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The 16O(p,γ)17F reaction is the slowest hydrogen-burning process in the CNO mass region. Its
thermonuclear rate sensitively impacts predictions of oxygen isotopic ratios in a number of astrophys-
ical sites, including AGB stars. The reaction has been measured several times at low bombarding
energies using a variety of techniques. The most recent evaluated experimental rates have a reported
uncertainty of about 7.5% below 1 GK. However, the previous rate estimate represents a best guess
only and was not based on rigorous statistical methods. We apply a Bayesian model to fit all reli-
able 16O(p,γ)17F cross section data, and take into account independent contributions of statistical
and systematic uncertainties. The nuclear reaction model employed is a single-particle potential
model involving a Woods-Saxon potential for generating the radial bound state wave function. The
model has three physical parameters, the radius and diffuseness of the Woods-Saxon potential, and
the asymptotic normalization coefficients (ANCs) of the final bound state in 17F. We find that
performing the Bayesian S factor fit using ANCs as scaling parameters has a distinct advantage
over adopting spectroscopic factors instead. Based on these results, we present the first statistically
rigorous estimation of experimental 16O(p,γ)17F reaction rates, with uncertainties (±4.2%) of about
half the previously reported values.

I. INTRODUCTION

The 16O(p,γ)17F reaction (Q = 600.27± 0.25 keV [1])
is the slowest process among all proton-induced reactions
in the CNO mass region [2, 3]. The lowest-lying reso-
nance is located at relatively high laboratory energy of
≈2.7 MeV [4]. Below this energy, the 16O(p,γ)17F reac-
tion is a prime example of the nonresonant direct radia-
tive capture process, which assumes that the proton is
captured via a single-step process into a final-state orbit
outside a closed 16O core [5, 6]. This reaction has been
measured many times at low bombarding energies using
a variety of techniques, including the activation method,
in-beam detection of prompt γ rays, and experiments in
inverse kinematics. A comprehensive analysis of the most
reliable data has been presented in Refs. [7, 8]. The re-
ported thermonuclear reaction rate uncertainty in Ref. [7]
is about 7.5% at temperatures below 1 GK. Knowledge
of the rate at a few-percent uncertainty level is desirable
because the 16O(p,γ)17F reaction influences sensitively
the 17O/16O abundance ratio and, to a lesser degree, the
18O/16O ratio. This information directly impacts the in-
terpretation and paternity of oxygen isotopic ratios mea-
sured in presolar stardust grains [7, 9–11].

Previous evaluations of the 16O(p,γ)17F rate [2, 7, 12]
were performed with methods that were conventionally
employed at the time. The data from different experi-
ments were fitted independently because it was not clear,
within the χ2 method used, how to perform a common
fit across several different data sets. Also, it was neither
clear how to treat independent contributions from statis-
tical and systematic uncertainties, nor how to combine

total cross section data in the analysis with data on in-
dividual transitions. For these reasons, a number of ad
hoc assumptions were made by Ref. [2, 7, 12] that were
not rigorous in a statistical sense.

The advent of thermonuclear rates based on hierar-
chical Bayesian models has improved this situation sig-
nificantly. The method was first presented in Ref. [13]
and subsequently applied to reactions of interest to
Big Bang Nucleosynthesis (BBN). In the simplest cases,
the Bayesian models employed either polynomial fitting
functions or predictions from microscopic nuclear re-
action models [14–16]. The method was extended in
Refs. [17, 18] to implement a one-level R-matrix approx-
imation into the Bayesian fitting. Here, we report on the
implementation of a single-particle potential model into
the Bayesian framework.

As will be seen below, the hierarchical Bayesian model
solves a number of problems that plagued previous work
(see, e.g., Ref. [7]): (i) it allows for the straightforward
implementation of the total cross section data of Ref. [19]
and the single datum of Ref. [20] for the first-excited-state
transition (both disregarded previously); (ii) it facilitates
a combined fit of all data (results from different experi-
ments were previously fitted independently); (iii) it fully
accounts for the independent contributions of statistical
and systematic uncertainties (which were previously com-
bined into a single uncertainty); (iv) it makes no ad hoc
assumptions on how to combine fits from different data
sets or γ-ray transitions.

A primary goal of this work is to include the parame-
ters of the single-particle potential model in the random
sampling, i.e., we will be exploring the sensitivity of the
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S factor to these quantities. It will be demonstrated that
the uncertainty of the fitted S factor is relatively large
when the Bayesian analysis is performed using spectro-
scopic factors, but is significantly reduced when asymp-
totic normalization coefficients (ANCs) are employed in-
stead.

The data selection is discussed in Sec. II. The nuclear
reaction formalism is given in Sec. III and the hierarchi-
cal Bayesian model is presented in Sec. IV. Fits of the
S factor are found in Sec. V and thermonuclear rates
calculated in Sec. VI. Section VII provides a concluding
summary.

II. DATA SELECTION

Consistent with previous Bayesian reaction rate esti-
mates [13–18], we will consider only data for which statis-
tical and systematic uncertainties can be estimated sepa-
rately. This is the case for four data sets: Hester, Pixley
and Lamb [19]; Chow, Griffiths and Hall [21]; Becker et
al. [20]; and Morlock et al. [22]. The first work [19] only
measured the total cross-section, while the third [20] re-
ported only the cross section for the transition into the
first-excited state (Ex = 495.33± 0.10 keV [4]) at a sin-
gle bombarding energy. The data of Refs. [19, 20] were
not taken into account in the previous 16O(p,γ)17F rate
evaluation [7], because, at the time, it was neither clear
how to fit the total cross section [19] together with those
for the individual transitions, nor how to reliably include
a data set consisting of a single data point only [20]. As
will be seen in Sec. IV, all of these data can be rigorously
included in a hierarchical Bayesian model. We discuss
below the four data sets individually.

Hester, Pixley and Lamb [19] measured the total cross-
section of the 16O(p,γ)17F reaction at six center-of-mass
energies between 132 and 160 keV. These represent the
lowest-energy data points among all the data sets taken
into account in the present work. The reported statistical
uncertainties range from 14% to 40% for the highest and
lowest energy, respectively. The cross sections have been
corrected using modern stopping powers, as discussed in
[7], and we adopt these corrected values in the present
work. From their quoted uncertainties in the measured
beam current (6%), counter efficiency (7%), and stopping
power (10%), we estimate a total systematic uncertainty
of 14%.

Chow, Griffiths and Hall [21] measured the cross sec-
tion for the transition to the ground state at four center-
of-mass energies between 1288 and 2404 keV, and for
the transition to the first-excited state at seven energies
between 795 and 2404 keV. The statistical uncertainties
range from 3% to 12%. The systematic effects in their
measurement were discussed by Ref. [7], including γ-ray
efficiency (3%), escape peak detection (1%), angular dis-
tribution correction (1%), and effective bombarding en-
ergy (3%). Consequently, we adopt a value of 5% for the
combined systematic uncertainty.

Becker et al. [20] measured the 16O(p,γ)17F reaction
in inverse kinematics at a single center-of-mass energy
of 853 keV. Although not mentioned explicitly, their re-
ported cross section refers to the transition to the first-
excited state only. The statistical uncertainty amounts
to 13%. The main sources of systematic uncertainty arise
from the strength of their adopted standard resonances in
19F(p,α2)16O and the γ-ray efficiency in their extended
gas target. We estimate an overall systematic uncertainty
of 5% for their reported cross section.

Finally, Morlock et al. [22] reported 16O(p,γ)17F cross
sections below a center-of-mass energy of 3.5 MeV. The
lowest energy measured was 365 keV for the ground state
transition and 222 keV for the first-excited state one.
These data are presented in Fig. 3 of Ref. [22], which
displays statistical uncertainties only. Subsequently, the
Morlock et al. data [22] have been corrected by Ref. [7]
for coincidence summing, and these corrected data have
been adopted for the present analysis. More detailed
information regarding the cross section uncertainties of
these data is given in the caption of Fig. 2.37 in Ref. [23],
which states “...the statistical errors are with few excep-
tions between 1.5% and 3%. One has to add 10% sys-
tematic uncertainty (scattering measurement, energy de-
terminations, error propagation)...” Consequently, in the
present work, we adopt a systematic uncertainty of 10%.
The lowest-lying 16O(p,γ)17F resonance is located near
a center-of-mass energy of 2.5 MeV, and, therefore, we
only took their data points below an energy of 2.4 MeV
into account. The data at higher energies are irrelevant
for stellar burning.

We note that the four measurements discussed above
provide independent estimates of the 16O(p,γ)17F cross
section. In particular, only the work of Ref. [19] relied
on stopping power corrections, while the other measure-
ments of the direct capture cross section [20–22] were per-
formed relative to the Rutherford scattering yield, thus
obliviating the effects of target stoichiometry or stopping
powers.

The cross sections, σ, discussed above were con-
verted to astrophysical S-factors, defined by S(E) ≡
σ(E)Ee2πη, with η denoting the Sommerfeld parameter.
The experimental S-factors were then analyzed with our
Bayesian model.

III. NUCLEAR REACTION MODEL

The 16O(p,γ)17F reaction cross section below 2.4 MeV
center-of-mass energy is considered as a standard case
for the direct radiative capture (DC) model since the
seminal works of Christy and Duck [24] and Rolfs [5].
Subsequent analyses using the direct capture model for
16O(p,γ)17F can be found in Refs. [6, 7, 25, 26], and
references therein. The study of Ref. [7] demonstrated
that the potential model and the R matrix model provide
nearly identical data fits at low energies. We will adopt
in the present work a single-particle potential model, as
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discussed below.
The potential model assumes a single-step process,

where the proton is directly captured, without the for-
mation of a compound nucleus, into a final bound state
with the emission of a photon. The dominant E1 contri-
bution to the theoretical (p,γ) cross section (in µb) for
capture from an initial scattering state with orbital an-
gular momentum `i to a final bound state with orbital
angular momentum `f and the principal quantum num-
ber n (i.e., the number of wave-function nodes), is given
by [5]

σDCsp (E1, n, `i, `f ) = 0.0716µ
3
2

(
Zp
Mp
− Zt
Mt

)2 E3
γ

E
3
2

×

(2Jf + 1)(2`i + 1)

(2jp + 1)(2jt + 1)(2`f + 1)
(`i010|`f0)2R2

n`i1`f
(1)

Rn`i1`f =

∫ ∞
0

us(r)OE1(r)ub(r)dr (2)

where µ is the reduced mass, Zt, Zp and Mt, Mp are the
charges and masses (in amu), respectively, of target and
projectile; jp, jt, Jf are the spins of projectile, target and
final state, respectively; E and Eγ are the center-of-mass
energy and the emitted γ-ray energy, respectively; OE1 is
the radial part of the E1 multipole operator; and us and
ub are the radial wave functions of the initial scattering
state and final bound state, respectively, where ub(r = 0)
= 0 and

∫∞
0
u2bdr = 1. We disregarded any M1 and E2

contributions, which amount to less than 0.1% compared
to the dominant E1 S factor [5, 27].

Bound-state wave functions were generated by using
a potential consisting of a Woods-Saxon term and a
Coulomb term, given by

V (r) =
−V0

1 + e(r−R)/a
+ VC(r) (3)

where R = r0A
1/3
t and a are the Woods-Saxon potential

radius and diffuseness, respectively; At is the mass num-
ber of the target nucleus; VC corresponds to a uniformly
charged sphere of radius R. The well depth, V0, was cho-
sen to reproduce the binding energy of the final state.
Several works (see summary in Table I of Ref. [6]) have
employed bound-state square-well potentials instead of
Woods-Saxon potentials. However, Refs. [28, 29] found
that the adoption of square-well potentials over-predicts
the calculated single-particle direct capture cross sections
by up to a factor of 3.

Scattering-state wave functions were computed using a
hard-sphere nuclear potential, which gives similar results
as a zero-energy nuclear potential at the low energies ex-
plored here [6]. The insensitivity of the 16O(p,γ)17F cross
section to the choice of scattering potential at low ener-
gies has also been reported in Ref. [30]. The hard-sphere
nuclear potential radius was set equal to the Woods-
Saxon radius, R, of the bound state potential. The radial
integration in Eq. (2) was extended to 500 fm, because

the integrand has a maximum located far beyond the
nuclear radius at the lowest center-of-mass energies ex-
plored here. For the same reason, we used the exact
expression for the radial part of the E1 operator, OE1,
instead of its long-wavelength approximation.

For a zero-spin target nucleus, such as 16O, the direct
capture to a specific final state proceeds via a unique
orbital angular momentum, `f , but may involve several
values of `i. In this case, the direct capture cross section
is given by an incoherent sum,

σDC = C2S`f
∑
`i

σDCsp (E1, n, `i, `f ) (4)

with S`f and C denoting the spectroscopic factor and

isospin Clebsch-Gordan coefficient, respectively. For 16O
+ p, we have C2 = 1. To avoid confusion with other
symbols, we will not mention further the isospin Clebsch-
Gordan coefficient.

For the 16O(p,γ)17F reaction data considered in the
present work, the population of the 17F ground state,
DC → 0 keV (Jf = 5/2+), proceeds predominantly via
E1 radiation and orbital angular momenta of `i = 1, 3
and `f = 2, while the transition to the first excited state,
DC → 495 keV (Jf = 1/2+), proceeds via E1 radiation
and angular momenta of `i = 1 and `f = 0. We assume
that the proton is transferred into the 1d5/2 and 2s1/2
shell-model orbitals for the transition to the ground and
first-excited state, respectively. In the following, we will
label the spectroscopic factor (or later the ANC) for a
given final level by the orbital angular momentum of the
bound state alone, and suppress other quantum numbers
(such as total spin). Hence, Sgs ≡ S`f=2 and Sfes ≡
S`f=0 for the transition to the ground and first-excited
state, respectively.

The calculated single-particle cross section, σDCsp , will
depend strongly on the adopted choice of the Woods-
Saxon potential radius parameter, r0, and diffuseness, a.
This means that the spectroscopic factor, S`f , which is
derived from a fit to experimental data, will also be sensi-
tive to these very same parameters. We will demonstrate
below the difficulty arising when the data are fitted in
terms of the spectroscopic factor using Eq. (4).

Previous works have demonstrated [5, 22] that, for the
16O(p,γ)17F reaction at low energies, the integrand in
Eq. (2) peaks far outside the nuclear radius. For such a
peripheral reaction, the single-particle radial bound state
wave function is asymptotically given by [30]

ub,`f (r)→ b`fW−η,`f+1/2(2κr) (5)

where b`f is the single-particle asymptotic normaliza-
tion coefficient (spANC) and W is the Whittaker func-
tion [31]; κ is the bound state wave number, with κ2 =
2µEb/~2, where µ is the reduced mass and Eb = Q−Ex
the binding energy of the final state; η = eZpZtµ/(κ~2)
is the bound state Coulomb parameter.

In a microscopic nuclear model, the capture cross sec-
tion can be described in terms of the overlap, IB , of
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the 16O, 17F, and p bound-state wave functions and a
many-body wave function for the relative motion. As-
suming a single-particle model, the radial dependence of
the overlap function, which represents the projection of
the bound final 17F state onto the product bound state
wave functions of 16O and the proton, can be approxi-
mated by

IB(r) ≈
√
S`fub,`f (r) (6)

At large distances between target and projectile, the con-
sequences of the complicated many-body effects will van-
ish and the radial dependence of the overlap function
becomes asymptotically

IB(r)→ C`fW−η,`f+1/2(2κr) (7)

where C`f is the asymptotic normalization coefficient
(ANC). Comparison of Eqs. (5) − (7) yields the rela-
tionship between S`f , C`f , and b`f [30]

S`f =
C2
`f

b2`f
(8)

In this approach, C2
`f

appears as an observable quantity,

while both Sn`f and b2`f are derived quantities that de-

pend strongly on the parameters of the assumed single-
particle potential model.

The nuclear model discussed above has three parame-
ters: (i) the ANC, C2

`f
(or the spectroscopic factor, S`f )

specified by the final 17F state; (ii) the radius parameter,
r0, of the Woods-Saxon, Coulomb, and hard-sphere po-
tentials; and (iii) the diffuseness, a. We will treat these
three as adjustable parameters in the fitting. It can be
seen from Eqs. (4) and (8) that C2

`f
or S`f act as mul-

tiplicative scaling factors of the computed single-particle
potential cross section (or S factor) for a given transition.

Based on the above discussion, we expect that varying
r0 and a will impact the extracted value of S`f signifi-

cantly. When the fit is performed instead using C2
`f

, this

dependence should be much lessened, but may not en-
tirely disappear because of the approximation in Eq. (6).
In either case, we expect that the fit will not constrain
r0 or a. These effects will be explored in Sec. V.

IV. BAYESIAN MODEL

The hierarchical Bayesian model constructed for the
present work is similar to those presented in Refs. [13–
18]. The model takes all relevant effects impacting the
measured data into account. The inference framework is
based on Bayes’ theorem [32]

p(θ|y) =
L(y|θ)π(θ)∫
L(y|θ)π(θ)dθ

(9)

where the data are represented by the vector y and the
complete set of model parameters is denoted by the vec-
tor θ. All factors in Eq. (9) represent probability den-
sities: L(y|θ) is the likelihood, i.e., the probability that
the data, y, were obtained assuming given values of the
model parameters, θ; π(θ) is the prior, which represents
our state of knowledge about each parameter before see-
ing the data; the product of likelihood and prior defines
the posterior, p(θ|y), i.e., the probability of obtaining
the values of a specific set of model parameters given the
data. Bayes’ theorem implies that the posterior repre-
sents an update of our prior state of knowledge regarding
the model parameters once new data become available.
The denominator, called evidence, is a normalization fac-
tor and is not important for the discussion of the present
work.

When the experimental S factor is subject to statistical
uncertainties only, σstat, the likelihood is given by

L(Sexp|θ) =

N∏
i=1

1

σstat,i
√

2π
e
−

[S
exp
i

−S(θ)i]
2

2σ2
stat,i (10)

where S(θ)i = SDCi is the theoretical S factor, as pre-
dicted by direct capture theory (Eqs. (4) and (8)), while
the product runs over all the data points, labeled by the
index i. The likelihood represents a product of normal
distributions, each with a mean of S(θ)i and a standard
deviation of σstat,i, with the latter quantity given by the
experimental statistical uncertainty of datum i. In sym-
bolic notation, we can express Eq. (10) as

Sexpi ∼ N(S(θ)i, σ
2
stat,i) (11)

where “N” denotes a normal (Gaussian) probability den-
sity and the symbol “∼” stands for “has the probability
distribution of.”

According to Eqs. (4) and (8), the direct capture S
factor, SDC , for a given transition (i.e., to the ground or
first-excited state) at the center-of-mass energy, E, has
the form

SDC(E) = S`fS
DC
sp (E, r0, a) = C2

`f

SDCsp (E, r0, a)

b2`f (r0, a)
(12)

where SDCsp denotes the single-particle direct capture S
factor of Eq. (4). When the data analysis is performed
using the ANC as scaling factor to fit the data, the ratio
SDCsp /b2`f is computed by the nuclear model. Alterna-

tively, when the fit is scaled using the spectroscopic fac-
tor, the nuclear model calculates the quantity SDCsp . Both

SDCsp and b2`f depend explicitly on the parameters r0 and

a of the Woods-Saxon potential. The total 16O(p,γ)17F S
factor is given by the incoherent sum over the individual
transitions. The results quoted in Sec. V will be based
on adopting C2

`f
as the scaling factor. We will briefly

discuss the outcomes of tests performed when adopting
instead the spectroscopic factor.
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Each model parameter requires a prior. Since one goal
of the present work was to explore the impact of Woods-
Saxon potential parameter variations over wide ranges,
we adopted weakly-informative priors for the radius pa-
rameter, r0, and diffuseness, a,

r0 ∼ U(0.9 fm, 1.5 fm) (13)

a ∼ U(0.5 fm, 0.7 fm) (14)

where “U” denotes a uniform (i.e., constant) probabil-
ity density between the stated boundaries. Outside the
ranges given above, the numerical integration does not
have a solution with the required number of nodes in
the bound state wave function, ub(r), when the depth of
the Woods-Saxon potential is adjusted to reproduce the
binding energy of the experimental level.

Previous work [7, 26, 33, 34] has established ANC val-
ues near C2

gs ≈ 1 and C2
fes ≈ 7000 for the transitions

to the ground and first-excited states, respectively (see
Sec. V). Our goal is to predict ANCs based on directly
measured 16O(p,γ)17F data alone. In particular, we do
not want to restrict the sampling ranges of the ANCs
based on prior information from either transfer measure-
ments or theoretical model calculations. For this reason,
we will adopt non-informative priors

C2
gs ∼ T (0,∞)N(0, [106 fm−1]2) (15)

C2
fes ∼ T (0,∞)N(0, [106 fm−1]2) (16)

where “N” denotes a truncated normal density centered
at zero with a large standard deviation, multiplied by a
truncation function, “T”, which suppresses samples out-
side of the interval defined by its arguments.

Following Ref. [13], we will incorporate into our model
the systematic uncertainty in a given experiment as an
informative, lognormal prior, given by

π(f) =
1

ln(f.u.)
√

2πf
e
− [ln f]2

2[ln(f.u.)]2 (17)

or in symbolic notation

f ∼ LN(0, [ln(f.u.)]2) (18)

where “LN” denotes a lognormal probability density. In
Eqs. (17) and (18), the lognormal location parameter, µ,
is equal to zero, i.e., µ = lnxmed = 0. In other words,
we are assuming that the median value of the lognormal
distribution, xmed, equals unity. If this would not be the
case, we could have corrected the data for the systematic
effect. The lognormal spread parameter, σ, in Eqs. (17)
and (18) is chosen as σ = ln(f.u.), where f.u. denotes
the factor uncertainty, which is given by the systematic
uncertainty. For example, we pointed out in Sec. II that
the data of Hester, Pixley and Lamb [19] have a system-
atic uncertainty of 14%. In this case, we have chosen σ =
ln(f.u.) = ln(1.14). The posterior of the “normalization
factor,” f , will describe by how much a specific data set
deviates from the best-fit line.

In conventional χ2 fitting, normalization factors are
viewed as a systematic shift in the data. In Bayesian in-
ference, on the other hand, the reported data are never
modified. Instead, the true (but unknown) S-factor is
multiplied by the normalization factor, f . This means
that, during the fitting, each data set pulls on the true
S-factor curve with a strength inversely proportional to
the systematic uncertainty: a data set with a small sys-
tematic uncertainty will pull the true S-factor curve more
strongly toward it compared to a set with a large system-
atic uncertainty. This “pulling” is independent of the
data set size: disregarding statistical uncertainties for a
moment, a set consisting of a single datum will have the
same weight in the fitting as one containing many data
points, if both sets are described by the same factor un-
certainty, f.u.

In previous work (e.g., Ref. [17]), the effect of “extrin-
sic” scatter was explicitly included in the Bayesian model
to account for an additional and unreported source of sta-
tistical uncertainty. For the case of 16O(p,γ)17F, we find
no compelling reason to include this effect. Neither the
data points of Hester, Pixley and Lamb [19], nor those
of Chow, Griffiths and Hall [21] exhibit a scatter incon-
sistent with their reported uncertainties. The data of
Morlock et al. [22], both for the transition to the ground
and first-excited state, indeed reveal a scatter that clearly
exceeds their reported statistical and systematic uncer-
tainties. But this affects only the data points at their
lowest measured energies, which also appear to be sys-
tematically too high (see below). Therefore, it would be
inappropriate to include this effect as “extrinsic scatter”
in the Bayesian model. To test whether the observed
low-energy scatter in the data of Ref. [22] influences any
of our results, we implemented a robust algorithm into
the Bayesian model that accounts for outliers [13, 35]. It
was found that the observed low-energy scatter does not
impact the fit.

Our complete Bayesian model for a given transition,
either to the ground or first-excited state, can be
summarized below in symbolic notation:
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Nuclear reaction model:

S(θ)i = C2
`f

SDCsp (E, r0, a)

b2`f (r0, a)
(19)

Parameters:

θ ≡ (C2
`f
, r0, a) (20)

Likelihoods:

S′i,j = fj × S(θ)i (21)

Sexpi,j ∼ N(S′i,j , σ
2
stat,i) (22)

Priors:

C2
`f
∼ T (0,∞)N(0, [106 fm−1]2) (23)

r0 ∼ U(0.9 fm, 1.5 fm) (24)

a ∼ U(0.5 fm, 0.7 fm) (25)

fj ∼ LN(0, [ln(f.u.)j ]
2) (26)

The index i labels individual data points, and j denotes
the experiment.

As mentioned earlier, Hester, Pixley and Lamb [19]
only measured the total S factor. These data points were
simply described in our Bayesian model by the sum of
the ground and first-excited-state transitions. Therefore,
they were analyzed simultaneously with all other data
sets and thereby constrain the strengths of the transi-
tions to the individual levels. At the same time, the
fitting correlations between the two partial S factors are
fully contained in our results. We note that in the fitting
we did not take into account the ±2 keV beam energy
uncertainties reported in Ref. [19]. Their effect on the
fit will be much smaller than the uncertainties of the re-
ported cross sections, as can be seen from their Fig. 4.

For the analysis of the Bayesian model, we employed
the program JAGS (Just Another Gibbs Sampler) us-
ing Markov chain Monte Carlo (MCMC) sampling [36].
Specifically, we will employ the rjags package that works
directly with JAGS within the R language [37]. Running
a JAGS model refers to generating random samples from
the posterior distribution of model parameters. This in-
volves the definition of the model, likelihood, and priors,
as well as the initialization, adaptation, and monitoring
of the Markov chains.

The MCMC sampling will provide the posteriors of
all parameters. For each simulation, we computed three
MCMC chains, where each had a length of 3× 106 steps
after disregarding the burn-in samples (105 steps for each
chain). This ensured that the chains reached equilibrium,
that effective chain lengths for all parameters exceeded
10000, and that Monte Carlo fluctuations were negligible
compared to statistical and systematic uncertainties.

V. RESULTS

The resulting S-factor fits, adopting the model pre-
sented in Eqs. (19) − (26), are presented in Fig. 1. The

top panel corresponds to the sum of the ground and first-
excited-state transitions, while the middle and bottom
ones depict the fits to the individual transitions 1. As
pointed out in Sec. II, only Chow, Griffiths and Hall [21]
(red full circles) and Morlock et al. [22] (black open cir-
cles) measured cross sections for both transitions sepa-
rately. The single data point of Becker et al. [20] (green
full circle) was measured for the first-excited-state transi-
tion and, thus, appears only in the bottom panel. Hester,
Pixley and Lamb [19] (blue open circles) measured the
total cross section and their data appear in the top panel
only. The dark and light shaded areas represent our S
factor predictions for 68% and 95% coverage probabili-
ties, respectively.

Numerical results are listed in Table I. For the total
(i.e., the sum of ground and first-excited state transi-
tion) zero-energy S factor, we find a value of S(0) =
0.01092 MeVb (±4.0%), where the quoted uncertainties
are derived from the 16, 50, and 84 percentiles. Our re-
sult agrees with that of Gagliardi et al. [26], although
their value has a significantly larger uncertainty (10%).
The latter work determined the ANCs of the ground and
first-excited state by measuring the 16O(3He,d)17F trans-
fer reaction as a test case for the indirect estimation of
the low-energy 16O(p,γ)17F S factor. Our best estimate
for the total S factor at E = 0.090 MeV is S(0.090)
= 0.00786 MeVb (±4.0%). This agrees with the av-
erage value found by Iliadis et al. [7] for R-matrix and
potential-model fits to the data of Refs. [21, 22], but their
uncertainty (7.5%) was not determined rigorously in a
statistical sense, as discussed in Sec. I. Our value also
agrees with the result obtained in the R-matrix analysis
of the Morlock et al. [22] data by Azuma et al. [34], but
no uncertainties were reported in the latter work. For
future reference, we provide in Table II numerical values
of our recommended S factor for a grid of energies.

Posteriors of the two ANCs, C2
gs and C2

fes, including
their pairwise correlation, are presented in Fig. 2. As
expected, the two quantities are highly correlated: when
one is increased, the other one decreases to fit the to-
tal experimental S factor. Our best-fit values are C2

gs =

1.115 fm−1 (± 4.0%) and C2
fes = 7063 fm−1 (± 4.0%).

The results agree with those of Gagliardi et al. [26]. It is
not surprising that their uncertainties (≈ 10%) are sig-
nificantly larger than ours, because their distorted wave
Born approximation (DWBA) analysis of 16O(3He,d)17F
data was subject to ambiguities in the choice of optical
model potentials for the incoming and outgoing channels.

1 The negative slope of the S factor for the transition to the first-
excited state has been variously explained by a pole in the S
factor [38] or a supposed halo property of the first-excited state
in 17F [22]. The correct explanation was given by Ref. [39], who
demonstrated that, for weakly-bound final states, the upturn of
the S factor towards lower energies arises naturally from the
interplay of the Whittaker function corresponding to the bound
state and the regular Coulomb wave function associated with the
scattering state.
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TABLE I. Summary of ANCs and S factors for 16O(p,γ)17F.

Present Previous
a b Bayec [33] Gagliardid [26] Iliadis [7] Azumag [34]

C2
gs (fm−1) 1.115 (±4.0%) 1.006 (±4.0%) 1.19, 0.947 1.08 (±9.3%) 1.34e 1.10

C2
fes (fm−1) 7063 (±4.0%) 6759 (±4.0%) 8306, 7468 6490 (±10%) 6667e 6512

Sgs+efs(0 MeV) (MeVb) 0.01092 (±4.0%) 0.01040 (±4.0%) 0.0102 (±10%)
Sgs+efs(0.09 MeV) (MeVb) 0.00786 (±4.0%) 0.00751 (±4.0%) 0.0076 (±7.2%)f 0.00807

a Results of fit to all 16O(p,γ)17F data adopting broad priors. See text.
b Results of fit to all 16O(p,γ)17F data for fixed values of r0 = 1.25 fm and a = 0.65 fm. See text.
c Values calculated using a microscopic nuclear model.
d Results of fit to 16O(3He,d)17F data.
e Results of R-matrix fits to the 16O(p,γ)17F data of Refs. [21, 22]. The small uncertainties quoted in that work do not include any

systematic uncertainties of the data.
f Average result of R-matrix and potential model fits to the 16O(p,γ)17F data of Refs. [21, 22].
g Results of R-matrix fit to the 16O(p,γ)17F data of Ref. [22]. No uncertainties were reported.

TABLE II. Predicted total S factors for 16O(p,γ)17F. The
uncertainty of the S factor is 4.0% at all listed energies.

E S(E) E S(E)
(MeV) (MeVb) (MeV) (MeVb)
0.002 0.01081 0.100 0.00767
0.004 0.01069 0.200 0.00639
0.006 0.01059 0.400 0.00521
0.008 0.01048 0.600 0.00465
0.010 0.01038 0.800 0.00435
0.020 0.00992 1.000 0.00413
0.040 0.00915 1.500 0.00376
0.060 0.00856 2.000 0.00356
0.080 0.00807 2.500 0.00342

Our values are also in the vicinity of previously reported
theoretical [33] and experimental results [7, 34]. A more
detailed comparison is not possible, as no rigorous uncer-
tainties were presented in these works. We do not present
posteriors of the Woods-Saxon radius parameter, r0, or
the diffuseness, a, because the fit does not constrain these
parameters, as discussed in Sec. III.

Posteriors of the data-set normalization factors, f , are
also depicted in Fig. 2. Numerical values for both f.u.
and f are given in Table III. The former determine the
spreads of the lognormal priors used to implement sys-
tematic uncertainties into the Bayesian model, while the
latter are derived from the posteriors and represent our
best estimate for the deviations between the data of a
given experiment and the best-fit line. It can be seen
that the f values for the data of Refs. [20–22] are con-
sistent with unity for a coverage probability of 64%. For
the data of Ref. [19], the f value is consistent with unity
for a coverage probability of 80%. Overall, our Bayesian
model predicts that the reported systematic uncertain-
ties are consistent with the best-fit solution, i.e., we find
no evidence for significant unreported systematic effects.

The small uncertainty of 4.0% in our results (column

TABLE III. Normalization factors, f , of 16O(p,γ)17F data
sets.

Experiment f.u.a fb

Hester, Pixley & Lamb [19] 1.14 0.924 ± 0.070
Chow, Griffiths & Hall [21] 1.05 1.022 ± 0.041
Becker et al. [20] 1.05 0.986 ± 0.045
Morlock et al. [22] 1.10 0.994 ± 0.041

a Systematic factor uncertainties of the experimental data (see
Sec. II). The values of f.u. determine the spread of the
lognormal probability density adopted for the priors. For
example, a value of “1.14” represents a systematic uncertainty
of “14%”.

b Results correspond to those given in boldface in column 2 of
Table I, i.e., by assuming broad priors. The uncertainties
correspond to 68% coverage probabilities of the posterior
densities.

2 of Table I), despite the fact that we varied the Woods-
Saxon potential parameters over broad ranges, reflects
the insensitivity of the ANCs, C2

`f
, and fitted S factor to

the choice of potential parameters, as discussed in Sec. III
and previously demonstrated by Gagliardi et al. [26] in
the analysis of 16O(3He,d)17F data. As an additional test
of this assertion, we repeated the calculation by fixing
the bound state potential parameters at values of r0 =
1.25 fm and a = 0.65 fm. The results are listed in column
3 of Table I. It can be seen that the values and their
uncertainties obtained for the ANCs and S factors overall
agree with those obtained by sampling over broad ranges
of the potential parameters.

We will now turn to the discussion of spectroscopic fac-
tors. If we assume the conventional Woods-Saxon poten-
tial parameter values of r0 = 1.25 fm and a = 0.65 fm,
we find b2gs = 0.8840 fm−1 and b2fes = 6899 fm−1 for

the single-particle ANCs. From Eq. (8) and the results
listed in column 2 of Table I, we obtain for the spectro-
scopic factors S`f=2 = 1.26±0.05 and S`f=0 = 1.02±0.04
for the transitions to the ground and first-excited state,
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FIG. 1. Results of Bayesian fits to experimental 16O(p,γ)17F
S factors [19–22]: (Top) Total S factor; (Middle) S factor for
the transition to the 17F ground state; (Bottom) S factor for
the transition to the 17F first-excited state. Becker et al. [20]
measured only the S factor for the first-excited state transi-
tion at a single energy (green datum in the bottom panel).
Hester, Pixley and Lamb [19] measured only the total S fac-
tor (blue data points in the top panel). The dark and light
shaded regions represent coverage probabilities of 68% and
95%, respectively. Notice the logarithmic scale on the ab-
scissa.

respectively. These agree with previous theoretical and
experimental analyses (see, e.g., Refs. [6, 7, 40]).

When the fit is performed using spectroscopic factors
instead of ANCs as scaling factors (see Eq. (12), the ob-
tained uncertainties become significantly larger. Assum-
ing again broad priors for r0 and a (see Eqs. (13) and
(14)), the zero-energy S-factor uncertainty amounts to
9% (i.e., more than twice the value discussed above).
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FIG. 2. One- and two-dimensional projections of the pos-
terior probability distributions of two physical model param-
eters, i.e., the ANCs, C2

gs and C2
fes, and four data set pa-

rameters, fj , when adopting broad priors in the Bayesian fit.
These results correspond to those given in column 2 of Ta-
ble I (boldface) and in Table III). The dark and light shaded
areas correspond to 68% and 95% coverage probabilities, re-
spectively.

Similarly, the uncertainty of the derived spectroscopic
factors increases substantially (to 11%). These uncer-
tainties can only be reduced if the sampling ranges of the
priors for the potential parameters are significantly re-
duced. Generally, however, these parameters are poorly
constrained by experiment and the commonly employed
values of r0 = 1.25 fm and a= 0.65 fm are mainly adopted
by convention. Clearly, performing the fits in terms of
ANCs has a distinct advantage over using spectroscopic
factors as scaling parameters.

VI. THERMONUCLEAR REACTION RATES

The thermonuclear reaction rate per particle pair,
NA〈σv〉, at a given stellar temperature, T , is given by
[3]

NA〈σv〉 =

(
8

πµ

)1/2
NA

(kT )3/2

×
∫ ∞
0

e−2πη S(E) e−E/kT dE,

(27)

where µ is the reduced mass of projectile and target, NA
is the Avogadro constant, k is the Boltzmann constant,
and E is the 16O + p center-of-mass energy.
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The 16O(p,γ)17F reaction rates were computed by in-
tegrating Equation (27) numerically. The S factor is cal-
culated from our MCMC samples (Sec. V) and, therefore,
the values of NA〈σv〉 contain the effects of statistical and
systematic uncertainties, as well as all correlations among
parameters. The results are based on 5,000 random S-
factor samples, which ensures that Markov chain Monte
Carlo fluctuations are negligible compared to the reac-
tion rate uncertainties. Our lower and upper integra-
tion limits were set to 0.002 MeV and 2.5 MeV, respec-
tively. Reaction rates are computed for 50 temperature
grid points between 0.003 GK and 3.5 GK and numerical
values presented in Table IV. The recommended rates are
computed from the 50th percentile of the rate probability
density function, while the factor uncertainty, f.u., is ob-
tained from the 16th and 84th percentiles [41]. The new
total rate uncertainties are 4.2% for the entire tempera-
ture range shown. Notice that this uncertainty is slightly
larger than that of the S factor given in Table II (4.0%).
As already pointed out, the reason is that we computed
the rates directly using the MCMC samples and, there-
fore, our results contain the information of parameter
correlations.

The new rates are displayed in Fig. 3 and compared
to previous results. For better comparison, all rates have
been divided by the present median (50th percentile) val-
ues (column 3 of Table IV). Our low (16th percentile)
and high (84th percentile) rates are depicted as magenta-
shaded bands centered around unity (dashed line). The
gray bands refer to the rates of Iliadis et al. [7] (top panel)
and Angulo et al. [12] (bottom panel). It can be seen that
our median rate is about 5% and 8% higher than those
of Iliadis et al. [7] and Angulo et al. [12], respectively.
Furthermore, the uncertainties of our new rate (4.2%)
are about half of those reported by Ref. [7] (7.5%) and
about a factor of 8 smaller than those of Ref. [12] (30%).
As already pointed out above, all previously evaluated
rates lack a rigorous statistical interpretation based on
coverage probabilities.

VII. SUMMARY

We presented the first statistically rigorous evaluation
of the 16O(p,γ)17F direct capture S factor and thermonu-
clear reaction rates. Our analysis includes four data
sets that reported statistical and systematic uncertain-
ties separately [20–22]. The combined fit for the transi-
tions to the ground and first-excited states in 17F, and
their sum, was performed using a Bayesian method. The
physical model was a single-particle model employing a
Woods-Saxon potential for generating the radial bound
state wave function. The fit had three adjustable parame-
ters: the radius parameter and diffuseness of the Woods-
Saxon potential, and the asymptotic normalization co-
effients (ANCs) for scaling the theoretical direct capture
S factor. We found that a poor fit is obtained when it is
performed using spectroscopic factors as scaling parame-
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FIG. 3. Comparison of present to previously evaluated
16O(p,γ)17F reaction rates. For better comparison, all rates
have been normalized to the present median rate (see column
3 in Table IV). The magenta-shaded regions correspond to
our 68% uncertainties (see column 5 in Table IV). The gray-
shaded regions depict the rates and uncertainties reported in
Ref. [7] (top panel) and Ref. [12] (bottom panel).

ters instead. Since the 16O(p,γ)17F reaction at low bom-
barding energies is of peripheral nature, the analysis of
the S factor in terms of ANCs greatly reduces the sensi-
tivity to the single-particle potential parameters. For the
ANC’s of the ground and first-excited state transitions,
we find values of C2

gs = 1.115 fm−1 (±4.0%) and C2
fes

= 7063 fm−1 (±4.0%), respectively. The total S factor
at zero energy is Sgs+fes(0) = 0.01092 MeVb (±4.0%).
The thermonuclear rate is computed from the Markov
Chain Monte Carlo (MCMC) samples by numerical in-
tegration and, therefore, accounts for all correlations be-
tween parameters. The rate uncertainties between 3 MK
and 3.5 GK is 4.2%, about half the previously reported
rates [7].

Our recommendation for future work is to remeasure
the 16O(p,γ)17F reaction cross section at center-of-mass
energies below 200 keV, which have so far only been
reached in the experiment of Hester, Pixley and Lamb
[19], albeit with a relatively large systematic uncertainty
of 14%. Finally, we emphasize that the Bayesian fit re-
sults presented here are based on a specific nuclear re-
action (i.e., a single-particle potential) model. It would
be interesting to compare these results to those from a
future R-matrix analysis of the same data as analyzed
here.
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TABLE IV. Total thermonuclear reaction rates for
16O(p,γ)17F a

T (GK) Low Median High f.u.
0.003 4.164E-41 4.338E-41 4.517E-41 1.042
0.004 1.343E-36 1.399E-36 1.457E-36 1.042
0.005 2.154E-33 2.244E-33 2.336E-33 1.042
0.006 5.980E-31 6.230E-31 6.486E-31 1.042
0.007 5.332E-29 5.555E-29 5.783E-29 1.042
0.008 2.162E-27 2.253E-27 2.345E-27 1.042
0.009 4.935E-26 5.142E-26 5.353E-26 1.042
0.010 7.290E-25 7.595E-25 7.907E-25 1.042
0.011 7.668E-24 7.988E-24 8.317E-24 1.042
0.012 6.148E-23 6.405E-23 6.669E-23 1.042
0.013 3.951E-22 4.117E-22 4.286E-22 1.042
0.014 2.114E-21 2.203E-21 2.293E-21 1.042
0.015 9.699E-21 1.010E-20 1.052E-20 1.042
0.016 3.903E-20 4.067E-20 4.234E-20 1.042
0.018 4.578E-19 4.770E-19 4.966E-19 1.042
0.020 3.809E-18 3.968E-18 4.131E-18 1.042
0.025 2.639E-16 2.749E-16 2.862E-16 1.042
0.030 6.641E-15 6.919E-15 7.204E-15 1.042
0.040 7.211E-13 7.513E-13 7.822E-13 1.042
0.050 1.998E-11 2.082E-11 2.167E-11 1.042
0.060 2.497E-10 2.601E-10 2.708E-10 1.042
0.070 1.865E-09 1.943E-09 2.023E-09 1.042
0.080 9.751E-09 1.016E-08 1.058E-08 1.042
0.090 3.933E-08 4.098E-08 4.267E-08 1.042
0.100 1.304E-07 1.359E-07 1.414E-07 1.042
0.110 3.709E-07 3.865E-07 4.024E-07 1.042
0.120 9.340E-07 9.731E-07 1.013E-06 1.042
0.130 2.129E-06 2.219E-06 2.310E-06 1.042
0.140 4.472E-06 4.659E-06 4.851E-06 1.042
0.150 8.764E-06 9.131E-06 9.507E-06 1.042
0.160 1.620E-05 1.688E-05 1.757E-05 1.042
0.180 4.791E-05 4.991E-05 5.197E-05 1.042
0.200 1.216E-04 1.266E-04 1.319E-04 1.042
0.250 7.781E-04 8.106E-04 8.440E-04 1.042
0.300 3.176E-03 3.309E-03 3.446E-03 1.042
0.350 9.703E-03 1.011E-02 1.053E-02 1.042
0.400 2.426E-02 2.528E-02 2.632E-02 1.042
0.450 5.244E-02 5.464E-02 5.689E-02 1.042
0.500 1.016E-01 1.058E-01 1.102E-01 1.042
0.600 3.000E-01 3.126E-01 3.255E-01 1.042
0.700 7.083E-01 7.381E-01 7.683E-01 1.042
0.800 1.432E+00 1.493E+00 1.554E+00 1.042
0.900 2.590E+00 2.699E+00 2.809E+00 1.042
1.000 4.301E+00 4.482E+00 4.666E+00 1.042
1.250 1.180E+01 1.229E+01 1.280E+01 1.042
1.500 2.526E+01 2.632E+01 2.740E+01 1.042
1.750 4.612E+01 4.806E+01 5.005E+01 1.042
2.000 7.545E+01 7.863E+01 8.188E+01 1.042
2.500 1.618E+02 1.686E+02 1.755E+02 1.042
3.000 2.851E+02 2.971E+02 3.093E+02 1.042
3.500 4.406E+02 4.591E+02 4.779E+02 1.042

a In units of cm3mol−1s−1. Columns 2, 3, and 4 list the 16th,

50th, and 84th percentiles, respectively, of the total rate prob-

ability density function at the given temperatures; f.u. is the

factor uncertainty of the total reaction rate, based on Monte

Carlo sampling. The total number of samples at each temper-

ature was 5,000.
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