fig. 1. S = 1 contributions are negligible
at short distances. To better gauge the importance
of V§, we also consider the expression derived from
the CIB contribution of the local, A-full chiral effec-
tive field theory NN potential of Ref. [66]. Specifically,
for the NV-Ia* model (C; + C3)/2 = —1.03 fm? and

6%)’) (rap) = G_T‘ZL"/R%/(W3/2R%) with Rg = 0.8 fm.



Throughout this work, two-body transition densities
play a crucial role [41, 67]

42 pp(r ‘Ifflz(ST—Tab ),
a<b
4rr? pGT \I/f|zé7'*7ﬂab UabT Ty ‘\II>
a<b
drr?pr(r) = (Us| D> 0(r = rap)Sap 7, 7 W), (9)
a<b

and pg(r) = pr(r). All NMEs can be obtained integrat-
ing the above densities [41, 67]:

MY = /0 dr C%(r), (10)

where we define C%(r) = (87 R4)4mr%pa (r)V (r) with
the additional factor 2 to compensate the restricted sum
a <bin Eq. (9).

III. MANY-BODY METHODS
A. Variational Monte Carlo

The VMC method solves the Schrédinger equation by
approximating the true ground state of the system with a
suitably parametrized variational wave function Wr. The
Rayleigh-Ritz variational principle

(Ur|H|¥r)
(Ur|¥r)

is exploited to find the optimal set of variational param-
eters. The VMC takes as input the Hamiltonian

H= Z——VQ—%ZUU Z Vijk (12)

1<J i<j<k

= Er > E, (11)

which consists of non-relativistic single-nucleon kinetic
energy terms, and two- and three-nucleon potentials.
As for the latter, in this work, we utilize the AV18
NN interaction [65] in combination with the UX three-
nucleon (3N) force. UX is intermediate between the Ur-
bana and Illinois families of potentials [38], and is es-
sentially a truncation of the Illinois-7 (IL7) model [68];
it has the form of Eq. (17) in Ref. [38], includ-
ing two-pion S- and P-wave terms and a short-range
isospin-independent repulsion, with the parameter values
of IL7, but without the three-pion-ring term or short-
range isospin dependence. The highly successful Green’s
Function Monte Carlo calculations of light nuclei with
AV18+IL7 shown in Ref. [38] start from VMC calcula-
tions with AV184+UX.
The VMC trial wave function is typically written as

wr) = (1+ Y Fi) (SHF”)@J (13)

i<j<k

where F}; and Fj;, are two- and three-body operator
correlations, respectively and S denotes a symmetrized
product over nucleon pairs. The latter is required for the
wave function to be antisymmetric, as, in general, the
spin-isospin dependent correlation operators F;; do not
commute. The F;; are designed to reflect the spin-isospin
and tensor dependence of the NN interaction, while the
Fjji, does the same for the 3N force.

To account for the alpha-cluster structure of light nu-
clei the anti-symmetric Jastrow wave function is con-
structed as a sum over independent-particle terms, ® 4,
each having four nucleons in an a-like core and the re-
maining (A — 4) nucleons in p-shell orbitals [69]:

@) = lH ik H fss(riz) H fsp(Tha)

i<j<k 1<j<4 k<4<I<A

X Z <ﬁLs[n] H f[n](rlm)
LS[n]

4<l<m<A

X |‘I’A(LS[H]JJsz)1234:5...A>)] . (14)

The operator A denotes an antisymmetric sum over all
possible partitions of the A particles into four s-shell and
(A — 4) p-shell states. The independent-particle wave
function |®4(LS[n])JJ.T;)1234:5...4) with the desired to-
tal angular momentum and projection JJ, values of a
given nuclear state is obtained using orbital-spin LS
coupling, which is most efficient for nuclei with up to
A < 12. Tt includes a product over single-particle func-
tions ¢5%(Ra1) (4 < I < A) which are p-wave solutions
of a particle in an effective a-N potential with Woods-
Saxon and Coulomb terms. The symbol [n] is the Young
pattern that indicates the spatial symmetry of the angu-
lar momentum coupling of the p-shell nucleons [70]. The
pair correlation function for particles within the s-shell,
fss, arises from the structure of the a particle. The f,,, is
similar to the f,s at short range, but it has a long-range
tail that approaches a constant at large distances, allow-
ing the wave function to develop a cluster structure, i.e.,
the asymptotic binding is provided only by the (/55 S(Reat)-
Finally, f,, is set to give the appropriate clustering out-
side the a core, while ffjk is a three-body central corre-
lation induced by the NN potential.

For the A = 6 case the 5He wave function has two
spatial symmetry components: 'Sg[2] and 3Pg[11], which
give a complete p-shell representation. Since %Be is taken
as the charge-symmetric mirror, the He — %Be tran-
sition densities are large and have no nodal structure.
For the A = 12 case, a complete p-shell representation
gives the 12Be wave function two spatial symmetry com-
ponents: 1S9[422] and 3P([332], while 2C has three ad-
ditional components, given in Table I. The normalized
amplitudes for each component in Table I indicate that
the dominant states in the initial wave function are a
very small part of the final wave function, making the
12Be — '2C transition densities much smaller than for



1So[44] ®Po[431] 'So[422] "Do[422] *Po[332]
2Be| - - 0.983 - 0.186
201 0.947 0.314  0.055 0.015  0.033

TABLE I: Normalized amplitudes for different spatial
symmetry components in the VMC wave functions for
12Be and '2C.

A = 6. They are further reduced by the presence of a
node in the transition densities, required by the isospin
orthogonality of the two wave functions.

In an earlier comparison of VMC and SM calcula-
tions [51] the VMC wave function for 2C included only
the leading [44] and [431] components. While these are
by far the dominant part of the final state wave function,
the small [422] and [332] components included here have
a much greater spatial overlap with the '?Be wave func-
tion, leading to a significant change, particularly at long
range, in the transition densities. In particular, the GT
NME with the more complete 2C wave function is about
double that of the previous VMC calculation, while the
F and T NMEs increase by 10-20%. This improves the
agreement between VMC and the earlier SM calculations
of Ref. [51].

The expectation values of quantum mechanical oper-
ators of the form of Eq.(11) contain multi-dimensional
integrals over all nucleon positions

(U7|0|¥7) _ [ dRYL(R)OVr(R)
(Ur|Wr) [dRUL(R)Ur(R)

; (15)

and Metropolis-Hastings Monte Carlo techniques are em-
ployed to efficiently evaluate them. These Monte Carlo
samples are also used to compute the two-body transi-
tion densities of Eq.(9) and to estimate their statistical
uncertainties.

B. Nuclear Shell Model

The nuclear SM is one the most successful nuclear
many-body methods for describing the properties of
ground and excited states, including electromagnetic and
weak transitions [25-27]. It is also one of the common
methods used to compute Ov33-decay NMEs [15-18].

In order to handle both light and heavy nuclei, the nu-
clear SM simplifies the many-body problem by restrict-
ing to a relatively small configuration space consisting of
one or two harmonic oscillator shells. This excludes from
the calculation the core—filled with nucleons—below and
the high-energy orbitals—empty—above the configura-
tion space, but their impact is captured by an effective in-
teraction corresponding to the configuration space. The
resulting many-body Schroédinger equation is

Heff |\IISM> =F |\IJSM>7 (16)

which we solve using the J-coupled code NATHAN |[25].
Even though ab initio approaches allow one to ob-
tain effective interactions solely based on NN and 3N
forces [71], in this work we use high-quality interactions
obtained from NN potentials complemented with small
phenomenological adjustments, mostly on the monopole
part [25].

For light A < 12 nuclei we use the p- and sd-shell con-
figuration space and the PSDMWK interaction [72, 73]
corrected for center-of-mass contamination. In heavier
nuclei we use the same configuration space and SM in-
teractions as in previous SM studies [15, 16, 74]: the
pf-shell with the KB3G [75] and GXPF1B [76] interac-
tions for 48Ca, the 1p3/2, 1p1/2, 0fs/2, 0gg/2 space with
the GCN2850 [15], JUN45 [77] and JJ4BB [78] interac-
tions for 76Ge, and the 1d5/2, 281/2, 1d3/27 097/2, Oh11/2
space with the GCN5082 interaction [79] for ¥°Te and
136Xe.

All the SM interactions used are isospin symmetric,
while the spin-isospin symmetry relevant for GT tran-
sitions is broken due to the spin-orbit interaction and
the different strength of the isovector and isoscalar pair-
ing strengths [80]. The SM configuration space for light
nuclei and *®Ca include all relevant spin-orbit partner or-
bitals. In contrast, these are not always included in the
configuration spaces in heavier nuclei. A consequence of
this is that 8 and 2v3 matrix elements tend to be more
overestimated when some spin-orbit partners are missing
than when they are all included [81]. While this could
also have implications for Ovg[3-decay NMEs, the situa-
tion is less clear [82-84].

The SM wave functions from Eq. (16) directly provide
energies and other observables not dependent on radial
degrees of freedom. However, for Ov53 decay the spatial
part is relevant as well, and usually a harmonic oscillator
(HO) basis is used for single-particle states [15, 74]. Here
we follow the improved approach of Ref. [51] and obtain
our transition densities replacing the standard HO spatial
single-particle states by Woods-Saxon (WS) ones, which
reflect a more realistic long-range asymptotic behavior.
We consider two kinds of WS potential: first, the stan-
dard parametrization from Suhonen (WSS) [85]; second,
the potential proposed by Ref. [51] adjusted to the ex-
perimental neutron and proton separation energies and
taking all orbitals in the configuration space as bound
(WSW)—however, these conditions cannot be met for
A = 6 which we only study with WSS. We have checked
that alternative WS parametrizations [86] give very sim-
ilar results to WSS.

In light nuclei, Ref. [51] shows that SM results with
WSW orbitals greatly improve the agreement with VMC
ones. The improvement with WSS is similar. However,
extending the SM results with WS single-particle orbitals
to heavy nuclei is challenging, and only HO calculations
are currently feasible. Fortunately, we have tested in
A = 48 that the differences between using HO and WS
orbitals become smaller for heavier systems. Fig. 2 shows
minor differences between the F transition density com-
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FIG. 2: Fermi transition density for A = 48 using the
SM with HO, WSS, and WSW single-particle orbitals
and the KB3G interaction.

puted employing the two different parametrizations of the
WS orbitals and the HO one for single-particle orbitals.
Likewise, the GT and T transition densities are also very
similar.

Since the nuclear SM deals with regularized effective
interactions, part of the short-range dynamics is missing
in the wave functions. This shortcoming is common to
other non ab initio approaches such as the QRPA, energy-
density functional theory and interacting boson model.
Because the short-range dynamics can impact OvfsS de-
cay NMEs, typically calculations correct for missing
SRCs via a Jastrow-type function. Different parametriza-
tions have been provided by Miller-Spencer [48] or based
on Argonne and CD-Bonn potentials [49], or by others
[50, 87, 88]. However, in this work we do not include
any additional correlations of this kind, as we introduce
the correct short-range dynamics captured by the VMC
calculations using the GCF.

C. Generalized Contact Formalism

The GCF is an effective theory for describing the im-
pact of SRCs on a variety of nuclear distributions and
observables. This formalism has proven extremely suc-
cessful in modeling the short-range and high-momentum
parts of different nuclear densities [45-47], and also large
momentum transfer electron scattering experiments sen-
sitive to SRCs [89-93] and other reactions [44, 94-96]. In
a high-resolution picture, when two or more particles are
close to each other, and, therefore, strongly interacting,
the SM solution for the wave function—based on a regu-
larized potential—becomes inaccurate [97]. For example,
SRCs lead to a significant occupation of high momentum
states absent in the SM. On the other hand, QMC meth-
ods fully capture these features but are limited to light
nuclei. Therefore, the GCF provides an ideal framework
to quantitatively incorporate the correct short-range be-

havior into shell-model calculations of heavy nuclei.

The GCF is based on scale separation, leading to
wave-function factorization when two particles are very
close to each other. Explicitly, any nuclear wave func-
tion ¥(ry,7s,...,74) is expected to obey the asymptotic
form [45]

V—— ) (i) A" (Rij {7 i) (17)

7‘7;]‘4)0

Here r;; = rj —r; and R;; = (r; + r;)/2 are the rel-
ative and center of mass coordinates of the pair, and «
denotes its quantum numbers, i.e., parity 7, spin S, to-
tal angular momentum j,, and projection j.., and total
isospin t,, and projection t,,. Isospin quantum numbers
are relevant to keep the nuclear wave function ¥ anti-
symmetric under permutations of any two nucleons. This
convention is equivalent to the one in most previous GCF
studies considering wave functions anti-symmetric under
separate permutations of protons and neutrons. The so-
lution of the zero-energy two-body Schrodinger equation
©*(7;;) describes the pair dynamics when the two nu-
cleons are close together. It is a universal function, i.e.
identical for all nuclei and all quantum states, but de-
pends on the particular nuclear interaction. It can be
written as

OO (1) = . . %) [Ya. () @ xs, ), (18)

La€Ta

where 7; ;, is an isospin factor, Y}, are spherical harmon-
ics, Xsm is the two-body spin function, and the sum runs
over orbital angular momenta ¢, of correct parity 7, that
can couple with s, yielding j,. The radial dependence
is modeled by ¢*(r), which is independent of j,. and, to
good accuracy, also of t,, due to isospin symmetry.

Based on this asymptotic form, the nuclear contacts
for a nucleus with A nucleons are defined as

Caﬁ _ A(A — 1)
2

(A%]AP). (19)
The factor A(A—1)/2 appears in place of the number of
proton-proton, neutron-proton or neutron-neutron pairs
present in previous publications because here the wave
function is anti-symmetric under permutation of any two
nucleons.

The diagonal contacts C'** are proportional to the
number of correlated pairs in the nucleus with quantum
numbers «. However, in this work we apply the GCF to
describe the short-range behavior of the two-body densi-
ties relevant for Ov33 transitions. Hence, we define new
contact parameters that involve different initial (i) and
final (f) nuclear states as

A(A—1)

Caﬁ(.ﬂi) = 2

(A%()1A4° (). (20)

Using the above definition, we can write the dominant
contributions to the transition densities defined in Eq. (9)



at short distances. For F and GT transitions, we expect
pairs in an s-wave state, mainly with s =0, j =0, t =
1. Denoting the corresponding contact parameter for a
transition of two neutrons to two protons (nn — pp) with
such quantum numbers as Cp, ., (f,7), the F transition
density can be expressed as

Il

where ¢°(r) is the radial function for the f =0, s =0, j =
0, ¢ = 1 channel. Since ps = pp, the above asymptotic
form is also valid for the transition density associated
with the short-range operator of Eq. (7). As for the GT
transition, the o4 operator leads to a factor of (—3) in
this s = 0 channel and we similarly obtain

pr(r) — poan (f, 1), (21)

r—0 41

O, (22)

which implies the following relation between the F and
GT densities for short distances

per(r) —>
r—0

per(r <1fm) = —3pp(r <1 fm). (23)

Based on our previous experience with two-body den-
sities [46, 47], these expressions should provide a good
description of the transition densities for r < 1 fm. The
s = 1 contribution is negligible at short distances, but it
is accounted for at larger distances using the SM calcu-
lations.

To calculate the Qv matrix elements, we wish to
combine the GCF expressions, valid at short distances,
and the long-range behavior of the nuclear SM many-
body wave functions. The main unknowns in this ap-
proach are the values of the relevant contacts, which
in general depend upon the nucleus and on the partic-
ular nuclear interaction. Nevertheless, previous studies
have shown that for the case of the contacts defined in
Eq. (19), contact ratios C**(X)/C**(Y"), for any two nu-
clei X and Y, are model independent [47, 96, 98]. In this
sense, contact ratios can be interpreted as long-range,
low-resolution quantities that do not depend on the de-
tails of the nuclear interaction.

Such a model independence is expected to hold also
for ratios of the contacts defined in Eq. (20). Therefore,
the ratio of the contacts CSPS%(fl,il)/CppS%(fg,ig)—
indices 1 and 2 denote different O35 decays—is inferred
from SM transition densities at short distances. Then,
the contact COVN (f2,42) is obtained by fitting the short-
range behavior to the transition density “2” computed
with VMC for a given realistic nuclear interaction V.
Finally, the contact for transition “1” is obtained exploit-
ing the model independence of the ratios:

Spé%(fl’zl) OVN

COM (i) "

This procedure allows us to obtain contact values of
heavy nuclei for any nuclear interaction, using only a sin-
gle ab-initio calculation for light nuclei and SM ones for

COVN (fr,i1) =

pp,nn

(f2,i2).  (24)

both heavy and light nuclei. In Sec. IV we demonstrate
the validity of the model independence of contact ratios.
The contact value COVN (f1,41) and the correspond-
ing short-range radial function fully determine the short-
range part (r < 1 fm) of the transition densities for a
given nuclear interaction. On the other hand, the SM
is expected to provide high-quality transition densities
at long distances. Thus, we merge the GCF and SM
results continuously, by scaling the SM transition den-
sities to match the GCF expression around r ~ 1 fm.
This approach, dubbed GCF-SM, allows us to obtain
the F and GT transition densities for any given nuclear
interaction—including heavy nuclei where direct ab initio
calculations with high-resolution potentials are currently
not available. We integrate the resulting transition den-
sities as in Eq. (10) to evaluate the relevant 0v 35 NMEs.
In the case of the T transitions the leading contribu-
tion is expected to come from p-wave channels. There
are three such channels (with 7 = 0,1,2) which compli-
cates the analysis. In addition, comparing SM and VMC
calculations, it seems that the model-independence of the
ratios does not hold for the T case. For this reason, in
this work we estimate the T matrix element by the SM
results with a 50% uncertainty. This should not have a
big impact on the total NME as the T part is expected
to be small compared to the GT contribution [15, 28].

IV. RESULTS AND DISCUSSION
A. Light nuclei

In order to use the GCF to describe the short-range
part of the transition densities, we evaluate the contact

Chp., 0 n(f,1) assuming the model independence of contact
ratios. In light nuclei, the availability of both VMC and
SM Qv transition densities allows us to test the ac-
curacy of this approach. Figure 3 (top panel) displays
three ratios of F transition densities: ?Be — '2C de-
cay, %Be — 19C decay, and *C — %O decay, all
relative to ®He — YBe decay. These have been ob-
tained with the VMC method for the AV18+UX interac-
tion and with the SM method for the PSDMWK inter-
action, together with the importance-truncated no-core
shell model (IT-NCSM) calculations of Ref. [99] in which
the chiral EM1.8/2.0 interaction was used. (A = 14 cal-
culations are not available for the VMC method, while
A = 12 calculations are not available for the IT-NCSM
method). Based on Eq. (21), we expect these ratios to
reach a plateau at short distances, representing the con-
tact ratio of the two transitions. Indeed, the SM calcu-
lations show such a clear plateau. The EM1.8/2.0 ra-
tios seem to also reach a plateau for r < 0.5 fm. The
AV18+UX ratio are somewhat noisy at the very short
distances (r < 0.5 fm), but focusing on the 0.5 fm< r < 1
fm range, we also observe a plateau. In addition, we can
see that for all cases separately (ie. A = 10, A = 12
and A = 14) the value of the ratio at short distances
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FIG. 3: (top) Fermi transition density ratio for different
nuclei, calculated using different interactions
(AV18+UX, EM1.8/2.0 and SM). The EM1.8/2.0
results are IT-NCSM calculations from Ref. [99].
(bottom) VMC Fermi transition densities (points)
compared to the GCF description using the universal
function squared and fitted value of the contact (dashed

black lines and bands)

is very similar for the different interactions, indicating
model independence. Note that model independence is
also observed when considering similar ratios of heavier
nuclei using different SM interactions.

To corroborate the fact that AV18+UX VMC calcu-
lations for different nuclei are indeed characterized by a
universal behavior at short distances, we show in Fig. 3
(bottom panel) the VMC Fermi transition densities com-
pared to the GCF universal function squared (calculated
using the AV18 interaction). The contact value has been
fit so as to reproduce the VMC results at r < 1.0 fm
based on Eq. (21), while the error bands are obtained by
changing the best fit value by +£10%. It clearly emerges
that at short distances, the VMC transition densities are
well described by the same universal function for » < 1
fm, as predicted by the GCF.

To gauge the accuracy of our approach, we use the
VMC transitions for A = 6 and A = 10 to predict results
for A = 12. The contact ngm(mBe,10 C) is fitted to the
VMC calculations using the functional form of Eq. (21).
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FIG. 4: Fermi, Gamow-Teller and short-range transition
densities for the '2Be —'2 C decay calculated with the
SM WSS (orange line), VMC (green points), and the
combination of the GCF and SM WSS (blue band)
approaches. For the latter, only VMC calculations for
A =6 and A = 10 are used to extract the 12Be —!2 C
contact value.

We then obtain the A = 12 contact Cp,,,,(*Be,'2 C),
based on the model independence of Eq. (24), multiply-
ing Cgp’nn(loBe,10 C) by the average value of the SM ra-
tio pr(A = 12)/pr(A = 10) at short distances. We re-
peat the same procedure using as input the VMC transi-
tion densities for A = 6. Comparing the two approaches

yields < 10% differences in the extracted contact val-



ues, and we take the average as our best estimate for

(Jgpﬂm(lzBe,12 C), associated with a +£10% uncertainty.

Once the value of the contact is determined, we con-
struct the short-range part of the F, GT and SR tran-
sition densities with Egs. (21) and (22). To highlight
the consistency of the approach, we note that the value
of the contact is extracted from VMC calculations using
the AV184+-UX Hamiltonian, and the two-body function
#°(r) is computed with the same AV18 NN force.

For long distances we use the SM transition densi-
ties, after re-scaling them so that they are continuously
merged with the short-range part. This part is ex-
pected to be well described by the SM, given the very
good description it gives of nuclear structure and spec-
troscopy [25, 26]. In particular, long-range correlations
have been studied extensively in O3 studies [100-102],
and the SM has proven to capture well important cor-
relations such as those related to high-seniority compo-
nents [103] or proton-neutron pairing [80]. Further, a re-
cent statistical analysis for ®Ca suggests that the lowest-
energy 2% state in *®Ti and especially the 2033 NME are
the nuclear properties better correlated with the Ovsg3
NME [104]. These two observables are well described by
SM calculations, in the case of the 2v33 matrix after ac-
counting for a “quenching” factor common to 8 decays
and which is the same for all nuclei in the same mass re-
gion [32, 105, 106]. In sum, even though it is possible that
OvBB NMEs could be sensitive to different physics than
other nuclear properties, we expect that the GCF-SM
describes also well the long-range part of the transition
densities.

The upper, middle, and lower panels of Fig. 4 display
the F, GT and SR transition densities obtained with the
above procedure. The band is obtained by randomly
varying separately the contact value within its £10% un-
certainty, and the matching point of GCF and SM be-
tween 0.8 — 1.0 fm. Fig. 4 shows an overall good agree-
ment between the GCF-SM and the VMC results. In par-
ticular, our new method greatly improves upon the short-
range behavior of the SM transitions densities, bringing
them in excellent agreement with the VMC ones. It has
to be noted that while introducing ad-hoc Jastrow-like
correlations into SM calculations certainly ameliorates
their short-range behavior, the agreement with ab-initio
results is not as good [51]. In addition, the GCF can
readily accommodate different interactions and correct
SM calculations in a consistent fashion. The long-range
part of the transitions (r 2 1 fm), taken from the SM,
also agrees with the VMC, although some small differ-
ences can be observed for the F and GT transitions. In
this regard, an important role is played by the complete
p-shell representation of the VMC 2C wave function uti-
lized in this work, in contrast to earlier VMC calcula-
tions [41, 43, 51] that only included the leading [44] and
[431} spatial symmetry components. As expected, the
transition density of the SR operator is almost perfectly
described by our approach, at both short and long dis-
tances.

We further gauge the accuracy of the GCF-SM method
by using either both the A = 10 and A = 12, or the
A =6 and A = 12 VMC transition densities, to predict
the A = 6 or A = 10 ones, respectively. The latter are
then integrated as in Eq. (10) to obtain the correspond-
ing NMEs M?”. Fig. 5 compares the GCF-SM A = 6,
A =10, and A = 12 F (upper panel), GT (middle panel),
and SR (lower panel) NMEs for these nuclei to the VMC
and standard SM results—see Table II for their numerical
values. Most of the VMC and GCF-SM matrix elements
are consistent within error bars —little dependence on
the particular WS parametrization is observed—and SR
NMEs agree especially well. The SR SM values without
correcting for SRC, not shown in Fig. 5, are about 10
times larger than the VMC ones, due to the scale of the
AV18 SR potential, see Fig. 1. While a rigorous uncer-
tainty quantification of SM results is difficult to carry
out, the GCF-SM error estimation appears to be reason-
able, although it does not include directly all possible
error Sources.

We note that using SR transition potential from the
NV-Ia* interaction changes the value of M2” by less than
20%, despite the differences in the shape of the transi-
tion densities C2”(r) being more dramatic. Nonetheless,
fully consistent calculations of SR operators for poten-
tials other than AV18 require using the appropriate two
body function ¢°(r) and the corresponding VMC transi-
tion densities. This is left for future work.

Finally, we have studied the effect of 3N forces on the
A =6 VMC NME values. Adding the 3N force increases
the binding energy and makes the nucleus more compact.
The F and GT matrix elements to the mirror nucleus
change by less than + 1.5%. However, the small tensor
is increased by 15%. This is probably because the 3N
force boosts the fraction of the wave function with S > 1
from 19% to 24%.

B. Heavy nuclei

Having validated the accuracy of the GCF-SM ap-
proach on light nuclei, we now turn our analysis to nuclei
relevant to the OvBf5 decay experimental program, cur-
rently beyond the reach of the VMC method. We obtain
GCF-SM predictions of Ovg transitions analogously to
light nuclei, the only difference being that we use all the
VMC and SM transition densities for A = 6, A = 10, and
A = 12 nuclei to extract the contact values. The short-
range components of the transition densities are mod-
eled according to Eqgs. (21) and (22) and continuously
matched to re-scaled SM results, so that the long-range
part C%(r) is fully specified.

We note that the experimentally relevant decays are
isospin-changing transitions (AT = 2). Nevertheless,
we use also isospin-conserving (AT = 0) transitions of
light nuclei (A = 6 and A = 10) to calculate contact
values as the GCF model-independence of contact ra-
tios does not distinguish between isospin-conserving and
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FIG. 5: Ratio of nuclear matrix elements of the F
(upper panel), GT (central panel), and SR (lower panel)
operators. Results obtained combining the GCF and
SM, or just the SM approach, divided by the VMC ones
with the AV18+UX Hamiltonian. Both WSS and WSW

parametrizations are used for the SM calculations.

isospin-changing decays. The validity of this statement
was tested above for the A = 12 AT = 2 transition.
While for light nuclei A < 12 WSS and WSW clearly
improve the transition densities in Eq. (9) in relation with
the VMC results, the HO and WS radial wave functions
lead to very similar results in “8Ca, see Fig. 2. Based on

this observation, for A > 48 nuclei our SM transitions are
obtained with HO orbitals. On the other hand, the SM
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Transition Method F GT SR
VMC 0.935 3.706  0.296

°He — °Be|  wss 1.001  4.160  3.293
WSS+GCF |0.72(16) 3.08(71) 0.32(8)

VMC 1.178  3.632  0.528

e _, 106 WSW 1.254  4.524  4.631
WSS 1.303  4.695 4.834
WSW+GCF|0.83(19) 2.99(66) 0.43(10)
WSS+GCF {0.93(20) 3.36(76) 0.50(12)

VMC, 0.102  0.365  0.347

VMCs 0.111 0751  0.371

12Be — 12¢|  WSW 0.211 0943  2.677
WSS 0.203  0.885  2.680

WSW+GCF| 0.16(4) 0.69(14) 0.37(7)
WSS+GCF | 0.15(3) 0.61(12) 0.36(7)

TABLE II: Fermi, Gamow-Teller, and short-range
NMEs for the " He — %Be, 1Be—19C and 2Be — 12C
transitions calculated using different methods. VMC,

stands for VMC calculations with 2 components for
12C, while VMCs5 includes 5 components. The latter is
used to extract the contact ratios.

transition densities for A =6, A = 10, and A = 12 used
to extract the contact ratios against AV18+UX VMC
results are always carried out with WS single-particle
states. Specifically, we denote the HO results for heavy
nuclei “HO(S)” or “HO(W)” depending on whether the
WSS or WSW parametrization is used to extract the con-
tacts from light-nuclei transitions.

Fig. 6 illustrates the differences between SM and GCF-
SM transition densities for the Ge — 76Se decay, cov-
ering the F, GT, and SR operators. The short-range
behavior of the SM is modified in a consistent fashion as
in light nuclei, and reflects the underlying realistic nu-
clear potential. Analogously to Fig. 5, we do not report
the SM transition densities for the SR operator, as the
corresponding NMEs are about 7 times larger than the
GCF-SM values.

The GCF-SM results for the F, GT and SR matrix el-
ements for A = 48, A =76, A = 130 and A = 136 are
displayed in Fig. 7 and their numerical values are listed
in Table III. They are compatible with NME results us-
ing alternative SM interactions given in Appendix A. We
supplement these predictions with estimates for the un-
certainties associated to the matching procedure and the
extraction of the contact ratios as described in Sec IV A.
Our results indicate that the F and GT matrix elements
are reduced by about 20% — 45% compared to the con-
ventional SM calculations due to the additional SRC in-
troduced via the GCF.

The bottom panel of Fig. 7 shows that the value of
the short-range NME is significantly smaller in A = 48
than in heavier nuclei, a trend which is similar when we
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The GCN2850 SM interaction was used.

replace the SR transition potential with the one corre-
sponding to the NV-Ia* interaction—AM2" only changes
by about 20%. Fig. 7 also indicates that our short-range
NMEs are in general smaller but consistent within error-
bars with the SM results by Jokiniemi et al. [107], which
cover a wider range of SR transition potentials—mnot in-
cluding the AV18 one we use—and are further corrected
by the SRC parametrization of Ref. [49]. In contrast,
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GCF-SM and the SM approaches, compared to the SR
results of Jokiniemi et al. [107] and Wirth et al. [36].
The KB3G SM interaction was used for A = 48, the
GCN2850 was used for A = 76, and the GCN5082 for
A =130 and A = 136.

we only use one SR potential and just include uncertain-
ties associated to the matching procedure and the ex-
traction of the contact ratios. The MJ” values obtained
with the QRPA by Jokiniemi et al. are somewhat larger
than ours. Remarkably, our SR NME for 48Ca is in good
agreement with the in-medium similarity renormalization
group (IMSRG) combined with the generator coordinate
method (IM-GCM) ab-initio result of Wirth et al. [36].
This is particularly interesting since they use a differ-



Transition Method F GT SR

WSS 0.144 0.893  2.389

WSW 0.138 0.868  2.110

Gy _ 4By HO 0.145 0906  2.388
WSS+GCF {0.09(2) 0.60(12) 0.32(6)

WSW+GCF [0.09(2) 0.57(12) 0.28(5)

HO(S)+GCF [0.09(2) 0.61(13) 0.32(6)

HO(W)+GCF |0.09(2) 0.60(12) 0.32(6)

HO 0.357 3.030 5.346

"Ge — Se | HO(S)+GCF |0.23(5) 2.14(47) 0.70(13)
HO(W)+GCF |0.23(5) 2.12(48) 0.69(13)

HO 0.418 2.882  5.942

1¥0Te — *%Xe| HO(S)+GCF [0.27(6) 2.02(44) 0.78(15)
HO(W)+GCF |0.27(6) 1.97(43) 0.77(15)

HO 0.335 2312  4.725

%Xe — °Ba| HO(S)+GCF [0.22(5) 1.61(36) 0.62(12)
HO(W)+GCF |0.22(4) 1.60(36) 0.61(12)

TABLE III: Fermi, Gamow-Teller, and short-range
NMEs for the ¥Ca — 48Ti, Ge — "Se, ¥0Te —
130Xe and '36Xe — 136Ba transitions using the SM
(HO, WSS, WSW) and the GCF-SM with different WS
orbitals to fix the values of the contact ratios. The
KB3G SM interaction was used for A = 48, the
GCN2850 was used for A = 76, and the GCN5082 for
A =130 and A = 136. Results using additional SM
interactions appear in Appendix A.

ent nuclear interaction and also a different procedure for
determining the SR coupling gh'™.

Eventually, the total Ov53 decay NME is the sum of
the long-range term MY = M. + MY + M? and the
short-range matrix element M2”. As discussed in Sec-
tion ITI, we evaluate the relatively small M contribution
within the standard SM, associated to a conservative 50%
uncertainty. Fig. 8 presents our results for M?, high-
lighting that the GCF-SM reduces the value of MY by
about 15% — 40% compared to the original SM calcula-
tions. Therefore, our approach introduces a much larger
SRC effect than the one from typical SRC parametriza-
tions such as the one from Ref. [49] used in SM 0v3p3
studies, see the very small difference between the SM
(HO) and Jokiniemi et al. results from Ref. [107]. Fig. 8
also compares our NMEs with the ab-initio results of No-
vario et al. [34] using the Coupled Cluster (CC) method
and of Yao et al. [35] using the IM-GCM approach for
48Ca and of Belley et al. [37] using the valence space IM-
SRG (VS-IMSRG) method for #8Ca and "*Ge. Our long-
range NMEs are in very good agreement with all the ab
initio results for ¥*Ca even though these calculations use
different nuclear interactions, and are also consistent with
the VS-IMSRG for "°Ge. As our estimation of the tensor
matrix element is currently based on SM calculations, it
is also useful to compare our results for MY + M2%. with
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those of ab-initio calculations. Belley et al. [37] obtain
MY + M2, = 0.7 for 8Ca, and MY + M2, = 2.50 for
"6Ge. This is in very good agreement with our results
(see table IIT). The good agreement with ab-initio calcu-
lations supports our predictions for 39Te and '36Xe, for
which ab initio NMEs are not available currently.

Comparing Figs. 7 and 8, it is apparent that the SR
term contributes significantly to the total NME: M. g” is
around 35%—60% of M2 for A = 48—in good agreement
with Ref. [36]—and around 25% — 40% for the heavier
nuclei. Since Mg” has the same sign as MY, the total
matrix element would be enhanced, also in agreement
with Ref. [36]. Despite the differences between our re-
sults and the SM ones of Jokiniemi et al., the relative
importance of the SR term is overall similar, while the
QRPA predicts somewhat larger ratio values [107].

It is important to highlight the differences between the
GCF-SM and previous attempts to include SRCs into
the SM and other approaches based on regularized in-
teractions. Some of the correlation functions that pro-
duce larger effect of SRCs, e.g. those by Miller and
Spencer [48], were criticized because they lead to viola-
tion of isospin symmetry, as they yield fooo r2pp(r)dr # 0
even when the isospin of the initial and final state is dif-
ferent [108]. Given the relatively large effects of SRCs,
one might think that the GCF-SM approach can suf-
fer from the same shortcomings. Ref. [108] also claims
that, in order to respect isospin symmetry, correlation
functions should peak around r ~ 1 fm with a value
above 1 to compensate for the reduction of probability
at short distances. This behavior eventually leads to a
relatively small effect on the NME values. In contrast,
to match the VMC and SM results an appropriate corre-
lation function should be defined as the ratio of the cor-
responding transition densities—by construction, multi-
plying the SM results by this correlation function repro-
duces the VMC one. By comparing the VMC and SM
transition densities presented in Fig. 4, we notice that
the correlation function does not peak around r ~ 1 fm.
Furthermore, the GCF-SM approach has a significant dif-
ference in that the SM results are re-scaled to match the
short-range behavior, so that the effect of the GCF does
not approach unity at long distances unlike most SRC
parametrizations. This re-scaling allows the GCF-SM to
compensate for the short-range reduction without a peak
at r ~ 1 fm. Some violation of the isospin orthogonality
can still be found in our actual results, but this is due to
subleading corrections, like three-body correlations, and
possible small differences between the SM and the exact
solution at long distances. For an extended discussion,
see Appendix B. Eventually, the good agreement be-
tween the GCF-SM and VMC results (which rigorously
obey isospin orthogonality) in light nuclei shown in Fig. 4
demonstrates the accuracy of our method.

In addition, most of the available SRC functions as-
sume in their derivation a simple form for the uncor-
related wave function, for instance, a single Slater de-
terminant in Ref. [49]. The latter differs from the SM
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FIG. 8: Long-range matrix element MY calculated
with the combination of the GCF and the SM (blue),
the SM without (orange) and with SRCs from Jokiniemi
et al. (green) [107], CC theory from Novario et al. (red)
[34], the VS-IMSRG method from Belley et al. (purple)
[37], and the IM-GCM from Yao et al. (brown) [35].
For A = 48 we use the KB3G SM interaction, GCN2850
for A =76, and GCN5082 for A =130 and A = 136.

wave function and therefore leads to inconsistencies when
combined with SM calculations. Likewise, the correla-
tion function based on VMC calculations introduced in
Ref. [87] also uses a simple function for the uncorrelated
part. Further, Ref. [87] uses proton-proton VMC densi-
ties of a given nucleus in contrast to the transition den-
sities involving the initial and final nuclei used in the
GCF-SM approach. In short, the GCF-SM replaces the
need of introducing SRC functions by directly providing
the appropriate short-range structure for any given NN
interaction.

V. CONCLUSIONS

We have introduced a novel protocol based on the GCF
that combines SM and QMC methods to compute Ov 503
decay nuclear matrix elements of heavy nuclei relevant
for experimental searches. The GCF captures the short-
distance behavior of transition densities computed within
VMC, while re-scaled SM calculations are used to model
the long-range components. A key role in our GCF-SM
approach is played by the “contact” values, which deter-
mine the number of short-range correlated pairs partici-
pating in the transition densities. Assuming their model-
independence—extensively verified in diagonal two-body
densities—we extract the contact values of heavy nu-
clei combining VMC calculations of light nuclei with SM
transitions of both light and heavy isotopes. We verify
the accuracy of this procedure on VMC transition den-
sities of A = 6, A = 10, and A = 12 nuclei. The latter
are also improved compared to earlier VMC calculations
by introducing a complete p-shell representation of the
12C wave function. We supplement the GCF-SM predic-
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tions by estimates of uncertainties due to the matching
procedure and the extraction of the contact ratios.

We employed the GCF-SM to predict NMEs for 43Ca,
"6Ge, ¥0Te and '35Xe. The long-range matrix elements
are appreciably reduced by 15% — 40% with respect to
the SM calculations. In particular, the impact of SRCs
is significantly larger within the GCF-SM than when us-
ing relatively-soft functions to incorporate SRCs effects
into the SM. In fact, our approach replaces altogether
the need of using correlation functions, since, besides an
overall normalization factor, the short-range behavior of
the transition density is fully determined by the GCF.
Remarkably, our results are consistent within error bars
with recent ab-initio results for “®Ca and "6Ge, carried
out within the CC, VS-IMSRG and IM-GCM methods.
Further, we make GCF-SM predictions for the heavi-
est emitters used in OvBB searches: 139Te and '36Xe,
for which ab-initio results are not currently available.
Given the agreement with the VMC in the light-nuclei
sector and with other ab-initio approaches for 8Ca and
"6Ge, we believe that the GCF-SM is a reliable comple-
mentary approach to calculate Ov58 NMEs. This might
help reducing the overall uncertainty in the NMEs due to
the different values obtained using different many-body
methods.

The GCF-SM approach is especially suitable for cal-
culating the recently introduced leading order SR ma-
trix element. Using a potential consistent with the AV18
interaction used to compute the transition densities at
short distances, we find that the SR term enhances the
total NME by 25% — 40% in heavy nuclei, which is con-
sistent with IM-GCM and SM estimations. Nonethe-
less, our SR NMEs obtained based on the CIB of AV18
may need to be rescaled once the correct g\ coupling is
determined—see Ref. [63] for a recently proposed strat-
egy using synthetic data. As we mentioned above, the
choice of gi'N ~ (Cy + C3)/2 describes well this synthetic
data, within 35% in the case studied in Ref. [64]. This
approximation is also supported by the QCD analysis in
Ref. [109]. Nonetheless, since the C; couplings are scheme
and scale dependent, it is difficult to quantify the exact
impact of fitting g\ directly to the synthetic data.

A limitation of this work is the absence of two-body
currents in the Ovf3S decay, which are related to a con-
sistent treatment of the transition operator. Two-body
currents are necessary to reproduce -decay matrix ele-
ments [29, 110], but are not fully included in any 0v3p3
calculation yet, where their impact has only been esti-
mated within simple approximations [111-113]. How-
ever, Refs. [29, 110] indicate that two-body currents are
relatively less important when using hard nuclear interac-
tions characterized by high-momentum components, like
AV18. In this sense, the absence of two-body currents in
our NMEs may have a smaller impact than for ab initio
methods relying on single-particle basis expansion that
deal with softer nuclear potentials.

The GCF-SM 0Ovff matrix elements presented in
this work rely on VMC calculations carried out with



the AV18+UX Hamiltonian, and the short-range GCF
two-body function has consistently been computed with
AV18. In future work we plan to study the NME de-
pendence on the nuclear Hamiltonian of choice, includ-
ing ones derived within chiral effective field theory. For
instance, the local chiral Norfolk two- and three-body
potentials can be readily incorporated in the GCF-SM
method once the VMC calculations are carried out. On
the other hand, including non-local potentials would
require calculating transition densities for light nuclei
with suitable many-body methods, like the no-core shell
model [99, 114].

A further development of the method is to improve
the treatment of the tensor matrix element. This is espe-
cially important in view of a recent ab-initio study that
found relatively large tensor contributions compared to
the SM [37]. This development will require disentangling
the different p-wave contributions at short distances and
additional analyses of the model independence of contact
ratios. We also note that there are some differences be-
tween the SM and the VMC at intermediate and long
distances that should be further studied to improve the
accuracy of our predictions.

More generally, the GCF-SM approach, anchored on
VMC calculations of light nuclei, can be applied to in-
corporating the effect of SRCs in a variety of nuclear
quantities accessible by the nuclear SM. We envision com-
puting the transition densities relevant for studying the
role of correlations and two-body currents in single-53 de-
cay rates. As noted in Ref. [42], the two-body densi-
ties exhibit a universal, i.e. nucleus independent, behav-
ior at short distance. Describing the contribution of the
leading one-body current is more complicated, since the
separation to short-range and long-range contributions
is less obvious. Also, we plan on utilizing the GCF-SM
method to analyze momentum distributions and spectral
functions of nuclei of interest in the context of electron-
scattering experiments and for the accelerator-based neu-
trino oscillation program.
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Appendix A

Table IV provides the values of the NMEs using addi-
tional SM interactions: GXPF1B for the decay of *®Ca
and JUN45 and JJ4BB for the decay of "®Ge. As noted in
the main body of the paper, these results are compatible
within errors with those reported in Table III.

Appendix B

As discussed above, due to isospin symmetry the in-
tegral fooo 47r?pp(r) should approximately vanish for
isospin-changing transitions. Table V presents the val-
ues of this integral for the isospin-changing decays using
the VMC, SM and GCF-SM approaches. For the VMC
and SM calculations, [ 4mr?pp(r) ~10~* —107¢. For
the GCF-SM calculations, we obtain smaller cancella-
tions of the order of 1072. To understand the origin of
this result, we can compare the A = 12 F transition we
obtain using the GCF-SM method with the VMC results
(top panel of Fig. 4). At short distances there is a good
agreement between the two calculations, while for longer
distances there are some small differences. We note that
Fig. 4 shows the C% (r) density which includes the tran-
sition potential V2¥(r). Asymptotically, this potential

Transition Method F GT SR
WSS 0.133 0763  2.115

WSW 0127 0742  1.867

*8Ca — **Ti HO 0.133 0770 2.098
(GXPF1B) | WSS+GCF [0.08(2) 0.50(11) 0.28(5)
WSW-+GCF [0.08(2) 0.49(11) 0.24(5)
HO(S)+GCF |0.08(2) 0.51(11) 0.28(5)
HO(W)+GCF|0.08(2) 0.50(11) 0.27(5)

6o _ TS HO 0.357  3.051  4.949
(74pB) | HO(S)+CCF |0.23(5) 2.16(48) 0.64(12)
HO(W)+GCF|0.23(5) 2.13(48) 0.63(12)

76Ge — ™G0 HO 0.395  3.283  5.672
(JUN45) | HO(S)+GCF |0.26(5) 2.30(0.51) 0.74(14)
HO(W)+GCF|0.25(5) 2.30(0.51) 0.73(14)

TABLE 1V: Fermi, Gamow-Teller, and short-range
NMEs for the decays 48Ca — 48Ti with the GXPF1B
interaction and "®Ge — "8Se with the JJ4BB and
JUN45 interactions.



Transition Method | [0° dnr®pr(r)| [5° 4mr® par (1)
VMCs ~0.00026 0.20
“Be — 2C WSS ~0.000021 ~0.036
WSS+GCF |0.010 +0.004 | —0.06 + 0.02
18G5 WSS 0.000065 0.14
WSS+GCF |0.009 +0.003 | 0.09 + 0.02
6 Ge s % HO —0.000013 0.56
HO(S)+GCF|0.018 £0.006 | 0.4+0.1
180,y 130 HO 0.0000085 0.35
HO(S)+GCF| 0.028 £ 0.009 | 0.23 + 0.05
186y, 1967, HO 0.000019 0.27
HO(S)+GCF| 0.020 £ 0.007 |  0.17 £ 0.04

TABLE V: Values of the integrals [* 4mr2pp(r) and
f[)% 47r? per(r) for isospin-changing decays (AT = 2)
using different methods. For the SM we use the KB3G
interaction for A = 48, GCN2850 for A = 76, and
GCN5H082 for A =130 and A = 136.
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has the form ~ 1/r, and, therefore, the long-distance
tail is suppressed in C%(r). When we consider pp(r),
the long-distance tail becomes more significant. We can
therefore conclude that differences between the VMC and
the SM in the long-range tail are the main reason for
the fOOO 47r2pp(r) values we obtain in the GCF-SM ap-
proach. Such differences are much less significant for the
calculation of Ovgf8 NMEs due to the 1/r suppression,
and therefore the value of this integral should not be re-
garded as an important criteria for the reliability of Ov 503
NMEs.

The values of the integral [ 47r?pgr(r) are also pre-
sented in Table V. Again, for A = 12 the disagreement
between the VMC and GCF-SM values is driven by the
long range part (see Fig. 4). References [67, 115] discuss
the relevance of this integral, and its possible connection
to OvBB decay. For **Ca, Ge, ¥°Te and '35Xe, the
GCF-SM values with uncertainties are in good agreement
with the correlations presented in Ref. [115].
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