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We describe and implement a procedure for determining the couplings of a Relativistic Mean-Field
Theory (RMFT) that is optimized for application to neutron star phenomenology. In the standard
RMFT approach, the couplings are constrained by comparing the theory’s predictions for symmetric
matter at saturation density with measured nuclear properties. The theory is then applied to neutron
stars which consist of neutron-rich matter at densities ranging up to several times saturation density,
which allows for additional astrophysical constraints. In our approach, rather than using the RMFT
to extrapolate from symmetric to neutron-rich matter and from finite-sized nuclei to uniform matter,
we fit the RMFT to properties of uniform pure neutron matter obtained from chiral effective field
theory. Chiral effective field theory incorporates the experimental data for nuclei in the framework
of a controlled expansion for nuclear forces valid at nuclear densities and enables us to account for
theoretical uncertainties when fitting the RMFT. We construct four simple RMFTs that span the
uncertainties provided by chiral effective field theory for neutron matter, and are consistent with
current astrophysical constraints on the equation of state. Our RMFTs can be used to model the
properties of neutron-rich matter across the vast range of densities and temperatures encountered
in of neutron stars and their mergers.

I. INTRODUCTION

Relativistic mean-field theories (RMFTs) can be used
to model nuclear matter across the range of densities
and temperatures found in neutron stars and neutron
star mergers [1–4]. Importantly, RMFTs can in princi-
ple be used to calculate any well-defined physical prop-
erty of neutron star matter. In addition to the equa-
tion of state (EoS) and its physical temperature depen-
dence [3], RMFTs provide a consistent framework for,
e.g., out-of equilibrium behavior [5], response to magnetic
fields [6, 7], and the spectrum of low-energy excitations,
which is needed for calculations of phenomenologically-
relevant properties such as bulk viscosity [8, 9], neutrino
opacity and emissivity [10], etc. These properties of neu-
tron star matter are key inputs for robust simulations of
explosive scenarios involving neutron stars, such as su-
pernova explosions and neutron star mergers.

Matter in neutron stars is highly neutron-rich, but such
systems are not self-bound, hence there is no direct ex-
perimental data that could be used to determine appro-
priate values for the couplings of an RMFT in this regime.
RMFTs are, therefore, generally calibrated by fitting the
couplings to data extrapolated from experimental results
for atomic nuclei using the Bethe-Weizsäcker liquid-drop
model, i.e., to the properties of symmetric nuclear mat-
ter (equal numbers of protons and neutrons) around nu-
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clear saturation density (n0) or ground state properties
of nearly-symmetric finite nuclei, e.g., charge radii and
binding energies of closed-shell nuclei. The RMFT is then
extrapolated to neutron star conditions, where matter is
far from symmetric, with a proton fraction below 10%.
In addition, to describe neutron stars, RMFTs need to be
extrapolated from nuclear densities to neutron star densi-
ties of up to several times n0. In principle, the symmetry
energy and its slope at n0 provide some information on
the extrapolation to neutron-rich matter, but, as high-
lighted by the recent Lead Radius Experiment (PREX)
results, their values remains highly uncertain [11, 12].
This further motivates finding alternative ways of deter-
mining coupling constants of RMFTs aimed at describ-
ing neutron-rich matter probed in neutron stars. See
Ref. [13] for an RMFT parameterization that checks for
agreement with chiral effective field theory (χEFT) for
neutron matter.

In this paper, we construct a set of RMFTs that are
particularly well-suited to describing neutron-rich mat-
ter. We constrain the RMFT couplings using the best
information we have about neutron-rich matter, which
comes from χEFT calculations for pure neutron matter.
In Fig. 1 we show the χEFT uncertainty band for the
binding energy of neutron matter, along with the pre-
dicted values from some commonly used RMFTs that
are calibrated directly to symmetric matter. We see that
they all show some level of disagreement with χEFT.

The advantage of χEFT is that it provides a controlled
expansion that describes the interactions between nucle-
onic degrees of freedom in the density range around n0
consistent with all symmetries of the fundamental the-
ory of strong interactions, Quantum Chromodynamics
(QCD) [14, 15]. Because of that, χEFT calculations en-
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able us to make reliable connections between the near-
symmetric matter probed in experiments with atomic nu-
clei and neutron-rich matter found in neutron stars [16–
18]. Here, we determine the couplings in our new RMFTs
by fitting to the χEFT predictions for zero-temperature
neutron matter reported in Ref. [19]. We use these results
over the density range 0.5n0 to 2n0, above the crust-
core transition and where χEFT was found to be reli-
able [18, 19]. We observe that commonly used RMFTs
(see Fig. 1) are inconsistent with χEFT at densities less
than 1.5n0 or even well below saturation. At densities
above 2n0, χEFT breaks down because nucleon momenta
approach the breakdown scale of the theory, implying
that additional degrees of freedom become important.
The χEFT results employed in this work are obtained
by solving the nuclear many-body problem with quantum
Monte Carlo (QMC) many-body methods [20], which are
among the most precise many-body methods in nuclear
physics. These calculations provide “synthetic” data for
neutron-rich matter that can be used to adjust RMFTs.
Moreover, we simultaneously require that the RMFTs re-
produce the basic properties of symmetric nuclear mat-
ter, namely the saturation density, binding energy, and
incompressibility at that density.

The resulting RMFTs are used to extrapolate the EoS
to higher densities, beyond the range of validity of χEFT,
and to model the behavior of neutron-rich matter found
in neutron stars. The RMFT couplings can then be fur-
ther constrained by comparing predictions for neutron
star properties with astrophysical measurements, such as
radio [21, 22] or X-ray [23, 24] observations of masses
and radii of heavy neutron stars, and extractions of the
tidal deformability from gravitational-wave (GW) obser-
vations, e.g., GW170817 [25, 26].

The result of our work is a family of RMFTs that are
well suited for neutron star phenomenology; they can
be used in calculations of r-mode spindown and neu-
tron star cooling, as well as in neutron star merger sim-
ulations. In these simulations, the matter is generally
neutron-rich but may explore a range of proton fractions
as it is driven out of beta equilibrium in the first mil-
liseconds of the merger. We provide our new EoSs in a
publicly available tabular form on the CompOSE web-
site https://compose.obspm.fr/ and the code needed
to generate the tables and figures in a GitLab repository:
https://gitlab.com/ahaber/qmc-rmfx.

This paper is organized in the following way. In Sec. II
we describe the χEFT calculation of the low-density
neutron-matter EoS, and the procedure that we follow
to fit an RMFT to that data. In Sec. III we present our
main results, showing key physical properties of a sample
of resulting RMFTs. Sec. IV gives our conclusions. In all
our calculations we use natural units, ~ = c = kB = 1.
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FIG. 1: Binding energy per nucleon as a function of baryon
number density in pure neutron matter. A comparison be-
tween the GM1 [27], NL3 [28], IU-FSU [29], and SFHo [30]
EoSs and the χEFT uncertainty band of Ref. [19].

II. MICROSCOPIC MODELS

A. Chiral Effective Field Theory for Pure Neutron
Matter

The properties of nucleonic matter are determined by
the strong nuclear interactions between neutrons and
protons. The fundamental theory for these interactions is
QCD, which describes nuclear systems in terms of quark
and gluon degrees of freedom. It is currently unfeasi-
ble to describe nucleonic matter in terms of these de-
grees of freedom because QCD is nonperturbative in this
regime. However, the relevant low-energy degrees of free-
dom in nuclear physics are nucleons, neutrons and pro-
tons. χEFT is a low-energy effective field theory of QCD
that describes strong interactions in terms of nucleonic
degrees of freedom [14, 15]. It derives nuclear Hamiltoni-
ans from the most general Lagrangian consistent with all
the symmetries of QCD which is expanded in powers of
momenta over the breakdown scale Λb, leading to a sys-
tematic expansion that is truncated at a chosen order.
χEFT explicitly includes pion-exchange interactions,

leading to a breakdown scale of the order of the rho-
meson mass. Recent numerical studies found that the
breakdown scale lies in the range 500 − 600 MeV [18].
Physics at higher energies is encoded in general contact
interactions that depend on low-energy couplings (LECs)
fit to nucleon-nucleon (NN) scattering data and data on
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atomic nuclei. At leading order (LO), nuclear Hamilto-
nians from χEFT include momentum-independent con-
tact interactions, describing NN S-wave scattering, and
the well known one-pion-exchange interaction. By going
to higher orders in the effective field theory, additional
pion-exchange and contact interactions are accounted for,
leading to more accurate and precise calculations at the
cost of more complicated Hamiltonians. Because of the
systematic expansion provided by χEFT, it is possible
to estimate theoretical uncertainties from order-by-order
calculations [18, 31, 32]. This is one of the main benefits
of χEFT over other approaches to dense nuclear matter.
Furthermore, χEFT naturally accounts for three-nucleon
(3N) and higher many-body forces, and these forces are
consistent with the NN sector for the interactions, i.e.,
the same physical processes are described by the same
operators and LECs. χEFT provides a natural hierarchy
for NN and 3N forces, with 3N interactions starting to
contribute at next-to-next-to-leading order (N2LO).

In this work, we employ the χEFT calculations of pure
neutron matter reported in Ref. [19]. These calculations
used local χEFT interactions at N2LO that were con-
structed in Refs. [16, 33–35]. The NN interactions were
fit to NN scattering data and the 3N interactions to the
binding energy of 4He and neutron-4He scattering phase
shifts. These interactions were used in QMC computa-
tions of neutron matter using the auxiliary field diffusion
Monte Carlo (AFDMC) method [36]. AFDMC calcula-
tions with local chiral interactions have been shown to
reproduce properties of dense matter [17, 19] and atomic
nuclei [16, 37] with great success. The neutron-matter
results of of Ref. [19] include theoretical uncertainties
from several sources: (a) the truncation of the χEFT se-
ries, estimated following Ref. [31], (b) uncertainties due
to the choice of employing local regulators [16, 38], and
(c) stochastical uncertainties from the AFDMC many-
body method. The latter source of uncertainty is negli-
gible and the theoretical error is dominated by the trun-
cation and regulator uncertainties. The pure neutron-
matter results employed here are based in the TPE+VE1
and TPE-only results of Ref. [19] with their uncertainties.

B. Relativistic Mean-Field Model

We now show that simple, generic RMFTs can repro-
duce the nuclear matter properties that are most relevant
to neutron star applications. Our RMFT Lagrangians
are based on Appendix A of Ref. [5], and include protons
and neutrons coupled to σ, ω, and ρ mesons. By setting
selected couplings to zero, these Lagrangians can be re-
duced to the form of well known RMFTs like GM1 [27],
IU-FSU [29], or NL3 [28]. In the future, as new data be-
comes available or the χEFT uncertainty bands tighten,
there might be good reason to explore more complicated
RMFTs with additional mesonic fields and interactions.

Our RMFT Lagrangian can be written as a sum of
nucleonic, mesonic, photon, and leptonic parts,

L = LN + LM + Lπ + Ll + Lγ +B , (1)

where we separate the pionic part as explained later
in this section. The “bag constant,” B, arises because
this RMFT may not accurately model very low density
physics (nB � n0), such as formation of clusters or nu-
clei, so its vacuum state may have a non-zero pressure (in
the convention that the physical vacuum has zero pres-
sure). When constructing neutron star density profiles,
we will determine B by matching to a low-pressure EoS
(see Sec. II D) at nB ≈ 0.40n0.

The nucleonic Lagrangian LN describes the neutrons
and protons, combined into an isodoublet, ψ, and their
Yukawa-type coupling to the mesonic fields (apart from
the pion),

LN = ψ̄
[
iγµ∂µ −mN + gσσ − gωγµωµ

− gρ
2
τ · ρµγµ +

e

2
(1 + τ3)Aµ

]
ψ , (2)

where bold symbols denote iso-vectors and τ is the iso-
vector of isospin generators. The last term describes
the photon-nucleon coupling, with e being the electri-
cal charge, Aµ is the U(1)e gauge field, and where we
use the third isospin matrix τ3 to construct the isospin
projector for the proton.

The pion Lagrangian Lπ contains pion-nucleon and
pion-pion interactions. Although pions play a major
role in long-range nucleon-nucleon interactions, they only
play a minor role in bulk properties of nuclear matter be-
cause a pion expectation value would break parity; see,
for example, p. 494 in Ref. [1]. Hence, they do not influ-
ence the astrophysical properties that we use to constrain
our RMFTs, and play no role in our analysis.

The Lagrangian for the non-pionic mesons is given by

LM =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − bM

3
(gσσ)3 − c

4
(gσσ)4

− 1

4
ωµνω

µν +
1

2
m2
ωωµω

µ +
ζ

24
g4ω(ωµω

µ)2

− 1

4
Bµν ·Bµν +

1

2
m2
ρρµ · ρµ + b1g

2
ρωνω

νρµ · ρµ ,
(3)

where

ωµν ≡ ∂µων − ∂νωµ , (4)

Bµν ≡ ∂µρν − ∂νρµ . (5)

The leptonic Lagrangian is

Ll = ψ̄e (iγµ∂µ −me)ψe , (6)

describing free electrons with mass me = 0.511 MeV. In
principle, muons could be added to the theory as an-
other non-interacting free lepton field, but they play a
sub-leading role relative to the electrons in establishing
electrical neutrality of bulk nuclear matter and affect the
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total pressure at the one percent level. Although the
proton fraction can change from roughly 10% up to 15%
compared to the case without muons, the smaller Fermi
momentum of the electrons counterbalances this effect.
The resulting effect on the direct Urca threshold density
is therefore only at the few percent level.

The photon contribution is given by

Lγ = −1

4
FµνFµν , (7)

with the standard electromagnetic field-strength tensor
Fµν . The parameters of the theory are determined
as follows: the three meson masses are fixed to the
values used in the IU-FSU RMFT, mσ = 491.5 MeV,
mω = 782.5 MeV, mρ = 763.0 MeV [39]. The parame-
ter M is an arbitrary constant with units of mass which
is introduced so that the σ3 coupling b in Eq. (3) will
be dimensionless, and is set to the vacuum nucleon mass
M = mN = 939 MeV. The ω meson quartic self-coupling
ζ is poorly constrained in the density region of our fit,
and can lead to unphysical behavior of the theory [40] if
the coupling is negative. Furthermore, its primary pur-
pose is to soften the EoS, see Ref. [41]. Given that our
models predict reasonable maximum masses and in or-
der to avoid unphysical models due to an unconstrained
parameter (varying ζ after a successful fit does not al-
ter the quality of the fit to a significant degree) we set
ζ to zero in this work. The remaining six couplings,
(gσ, gω, gρ, b, c, b1) are obtained by fitting to data as de-
scribed in Sec. II C.

In the mean-field approximation, we treat the meson
fields as classical, with translationally and rotationally
invariant expectation values which are obtained by max-
imizing the pressure (see Appendix A). Because of ro-
tational invariance, only the zeroth component of the
Lorentz 4-vector fields ω and ρ can acquire an expec-
tation value. Only the 3rd (charge-neutral) isospin com-
ponent of the ρ0 isovector acquires an expectation value
(see p. 184 in Ref. [4]). The resulting dispersion relations
for the nucleons i = n, p are

Ei =
√
k2i +M2

∗ + gω〈ω0〉+ gρIi3〈ρ03〉 , (8)

with

M∗ = mN − gσ〈σ〉 , (9)

and where Ii3 = − 1
2 or + 1

2 for n, p respectively. We
see that the coupling to the σ field produces an effective
mass M∗, the coupling to the ω produces an energy shift
common to both nucleon species, and the coupling to ρ03
creates opposite energy shifts for the neutron and proton.

The RMFT can be used to calculate physical observ-
ables at any temperature, but for comparison with cur-
rent neutron star observations and the fit to the χEFT
data we only need the low temperature (T � 1 MeV) be-
havior. Given that the nucleon Fermi energies are much
larger than the temperature in isolated neutron stars, we

will use the T = 0 approximation for comparisons with
data. In Appendix A, we give finite-temperature expres-
sions, and show thermal pressures.

The pressure can be decomposed as follows:

P = 〈LM 〉+ PN + Pe +B . (10)

The first term represents the mesonic contribution and
is obtained directly from the Lagrangian by replacing all
fields with their expectation values. In the mean-field
approximation, this part is temperature independent. In
the zero-temperature limit, the nucleonic contribution
PN can be obtained analytically (see Sec. 3 in Ref. [42])
and is given by the pressure of free nucleons obeying the
dispersion relations (8),

PN =
∑
i=n,p

1

8π2

[(
2

3
k3Fi −M2

∗kFi

)
E∗Fi

+M4
∗ ln

kFi + E∗Fi
M∗

]
, (11)

where we defined the effective Fermi energy

E∗Fi = µi − gω〈ω0〉 − gρIi3〈ρ03〉 =
√
k2Fi +M2

∗ . (12)

The Fermi momenta are connected to the baryon densi-
ties in the usual way,

ni =
k3Fi
3π2

. (13)

The third term in Eq. (10) is the free electron contri-
bution to the pressure, where we impose local charge
neutrality of the system by demanding that the mag-
nitude of the electron Fermi momentum is equal to the
proton Fermi momentum, kFe = kFp. We obtain the ex-
pectation values of the meson fields by maximizing the
pressure, (see Appendix A for details)

∂P

∂〈σ〉
= 0 ,

∂P

∂〈ω0〉
= 0 ,

∂P

∂〈ρ03〉
= 0 . (14)

C. Fitting a Relativistic Mean-Field Theory to
Chiral Effective Field Theory

As described in Sec. I, our goal is to derive RMFTs
that are tuned to the properties of neutron-rich mat-
ter. We therefore constrain the six free parameters
(gσ, gω, gρ, b, c, b1) of our RMFTs by fitting the models
to the following data:
• the χEFT EoS of zero-temperature homogeneous neu-

tron matter in the density range where χEFT is ex-
pected to be reliable (0.5n0 to 2n0);
• the saturation density n0, binding energy at n0, and

incompressibility of symmetric nuclear matter;
• the astrophysical constraint that the EoS should at

least be able to support the mass of the heaviest ob-
served neutron star.
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Our procedure is as follows:

1. To sample the χEFT uncertainty band, we create
a set of representative χEFT neutron matter EoSs
using the “Gandolfi-Carlson-Reddy (GCR) param-
eterization” developed in Ref. [43] which expresses
the binding energy per nucleon E of pure neutron
matter in the form

EχEFT(nB) = a(nB/n0)α + b(nB/n0)β . (15)

To create the set, we sample a range of values of
the GCR parameters (a, b, α, β), keeping only the
samples that remain within the χEFT uncertainty
band (Fig. 1) for the energy per particle and within
the χEFT uncertainty range for the pressure at 2n0.

2. For each representative χEFT EoS, we perform a
non-linear least-squares fit to find the set of RMFT
couplings that lead to the best agreement with the
χEFT binding energy E(nB) for neutron matter at
0.5 to 2n0, and also with the standard values for
properties of symmetric nuclear matter at nuclear
saturation density (see details below).

3. The resultant RMFTs can be used to obtain
an EoS for cold beta-equilibrated nuclear mat-
ter (µn = µp + µe) from about 0.5n0 up to sev-
eral times n0. At densities up to 0.5n0 we use a
crust EoS as described in Sec. II D. We can then
obtain predictions for the mass-radius relation and
tidal deformability of neutron stars. We keep the
RMFTs whose M(R) relation has a maximum mass
that reaches 2σ compatibility with the heaviest
known neutron stars (see details below) and dis-
card the others.

By repeating the above procedure with progressively finer
sampling of the GCR parameter space, we are able to find
RMFTs that agree with the χEFT predictions for neu-
tron matter, the basic properties of symmetric matter at
saturation density, and are consistent with astrophysical
data.

We now give additional technical details about the fit-
ting (step 2) and the astrophysical constraints (step 3).
Our final results, including a set of RMFTs that meet all
our criteria, are presented in Sec. III.

Step 2: Fitting to nuclear matter properties.

We fit to the following nuclear matter data:
(a) the binding energy of isospin-symmetric matter in

the range of densities (0.8n0, 1.4n0). We use 12 sample
points in this range, at which we evaluate the binding
energy using the standard empirical power series around
saturation density

E(nB , α) = (Bsat +
κ

2!
δ2 + · · · ) +α2(J +Lδ+ · · · ) + · · · ,

(16)
where δ ≡ (nB−n0)/(3n0) and α ≡ (nn−np)/(nn+np);
α represents the asymmetry of the matter, where nn and

np are the neutron and proton number densities, respec-
tively. In symmetric nuclear matter α = 0. Bsat is the
binding energy at saturation density, and κ is the incom-
pressibility of nuclear matter. The parameter values that
we fit to are

Bexpt
sat = −16 MeV, (17a)

nexpt0 = 0.16 fm−3, (17b)

κexpt = 240± 20 MeV, (17c)

where the binding energy is extracted in the traditional
approach of extrapolating the semi-empirical mass for-
mula [44]. We note that other methods have been pro-
posed that lead to slightly less binding, Bsat = −(13 −
14) MeV [45]. We use the standard value for saturation
density from Ref. [46], which is still consistent with more
recent estimates, 0.15±0.01 [47], and the incompressibil-
ity from Ref. [48]. Our choices are also consistent with
the values adopted in Ref. [49].

(b) a representative χEFT neutron-matter EoS, which
is defined via Eq. (15) by a set of values of (a, b, α, β). We
sample the binding energy E(nB) at 16 density values in
the range (0.5n0, 2n0).

For each representative χEFT EoS, we use the
multi non-linear model fitting function available for
Mathematica [50] to find the set of RMFT couplings
(gσ, gω, gρ, b, c, b1) that best reproduce the data described
in (a) and (b) previously. The RMFT’s predictions for
the binding energy are calculated using the thermody-
namic relation at vanishing temperature ε = −P +∑
i µini with i = n, p, e. To perform a fit and evalu-

ate its accuracy one must associate error bars with the
data points. We explored several different recipes for this:
10% error bars on all data points; 1 MeV error bars on
all data points; 10% error bars on all data points for pure
neutron matter and a varying error between 5− 10% for
symmetric nuclear matter, where the error grows away
from saturation density. Comparing the different results,
we find that the fits are not sensitive to the choice of error
bar. For example, the saturation properties of isospin-
symmetric matter change by less than 1%. The RMFTs
that achieve a sufficiently good fit (coefficient of deter-
mination R2 > 0.99) are then screened for astrophysical
validity (Step 3).

Step 3: Constraint from astrophysical data.

For each set of RMFT couplings that successfully repro-
duced the nuclear matter data as described in Step 2
above, we calculated the EoS, i.e., the energy density
as a function of pressure, ε(P ), for homogeneous mat-
ter in beta equilibrium at zero temperature. The as-
sumption of homogeneous matter is only valid down to
about 0.4n0, and below that density we switch to the
model described in Sec. II D. We use this combined EoS
to solve the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions to calculate the neutron star mass-radius curve. We
discard RMFTs for which the maximum mass is incon-
sistent at the 2σ level with the best constraint on the
heaviest neutron star, M = (2.072± 0.066)M� [51].
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The code used to generate these representative χEFT
EoSs, RMFT fits, and resulting mass-radius curves is
available at https://gitlab.com/ahaber/qmc-rmfx.

D. Attaching the Crust

In principle, one can use an RMFT to describe nuclear
matter down to densities of order 0.001n0. However, at
densities below about 0.5n0, where the matter begins to
clump into “pasta” structures, we would have to drop our
assumption that the field expectation values are transla-
tionally invariant, and switch to a more complex calcu-
lation using Wigner-Seitz cells in which the matter is
described self-consistently in the Thomas-Fermi approxi-
mation. This procedure is too computationally demand-
ing to be performed for every set of RMFT couplings
that we consider. We therefore use the GPPVA(TM1e)
crustal EoS from CompOSE [52]. This EoS combines the
Baym-Pethick-Sutherland (BPS) EoS [53] for the outer
crust below a density of nB = 0.002 fm−3 with a Thomas-
Fermi calculation [54] using the TM1e-RMFT [55] for
the inner crust. We match this combined crustal EoS to
the EoS for our RMFT by demanding thermodynamic
consistency (continuity in pressure and baryon chemical
potential and monotonicity of the baryon density with re-
spect to the baryon chemical potential) at crust baryon
density ntr ≈ 0.4n0. For each of our RMFTs, we impose
a first-order phase transition at the highest density in
the GPPVA(TM1e) crust that ensures thermodynamic
consistency. To accomplish the matching, we tune the
bag constant in our RMFT in Eq. (1), which penalizes
the pressure of the homogeneous nuclear matter phase
relative to the crust phase.

III. RESULTS

We selected four representative RMFTs that emerged
from the fitting process described in Sec. II C that cover
a range of stiffness, from the softest (QMC-RMF1) to the
stiffest (QMC-RMF4). Table I lists the fitted values of
the couplings for those RMFTs.

Each of these EoS predicts energies per particle for
pure neutron matter that lie within the QMC χEFT un-
certainty band. This is illustrated in Fig. 2, where we
show the energy per particle as a function of density
for neutron matter (upper panel) and isospin-symmetric
matter (lower panel) for the four RMFTs listed in Ta-
ble I.

We note that at nB > n0 all RMFTs lie in the upper
part of the χEFT uncertainty band, because the astro-
physical requirement of a ≈ 2M� star requires a suf-
ficiently high pressure at those densities, which is pro-
portional to the slope of the energy per particle. We
also note that all four RMFTs agree well with the ex-
pected features of isospin-symmetric matter at densities
close to n0 (red shaded region in the bottom panel of
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FIG. 2: Binding energy per nucleon as a function of baryon
number density in pure neutron matter and isospin-symmetric
nuclear matter. The blue shaded region represents the uncer-
tainty band of the QMC χEFT calculation. The red shaded
region shows the symmetric matter values (17) that we fit to.
The solid lines are results for the four RMFTs obtained in
Sec. II C. Note that the symbols on the lines are distinguish-
ing markings, not data points.

Fig. 2); see also Table I. Moreover, each RMFT can sup-
port neutron stars with masses in agreement with the
heaviest observed star. The strongest lower bound on
M expt

max , (2.072± 0.066)M�, was extracted by the NICER
collaboration [51], and the predicted mass-radius curve
must reach at least 1.94 M� to be compatible with ob-
servations at the 2σ level.

In Fig. 3 we show the speed of sound c2s = dp/dε as a
function of density in beta-equilibrated homogeneous npe
matter described by our four RMFTs. As expected for
a relativistic theory, the speed of sound remains causal,
i.e., it is always less than the speed of light. Our four
RMFTs are named by their stiffness in the density range
2-4n0, which is the typical central density of 1.4 M� stars,
and therefore influences their radius. The QMC-RMF1
theory produces the softest (lowest sound speed) EoS
and QMC-RMF4 producing the stiffest EoS, although
above 4n0 its speed of sound is very similar to QMC-
RMF3. For all RMFTs, the speed of sound rises above
the conformal value c2s = 1/3 at about 3n0. This is
consistent with more generic analyses (e.g. Refs. [19, 56–
58]) which indicate that this is a necessary feature of any
EoS that is consistent with nuclear-physics information

https://gitlab.com/ahaber/qmc-rmfx
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Name gσ gω gρ b c b1 nsat E(nsat) κ(nsat) Mmax

Unit [fm−3] [MeV] [MeV] [M�]

QMC-RMF1 7.54 8.43 10.88 0.0073 0.0035 7.89 0.160 -16.1 260 1.95

QMC-RMF2 7.82 8.99 11.24 0.0063 -0.0009 8.02 0.161 -16.3 264 2.04

QMC-RMF3 8.32 9.76 11.02 0.0063 -0.006 5.87 0.157 -16.1 230 2.15

QMC-RMF4 8.21 9.94 12.18 0.0041 -0.0021 10.43 0.162 -16.1 279 2.21

TABLE I: Couplings and fitted properties for four selected RMFTs that meet the criteria described in Sec. II C. We find that
these theories predict properties of isospin-symmetric matter that are close to the inferred values in Eq. (17) and their predicted
maximum neutron star masses are consistent with observations.

Name J L M∗(nsat)/mN R1.4M� Λ1.4M� nB(Mmax)

Unit [MeV] [MeV] [km] n0

QMC-RMF1 32.9 44.5 0.782 11.86 313 7.1

QMC-RMF2 32.7 40.6 0.759 12.03 357 7.0

QMC-RMF3 33.6 49.2 0.732 12.26 387 6.8

QMC-RMF4 30.4 31.3 0.716 12.35 470 6.2

Inference/Observation 29-32 40-65 12.45± 0.65 190+390
−120

TABLE II: Selected properties of the four RMFTs in Table I. Inferred ranges for J and L come from Fig. 2 (the white
“intersection” region) in Ref. [32], for the neutron star radius from Ref. [23], and for the tidal deformability from Ref. [26].
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FIG. 3: Speed of sound squared in beta-equilibrated nuclear
(npe) matter as a function of baryon number density in units
of the speed of light, for the four RMFTs obtained in Sec. II C.
Note that the symbols on the lines are distinguishing mark-
ings, not data points. The dashed line at c2s = 1/3 shows the
speed of sound in the QCD asymptotic high-density limit.

at low densities and also meets the astrophysical con-
straint Mmax & 2 M�.

For all four EoSs, the speed of sound increases mono-
tonically, rising quickly at nB ≈ 2n0 and then leveling

off, asymptotically approaching the speed of light at high
densities. One might expect that in the limit of infinite
density the theory would become scale free (µB much
greater than all other physical energy scales) in which
case c2s = 1/3. However, in our theory the ω expecta-
tion value dominates the pressure at high density, so the
theory does not become scale invariant. For a discussion
of this point, see Appendix C. In a more general theory
with a non-zero ω4 coupling one would find c2s → 1/3 in
the infinite density limit.

Fig. 4 shows the mass-radius relations predicted by the
proposed RMFTs and we indicate where the central den-
sity reaches 2n0. Around this density, χEFT results be-
come unreliable and other theoretical approaches, such as
an RMFT, are needed to model the microphysical prop-
erties of the matter. Hadronic theories like RMFTs be-
come implausible at densities around 6n0 because nucle-
ons start to overlap. From Table II we find that the max-
imum baryon number density attained in stars is compa-
rable to this value, so a neutron star spans the range of
densities over which an RMFT is applicable. The fig-
ure shows that, as expected by their construction, all
four RMFTs are consistent with the maximum mass con-
straint. We also show (blue shaded region) the multimes-
senger constraint on mass and radius obtained in Ref. [59]
combining observations of two radio pulsars, two NICER
measurements (using the NICER and XMM-Newton re-
sult of Ref. [23] for J0740+6620), the gravitational-wave
detections GW170817 and GW190425 and modeling of
the associated kilonova AT2017gfo and the gamma-ray
burst GRB170817A. The mass-radius relations predicted
by our RMFTs are consistent with that multimessenger
constraint.

The mass-radius curves are also consistent with the
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FIG. 4: Mass-radius curves for the RMFTs obtained in
Sec. II C. The orange-shaded bars show the 1σ (dark shad-
ing) and 2σ (light shading) mass measurement of pulsar
J0740+6620 from Ref. [51]. The blue shaded area shows the
68% (dark shading) and 95% (light shading) multi-messenger
constraints obtained in Ref. [59] using the NICER+XMM-
Newton result of Miller et al. [23]. The dots mark where the
central density rises above 2n0 and our models are not con-
strained by χEFT anymore. The dashed parts beyond the
maxima of the curves denote the unstable branch of solutions.

stiffness hierarchy that we observed in the speed of sound
(Fig. 3). QMC-RMF1 is the softest EoS in the 2-4n0
range, and correspondingly yields the most compact stars
and the smallest maximum mass. QMC-RMF2 is stiffer,
with larger radii and a higher maximum mass. The
QMC-RMF4 theory produces the stiffest EoS in the 2-
4n0 range, so that the radius increases with mass in the
range from about 0.6 to 1.5 M�, which corresponds to
central densities from 1.7n0 to 2.9n0. As shown in Ta-
ble II, these theories give radii for a typical 1.4 M� star
and tidal deformabilities that are consistent with current
observations, e.g., Refs. [23, 60–64]. The effective nucleon
masses M∗(nsat) in our RMFTs (see Table II) are consis-
tent with the values found by other microscopic calcula-
tions in the literature [65–68]. We find that the effective
mass has an inverse correlation with the maximum mass
and the radius of a 1.4 M� star, with a sensitivity similar
to that found in Refs. [13, 69]. Additionally, we have ver-
ified that our models are consistent with the perturbative
QCD constraints from Ref. [70].

Table II also shows what our RMFTs predict for the
standard parameters of isospin-dependence of the nuclear
matter EoS at saturation density, namely the parameters
J and L (see Eq. (16)). The symmetry energy J is the

difference between the binding energy per nucleon of neu-
tron matter and symmetric nuclear matter at n0. The
predicted values from our RMFTs for J , 30 to 34 MeV,
are consistent with constraints from Refs. [32, 71, 72].
The slope of the symmetry energy L characterizes how
the symmetry energy varies with density. The values
predicted by our RMFTs are in the 30 to 50 MeV range
which is consistent (with some tension for QMC-RMF4)
with the constraints displayed as the white “intersec-
tion” area in Ref. [32], Fig. 2, based on the analyses of
Refs. [71, 72].

They are also consistent at the 2σ level with the
mean values extracted from the recent PREXII exper-
iment using covariant energy density functionals [73],
L = 106(37) MeV.

Another property that is relevant to neutron star
phenomenology, specifically cooling, is the direct Urca
threshold, which is the density at which the proton
fraction becomes high enough so that the Urca process
n→ p+ e− + ν̄e can proceed without in-medium correc-
tions. For all our proposed RMFTs, we find the direct
Urca threshold to be at high densities, far above the value
nB ≈ 6n0 ≈ 1 fm−3 where, as noted above, the RMFT is
no longer a plausible description as nucleons start to over-
lap. This means that in order to explain a fast cooling
scenario for the heaviest neutron stars one would need to
explore more complicated RMFT Lagrangians with addi-
tional fields or couplings, or supplement the RMFTs with
a phase transition to a quark matter phase that supports
direct Urca processes [74–79].

IV. CONCLUSIONS

In this paper, we described a procedure for obtaining
RMFTs that are particularly suited to the description
of neutron star matter. An RMFT provides a full mi-
croscopic description of the physics explored in neutron
stars. In addition to the temperature and density depen-
dent EoS, RMFTs can in principle provide predictions
for any physical observable, including out-of-equilibrium
behavior, transport properties, etc. Because neutron
star matter is neutron-rich, we constrained the RMFT
couplings by fitting to “data” for pure neutron mat-
ter that is obtained indirectly, via experimentally con-
strained χEFT calculations. In addition, we required
that our RMFTs agree well with the known properties of
isospin-symmetric nuclear matter near saturation den-
sity, and are consistent with astrophysical constraints on
the mass-radius relation of neutron stars.

Using this procedure we obtained four representative
RMFTs with varying stiffness that can be used to pro-
vide a full description of neutron-rich matter at densities
where χEFT is inapplicable. These RMFTs are designed
to model nuclear matter across the range of densities and
temperatures found in neutron stars and neutron star
mergers. Our RMFTs predict that 1.4 M� neutron stars
will have radii ranging from 11.8−12.3 km, which is con-
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sistent with observations [51, 60].
The procedure described here can readily be repeated

for (a) different (e.g. higher-order) χEFT calculations,
(b) different or additional constraints on masses, radii, or
other neutron star properties, and (c) for more compli-
cated RMFT Lagrangians. For example, we were able to
achieve good agreement with current data using a sim-
ple RMFT with 6 variable couplings but these models
can be expanded by adding more meson fields and more
couplings.

Acknowledgements
We thank Sophia Han, Jorge Piekarewicz, Jürgen

Schaffner-Bielich, Andreas Schmitt, and Ziyuan Zhang
for their input. This research was partly supported by
the U.S. Department of Energy, Office of Science, Of-
fice of Nuclear Physics, under Award No. #DE-FG02-
05ER41375, and performed in part at Aspen Center for
Physics, which is supported by National Science Founda-
tion grant PHY-1607611. The work of I.T. was supported
by the U.S. Department of Energy, Office of Science, Of-
fice of Nuclear Physics, under contract No. DE-AC52-
06NA25396, by the Laboratory Directed Research and
Development program of Los Alamos National Labora-
tory under project number 20220658ER, and by the U.S.
Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, Scientific Discov-
ery through Advanced Computing (SciDAC) NUCLEI
program.

Appendix A: Pressure and Field Equations

In this appendix we present the finite temperature field
equations that determine the meson field expectation val-
ues of our RMFT. For neutron star phenomenology the
relevant densities (and baryon chemical potentials) are
so large that we can safely neglect anti-baryons (for the
full treatment including them, see, e.g., [42]). The finite
temperature nucleon pressure is given by

PN = 2T
∑
i=n,p

∫
d3k

(2π)3
ln
[
1 + e−(Ei−µi)/T

]
, (A1)

where Ei are the dispersion relations given in Eq. (8).
The meson contribution to the pressure remains un-
changed at finite temperatures, and the electron pressure
is given by the pressure of a free relativistic Fermi gas,
where we can neglect the electron mass compared to its
chemical potential,

Pe = 2T
∑
σ=±1

∫
d3k

(2π)3
ln
[
1 + e−(k−σµe)/T

]
. (A2)

The relative contribution of the thermal pressure
Pth = P (T )− Pcold, where P (T ) is the sum of the finite
temperature nucleon, electron, photon, and meson pres-
sure, and Pcold is the sum of all pressure contributions
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FIG. 5: Relative contribution of the thermal pressure to the
pressure at T = 0 for all four models at T = 10 MeV (lower
set of curves) and T = 50 MeV (upper set of curves).

at vanishing temperature, is plotted in Fig. 5 for tem-
peratures of T = 10 and T = 50 MeV. For comparison,
see the results in Ref. [80]. At low baryon densities, the
thermal pressure at T = 10 MeV is of the same order
as the cold pressure, whereas for T = 50 MeV the ther-
mal pressure exceeds the cold pressure by an order of
magnitude. For all models, the relative contribution of
the thermal pressure becomes negligible at high baryon
densities. QMC-RMF4 (purple line) shows the biggest
relative thermal pressure at low densities, owing to its
low T = 0 pressure at low densities.

We can now compute the expectation values of the
meson fields by calculating the extrema of the pressure
with respect to the meson condensates,

∂P

∂〈σ〉
= 0 ,

∂P

∂〈ω0〉
= 0 ,

∂P

∂〈ρ03〉
= 0 . (A3)

This yields the following equations for the mean fields:

m2
σ〈σ〉 = gσ (nsn + nsp)− bMg3σ〈σ〉2 − cg4σ〈σ〉3 ,

m2
ω〈ω0〉 = gω (nn + np)− 2b1g

2
ρ〈ρ03〉2〈ω0〉 ,

m2
ρ〈ρ03〉 =

1

2
gρ (np − nn)− 2b1g

2
ρ〈ρ03〉〈ω0〉2 . (A4)

The scalar densities for neutrons/protons are given by

nsi = 2

∫
d3k

(2π3)

M∗
Ei

1

1 + e(Ei−µi)/T
, (A5)

which reduces to

nsi(T = 0) =
M∗
2π2

[
kFiE

∗
Fi −M2

∗ ln
kFi + E∗Fi

M∗

]
, (A6)
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in the T = 0 limit. M∗ and E∗Fi are defined in Eq. (8)
and Eq. (12). The neutron/proton baryon densities nBi
are given by

nBi = 2

∫
d3k

(2π)3
1

e(Ei−µi)/T + 1
, (A7)

which reduces to the expression given in Eq. (13) in the
zero temperature limit. The mean-field equations can
now be solved numerically for a given temperature and
chemical potentials for all particles.

Appendix B: Parameterizing the χEFT Uncertainty
Band

In Table III we give the values of a, α, b, and β that are
used in Eq. (15) to generate the representatives of χEFT
neutron matter to which our four RMFTs were fitted. In
our approach these have no intrinsic significance: they
are just an intermediate step in obtaining RMFTs that
are consistent with χEFT results for neutron matter.

Name a α b β

Unit [MeV] [MeV]

QMC-RMF1 14.996 0.628 1.854 3.039

QMC-RMF2 14.638 0.526 1.948 3.186

QMC-RMF3 17.796 0.847 0.296 5.218

QMC-RMF4 13.758 0.389 0.824 4.844

TABLE III: The values of a, α, b, and β that (see Sec. II C)
were used to obtain RMFTs that are compatible with χEFT.

Appendix C: Asymptotic Speed of Sound

In this appendix we analytically compute the speed of
sound for our class of RMFTs at asymptotic densities.
In order to simplify the calculation, we restrict ourselves
to isospin-symmetric matter, where the ρ−meson does
not acquire a mean-field value. For large densities, the
equations of motions in Eqs. (A4) simplify to

mσ〈σ〉+ bMg3σ〈σ〉2 + cg4σ〈σ〉3 = gσ
M∗
π2

k2F , (C1)

〈ω0〉 =
gω
m2
ω

2k3F
3π2

, (C2)

where we used the fact that the effective mass decreases
with density, which yields ns ≈M∗k2F /π2 and nB is given
by nB = 2k3F /3π

2. Note that neutrons and protons have
identical magnitudes of the Fermi momentum kF , leading
to a factor of 2 in nB and ns. Solving the cubic equation
for 〈σ〉 and only keeping the highest order term in kF
yields

〈σ〉 =

(
M∗
cg3σ

k2F

) 1
3

, (C3)

therefore the mesonic pressure is dominated by the 〈ω0〉-
contribution and is given by

PM ≈
2g2ω
9m2

ω

k6F
π4

. (C4)

The nucleonic pressure, given in Eq. (11), reduces to

PN ≈
k4F
6π2

, (C5)

for kF → ∞ and is a subleading contribution to the to-
tal pressure. Given that the electron density is equal to
the proton density and the Fermi momenta are therefore
identical, we can conclude that the asymptotic pressure
is given by the mesonic contribution PM . The energy
density can be computed from the thermodynamic rela-
tionship ε = −P + µBnB . At T = 0, µB − gω〈ω0〉 =√
k2F +M2

∗ ≈ kF , therefore at leading order we find that

µB ≈ g2ω
m2

ω

2k3F
3π2 , which yields

ε ≈ 2g2ω
9m2

ω

k6F
π4

= PM . (C6)

Finally, we compute the speed of sound at asymptotically
high densities via

c2s =
∂P

∂ε
= 1 , (C7)

which is independent of any couplings and numerically
confirmed in Fig. 3.
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