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We present the reduced basis method as a tool for developing emulators for equations with tun-
able parameters within the context of the nuclear many-body problem. The method uses a basis
expansion informed by a set of solutions for a few values of the model parameters and then projects
the equations over a well-chosen low-dimensional subspace. We connect some of the results in the
eigenvector continuation literature to the formalism of reduced basis methods and show how these
methods can be applied to a broad set of problems. As we illustrate, the possible success of the for-
malism on such problems can be diagnosed beforehand by a principal component analysis. We apply
the reduced basis method to the one-dimensional Gross-Pitaevskii equation with a harmonic trap-
ping potential and to nuclear density functional theory for 48Ca, achieving speed-ups of more than
x150 and x250, respectively, when compared to traditional solvers. The outstanding performance
of the approach, together with its straightforward implementation, show promise for its application
to the emulation of computationally demanding calculations, including uncertainty quantification.

I. INTRODUCTION

Most modern theoretical models describing many-body
nuclear dynamics share an ever-increasing computational
burden. This can turn into a challenge tasks like un-
certainty quantification analysis [1, 2], experimental de-
sign [3, 4], calibration of model parameters [5–7], and re-
peated evaluation for different inputs [8, 9]. Emulators—
algorithms capable of providing fast yet accurate approx-
imations to expensive computations—have been gaining
increasing importance as a way to circumvent these chal-
lenges [1, 10].

In recent years, a technique called Eigenvector Con-
tinuation [11] was developed to emulate computationally
intensive calculations involving bound states of Hamilto-
nian operators [12] and nuclear scattering [13–15]. Eigen-
vector Continuation has shown excellent performance in
interpolation and extrapolation by working with two el-
ements: choosing its ansatz functions from the linear
span of exact solutions to the problem at hand, and us-
ing a variational principle—for example the Rayleigh-
Ritz method [11, 16] or the Kohn variational princi-
ple [13, 17]—to obtain equations for the coefficients of
this linear combination.

In this article, we present an emulator constructed in
the formalism of reduced basis methods (RBMs) [18–
20], a set of dimensionality-reduction techniques that
fall under the umbrella of reduced order models [21–
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23]. These methods have seen active development over
the last two decades, proving to be useful in a variety
of computationally-intensive problems involving partial
differential equations [24–27]. As we show in the dis-
cussion, the Eigenvector Continuation technique is natu-
rally connected to RBMs when the former is generalized
through a Galerkin method formulation. The key in-
sight is that once a reasonable choice of ansatz functions
has been made (for example, the basis of exact solutions
used in Eigenvector Continuation), all that is needed is
a method to select a suitable candidate approximation
from the ansatz subspace. This could be achieved, for
instance, by using a variational principle, minimizing a
cost functional, or by finding the fixed point of an it-
erative scheme. Among the alternatives, the Galerkin
method—the option chosen in RBMs—stands out for its
simplicity: it attempts to find an accurate approximate
solution by projecting the problem to a well-chosen very-
low dimensional subspace. This simplicity allows these
methods to be applied to a wide variety of problems in a
straightforward way, including nonlinear coupled differ-
ential equations. Although common in the many-body
physics context, these nonlinear problems have not yet
been explored in the Eigenvector Continuation literature.

We structure the rest of the article as follows: in Sec-
tion II, we explain the formalism of RBMs, highlighting
their connection with established results on the literature
of Eigenvector Continuation, as well as showing how the
Galerkin formulation extends their application to coupled
equations and nonlinear problems. Additionally, Section
II illustrates the use of the principal component analysis
as a diagnostic tool for the success of reduced basis em-
ulators on specific problems. In Section III we demon-
strate the effectiveness of the method by constructing
emulators for two nonlinear problems, the ground state
of the Gross-Pitaevskii equation with a harmonic trap-
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ping potential, and the ground state of 48Ca using the
Skyrme effective interaction. We conclude our discussion
by highlighting the potential role that these emulation
techniques could have in the future of uncertainty quan-
tification in nuclear physics.

II. THE REDUCED BASIS METHOD
FRAMEWORK

RBMs are tailored to problems that feature an equa-
tion that depends smoothly on a list of tunable control
parameters α [19]. The goal is to build an approximate
solution for a suitable range of these parameters. Let us
assume the equation is written in the general form:

Fα(φα) = 0, (1)

where φα is a vector (or function) from a Hilbert
space H, and Fα maps H onto itself. For example,
in the case of bound systems with a Hamiltonian Hα

that depends on the parameters α, Fα can take the
form of the eigenvalue equation Fα(φα) = Hαφα −
λαφα, where λα is the eigenvalue. Another example
would be the case of single-channel scattering where Fα
can be the radial part of the scattering equation [28]

Fα(φα) =
(
− d2

dr2 + `(`+1)
r2 + U(r, α)− p2

)
φα(r), where a

system with reduced mass µ interacts through a potential
V (r, α) = U(r, α)/2µ with parameters α, ` is the angular
momentum quantum number, and p is the asymptotic
linear momentum. The RBM finds approximate solu-

tions φ̂α to these—and more general—problems by con-
structing a basis expansion with n linearly independent
‘reduced basis’ functions {φk}nk=1:

φ̂α = φ0 +

n∑
k=1

akφk, (2)

where the coefficients ak of the approximation will de-
pend on the specific values of α, but the basis functions
φk will not. φ0 is an extra term that can be added to
satisfy boundary conditions imposed on Eq. (1). The re-
duced basis functions φk are selected to create an affine
space (the ansatz subspace) close to the manifold formed
by the solutions to Eq. (1) as a function of the parameters
α [19] by using the information from a (possibly small)
sample of exact solutions. In practice, the ‘exact solu-
tions’ (or ‘snapshots’) of Eq. (1) are constructed by highly
accurate yet computationally expensive approximations
such as finite element or spectral calculations [24].

One way to build the reduced basis for Eq. (2) is the
approach taken in many Eigenvector Continuation appli-
cations [11–15], also known as the Lagrange basis [24].

It consists of calculating n ‘training functions’ {φ̃k}nk=1

as solutions to Eq. (1) for n values αk (Fαk
(φ̃k) = 0),

and then choosing the reduced basis as these n training
functions φk = φ̃k. One possible way to improve upon

this choice is the so-called proper orthogonal decomposi-
tion (POD) [19]. It consists of computing N ≥ n solu-

tions {φ̃l}Nl=1 and constructing the reduced basis with the
first n components from a principal component analysis
(PCA) [29], or singular value decomposition (SVD) [30],
of the set of these N training functions. Therefore, by
using the information of N samples, the POD basis is
more robust than a Lagrange basis of dimension n, and
faster than a Lagrange basis of N training points.

Once the n reduced basis functions are chosen, the
coefficients ak for the approximation are found by the
Galerkin method [31], that is, by projecting Eq. (1) over
n linearly independent ‘projecting functions’ {ψj}nj=1 in
the Hilbert space:

〈ψj |Fα(φ̂α)〉 = 0, for all j. (3)

Fα(φ̂α) is often called the residual [32], and it can be
used, for example, to inform the construction of the re-
duced basis [33], or to estimate the emulation error [34].
We can interpret Eq. (3) as enforcing the orthogonality

of Fα(φ̂α) to the subspace spanned by {ψj}nj=1, i.e., by

finding a φ̂α such that Fα(φ̂α) is “zero” up to the ability
of the set {ψj}nj=1. The choice of projecting functions ψj
is arbitrary, but is usually also informed by the solution
manifold [19, 20]. For the rest of this work, we choose
ψj to enforce orthogonality with respect to the ansatz
subspace (2), which is the traditional way of using the
Galerkin method [32].

The reduced-basis emulators are most effective, in
terms of speed ups, when the projections in Eqs. (3) lead,
for every j, to expressions of the form:

Mj∑
m=1

fj,m(α)gj,m(a1, . . . , an) = 0, (4)

where fj,m(α) and gj,m(a1, ...an) are Mj functions that
are independent of the intrinsic coordinates of the orig-
inal system. If these functions can be computed only
once and then stored in memory, we can avoid perform-
ing costly integrals or finite element calculations every
time we have to solve Eqs. (3) for a new set of parameters
α. This property is exploited later when we construct an
emulator for the Gross-Pitaevskii equation in Eq. (14).

A. Connections to the Eigenvector Continuation
Literature

To illustrate the application of the RBM and connect
with previous results in the Eigenvector Continuation lit-
erature, we work with the bound system eigenvalue equa-
tion and the radial scattering equation, the two formerly
mentioned examples for Fα. As already mentioned, for
the single-channel scattering example, Eq. (1) takes the



3

form:

Fα(φ) =

(
− d2

dr2
+
`(`+ 1)

r2
+ U(r, α)− p2

)
φ(r) = 0.

(5)
Following [13], let us assume that the solution to this

equation is subject to the boundary conditions φ(r =
0) = 0, and

φ(r) −→
r→∞

1

p
sin
(
pr − `π

2

)
+ τ cos

(
pr − `π

2

)
. (6)

Note that Eq. (6) imposes a normalization condition on
φ: the coefficient accompanying the sine function must
equal 1/p.

A straightforward application of the RBM with a La-
grange basis of size n leads to the choice of an approxi-
mate function:

φ̂α =

n∑
k=1

akφk, with

n∑
k=1

ak = 1, (7)

where the φk are solutions to Fαk
(φk) = 0 with the

correct boundary conditions. We can eliminate the re-
dundancy of the coefficients ak created by the bound-
ary conditions by explicitly writing one of the them in
terms of the others. Without loss of generality, we let
a1 = 1−

∑n
k=2 ak, obtaining:

φ̂α = φ1 +

n∑
k=2

ak(φk − φ1). (8)

We can identify (φk − φ1) for k ≥ 2 as the relevant
elements in the basis expansion and select ψk = (φk −
φ1) as the associated projecting functions, leading to the
equations:

n∑
k=1

ak〈φj − φ1|Fα(φk)〉 = 0, for 2 ≤ j ≤ n. (9)

These equations—formulated from a geometric projec-
tion argument—are equivalent to those obtained by the
Kohn Variational Principle [35], as done in [13, 15]. The
proof is elaborated in Appendix A.

In the bound system example, with ψk = φk, Eq. (3)
might not have a solution for the exact eigenvalue. Al-

lowing λα to be approximated by λ̂α helps ensure we can
solve the projected equations:

n∑
k=1

ak〈φj |Hα|φk〉 = λ̂α

n∑
k=1

ak〈φj |φk〉, for all j, (10)

where the set ak plus the approximate eigenvalue λ̂α add
up to (n + 1) unknowns. We can complete the set of

equations with a normalization condition: 〈φ̂α|φ̂α〉 = 1.
When choosing φk as exact solutions for different α,
Eq. (10) is equivalent to the generalized eigensystem for-
mulated with the Rayleigh-Ritz variational method from
the Eigenvector Continuation approach [11].

Beyond these two examples, the generality of the
Galerkin formalism allows to apply RBMs to a wide
variety of problems, including discrete, operator, inte-
gral, and differential equations [32, 36]. For instance,
the projected equations (3) can be directly applied to
non-linear problems like non-linear eigenvalue equations
where Fα(φα) = Gα(φα)− λαφα, with Gα a general op-
erator. As such, we can consider the RBM a natural ex-
tension of the Eigenvector Continuation technique with
a broader range of applicability.

Additionally, the RBM can be applied to the case of
a set of m coupled equations—common in many-body
physics—by letting

F (i)
α (φ(1)

α , . . . , φ(m)
α ) = 0, for i = 1, . . . ,m; (11)

represent the set of equations and by approximating each

coupled function φ
(i)
α as a linear combination of their cor-

responding solutions for different values of α:

φ̂(i)
α = φ

(i)
0 +

ni∑
k=1

a
(i)
k φ

(i)
k ,

for k = 1, . . . , ni; i = 1, . . . ,m.

(12)

We can then select ψ
(i)
j as the generators of the affine

spaces for each φ̂
(i)
α , to obtain a total of nTot =

∑m
i=1 ni

Galerkin equations:

〈ψ(i)
j |F

(i)
α (φ(1)

α , . . . , φ(m)
α )〉 = 0, (13)

for j = 1, . . . , ni; and i = 1, . . . ,m; which can be solved

for the nTot coefficients a
(i)
k .

In the case of coupled eigenvalue-eigenvector systems,
we can proceed as in the case of a single equation, by

substituting the m eigenvalues λ
(i)
α for approximate val-

ues λ̂
(i)
α , and enforcing m normalization conditions, in ac-

cordance with the requirements of the problem at hand.

B. Testing for low-dimensionality with Principal
Component Analysis (PCA)

It is important to note that if the solution manifold φα
for the problem at hand cannot be sufficiently embedded
in a linear subspace, then the RBM we described will
not constitute an effective emulator. In practice, to test
whether a problem is fit for emulation via RBMs, it is
sufficient to observe the decay of the singular values σk
associated with the PCA of a group of exact solutions
φ̃α for various α [19]. An exponential decay on the as-
sociated singular values σk from the PCA indicates that
the RBM can provide an accurate approximation for the
given problem [19, 24, 38]. As such, it is good practice
to use the PCA of a set of solutions as a a priori test for
the success of the RBM emulator.

This exact diagnosis is showcased in Fig. 1, which
shows the singular values σk for the problems discussed
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FIG. 1. Decay of the singular values σk for a set of solutions
of: the Infinite Well (I.W. in magenta), the single channel
2-body Scattering with a Minnesota potential [37] with fixed
energy (S.M. E0 = 50 MeV in red) and varying energy (S.M.
E∗ ∈ [20, 80] MeV in black) with the parameter’s range as
used in Ref. [13], the Gross-Pitaevskii equation (G.P. in blue),
and the solutions for the 13 energy levels in 48Ca (DFT in
dashed green-blue lines). Appendix B contains additional de-
tails on these calculations, including the ranges for the values
of α used.

in our work. We included a counterexample to illustrate
a situation where the RBM would fail to create a good
surrogate model. A sample of the corresponding exact
solutions φ̃α and principal vectors are shown in Fig. 2.

First, we analyze the scattering wavefunctions in
the 1S0 channel at a fixed energy (Eq. (5) with ` =
0) for the Minnesota potential [37]: U(r, V0R, V0S) =

2µ
(
V0Re

−1.487r2 + V0Se
−0.465r2

)
. For this example, α =

{V0R, V0S}. The rapid exponential decay of the σk in
Fig. 1 is consistent with the excellent results obtained
in [13]. A similar pattern is obtained for wavefunctions
across energies (black squares in Fig. 1) by re-scaling the
scattering differential equation 5 via the change of vari-
able s = pr. This change makes all exact solutions φ̃α(s)
share the same asymptotic behavior. The parameter list
α = {V0R, V0S , E = p2/2µ} now includes the varying en-
ergy. The exponential decay of σk implies that it should
be possible to build a scattering emulator across ener-
gies, which could be an useful upgrade to the emulators
showcased in [13] and [15].

Next, we analyze the example constructed with the 1D
quantum Hamiltonian of a particle trapped in an infinite
well [39] by letting α control the location of the well:
V (x, α) = 0 for x ∈ [α, α + 1] and V (x, α) = ∞ other-
wise. As shown in Fig 1, a direct application of the RBM
fails to accurately emulate the ground state wavefunction
as α changes. Fig.2 a) shows the ground state wavefunc-
tions for a sample of well locations α, making it evident
that a linear combination of a few exact solutions will not
be sufficient to represent the ground state variation as a
function of α. This intuition is reflected by the slow de-
cay of σk in Fig 1. Extensions to the basic methodology
can tackle these issues by allowing further manipulation

  

FIG. 2. Examples of 10 solutions (left column) and the first
four principal components out of more than 40 exact solutions
(right column) for the problems showed in Fig. 1. Panels a)
and b) correspond to the Infinite Well; panels c) and d) to
the Scattering with the Minnesota potential at a fixed energy;
panels e) and f) to the Scattering with the Minnesota poten-
tial with a variable energy; panels g) and h) to the Gross-
Pitaevskii equation; and panels i) and j) to 48Ca under DFT.
For panels i) and j) we chose the 2S1/2 neutron wave function
as a showcase, out of the total of 13 distinct levels for protons
and neutrons.

of the reduced basis (see, for example, [38]). In this par-
ticular case, taking advantage of the symmetry of the
problem with a translation, i.e., φα(x + α) = φα=0(x),
would lead to all σk to be zero for k ≥ 2.

The final two examples in Figs. 1 and 2 are the Gross-
Pitaevskii equation and the 13 energy levels of 48Ca un-
der density functional theory (DFT). The decay of their
respective σk also makes them excellent candidates for
the application of the RBM, as we explore next.
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III. EMULATING NON-LINEAR SYSTEMS

A. The Gross-Pitaevskii equation

The Gross-Pitaevskii equation [40, 41] (see also [42]
for a RBM application) is a nonlinear Schrödinger equa-
tion that approximately describes the low-energy prop-
erties of dilute Bose-Einstein condensates. Using a self-
consistent mean field approximation, the many-body
wavefunction is reduced to a description in terms of a sin-
gle complex-valued wavefunction φ(~r). We work with the
one-dimensional Gross-Pitaevskii equation [43–46] with a
harmonic trapping potential by letting Fα be:

Fq,κ(φ) = −φ′′ + κx2φ+ q|φ|2φ− λq,κφ = 0, (14)

where κ, q, and λq,κ are proportional to the strength
of the harmonic trapping, the self-coupling of the wave-
function, and the ground state energy, respectively. φ(x)
is a single variable function that depends on x and it is
normalized to unity. Note that, since this equation de-
pends linearly on κ and q, the projection Eqs. (3) that
involve integrals in x can be evaluated and stored for
faster computation, leading to expressions of the form
shown in Eq. (4). For example, the term associated with
the harmonic trapping reads:

〈ψj |κx2|φ̂〉 =

n∑
k=1

akκ

∫
ψj(x)x2φk(x)dx. (15)

To test the RBM for extrapolation, we built a Lagrange
basis with four training functions φ̃i in the [q, κ] space

as exact solutions (Fqi,κi
(φ̃i) = 0), with the projecting

functions as ψi = φi. Panel a) in Fig. 3 shows the re-
sults of emulating λq,κ by using this basis and applying
Eqs. (3) plus the normalization condition. The agree-
ment between the exact and emulated calculations is ex-
cellent, with an error of less than 2.5% in the repulsive
phase (q ≥ 0) where the four training parameters are
located, and it deteriorates only in the attractive phase
(q < 0) well beyond the training region. In contrast with
the original implementations of Eigenvector Continua-
tion [11], extrapolation is not a feature usually exploited
on the RBM literature. Making full use of the techniques
developed in the RBM literature could nonetheless be key
when calculations of exact solutions in a specific phase of
the system are numerically unstable or impossible, but
approximable by such methods.

In addition to extrapolating, we explored a situation
similar to how emulators are tested for uncertainty quan-
tification [12, 15]. Using a Latin hypercube sampling
(LHS) [47], we drew 500 testing points in the range
q ∈ [0, 30] and κ ∈ [5, 30]. We constructed three types
of reduced basis: Lagrange, POD, and POD+Greedy,
each with three sizes n = (2, 4, 8). The Lagrange ba-
sis consisted of n exact solutions drawn with LHS. The
POD and POD+Greedy consisted of n principal com-
ponents from a set of N = 20 exact solutions. For

TABLE I. Root mean squared errorsfor the Gross-Pitaevskii
and DFT problems described in the text. The errors are de-

fined as 〈
[
(ARBM−Aexact)/Aexact

]2〉1/2, where A is the quan-
tity being computed, and 〈〉 denotes average. Three cases of
the reduced basis size were explored with n = (2, 4, 8). 500
testing points were drawn in their respective parameter space,
but for DFT 32 points were excluded from the statistics since
the exact solver reported convergence problems. Appendix B
contains additional details on these calculations.

Basis
n

Gross-Pitaevskii Ground
State Energy

48Ca Average
Particle Energy

Lagrange POD
POD

Greedy
POD

2 1.0× 10−1 1.2× 10−2 1.5× 10−2 5.9× 10−3

4 3.0× 10−3 5.6× 10−4 2.1× 10−4 6.1× 10−4

8 1.3× 10−5 1.2× 10−6 2.0× 10−8 1.7× 10−4

the POD the N exact solutions were drawn using LHS,
while for the POD+Greedy the first solution was placed
at a central location and the other N − 1 were in-
cluded one-by-one through a Greedy algorithm inspired
on Refs. [48–50]. Our Greedy approach finds the param-

eter set [qm+1, κm+1] for the next exact solution φ̃m+1,

by maximizing the norm of the residual Fq,κ(φ̂q,κ) over

a LHS of parameters [q, κ]. In each step, φ̂q,κ is con-
structed with a POD basis informed by the previous m
exact solutions.

Table I shows the relative root mean squared errors,
which converge exponentially as more basis are added,
as expected from the results shown in Fig. 1. Both POD
bases were more accurate and robust than the Lagrange
basis, which produced results that frequently changed by
more than an order of magnitude when re-sampling the
exact solutions for the basis. For n = 8 the accuracy of
the POD+Greedy basis was more than 600 times better
than the Lagrange basis. In terms of speed-up when cal-
culating the 500 testing points, the three reduced bases
with n = 2 were almost 150 times faster than the exact
solver, while n = 4 and n = 8 obtained speed-ups of 40
and 5 times, respectively.

B. Skyrme Density Functional Theory

We now proceed to use the RBM in realistic nuclear
DFT calculations. DFT is a widely applied microscopic
formalism [51] (see also [52–54] for other RBM appli-
cations to DFT). In nuclear physics it is used to de-
scribe properties of nuclei from the mean-field perspec-
tive, i.e., each nucleon interacts with an average effective
field made up of all the particles in the system. This
interaction is then constructed in a self-consistent way:
the wavefunction of each nucleon and its eigenenergy are
found at the same time as the effective field they produce

and interact with. As such, the Hamiltonian ĥ(i) acting
on the i-th wavefunction φ(i) depends on all M of them:

ĥ(i)[Φ]φ(i) − λ(i)φ(i) = 0 for 1 ≤ i ≤M, (16)
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FIG. 3. Comparison between the exact solvers (solid lines) and the RBM (points) calculations. Panel a) shows the ground
state energy λq,κ of the Gross-Pitaevskii equation as a function of q for the values of κ = [0.5, 2, 4, 10, 30]. Panel b) shows the
neutron skin thickness of 48Ca as a function of L for the values of K = [160, 210, 260] MeV. In both figures, the Lagrange basis
with four points is shown as cyan stars within the inset plots. Appendix B contains additional details on these calculations.

where Φ = {φ(i)}Mi=1, and the parameter list α has been
omitted for the sake of clarity. The dependence of the
Hamiltonian on the wavefunctions comes from, for exam-
ple, the total nuclear density ρ and kinetic energy density

τ . We derive the single particle Hamiltonian, ĥ(i), from
the Skyrme effective interaction [55–58], the nuclear part
of which can be written as a general energy density func-
tional (EDF) of time-even densities [59]:

Ht(r) =Cρt ρ
2
t + Cρ∆ρt ρt∆ρt + Cτt ρtτt

+CJt J
↔

2
t + Cρ∇Jt ρt∇ · Jt,

(17)

where the subscript t = (0, 1) represents isoscalar and
isovector densities, respectively. The parameters of this
EDF, Cτt for instance, model the coupling between the
particles and the nucleonic density in question (the ki-
netic energy density, τ , in this case). As it is usually done
in modern EDF optimization [60, 61], we can parametrize
those couplings in terms of nuclear-matter properties plus
the remaining coupling constants left unconstrained:{

ρc, E
NM/A,KNM, aNM

sym, L
NM
sym,M

∗
s , C

ρ∆ρ
t , Cρ∇Jt

}
.

(18)

This representation is primarily rooted in physical
observables—like the nuclear saturation density, ρc—and
simplifies the selection of a sensible range of values to ex-
plore in model calibration for DFT, and for constructing
the training bases for the RBM.

To test the RBM in extrapolation for DFT, we built
a Lagrange basis of four points spanning LNM

sym = [30, 60]

MeV and KNM = [200, 220] MeV while the other param-
eters remained at their optimized UNEDF1 values [62].
The wavefunctions on each shell (7 for neutrons and 6
for protons) were calculated using both the exact solver
and the RBM emulator. Panel b) in Fig. 3 shows the
performance of the emulator when calculating the neu-
tron skin thickness of 48Ca [63], a quantity particularly
sensitive to the LNM

sym parameter. The agreement between

the emulated values and exact DFT results is excellent,
with an error of less than 0.8% for all extrapolated values
shown, even for LNM

sym and KNM well outside the training
zone.

To test the limits of the emulator, the range of all ten
available parameters in Eq. (18) were widened well be-
yond what is reasonable for realistic nuclear matter. We
used LHS to draw 50 training points to build a POD basis
with n = (2, 4, 8) and to independently draw 500 testing
points within the widened parameter ranges. As such,
several parameter combinations yielded convergence is-
sues for the DFT solver, but not for the emulated calcula-
tions, highlighting the capability of RBMs to extrapolate
into regions where exact solvers can experience numerical
instabilities. Even though the emulated results of non-
converging test points seemed reasonable, we consider
their validation to be beyond the scope of this work.

As Table I shows, for the stable parameter sets, the
RBM reproduces single nucleon energies well. This is
particularly striking for the reduced basis with only two
elements, which gives an error of about 0.6% despite all
ten parameters being varied in the test sample. In terms
of speed-up when calculating the 500 testing points, the
reduced basis with n = (2, 4, 8) were 6, 4, and 2 times
faster than the exact solver, respectively. We note that
these speedups were obtained without precomputing any
of the terms involved in Eq. (3). Greater speed-ups can
be achieved by precomputing as many of the terms in
Eq. (3) as possible, in the traditional strategy of an of-
fline/online procedure often seen in RBM applications.
Indeed, by separating the Hamiltonian in Eq. (16) into
the parts that can and cannot be precalculated (called
affine and non-affine in the RBM literature [19]), we
achieve speed-ups of more than 250 times with respect
to the exact solver for a reduced basis of two elements.

The parts of the Hamiltonian (16) that are non-affine
in the parameters can be made affine by using techniques
such as the Empirical Interpolation Method [64, 65]. The
terms that are nonlinear in the wavefunctions on the
other hand, such as powers of the density ρ, can present a
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problem due to a combinatorially increasing terms (Mk)
in Eq. (4), a problem we plan to study further in a future
work.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have presented the Reduced Basis
Method as a useful framework for constructing emula-
tors for general problems in nuclear physics, including
non-linear systems. We showcased the two steps of the
process by first training a basis informed on high fidelity
solutions, and then by obtaining the equations for the co-
efficients through the Galerkin projection. We discussed
the connections of the Eigenvector Continuation litera-
ture with the RBM and showed that the emulators built
through the former correspond to particular choices of
the later. We explained how the Principal Component
Analysis can be used to diagnose that a problem can be
successfully emulated through the RBM and showcased
the analysis on several examples. Finally, we applied
the RBM to build an emulator for the non-linear Gross-
Pitaevskii equation and for the coupled non-linear equa-
tions in Skyrme Density Functional Theory. The built
emulators showed excellent performance both for extrap-
olation and for speeding up computations, with a mini-
mal loss in accuracy. Accurate extrapolation is important
for systems with a large number of control parameters,
and it is therefore not possible to fully cover the param-
eter space with training points. Extrapolation is also
necessary for cases where the underlying computational
methods break down for some range of the parameter
space. Accurate emulators for speeding up calculations
are crucial for real time evaluations, such as experimental
design and control [66], and for multi-query evaluations,
such as those involved in systematic studies and uncer-
tainty quantification.

Within the DFT context, speed-up gains of more than
two orders of magnitude will enable large scale uncer-
tainty quantification studies for a wide range of EDFs
[67], an endeavor which, up to now, seemed inaccessible.

Furthermore, the RBM approach could also reduce the
penalty of using higher-dimensional solvers for system-
atic studies and uncertainty quantification, calculations
previously limited to spherical and cylindrical symme-
tries. Finally, the trained emulators can be deployed in
a cloud computing environment [68], fostering collabora-
tive research, increasing the availability of cutting-edge
research software, and improving scientific accessibility.

We hope our results help spark the interest of the nu-
clear theory community in RBMs. For this purpose,
we created and will continue to update an online re-
source [69] to illustrate many of the concepts we dis-
cussed. The adoption of recent developments on the
choice of ansatz subspaces [38, 70, 71], on error bounds
and convergence properties [33, 48, 72], and on the com-
putational efficiency for non-affine and nonlinear prob-
lems [64, 65], to name a few, could become key in reach-
ing the full extent of what these methods can offer. Given
the simplicity and flexibility of the Galerkin projection,
and the PCA diagnostic we showcase to test for low-
dimensional manifolds, we believe that RBMs have the
potential to become standard tools for the emulation of
challenging problems in many-body nuclear physics.
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Appendix A: Equivalence of the Reduced Basis
Method and Eigenvector Continuation under the

Kohn Variational Principle

As shown in the discussion, a direct application of
the RBM to the scattering differential equation (5) leads
to the following equations for the approximation coeffi-
cients:

n∑
k=1

ak〈φj − φ1|Fα(φk)〉 = 0, for j = 2, . . . , n; (A1)

and a1 = 1−
n∑
k=2

ak. (A2)

We proceed to show the equivalence with the varia-
tional approach used in [13, 15].

The (K-matrix) Kohn variational principle (KVP)
states that the solution to Eq. (5) with the asymptotic
behavior (6), is a stationary point for the functional:

β[φ] = τ [φ]−
∫ ∞

0

drφ(r)Fα (φ(r)) , (A3)

where τ [φ] extracts its value from the asymptotic behav-
ior of φ, that is, the cosine coefficient in Eq. (6).

The Kohn variational method is detailed in the supple-

mental material of Ref. [13]. It utilizes a trial function φ̂α
constructed exactly as in Eq. (7), and it finds a stationary
point of the functional (A3) in terms of the coefficients
ak. After using the method of Lagrange multipliers to
enforce the normalization condition, it is found that the
following equation set describes the stationary point:

τj − λ−
n∑
k=1

(∆Ujk + ∆Ukj)ak = 0 for j = 1 . . . , n;

(A4)
where τj is the cosine coefficient in Eq. (6) associated
with each φj , and the matrix ∆Ujk is a shorthand nota-
tion for the inner products:

∆Ujk = 〈φj |Fα(φk)〉 =

∫ ∞
0

drφj(r)Fα (φk(r)) . (A5)

These equations, together with the normalization con-
dition

∑n
k=1 ak = 1, can be used to find the n coefficients

ak, plus the Lagrange multiplier λ.

1. Proof of equivalence between the methods

To compare Eq. (A4) to Eq. (A1), we need to rewrite
Eq. (A4) in terms of ∆Ujk only, eliminating both the
τj and the Lagrange multiplier λ. We can relate the
elements of ∆Ukj to their transposes ∆Ujk by integration
by parts. Note that

−
∫ ∞

0

φkφ
′′
j dr = −

(
φkφ

′
j − φ′kφj

)∣∣∞
0
−
∫ ∞

0

φ′′kφjdr,

(A6)

  

FIG. A1. Parameter values used for the results of the GP
equation in Table I, all drawn by Latin Hypercube Sampling
[47]. Points in blue show the 500 testing samples. Points in
red, orange, and green show the parameters for the Lagrange
RB built with 2, 4, and 8 exact calculations, respectively.
Points in black show the 20 parameters used to build the
three POD RBs with n = (2, 4, 8).

where the boundary term can be evaluated through the
boundary conditions (6) to be τj − τk. Therefore, via in-
tegration by parts, we can make Fα act on φj in Eq. (A5)
to obtain:

∆Ukj = ∆Ujk + (τj − τk). (A7)

Using this result we can eliminate ∆Ukj from Eq. (A4)
and obtain:

τj − λ−
n∑
k=1

(2∆Ujk)ak −
n∑
k=1

ak(τj − τk) = 0

−λ−
n∑
k=1

(2∆Ujk)ak +

n∑
k=1

akτk = 0,

(A8)

for j = 1, . . . , n; where we used the fact that the ak sum
to unity to cancel the τj term.

Next, we can eliminate the Lagrange multiplier λ and
the sum of akτk by subtracting equations for different j.
Without loss of generality, we can subtract all equations
to the equation corresponding to j = 1, resulting in:

n∑
k=1

(∆Ujk −∆U1k)ak = 0 for j = 2 . . . , n. (A9)

Finally, using the definition of ∆Ujk = 〈φj |Fα(φk)〉
shows the equivalence with Eq. (A1), completing the
proof.

It is important to note that despite the equivalence
in the approximation equations, variational techniques
like Kohn’s principle can have an improved accuracy on
the calculations of certain quantities, such as τ . Indeed,
the second term in Eq. (6) can be thought as a first-
order correction to τ through a factor proportional to the

residual Fα(φ̂α). Therefore, when implementing a RBM
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FIG. A2. Construction of the POD+Greedy RB for the results in Table I. The black stars show the N exact calculations made
at each stage to build the POD+Greedy basis. The four panels show the stages for N = (1, 3, 6, 20). The red points in each
panel are the 100 LHS draws on which the norm of the residual is maximized each time to add a new exact calculation to the
POD+Greedy RB. This random sampling is repeated on each step (no two panels share the same red points). Points in blue
and green on each panel show the 10 locations where the residual is maximized or minimized, representing the regions where
the emulator is performing poorly and adequately, respectively. The green box shows the limits for the LHS: q ∈ [0, 30] and
κ ∈ [5, 30].

emulator, even if we choose the basis φ or the projecting
functions ψ in a way that we do not recover the same
equations for the coefficients as a variational principle, it
could be beneficial to include the associated correction
terms to help increase accuracy.

Appendix B: Details about the numerical results

The codes used to generate all the results we presented
can be found in [73].

1. Decay of singular values

In this section, we give details on the construction of
the singular values σk from the singular value decomposi-
tion (SVD) showed in Fig. 1 and Fig. 2 in Sec. II B. Four
problems were considered: the infinite well (IW), the sin-
gle channel 2-body scattering with a Minnesota potential
at fixed energy (SME) and varying energy (SME∗), the
Gross-Pitaevskii equation (GP), and 48Ca under density
functional theory (DFT).

The IW problem consists of the 1D quantum Hamil-

tonian of a particle trapped in an infinite well (IW) [39]
where α controls the location of the well:

V (x, α) =

{
0, α < x < α+ 1,

∞, otherwise.
(A1)

The ground state solutions to this Hamiltonian are wave
functions of the form φα =

√
2 sin [π(x− α)] for α < x <

α+ 1 and zero otherwise. The singular values σk for the
IW showed in Fig. 1 were obtained by sampling 40 values
of α in the range [−5, 5] using Latin hypercube sampling
(LHS), and performing SVD on the set of 40 solutions.

Both SME and SME∗ problems consist of the single-
channel 1S0 nucleon-nucleon scattering Hamiltonian [28].
The Minnesota potential V (r, α) [37] with parameters
α = [V0R, V0S ] is used for the interaction, while the
two non-linear parameters associated with the Gaussian’s
widths remained fixed. In both cases, we make the
change of variables s = pr and the scattering Hamil-
tonian takes the form:(
− d2

ds2
+
`(`+ 1)

s2
+ Ũ(s, α, p)− 1

)
φα(s) = 0, (A2)

where the potential Ũ(s, α, p) = V (s/p, α)2µ/p2 is now
momentum dependent. In both cases (SME and SME∗),
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FIG. A3. Panel a) shows the 20 exact solutions φq,κ(x) obtained by the Greedy algorithm in Fig. A2 and used to construct the
POD+Greedy basis for the results of Table I. Panel b) shows the first four principal components of this set which constitute
the RB used for the POD+Greedy results with n = 4 in TableI.

40 parameters where obtained by a LHS in the range
V0R = [100, 300] MeV and V0S = [−200, 0] MeV, fol-
lowing [13]. The singular values showed in Fig. 1 were
obtained by performing SVD on the set of 40 solutions.
In the case of SME, all 40 solutions shared the same en-
ergy in the center of mass E = 50 MeV, while for SME∗

the energies where equispaced in the range E = [20, 80]
MeV.

The GP and DFT cases are explained in detail in
Sec. III. The ranges for the parameters in both cases cor-
respond to the ones used in Table I. For GP, a set of 40
values of the parameters [q, κ] were obtained by LHS in
the range q ∈ [0, 30] and κ ∈ [5, 30]. For DFT, 50 values
of the parameters were obtained with a LHS across the
parameter ranges shown in Table A1.

2. 1-D Gross-Pitaevskii equation with a harmonic
trapping potential

The four training points φk used in the Lagrange ba-
sis for the results of panel a) in Fig. 3 are : [q, κ] =
{[0, 1], [0, 5], [0.5, 1], [0.5, 5]}. Fig. A1 shows the training
points for the Lagrange and POD RB, as well as the
500 testing points used for the results shown in Table I.
Fig. A2 shows the construction on the POD+Greedy ba-
sis also used for the results shown in Table I. Fig. A3
shows the 20 exact solutions φq,κ(x) selected by the
Greedy algorithm, as well as the first four principal com-
ponents of this set.

a. Description of the POD+Greedy scheme used for GP

The POD+Greedy scheme used for the results of Ta-
ble I consists on iteratively constructing a set of N exact
solutions (ES) with a (weak) Greedy algorithm [19] in-
formed by the residuals of a POD RB of dimension n2

derived from the set of exact solutions at each step. To

Algorithm A1: POD+Greedy scheme

Define starting parameters α1, n2, N , N2

Find φ̃1 s.t. Fα1(φ̃1) = 0

ES ← {φ̃1}
for i = 2, . . . , N do
RB ← POD(ES, n2)
Draw N2 parameters with LHS: A = {α̂1, . . . , α̂N2}
Use the RBM with the RB to find φ̂α̂ for each element
in A
αi ← arg maxα̂∈A ||Fα̂(φ̂α̂)||2

Find φ̃i s.t. Fαi(φ̃i) = 0

ES ← ES ∪ {φ̃i}
end
return ES

set up the algorithm, let POD({φ̃l}Nl=1, n) be a function
that returns a normalized basis constructed with first n
principal components of the set of solutions {φ̃l}Nl=1 if

N ≥ n, and returns POD({φ̃l}Nl=1, N) if N < n. This
function can be used to construct a POD basis of size
up to n with a set of solutions. The Greedy strategy we
used is summarized in Algorithm A1. The desired POD
bases were constructed by running POD(RB,n) on the
output of this algorithm with α1 = [q1, κ1] = [15, 17.5],
n2 = 10, N = 20, and N2 = 100.

3. Spherical Nuclear Density Functional Theory

The four training points, φk, used in panel b) of Fig. 3
only varied the KNM and LNM

sym parameters, with the
rest taken to be the standard UNEDF1 optimal param-
eters [62]. The four values of KNM and LNM

sym, in MeV,
are:

KNM = 200, LNM
sym = 30;KNM = 200, LNM

sym = 60;

KNM = 220, LNM
sym = 30;KNM = 220, LNM

sym = 60.
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TABLE A1. Ranges for the 10 parameters used to generate
the DFT results in Table I.

Min Max Units
ρc 0.14 0.18 fm−3

ENM/A -16.5 -14.5 MeV
KNM 160 260 MeV
aNM

sym 26 32 MeV
LNM

sym 20 180 MeV
M∗s 0.7 1.4

Cρ∆ρ0 -55 -40 MeV fm5

Cρ∆ρ1 -165 -90 MeV fm5

Cρ∇J0 -105 -55 MeV fm5

Cρ∇J1 -50 -15 MeV fm5

Table A1 shows the parameter ranges used for the LHS
for the DFT results in Table I. Both the 500 testing points
and the N = 20 exact evaluations used to build the POD
RB were independently drawn by LHS on these ranges.

Appendix C: Glossary of terminology

Table A2 shows the frequently used terms in this work
(inspired by [74]).
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TABLE A2. Glossary of acronyms

Acronym Name Brief Description Detailed Ref.

EC Eigenvector
Continuation

Numerical method for approximating the “trajectory” of
an eigenvector associated with a parametrized operator as
the corresponding parameters change. As shown in this
article, it can be seen as a special case of the RBM.

[11, 75]

RBM Reduced Basis
Method

Numerical method for solving parametrized differential
equations efficiently by using a handful of previously com-
puted solutions.

Chapters 3 in
[19, 20]

SVD Singular Value
Decomposition

Matrix factorization algorithm key for many modern com-
putational methods, including PCA and POD.

Chapter 1 in [22],
Chapter 2 in [76]

POD Proper Orthogonal
Decomposition

SVD application to partial differential equations used to
capture a low-dimensional representation of the corre-
sponding dynamical system. In the context of RBMs
it is used to construct small bases that capture a low-
dimensional representation of a larger set of “exact”
solutions.

Sec. 3.3.1 in [20] ,
Chapter 6 in [19],
Sec. 11.1 in [22]

PCA Principal Compo-
nent Analysis

SVD application where the variability of high-dimensional
data is decomposed into its more statistically descriptive
factors.

Chapter 1 in [22],
[77–79]

LHS Latin Hypercube
Sampling

Sampling technique for efficiently distributing points in
Rn.

[47]

- Greedy Algorithm Algorithm that selects the locally optimal choice on each
iteration. In the context of RBMs, it sequentially selects
“exact” solutions to train the emulator, usually by max-
imizing an estimated error.

Sec. 3.2.2 in [20],
Chapter 7 in [19],

[50]

- Lagrange Basis A reduced basis of size n for the RBM that is built as a
linear combination of only n “exact” solutions.

[24]

DFT Density Functional
Theory

Mean-field approach to many-body quantum systems. [51, 80]

EDF Energy Density
Functional

The object that defines the interaction used in DFT. [51, 80]
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