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Baryon annihilations during the hadronic stage of heavy-ion collisions affects final-

state baryon and antibaryon yields and final-state correlations of baryons and an-

tibaryons. Understanding annihilation is important for addressing questions about

the chemistry at the beginning of the hadronic stage, and for interpreting charge-

balance correlations involving baryons. Here, charge balance functions, using pro-

tons and antiprotons binned by relative momentum, rapidity and azimuthal angle,

are shown to clarify the amount of annihilation in the hadronic stage. This enables

a more accurate extraction of the baryo-chemistry at the beginning of the hadronic

stage. Understanding annihilation is also crucial if charge balance correlations are to

be used to infer the chemistry of the earliest stages of a heavy-ion collision. Calcula-

tions are presented based on microscopic simulations of the hadronic stage coupled

to a hydrodynamic description of the earlier stage, along with a detailed modeling

of correlations of protons and antiprotons, known as charge-balance functions.

I. INTRODUCTION

As super-hadronic matter in a heavy-ion collision cools and hadronizes, it is common to assume
that chemical compositions freeze-out close to the hadronization temperature, TH ≈ 155 MeV, with
the yields at that point corresponding to chemical equilibrium. Of course, this is only approximate.
Even if chemical equilibrium was valid at TH , particles undergo additional interaction in the hadronic
stage. One class of such interactions is baryon annihilation. Protons and antiprotons annihilate
with cross sections that become large at lower invariant mass. A fit to data based on annihilation
in antiproton beam physics [1, 2] gives the parameterization [3],

σA =
67

P 0.7
lab

mb, (1)

where Plab is the momentum of a baryon in the rest frame of the other baryon in GeV/c. The
annihilation cross section can become quite large. For Plab < 200 MeV/c, cross sections exceed 200
mb.
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Estimates of the amount of baryon annihilation vary from ≈ 10% to ≈ 30%, with some of the
variation depending on what type of model is being applied, and especially on whether regeneration
is included [4–7]. A typical two-proton annihilation might produce five pions. At equilibrium, or
immediately after hadronization, the inverse process, 5π → p, p̄, occurs with exactly the same rate
as the annihilation [4]. As the system cools and chemical equilibrium is lost, the regeneration rate
is expected to fall well below the annihilation rate, with regeneration being rather important at the
very final stages of the collision [6]. Thus, both annihilation and regeneration need to be considered.
The role of annihilation has recently become more important given that the ALICE Collaboration
at the LHC has reported that the p/π ratio falls by ≈ 15−20% from semi-central to the most central
collisions [8]. Given that larger systems last longer and provide more opportunity for annihilation,
one might wonder whether this reduction is partly due to additional annihilation in the hadronic
phase.

Baryon annihilation is also of critical interest in the studies of charge-balance functions (BFs),
which have been measured at both RHIC (Relativistic Heavy Ion Collider) and the LHC [9–31].
Baryonic charge must be locally accompanied by opposite charge. If a chemically-equilibrated
quark-gluon plasma is created early in a heavy-ion collison, baryonic charge, quantified by the
baryonic susceptibility, is created early (within the first fm/c), which leads to large separations in
relative rapidity of balancing baryonic charges, e.g. protons and antiprotons. BFs, defined below,
provide a measure of the separation of balancing charge [32]. For example, if a proton is observed
in the detector, the BF represents the distribution of additional antiprotons vs. protons relative
to the observed proton. If the pp̄ BF is broad in relative rapidity, it would signal that chemical
equilibrium was established early in the collision [33]. The proton-antiproton BF, when binned
by relative azimuthal angle, also plays a pivotal role in extracting the light-quark diffusivity from
experiment [34]. However, the shape of the BF binned by relative rapidity or azimuthal angle
should also be affected by annihilation in the hadronic phase. Thus, for studying the diffusivity and
chemical evolution of matter in a heavy-ion collisions, it is essential to understand how annihilation
distorts the proton-antiproton BF.

In this paper, we illustrate how experiment can clarify the amount of baryon annihilation in the
hadronic phase by measuring BFs, especially those binned by relative invariant momentum, qinv.
Due to the large strength of the annihilation cross section at small qinv as illustrated in Eq. (1),
there will be a deficit of pp̄ pairs at small relative momentum. The BF, which measures the relative
number of opposite-sign vs. same-sign pairs, should then have a dip for qinv . 100 MeV/c. As
this scale is lower than the thermal momentum, or other scales of the charge balance function, its
strength can be readily separated from other physics, and thus unambiguously quantify the amount
of annihilation in the hadronic phase.

To illustrate the efficacy of the strategy outlined above we compare calculations of BFs with
and without annihilation for Pb+Pb collisions at

√
sNN = 2.76 TeV. Calculations are based on the

methods from [33]: two-particle correlations are sourced and propagated assuming that local cor-
relations are consistent with chemical equilibrium, according to charge susceptibilities from lattice
calculations [35]. The balancing part of the correlations, whose strengths are fixed by charge conser-
vation, are assumed to spread diffusively according to temperature-dependent diffusion constants,
which are also determined by lattice calculations [36, 37]. The model propagates these correlations
using the hydrodynamic history of the collision, until TH is reached, at which point the correlations
are projected onto hadronic degrees of freedom according to statistical arguments. Additional con-
tributions from the evolution and decay of hadrons in the hadronic phase are then added to the
correlation.

In the previous calculations cited above, annihilation was omitted. Here, annihilation is added,
along with the inverse process. The resulting proton-antiproton balance functions, binned by relative
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azimuthal angle, relative rapidity and qinv, are defined by

B(∆φ) =
1

N+ +N−

∫
dp1dp2 {N+−(p1, p2)−N−+(p1, p2) (2)

−N++(p1, p2)−N−−(p1, p2)} δ(φ1 − φ2 −∆φ),

B(∆y) =
1

N+ +N−

∫
dp1dp2 {N+−(p1, p2)−N−+(p1, p2)

−N++(p1, p2)−N−−(p1, p2)} δ(y1 − y2 −∆y),

B(qinv) =
1

N+ +N−

∫
dp1dp2 {N+−(p1, p2)−N−+(p1, p2)

−N++(p1, p2)−N−−(p1, p2)} δ(qinv(p1, p2)− qinv),

q2
inv(p1, p2) =

1

4

[(
(p1 + p2) · (p1 − p2)

(p1 + p2)2

)
(p1 + p2)− (p1 − p2)

]2

.

Here, quantities N++(p1, p2), N−−(p1, p2), N+−(p1, p2) and N−+(p1, p2) describe the number of pairs
of the given charges with momentum p1 and p2. For example, N+−(p1, p2) represent the number of
pairs with a positive particles having momentum p1 and a negative particle having momentum p2.
In this paper, the focus will be on BFs constructed using only protons and antiprotons. With this
definition, qinv is half the relative momentum in the pair’s rest frame.

In the next section we review the model, with a focus on how baryon regeneration is incorporated
into the hadronic simulation. The following section describes how annihilation and regeneration have
been added to the model. Results and a summary comprise the subsequent sections.

II. THEORY AND MODEL OVERVIEW

Calculations for this study required several steps:

1. The hydrodynamics code was run with initial conditions corresponding to the 0-5% most
central collisions of

√
sNN = 2.76 TeV Pb+Pb collisions at the LHC. The temperature, flow,

and stress-energy tensor were stored as a function the transverse spatial coordinate and proper
time τ ≡

√
t2 − z2. Boost invariance was assumed, implying that the evolution does not

depend on spatial rapidity. This was the same evolution used in [33]. The hydrodynamic
evolution was also analyzed to find the hyper-surface for transitioning into the hadron phase.

2. Using the temperature evolution stored in (1), the value of the charge susceptibility matrix,
χab(x, y, τ), and the diffusivity, Dab(x, y, τ), were assigned for each space-time point according
to lattice values [36, 37] corresponding to the local temperature. The charge-charge correlation
function was assumed to stay equilibrated, i.e. its strength was given by χab. As described in
[32, 38], the fact that the overall charge-charge correlation integrates to zero, requires that the
non-local correlation, which spreads according to the diffusive equation, must have a source
term determined by the evolution of χab. Using the source function, the non-local charge-
charge correlation function, Cab(xa, ya, xb, yb, τ), was calculated as a diffusive equation. It was
precisely this non-local part that becomes the balance function. The correlation functions
were represented by weighted pairs of charges in a Monte Carlo procedure. The pairs were
assigned charges, e.g. u, s, and assigned weights which could be positive or negative based
on the sign of the source term. Each charge δqa at some point passed through the hyper-
surface boundary separating the hydrodynamic and microscopic descriptions. At that point,
the charge stochastically created hadrons δNh [32, 38],

δNh = nh(Tc)χ
−1
ab (TH)Qhaδqb, (3)
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where δNh is a hadron of type h, nh is the density of hadrons of that type at the hadronization
temperature, and χab(TH) is the susceptibility.

Hadrons generated from two charges in a pair were tagged so that correlations between hadrons
could be represented using hadrons from the same pair, thus avoiding combinatoric noise. The
assignment included the weight of the pair. The hadrons from δqa and those from δqb were
then propagated through the cascade, assuming that they collided only with the background
particles from the cascade, which are desribed in (3) below. The background particles did not
themselves scatter, but this procedure effectively accounted for the small additional spatial
spread of charge during the hadronic phase. The hadrons, δNha and δNhb from the two
charges, or their decaying descendants, were then paired with one another to calculate BFs,
carrying over the original weights assigned to the pair qha, qhb. These correlations are referred
to as type-I correlations, and were all generated from the source functions for the charge-
charge correlation function during the hydrodynamic stage. This procedure explicitly ignores
any correlation between the background particles and the hadrons coming from the sample
charges. This approximation should be justified if the hadrons representing the correlation
ultimately produce the same groups of particles, on average, that would be produced if they
decayed

3. Using the hyper-surface information mentioned in (1), uncorrelated hadrons were emitted from
the hyper-surface consistent with a thermalized system with viscous corrections. Resonances
were populated using the same spectral functions employed by recent calculations of the
SMASH model [39, 40]. These particles were then fed into a hadronic simulation, also referred
to as a cascade. Hadrons collided according to resonant cross sections chosen to populate
resonances consistently with the spectral functions. A 10 mb elastic s−wave cross section
was also included. Unlike previous balance-function calculations performed by this group,
baryon annihilation was added. By averaging 14400 events, each of which covered 2 units
of rapidity with cyclic boundary conditions, the local stress-energy tensor and densities were
found for individual species. From this information, kinetic temperatures, effective chemical
potentials and collective velocities were found for specific radii, times and species. These
chemical potentials and temperatures in turn were then used to modify the annihilation cross
section to effectively account for the inverse process. This involved repeating the simulations
three times using fugacities calculated from previous runs, so that the fugacities converged.
The theoretical basis and methods for taking into account the inverse process are described
in more detail below. Because annihilation depends on these quantities, the calculation was
repeated three times using chemical potentials and temperatures from the previous run. After
three times the quantities had converged.

4. A second contribution to BFs was calculated, using the final runs of (3) above. These correla-
tions were those that were sourced during the cascade and are referred to as type-II. Type-II
correlations include those from the decays of neutral hadrons into charged particles and those
from baryon annihilation. This contribution was calculated in a brute-force manner by com-
bining all final-state hadrons from (3) with one another. The type-II contributions were added
to the type-I correlations to calculate BFs for all possible final species combinations. This
involved adding the two BF numerators, then dividing by the final yields coming from the
cascade. This procedure was tested in [33] by calculating the BFs integrated over all momen-
tum (including outside the acceptance) and summing over all species. These tests verify that
for any particles, the balancing electric charge matches the charge on the specific species. The
procedure passed this test to better than 1 percent, consistent with the uncertainty expected
from the Monte Carlo sampling. As was done in [33], the acceptance of the ALICE detector
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was taken into account in a manner to be consistent with the ALICE BF analysis [23].

This procedure was performed for three cases: first, without baryon annihilation; second, with
annihilation but without baryon regeneration; and finally, with both annihilation and regeneration.
Because annihilation only affects type-II correlations, the same type-I correlations were used for all
three cases.

III. ACCOUNTING FOR BARYON REGENERATION DURING THE HADRON

CASCADE

When two nucleons annihilate into mesons, the mesons then predominantly decay into pions, with
the typical number of outgoing pions being ≈ 5. Thus, during the decays nucleon annihilations were
all assumed to produce five mesons, with momenta chosen to reproduce the energy and momentum
of the baryon pair and weighted by invariant phase space,

dN ∼

(∏
a

d3pa
Ea

)
δ4

(
P −

∑
a

pa

)
. (4)

The combination of meson species was chosen by randomly combining five quarks with five anti-
quarks. Three of the five quarks, and three of the five antiquarks were taken from the constituent
quarks of the annihilating baryons. The remaining quarks were chosen to be two up quarks 25%
of the time, two down quarks 25% of the time and one of each for the remainder. The remaining
antiquarks were chosen accordingly to conserve charge. The quarks were randomly combined with
antiquarks to produce five pions. These choices are not particularly well motivated, but as long as
charge is conserved, they will only negligibly affect the BF results shown here.

As pointed out by Shuryak and Rapp [4], the inverse process, five mesons combining into a baryon
and antibaryon, should exactly cancel the annihilation process when a system is at equilibrium.
Thus, if the hadron cascade is seeded by assuming a chemically-equilibrated system at the hyper-
surface where the temperature is Tc, all annihilation along that hyper-surface should be canceled by
baryon regeneration. Due to the rapid cooling of the system, however, local chemical equilibrium is
lost at later times. If local kinetic equilibrium is maintained after the loss of chemical equilibrium,
so that the momenta can be characterized by a collective velocity ~u and a local temperature T ,
then the density of each species h can still be characterized by an “effective” chemical potential,
µh, defined by

nh = eµh/THnh,eq.(T ), (5)

where nh,eq.(T ) is the density of a species at equilibrium.
In a completely equilibrated system, the chemical potential for a particle and anti-particle would

be equal and opposite, and would approach zero in a system with little or no net charge, such as
the matter produced at mid-rapidity in a high-energy collision at the LHC. Here, a system with
no net charge would then lead to the effective potentials being equal for a particle and its anti-
particle. Such effective potentials have already been extracted from heavy-ion collisions going back
to SPS collisions [6, 41, 42], where typical effective chemical potentials for pions were in the range
of 70 MeV and near 350 MeV for protons at final breakup, when kinetic temperatures are in the
neighborhood of 100 MeV.

These effective chemical potentials allow one to express the inverse rate for baryon regeneration
in terms of the annihilation rate by introducing an appropriate combination of suppression factors,
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according to the following expressions:

R(5 mesons→ B, B̄) = R(B, B̄ → 5 mesons)Sµ(~µ, ~T )ST (~µ, ~T ), (6)

Sµ(~µ, ~T ) = exp

{
−µB
TB
− µB̄
TB̄

+
∑
m

µm
Tm

}
,

ST (~µ, ~T ) = exp

{
E/2TB + E/2TB̄ −

∑
m

(E/5)Tm

}
.

where µB, µB̄, TB and TB̄ depend on the specific baryons being annihilated, and the sum over m
represents the sum over the 5 mesonic products. Here, E is the energy being converted from one
sector to the other, i.e. the summed energies of the baryon and anti-baryon in the fluid frame.
To simplify the expression, it was assumed that the energy in the mesonic sector was evenly split
among the sectors for each species.

When the suppression factors Sµ and ST equal unity, recombination exactly cancels the annihila-
tion. When particles in the baryonic sector have a higher net chemical potential of the five mesons,
or if the baryons have lower temperature, the recombination only partially cancels the annihilation.

To understand Eq. (6) we consider two systems a and b, with different chemical potentials and
temperatures. The ratio of rates to inverse rates should equal the ratio of the number of available
states, e∆S, which is taken to be the ratio of the Boltzmann factors before and after the annihilation.
∆S is the entropy gained or lost by the reaction, and is then given by

∆S = E/Ta − E/Tb −
∑
ha

µa/Ta +
∑
hb

µb/Tb. (7)

Because more massive particles tend to cool more quickly [42], the temperature difference also
increases the regeneration rate. The differential cooling can be understood by considering a colli-
sionless Hubble expansion. In that limit the kinetic temperature of non-relativistic particles falls
as 1/τ 2, whereas the kinetic temperature of massless particles fall as 1/τ . Further, as the system
cools, pions tend to filter through the more massive particles, and their outward collective velocity
separates from that of the heavier particles.

Because one can estimate the regeneration rate using the suppression factors Sµ and ST , we can
circumvent implementing the 5 → 2 processes in simulation by simply reducing the annihilation
rate by the factor [1− Sµ(~µ, ~T )ST (~µ, ~T )]. One therefore has

R(B, B̄ → 5 mesons)→ Rvacuum(B, B̄ → 5 mesons)[1− Sµ(~µ, ~T )ST (~µ, ~T )]. (8)

This strategy was applied in [6] for a schematic model (not a cascade). The 5→ 2 inverse process
has been implemented in a cascade, but only for proton-antiproton annihilations [43], ignoring
annihilations of other baryons.

One challenge in implementing this approach is finding temperatures and effective chemical
potentials for all species at all points in space time. For mesons, one need only find these quantities
for pions and kaons, but there is a large array of baryons that might annihilate, some of which are
too rare to gain sufficient statistics to extract thermodynamic quantities. Thus, the quantities were
extracted for the lowest lying baryon flavor octet and decuplet, whereas higher-mass baryons were
assigned the same T and effective chemial potential as the lower lying states of the same strangeness
and total isospin.

As noted previously, calculations were based on a cascade where particles were generated from a
hydrodynamic model of central (0-5% centrality)

√
snn = 2.76 TeV Pb+Pb collisions, and the same

approach was used to compute charge balance functions as was employed in Ref. [33]. The interface
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temperature was chosen to be Tc = 155 MeV. Because of the assumed boost invariance [44], the
temperatures and chemical potentials only needed to be determined as functions of the transverse
coordinates, x and y, and the proper time, τ .

At each time step, the stress energy tensor and densities were calculated for particles within the
cells by averaging 104 collisions together. The stress-energy tensor was calculated for each species
h by considering the particles within a given cell with volume V ,

T µνh (x, y) =
1

V

∑
ph∈V

pµhp
ν
h

Eh
. (9)

This was sufficient to determine the velocity of the fluid Uµ, i.e. the velocity of the frame where
T 0i
h = 0 for i = 1, 2, 3, and the energy density in the rest frame of the fluid for the species h, εh. The

local density of the rest frame, nh, was then found with U0nh = Nh/V . Once εh and nh were known,
one numerically solved for the temperature, Th, and for the effective chemical potenial, µh, in each
cell. These values were averaged over radial slices to find the temperatures and chemical potentials
as a function of the radius, r =

√
x2 + y2, for specific proper times τ . Because the densities

depended on annihilation, and because annihilation depended on the chemical potentials extracted
from the densities, calculation of the thermodynamic quantities was repeated three times. In each
calculation, thermodynamic quantities from the previous run were used to calculate the regeneration
rates. After repeating the calculation three times, results had converged.

IV. RESULTS

Before exploring the consequences of this analysis for the interpretation of charge balance func-
tions, we first discuss temperatures, densities, collective radial velocities and effective chemical
potentials obtained using the procedure described above.

These quantities are displayed in Figs. 1 and 2 at both τ = 12 fm/c and τ = 18 fm/c. The
calculation used 104 events covering 10 units of spatial rapidity. The hyper-surface representing
T = Tc = 155 MeV/c ceased existing just before τ = 12 fm/c, meaning that by this time, most
of the matter has barely cooled below Tc and the effective chemical potentials are close to zero.
By τ = 18 fm/c roughly half of the final-state particles have been emitted, and at that time the
chemical potentials are large.

Figures 1 and 2 also show the degree to which various species share the same collective velocities
and local temperatures. As thermal equilibrium is lost, local kinetic temperatures for heavier
particles in Fig. 2 fall below those of pions and the collective flow velocity begins to vary by species
as lighter particles begin to flow through the heavier particles (an effect sometimes referred to as
the “pion wind” [42]). This calls into question the use of Eq. (6), which presumes species share
the same collective velocity. Fortunately, however, the differences in the temperatures, chemical
potentials and flows in Figs. 1 and 2 are rather modest, and in those regions where the difference is
larger the recombination rates would so small in any case that any temperature or flow difference
is inconsequential.

Annihilation suppression factors are shown in Fig. 3. The factors are near zero shortly after the
matter cools below Tc, but approach unity by the time matter is emitted at τ ≈ 18 fm/c. For the
central collisions modeled here, approximately 18% of baryons were annihilated if the regeneration
was neglected, i.e. if Sµ(~T , ~µ) and ST (~T , ~µ) were set to zero. After incorporating the suppression
factors in Fig. 3 roughly 12% of baryons were annihilated during the cascade.

Annihilation during the cascade only affects the type-II contributions to the charge balance
function. The type-II contributions were calculated for three cases: without annihilation, with an-
nihilation but without suppression, and finally, with annihilation including the suppression factors.
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FIG. 1. The left-side panels (a-d) show the effective thermodynamic quantities for pions, kaons and

nucleons as a function of radius for the time τ = 12 fm/c, which is immediately after the hydrodynamic

description has been completely replaced by the hadronic cascade. The local temperature T , number

density ρ, collective radial velocity ur and chemical potentials are presented. The same quantities are

displayed for spin-1/2 and spin-3/2 baryons in the central (e-h) and right-side (i-l) panels. At this time

the central region has left the hydrodynamic stage and quantities are still nearly thermalized. For nucleon-

nucleon annihilation, 2µN/TN − 5µπ/Tπ is the relevant combination of chemical potentials for determining

whether recombination is important. When this combination is small, most annihilation processes are

cancelled.

When baryon annihilation is not invoked, the type-II contributions to the proton-antiproton BF
is negligible. For each case, 9600 cascade events were analyzed. In order to cover the spread of
correlation, cyclic boundary conditions were employed at spatial rapidities, ηmin,max = ∓5. Give
that experimental coverage for identified particles are in the range of |η| < 0.8, and given that
efficiencies for the calculation were perfect, the statistical noise in these calculations is similar to
what an experiment might measure with ≈ 105 events. High statistics runs with the STAR detector
at RHIC or at ALICE at the LHC (Large Hadron Collider) might ultimately have more than ten
times these statistics.

BFs using protons and antiprotons for the three cases are shown in Fig. (4). As expected,
annihilation provides a significant dip at small relative rapidity, ∆y, relative azimuthal angle, ∆φ
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FIG. 2. Thermodynamic quantities are shown at a time τ = 18 fm/c, a time when many of the emitted

hadrons are experiencing their final interactions. By that time the effective chemical potentials have grown

substantially, and the combination, 2µN−5µπ is large, which in turn means that the baryon recombination

rates are negligible by that time. The right-side panels (i-l) show the thermodynamic quantities for other

baryon species. They resemble those for nucleons.

or the invariant relative momentum,

q2
inv = −(p1 − p2)2/4 + [(p1 − p2) · P ]2/4P 2, (10)

where P µ = pµ1 + pµ2 . With this definition qinv is half the relative momentum in the rest frame of
the pair. Of these three choices, qinv provides the clearest means to view the contribution. This was
expected given the large annihilation cross section for low relative momentum, and the fact that
collective flow focuses the effects of annihilation toward smaller relative momentum. For charge
balance correlations that depend only on relative position, thermal motion would lead to BFs that
scale as q2

inv for small relative momentum due to phase space. Aside from annihilation, there is no
reason to expect the negative dip in Fig. 4. Because the annihilation contribution is concentrated at
small qinv it is rather easy to identify it. The width of the broader type-I contribution might easily
change, as it depends on details of how charge is created and diffuses during the hydrodynamic stage,
but it should be rather featureless, and by fitting the entire form, it should be relatively straight-
forward to quantitatively identify the contribution from annihilation, and therefore to quantitatively
constrain the amount of annihilation in the hadronic stage.
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full suppression factor, (1− Sµ(~µ, ~T )ST (~µ, ~T )) are both shown.
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FIG. 4. Charge balance functions using protons and antiprotons binned by (a) relative rapidity, (b) relative

azimuthal angle, and (c) relative invariant momentum, qinv. An acceptance cutoff constrains the balance

fucntion to ∆y > 1.2. Binning in qinv is especially useful for identifying baryon annihilation in the hadronic

stage.

In addition to better understanding the amount of baryon annihilation in the latter stage of
the collision, it is imperative to understand how proton-antiproton BFs, particularly those binned
by ∆y and ∆φ, are distorted by annihilation. The width of the proton-antiproton BF in ∆y pro-
vides critical insight into whether quarks are produced early, within the first fm/c, of a heavy-ion
collisions. This observable provides the field’s best hope for understanding whether a chemically
equilibrated QGP was indeed realized early in the reaction’s evolution. By constraining the annihi-
lation contribution by analyzing B(qinv), one can more confidently interpret the broader structure
of the proton-antiproton BF.
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V. SUMMARY AND CONCLUSIONS

There are reasons to doubt the accuracy of the model calculations presented here. The large
annihilation cross section might change in the environment where several other particles might exist
within the characteristic distance of σannihilation. Further, the phenomenological annihilation cross
section was motivated by pp̄ annihilation data, and might significantly differ for other species. One
or both of the annihilating species would likely be a neutron, a resonance like the ∆, or a hyperon.
But, even though the model calculations presented here have significant uncertainty, the conclusion
that the annihilation contribution can be constrained by observing the baryon-antibaryon BFs
binned by qinv is robust. For very high-energy collisions, where particles and particles are produced
with nearly equal probability, the main physical source of competing correlation comes from final-
state interactions. This was studied in detail in [45], where it was found that final-state interactions
distort BFs only for qinv < 50 MeV/c, so this competing contribution is easily separable. One might
even better understand other annihilation cross sections through measurement of BFs involving
other baryons, such as Λs.

If the calculations presented here for proton-antiproton BFs binned by qinv indeed match mea-
surements from the LHC, it would confirm that net baryon annihilation in the hadronic phase is near
12% for central Pb+Pb collisions at the highest energies. Measurements of the ALICE Collabora-
tion show the proton to pion ratio in Pb+Pb collisions falling by approximately 15% as centralities
change from mid-central to most central [8]. If only 12% of baryons annihilate in the most central
collisions, and given that there must also be some annihilation in mid-central collisions, it would
seem that baryon annihilation is unlikely to explain more than half of this trend.

BFs binned by relative rapidity provide insight into the chemical evolution of the super-hadronic
matter produced in heavy-ion collisions. The calculations displayed in Fig. 4 were based on local
chemical equilibrium being maintained from very early times. This allowed diffusion to produce
wide pp̄ BFs. Here, “wide” is relative to the thermal spread expected if two balancing charges are
emitted close to one another. The characteristic thermal spread is ≈ 0.4 units of rapidity. However,
one can see that the BFs binned by relative rapidity in Fig. 4 are significantly broader than the
thermal spread. If instead of the early production used here, quark production had taken place
later, as one might have expected for a long-lived gluon plasma, balancing charges would have only
spread by a few tenths of a unit of spatial rapidity and the BF widths would be of the order 0.5 units
of rapidity. Thus, the observation of pp̄ with spreads in rapidity & 1 unit suggest early production
of charge [46]. However, because one could adjust the narrowness with annihilation, it is imperative
to accurately account for annihilation. Fortunately, as shown here, the characteristic scale of the
dip in the BF from baryon annihilation is smaller than the thermal scale, which makes it readily
identifiable, especially when binned by qinv. Once the shape of the proton-antiproton BF binned
by qinv is understood, then one can confidently state the contribution from annihilation to the BF
binned by relative rapidity. The dip in the BFs seen in Fig. 4 due to annihilation is not unlike what
has been seen in measurements from the ALICE collaboration, which are not yet published except
as part of a thesis [47]. Finalized results, and results from analyses with much higher statistics may
be available within the next few years, both from the ALICE Collaboration at the LHC and from
the STAR Collaboration at RHIC.

Thus, for both motivations listed above, it would be crucial to provide high-statistics BFs con-
structed from protons and antiprotons. The BFs should be binned by all three measures of relative
momentum, ∆y, ∆φ and qinv. Once these measurements are published, the question of baryon
annihilation in the hadronic stage should be largely settled. Further, once the contributions from
annihilation to proton-antiproton BFs is clarified, one can embark on a detailed comparison of BFs
from experiment to BFs from the model presented here. This would then enable quantitatively
addressing the question of whether chemical equilibrium was established early (τ < 1.0 fm/c) in
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the light quark sector.
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