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Background: Computationally tractable models of atomic nuclei is a long-time goal of nuclear

structure physics. A flexible framework which easily includes excited states and many-body corre-

lations is the configuration-interaction shell model (SM), but the exponential growth of the basis

means one needs an efficient truncation scheme, ideally one that includes both deformation and

pairing correlations.

Purpose: We propose an efficient truncation scheme of the SM: starting from a pair conden-

sate variationally defined by Hartree-Fock single-particle states and the particle-number conserved

Bardeen-Cooper-Schrieffer (NBCS) approximation, we carry out projection of states with good an-

gular momentum.

Methods: After generating Hartree-Fock single-particle states with Kramers degeneracy in a

SM space, we optimize the pair amplitudes in the NBCS by minimizing the energy, and then use

linear algebra projection (LAP) of states with good angular momentum. Both NBCS and LAP are

computationally fast.

Results: Our calculations yield good agreement with full configuration-interaction SM calcula-

tions for low-lying states of transitional and rotational nuclei with axially symmetric and triaxial

deformation in medium- and heavy-mass regions: 44,46,48Ti, 48,50Cr, 52Fe, 60,62,64Zn, 66,68Ge, 68Se,

and 108,110Xe. We predict low-lying states of 112−114Ba and 116−120Ce, nuclei difficult to reach by

large-scale SM calculations.

Conclusions: Both pair correlation and the configuration mixing between different intrinsic

states play a key role in reproducing collectivity and shape coexistence, demonstrating the utility

of this truncation scheme of the SM to study transitional and deformed nuclei.

I. INTRODUCTION

The nuclear shell model (SM) is a flexible and useful

framework for configuration-interaction calculations nu-

clear structure theory [1–4]. In a given single-particle ba-

sis, the so-called full configuration-interaction (FCI) con-

siders all possible configurations and efficiently generates

low-lying states, including complex states with multi-

particle correlations. Yet for many heavy rotational nu-

clei, FCI dimensions go far beyond the current computa-

tional limit of ∼ 2 − 3 × 1010. Hence the hunt for good

truncation schemes that nonetheless incorporate impor-

tant correlations–in particular, deformation and pairing–

is of great importance.

The pair truncation of the SM has been extensively

studied. For example, in the (generalized) seniority

scheme [1, 5–8] and broken pair model [9–11], which work

very well for nearly spherical nuclei, the dominant build-

ing blocks are a pair of like nucleons coupled to angu-

lar momentum zero (denoted by S pairs), due to the
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strong monopole pairing interaction. The ground state

of a semimagic even-even nucleus can be described by an

S pair condensate, and the low-lying excited states are

interpreted as breaking of the S pairs. In the interacting

boson model [12–15], the spin-zero S pair and spin-two

(D) pair are mapped to s and d bosons, key ingredients

in collective states of the vibrational, rotational, and γ-

soft nuclei. A fully fermionic treatment is found in the

nucleon-pair approximation (NPA) of the SM [16, 17],

built by nucleon pairs with spins zero, two, four (denoted

by G), six (denoted by I), etc. NPA calculations success-

fully reproduce low-lying states in nuclei from spherical,

via transitional, and finally to deformed regions [18–25],

and the important role played by the G (and sometimes

I) pair in well-deformed nuclei has been demonstrated

[26, 27]. An important ingredient for deformed and tran-

sitional nuclides was the extraction of good pairs from

Hartree-Fock states [25, 26]. Although NPA configura-

tion spaces are much smaller than full SM ones, and de-

spite recent significant speed-ups in codes driven largely

by going from a J-coupled scheme to an M or Jz-scheme

[28, 29], the computation with high-spin G and I pairs is

still too burdensome for most of deformed nuclei across

the nuclear chart.
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On the other hand, one frequently finds in nuclear

physics powerful deformed-mean-field calculations in-

corporating pairing, such as Bardeen-Cooper-Schrieffer

(BCS) [30–33] and Hartree-Fock-Bogoliubov (HFB) [34,

35] calculations, which can be understood through Nils-

son single-particle orbits [35, 36]. Calculations using de-

formed BCS and HFB have had great success in nuclear

physics, but they break both rotational symmetry and

particle number. The BCS or HFB vacua are actually

superpositions of states with different angular momen-

tum quantum numbers in neighboring (different particle

number) nuclei. One can restore the symmetries, for ex-

ample recovering exact particle number by numerical in-

tegration over the gauge angle [35, 37], or good angular

momentum by integration over Euler angles, where, for

example, the configuration space is constructed by an-

gular momentum projection on quasiparticle states after

solving the BCS/HFB equation in the Nilsson orbits [38–

40].

Recently a very fast algorithm has been proposed for

the generalized seniority scheme in deformed orbits, a

powerful tool to calculate identical particle systems in a

valence space of 15 major shells [41, 42]. The generalized

seniority scheme has good particle numbers naturally. As

this formalism constructs pairs between time-reversal or-

bits as in the BCS theory, we call it the particle number

conserved BCS (NBCS) throughout this paper.

In this work, we extend the NBCS to open-shell nuclei,

add angular momentum projection (denoted by PNBCS),

and perform calculations in SM single-particle bases with

effective interactions. In other words, the PNBCS can be

regarded as a pair truncation scheme of the SM. We apply

the PNBCS to the study of nuclei with axially symmetric

deformation, triaxial deformation, and shape coexistence

in the medium- and heavy-mass regions.

There exist alternative approaches which restore both

rotational symmetry and particle number conservation,

such as the projected HFB [43, 44] and the projected

general pair condensate [45]. Yet such computations are

time consuming. For example, Ref. [44] showed that the

variation after projection for the HFB can be only car-

ried out in the sd shell, because of the very heavy multi-

dimension integration. In Ref. [45], from a random start

it took hours to optimize a general pair condensate be-

fore angular momentum projection for open-shell nuclei

in the A ∼ 130 region. On the other hand, the variation

of the NBCS before angular momentum projection used

in this work is very fast, even compared with the already

fast HF calculation. It therefore provides an alternative

approach for variation after projection study, which we

leave to future work.

This paper is organized as follows. In Sec. II we in-

troduce the framework of the PNBCS, including the HF

with Kramers degeneracy, the NBCS, and the linear alge-

braic approach of angular momentum projection [46]. In

Secs. III and IV we compare the results of PNBCS with

full SM and the projected Hartree-Fock (PHF), and show

that the PNBCS provides us with good descriptions for

low-lying states of transitional and rotational nuclei in

the pf , pf5/2g9/2, and sdg7/2h11/2 shells. In particular,

since in the absence of pairing PNBCS would be the same

as PHF, our results show the improvement through the

inclusion of pairing correlations in our wave functions.

II. FRAMEWORK

In this paper we use Latin letters a, b, c . . . to denote

SM single-particle states labeled by good quantum num-

bers n (radial nodes), l (orbital angular momentum), j

(total angular momentum), and m (z-component of an-

gular momentum). We write the creation operator of a

nucleon as

ĉ†a ≡ ĉ†nalajama
, (1)

and its time-reversed partner as

ĉ†ã ≡ (−)ja−ma ĉ†nalaja−ma
. (2)

We use Greek letters α, β, γ . . . to denote HF single-

particle states, and we write the creation operator as â†α.

A. HF and NBCS

We start with the HF calculation in a shell model (SM)

basis with Kramers degeneracy [47], that is, our HF cal-

culation always produces degenerate time reversal single

particle partners without enforcing additional constrains

such as shape, orientation, parity. A HF single particle

state from our calculations can be written as a transfor-

mation of the original SM single particle states:

â†α =
∑

a

Uαaĉ
†
a, (3)

and its time-reversed partner can be written by

â†α̃ =
∑

a

Uαaĉ
†
ã. (4)

While details of particle number conserved BCS

(NBCS) can be found in [41, 42], here we brief the formu-

lae we use in this work. The building blocks are collective

pairs in the HF basis, i.e.,

P̂ †
τ ≡

∑

α∈Oτ

vτ,αP̂
†
τ,α =

1

2

∑

α

vτ,αâ
†
τ,αâ

†
τ,α̃, (5)
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where

P̂ †
τ,α ≡ â†τ,αâ

†
τ,α̃ = P̂ †

τ,α̃, (6)

Here τ = π for valence protons and τ = ν for valence

neutrons; Oτ denotes the indices that picks only one of

each degenerate time-reversed pair α and α̃; vτ,α is the

pair structure coefficient. We emphasize that prior work

showed that using pairs extracted from a deformed HF

state provides an important step towards the good de-

scription of rotational bands [25–27].

In the NBCS, the ground state of 2N valence protons

(or neutrons) is assumed to be an N -pair condensate:

|φτ,N 〉 = 1
√
χτ,N

(P̂ †
τ )

N |0〉 , (7)

where χτ,N is the normalization factor. In order to fa-

cilitate a fast method for computing the NBCS energy,

Refs. [41, 42, 48] introduced the α-orbit blocked N -pair

condensate:

|φ[α]
τ,N 〉 ≡ 1

√

χ
[α]
τ,N

(
∑

β∈Oτ

β 6=α

vτ,βP̂
†
τ,β)

N |0〉

=
1

√

χ
[α]
τ,N

(P̂ †
τ − vτ,αP̂

†
τ,α)

N |0〉 ,
(8)

the effect of which is to remove the pair of single-particle

states α and α̃. Similarly, the αβ- and αβγ-orbit blocked

N -pair condensates are defined by

|φ[αβ]
τ,N 〉 ≡ 1

√

χ
[αβ]
τ,N

(P̂ †
τ − vτ,αP̂

†
τ,α − vτ,βP̂

†
τ,β)

N |0〉 ,(9)

|φ[αβγ]
τ,N 〉 ≡ 1

√

χ
[αβγ]
τ,N

×

(P̂ †
τ − vτ,αP̂

†
τ,α − vτ,βP̂

†
τ,β − vτ,γ P̂

†
τ,γ)

N |0〉 ,(10)

respectively, where α, β, and γ are not equal to each

other. The normalization factors χτ,N , χ
[α]
τ,N , χ

[αβ]
τ,N , and

χ
[αβγ]
τ,N can be calculated using recursive formulae; see

Eqs. (42)-(45) in the Appendix.

B. NBCS energy for identical particles

The Hamiltonian for identical particles is written as

Ĥ = Ĥ0τ + Ĥττ

=
∑

αβ

ǫαβ â
†
τ,αâτ,β +

1

4

∑

αβγδ

Vαβγδâ
†
τ,αâ

†
τ,βâτ,δâτ,γ ,

(11)

where Vαβγδ are antisymmetrized two-body matrix ele-

ments in the HF single-particle basis. Using Eqs. (46)-

(49) in Appendix, the energy of the N -pair condensate is

given by

Eτ ≡〈φτ,N | Ĥ |φτ,N 〉

=
∑

α∈Oτ

(2ǫαα +Gαα)

(

1−
χ
[α]
τ,N

χτ,N

)

+

α6=β
∑

αβ∈Oτ

[

GαβN
2vτ,αvτ,β

χ
[αβ]
τ,N−1

χτ,N

+Aαβ

(

1−
χ
[α]
τ,N + χ

[β]
τ,N − χ

[αβ]
τ,N

χτ,N

)]

,

(12)

where

Gαβ ≡Vαα̃ββ̃,

Aαβ =Vαβαβ + Vαβ̃αβ̃ .
(13)

The energy of the N -pair condensate, Eτ , varies with

the pair structure coefficient vτ,α. In general vτ,α is de-

termined by minimizing Eτ , so that

∂Eτ

∂vτ,α
= 0, (14)

leading to the iterative formula

vτ,α =

−
β 6=α
∑

β∈Oτ

Gαβvτ,βχ
[αβ]
τ,N−1

(dτ,α + 〈φ[α]
τ,N−1| Ĥ |φ[α]

τ,N−1〉 − Eτ )χ
[α]
τ,N−1

, (15)

where

dτ,α ≡ 2ǫαα +Gαα + 2(N − 1)2
β 6=α
∑

β∈Oτ

Aαβ(vτ,β)
2
χ
[αβ]
τ,N−2

χ
[α]
τ,N−1

,

(16)

〈φ[γ]
τ,N−1| Ĥ |φ[γ]

τ,N−1〉 ≡
α6=γ
∑

α∈Oτ

(2ǫαα +Gαα)

(

1−
χ
[αγ]
τ,N

χ
[γ]
τ,N

)

+

α6=β,α6=γ,β 6=γ
∑

αβ∈Oτ

[

GαβN
2vτ,αvτ,β

χ
[αβγ]
τ,N−1

χ
[γ]
τ,N

+Aαβ

(

1−
χ
[αγ]
τ,N + χ

[βγ]
τ,N − χ

[αβγ]
τ,N

χ
[γ]
τ,N

)]

.

(17)

C. For a system with both valence protons and

neutrons

In this work, we extend the NBCS to the case of open-

shell nuclides, that is, a pair-condensate ansatz with both
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valence protons and valence neutrons:

|Φ〉 = |φπ,Nπφν,Nν 〉 =
1

√
χπ,Nπχν,Nν

(P̂ †
π)

Nπ(P̂ †
ν )

Nν |0〉 .
(18)

The Hamiltonian for open-shell nuclides is written as

Ĥ =
∑

τ=π,ν

(Ĥ0τ + Ĥττ ) + Ĥπν , (19)

where

Ĥπν =
∑

αβγδ

Vαβγδâ
†
π,αâ

†
ν,β âν,δâπ,γ . (20)

The energy is

E =
∑

τ=π,ν

Eτ + Eπν , (21)

where the valence proton energy Eπ and the valence neu-

tron energy Eν are obtained by Eq. (12), and the valence

proton-neutron energy Eπν is given by

Eπν ≡〈Φ| Ĥπν |Φ〉

=
∑

α∈Oπ,β∈Oν

2Aαβ

(

1−
χ
[α]
π,Nπ

χπ,Nπ

)(

1−
χ
[β]
ν,Nν

χν,Nν

)

.

(22)

The energy of an open-shell nucleus, E, varies with

the pair structure coefficients vπ,α and vν,α. We deter-

mine vπ,α and vν,α by minimizing E, which leads to the

iterative formula

vτ,α =

−

β 6=α
∑

β∈Oτ

Gαβvτ,βχ
[αβ]
τ,Nτ−1

(dτ,α + 〈φ[α]
τ,Nτ−1|H |φ[α]

τ,Nτ−1〉 − Ēτ )χ
[α]
τ,Nτ−1 + Y

[α]
τ,γβ

.

(23)

Eq. (23) differs from Eq. (15) by the Y
[α]
τ,γβ term, which

itself is obtained from the variational principle for the

proton-neutron energy Eπν , i.e.,

Y
[α]
τ,γβ =

∑

γ∈Oτ ,β∈Oτ′

2Aγβ

×
χ
[α]
τ,Nτ−1χ

[γ]
τ,Nτ

− χ
[αγ]
τ,Nτ−1χτ,Nτ

χτ,Nτ



1−
χ
[β]
τ ′,Nτ′

χτ ′,Nτ′



 ,

(24)

where τ ′ = ν if τ = π, and vice versa.

In our NBCS calculations, we use the conjugate gra-

dient method to quickly minimize the energy E [see Eq.

(21)], and then use Eq. (23) to iterate vπ,α and vν,α
until convergence. Unsurprisingly, the NBCS energy is

lower than the HF energy, as the ansatz wavefunction of

a pair condensate is more general than that of a Slater

determinant.

D. PNBCS: The angular momentum projection for

NBCS

In general, both the HF and NBCS break rotational

symmetry. To cure this problem, projection on angular

momentum is necessary. While it is usually implemented

as a numerical quadrature on Euler angles [35, 49], a

recently proposed linear algebra projection (LAP) [46] is

more than 10 times faster than the quadrature in nuclear

structure computations [50]. LAP has been successfully

implemented to project nuclear states out of both Slater

determinants [46, 50] and out of a general pair condensate

[45]. Here we outline the application of LAP to NBCS.

The N -pair condensate |Φ〉 [see Eq. (18)] usually

breaks rotational invariance. The condensate can be de-

composed as a linear combination of normalized spherical

tensors,

|Φ〉 =
∑

JK

cJK |J,K〉. (25)

The projection operator P̂ J
MK picks out the component

|J,K〉, and rotates it to |J,K → M〉, i.e.,

P̂ J
MK |Φ〉 = cJK |J,K → M〉. (26)

For states with angular momentum J , we diagonalize the

Hamiltonian in the space spanned by

{

P̂ J
M,−J |Φ〉, P̂ J

M,−J+1|Φ〉, · · · , P̂ J
M,J |Φ〉

}

, (27)

that is, we solve the discrete Hill-Wheeler equation:

∑

K

HJ
K′KgrJK = ǫJr

∑

K

N J
K′KgrJK , (28)

where ǫJr is energy of the r-th state with angular momen-

tum J ; grJK is the expansion coefficient of the projected

eigenstate; and HJ
K′K and N J

K′K are the Hamiltonian

and norm matrix elements (or kernels), respectively:

HJ
K′K =〈P̂ J

MK′Φ|Ĥ |P̂ J
MKΦ〉 = 〈Φ|Ĥ |P̂ J

K′KΦ〉,

N J
K′K =〈P̂ J

MK′Φ|P̂ J
MKΦ〉 = 〈Φ|P̂ J

K′KΦ〉.
(29)

In traditional angular momentum projection, Eq. (29)

is calculated by numerical integrals:

HJ
K′K =

2J + 1

8π2

∫

dΩ DJ∗
K′K(Ω)〈Φ|ĤR̂(Ω)|Φ〉,

N J
K′K =

2J + 1

8π2

∫

dΩ DJ∗
K′K(Ω)〈Φ|R̂(Ω)|Φ〉,

(30)

where DJ
K′K(Ω) is the Wigner D matrix. In the LAP

[46, 50], the Hamiltonian and norm matrix elements are
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found by solving linear equations. It is noticed that

〈Φ|ĤR̂(Ω)|Φ〉
=

∑

JJ′KK′M

c∗J′K′cJKDJ
MK(Ω)〈J ′,K ′|Ĥ |J,K → M〉

=
∑

JKK′

DJ
K′K(Ω)HJ

K′K ,

(31)

and similarly

〈Φ|R̂(Ω)|Φ〉 =
∑

JKK′

DJ
K′K(Ω)N J

K′K , (32)

that is to say, 〈Φ|ĤR̂(Ω)|Φ〉 is a linear combination

of HJ
K′K , and 〈Φ|R̂(Ω)|Φ〉 is a linear combination of

N J
K′K . With a given set of Euler angles, one computes

〈Φ|ĤR̂(Ω)|Φ〉 and 〈Φ|R̂(Ω)|Φ〉, and then finds HJ
K′K and

N J
K′K as solutions of the linear Eqs. (31) and (32).

To compute 〈Φ|R̂(Ω)|Φ〉, we use the Wigner D matrix

for SM single-particle states, i.e.,

Dab(Ω) = 〈nalajama|R̂(Ω)|nblbjbmb〉
= δnanb

δlalbδjajbD
ja
mamb

(Ω),
(33)

and rewrite a collective pair [see Eq. (5)] as

P̂ †
τ =

∑

α∈Oτ

vτ,αâ
†
τ,αâ

†
τ,α̃

= −
∑

ab;α∈Oτ

vτ,αUαaUαb̃ĉ
†
τ,aĉ

†
τ,b

=
∑

ab

pabĉ
†
τ,aĉ

†
τ,b.

(34)

Under rotational transformation, the collective pair be-

comes

R̂(Ω)P̂ †
τ R̂

−1(Ω) = P̂
′†
τ (35)

with p′ = DpD⊤. The matrix elements of R̂(Ω) for the

NBCS is

〈(P̂ †
τ )

N | R̂(Ω) |(P̂ †
τ )

N 〉 = 〈(P̂ †
τ )

N | |(P̂ ′†
τ )N 〉 , (36)

and similarly

〈(P̂ †
τ )

N | ĤR̂(Ω) |(P̂ †
τ )

N 〉 = 〈(P̂ †
τ )

N | Ĥ |(P̂ ′†
τ )N 〉 . (37)

A fast algorithm for computing Eqs. (36) and (37) was

given in Ref. [45].

III. PARAMETER-DRIVEN SHAPE

EVOLUTION IN PNBCS

We investigate the validity and utility of the PNBCS

as the nuclear shape evolves from spherical to quadrupole

deformation. Here the shape evolution is realized by

changing the ratio of pairing and quadrupole-quadrupole

interactions in a schematic Hamiltonian

Ĥ(x) = x





∑

ja

ǫja n̂ja + gV̂P



+ κV̂Q (38)

The first term
∑

ja
ǫja n̂ja is single particle energy term.

The second term is the monopole pairing interaction:

V̂P = −Â(0)†
π Â(0)

π − Â(0)†
ν Â(0)

ν , (39)

Â(0)† =
∑

ja

√
2ja + 1

2

(

ĉ†ja × ĉ†ja

)(0)

. (40)

The last term is the quadrupole-quadrupole interaction:

V̂Q = −(Q̂π + Q̂ν) · (Q̂π + Q̂ν). (41)

We study the system of six protons and six neutrons in

the pf shell using the schematic Hamiltonian. The sin-

gle particle energies are taken from the KB3G effective

interaction [51], i.e, ǫ0f7/2 = 0 MeV, ǫ1p3/2
= 2.0 MeV,

ǫ0f5/2 = 6.5 MeV, ǫ0p1/2
= 4.0 MeV. The strength param-

eter of the monopole pairing interaction and quadrupole-

quadrupole interaction are set to be g = 0.4 Mev and

κ = 0.1 MeV, respectively. The adjustable parameter x

ranges from 0 to 1.5.

We calculate level energies and the electric quadrupole

reduced transition probabilities B(E2) (taking the stan-

dard effective charges eπ=1.5 and eν=0.5) in the SM

using the Bigstick code [52, 53], and in angular mo-

mentum projected HF (PHF) and in PNBCS using un-

published codes. Fig. 1 shows the results of the excita-

tion energies Ex(I
+
1 ), the energy ratios R(I+2)/2 (where

RI/2 ≡ Ex(I
+
1 )/Ex(2

+
1 )), and the B(E2; I → I − 2)

values with I = 2 and 4. The SM result exhibits

nuclear shape evolution. For small x, i.e., dominated

by the quadrupole-quadrupole interaction, the 2+1 and

4+1 excitation energies are small with the energy ratios

R4/2 ∼ 3.33 and R6/2 ∼ 7, and the B(E2) values are

large. These are typical features of rotational nuclei

in the Elliott’s SU(3) dynamical symmetry limit. As

x increases, the 2+1 and 4+1 excitation energies increase

and the B(E2) values decrease. For large x, i.e., large

monopole pairing interaction and single-particle split-

tings, the 2+1 and 4+1 excitation energies are large and

the energy ratios and the B(E2) values are small, typical

behavior of spherical nuclei.

In general the PNBCS result is better that the PHF

one. In the limiting case of x ∼ 0, that is, large

quadrupole-quadrupole interaction, both the PHF and

PNBCS well reproduce the excitation energies, energy
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FIG. 1: The excitation energy Ex(I
+), the level energy ratios R(I+2)/2 (whereRI/2 ≡ Ex(I

+)/Ex(2
+)), and theB(E2; I → I−2)

values for 6 protons and 6 neutrons in the pf shell with the schematic interaction Ĥ(x) [see Eq. (38)]. Panels (a), (b), (c)

correspond to I = 2 and Panels (a′), (b′), (c′) to I = 4. SM is the abbreviation for the full shell model; PHF is for the angular

momentum projected Hartree-Fock; and PNBCS is for the angular momentum projected particle number conserved BCS.

ratios, and B(E2) values. This result can be under-

stood as follows. The pure quadrupole-quadrupole inter-

action in a harmonic-oscillator shell (i.e., Elliott’s model)

provides us with a HF state with an axially symmetric

quadrupole deformed shape. From this HF state, one

can project out the exact ground rotational band. For

0.5 < x < 0.75, the PNBCS also provides a good de-

scription for the 2+1 and 4+1 states of transitional nuclei

with 2.2 < R4/2 < 2.8, while the PHF result quickly

deteriorates. In the limiting case of x ∼ 1.5, that is,

large monopole pairing interaction and single-particle

splittings, neither the PHF nor PNBCS is good, and it

is expected that the PNBCS generalized with broken-

pair configurations, that is, a multi-reference PNBCS re-

lated to generator-coordinate and other beyond-mean-

field methods, will greatly improve the results, which we

leave to future work.

IV. FOR NUCLEI IN THE MEDIUM-HEAVY

MASS REGION

In this section, we show that the PNBCS provides

us reasonably good description for low-lying states of

transitional and deformed nuclei. We exemplify this

with 44,46,48Ti, 48,50Cr, 52Fe in the pf shell, 60,62,64Zn,
66,68Ge, 68Se in the pf5/2g9/2 space, and 108,110Xe in the

sdg7/2h11/2 space, by comparing the results of the SM,

PHF, and PNBCS. We also predict low-lying levels for
112,114Ba and 116,118,120Ce.

A. 44,46,48Ti, 48,50Cr, 52Fe in the pf shell

44,46,48Ti, 48,50Cr, and 52Fe are typical transitional and

deformed nuclei in the pf shell. In our calculation, we use

the KB3G interaction [51] and take the standard effective

charges eπ = 1.5 and eν = 0.5 for B(E2)s. The low-lying

states are well reproduced by the SM calculation, except

for 44Ti.
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FIG. 2: The yrast states of 44,46,48Ti, 48,50Cr, and 52Fe. SM is

the abbreviation for the full shell model; PNBCS is for the an-

gular momentum projected particle number conserved BCS;

and PHF is for the angular momentum projected Hartree-

Fock. The experimental data are taken from Refs. [54–58].

Fig. 2 and Table I compare the excitation energies and

B(E2; I → I − 2) values for the yrast states of 44,46,48Ti,
48,50Cr, and 52Fe from the experimental data [54–58],

the full SM, the PNBCS, and the PHF. The PNBCS

results are in good agreement with the data and/or the

SM results. The level energies of the 2+, 4+, 6+, 8+

states obtained by the PNBCS are very close to those by

the SM.

The level energies obtained by the PHF are visibly

smaller than those by the PNBCS, and the B(E2) val-

ues obtained by the former are slightly larger than those

by the latter. This indicates that the pair correlation

plays an important role in reduction of the moment

of inertia but plays a limited one in reduction of the

electric quadrupole transition probability; the electric

quadrupole transition strength is affected mainly by the

deformation encoded in HF. The PNBCS results may be

improved if the variation of the HF single particle states

is simultaneously taken into account within the NBCS

variation, and result will be equivalent to that of the par-

ticle number projected Hartree-Fock-Bogoliubov [35, 37],

which we leave to future work.

TABLE I: B(E2; I → I − 2) (in W.u.) for the yrast states of
44,46,48Ti, 48,50Cr, and 52Fe. The experimental data are taken

from Refs. [54–58].

Nuclide Iπ Expt. SM PNBCS PHF

44Ti

2+ 13(4) 12.9 12.9 13.7

4+ 30(5) 17.0 18.3 18.9

6+ 17.0(24) 14.2 18.3 18.8

8+ - 10.1 16.5 16.9

46Ti

2+ 19.5(6) 12.9 14.2 15.1

4+ 20.2(13) 17.0 20.6 21.0

6+ 16.4(15) 17.2 21.6 21.7

8+ 11.3(14) 15.7 20.0 20.1

48Ti

2+ 14.7(4) 10.1 11.2 11.6

4+ 18.4(17) 15.0 16.7 16.5

6+ - 6.2 17.0 16.5

8+ - 5.1 14.8 13.9

48Cr

2+ 31(4) 20.6 24.0 24.6

4+ 27(3) 28.2 34.2 34.4

6+ 29(8) 28.3 36.9 36.5

8+ 24(7) 26.2 36.9 36.0

50Cr

2+ 19.3(6) 16.9 19.7 20.2

4+ 14.6(16) 24.0 28.6 28.1

6+ 22(5) 20.4 31.0 29.3

8+ 19(5) 17.6 30.7 28.4

52Fe

2+ 14.2(19) 16.0 15.8 15.7

4+ 26(6) 21.3 22.1 21.5

6+ 10(3) 11.8 22.8 22.0

8+ 9(4) 7.2 20.9 20.4

0
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4

6

8

E x
 (M

eV
)

0+
2+
4+

6+

8+

Expt. SM PNBCS PHF
60Zn

Expt. SM PNBCS PHF
62Zn

Expt. SM PNBCS PHF
64Zn

FIG. 3: The yrast state of 60,62,64Zn. The experimental data

are taken from Refs. [59–61].

B. 60,62,64Zn, 66,68Ge, 68Se in the pf5/2g9/2 space

We calculate low-lying states of 60,62,64Zn, 66,68Ge, and
68Se in the pf5/2g9/2 space (i.e., the 1p1/21p3/20f5/20g9/2
space), using the JUN45 interaction [65, 66] and the stan-

dard effective charges eπ = 1.5 and eν = 0.5 for B(E2)s.

The deformations of these nuclei are not very strong.

Therefore the low-lying states are appropriately repro-

duced by the above SM calculations.

The 60,62,64Zn isotopes are transitional nuclei. Fig. 3

and Table II compare for the yrast states the experi-
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TABLE II: B(E2; I → I− 2) (in W.u.) for the yrast states of
60,62,64Zn. The experimental data are taken from refs. [60–

62].

Nuclide Iπ Expt. SM PNBCS PHF

60Zn

2+ - 10.9 10.3 10.6

4+ - 12.8 13.0 13.0

6+ - 11.9 10.8 10.4

8+ - 7.4 6.1 5.7

62Zn

2+ 16.8(8) 11.1 11.5 12.1

4+ 26(+7
−12) 10.0 12.5 12.3

6+ 19(3) 14.2 12.3 14.2

8+ 7.9(+20
−40) 12.1 10.4 12.2

64Zn

2+ 20.0(6) 10.6 11.7 12.4

4+ 12.2(5) 12.7 14.9 16.4

6+ 23(6) 13.3 14.2 15.4

8+ - 14.8 11.6 12.1
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FIG. 4: The ground rotational band and the side band of
66Ge, 68Ge, and 68Se. The experimental data are taken from

Refs. [63, 64].

mental data [59–62], full SM, PNBCS, and PHF. Both

the level energies and the B(E2) values obtained by the

PNBCS are very close to the data or the SM results.

For 62Zn and 64Zn, the moment of inertia and the elec-

tric quadrupole transition probability obtained by PHF

is (slightly) larger than those by PNBCS, similar to the

cases in the pf shell.

Shape coexistence [67] has been observed in 66,68Ge

and 68Se [63, 64], and both the ground and side rotational

bands are well reproduced by the SM calculation (Fig. 4).

For 66Ge, our HF calculation produces an oblate min-

imum with 〈β〉 = 0.21 and 〈γ〉 = 60◦ and a triaxially de-

formed one with 〈β〉 = 0.24 and 〈γ〉 = 8◦, separated only

by 0.58 MeV, and the configuration spaces constructed by

the angular momentum projection on them are denoted

by L1 and L2, respectively. We carry out the PHF calcu-

lation in two different ways: (1) the oblate and γ bands

are calculated by solving the Hill-Wheeler equation in

the L1 and L2 spaces, respectively (the calculation re-

sults are denoted by PHF1); (2) the bands are calculated

in the L1 ⊕ L2 space, i.e., the configuration mixing be-

tween the two HF states is allowed (denoted by PHF2).

Similarly, we carry out the PNBCS calculation with and

without the configuration mixing (denoted by PNBCS2

and PNBCS1), respectively.

In Fig. 4 we see the energy levels in both the ground

and side γ bands of 66Ge are well reproduced by the

calculations, including PNBCS1, PNBCS2, PHF1, and

PHF2. In Table III we see for the B(E2) values in the

ground band, the results of PNBCS1, PNBCS2, PHF1,

and PHF2 are all in good agreement with the SM one,

but for the B(E2) values in the side γ band, only the

PNBCS2 result are close to the SM one. The above

results indicate that both the pair correlation and the

configuration mixing between the oblate and triaxially

deformed states are important in reproducing the elec-

tric quadrupole transition rate in 66Ge. Both the SM

and the PNBCS2 predict the γ band head is a 0+ state,

which has not yet been found experimentally.

For 68Ge, our HF calculation with Kramers degener-

acy produces two minima differing in energy by only 0.76

MeV, both of which are triaxially deformed: the first

minimum has 〈β〉 = 0.17 and 〈γ〉 = 38◦, and the second

one has 〈β〉 = 0.24 and 〈γ〉 = 18◦. It is worth mentioning

that the probability of the second minimum showing up

in the HF calculation with Kramers degeneracy is ∼ 3%,

and that in the time-reversal-unconstrained HF calcula-

tion is ∼ 0.03%. Similar to the case of 66Ge, both the

PNBCS and PHF calculations are carried out in two dif-

ferent ways, i.e., PNBCS1, PNBCS2, PHF1, and PHF2.

The results are presented in Fig. 4 and Table III. The

PNBCS2 results are in good agreement with the data or

the SM results, but the PNBCS1, PHF1, and PHF2 fail
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TABLE III: B(E2; I → I − 2) (in W.u.) for the ground and side bands of 66Ge, 68Ge, and 68Se. The experimental data are

taken from Refs. [63, 64].

Nuclide Iπ Expt. SM PNBCS1 PNBCS2 PHF1 PHF2

66Ge (ground band)

2+ 12.0(23) 15.9 12.3 12.7 12.4 12.4

4+ > 9.6 18.2 16.7 14.3 16.5 13.8

6+ > 1.2 19.9 16.8 17.4 15.8 14.4

8+ - 9.0 14.9 16.1 13.2 12.8

66Ge (side band)

2+ - 6.7 17.3 12.4 18.9 18.7

4+ - 11.4 22.4 11.8 25.0 21.7

6+ - 13.0 23.2 10.4 24.0 22.2

8+ - 1.6 14.8 11.2 16.9 16.9

68Ge (ground band)

2+ 15.3(8) 15.4 13.2 14.2 11.8 14.5

4+ 12.8(15) 21.3 16.4 20.2 16.2 21.4

6+ 12 (4) 24.1 17.6 27.2 13.2 31.9

8+ 14 (3) 16.6 9.8 28.6 8.8 37.5

68Ge (side band)

2+ - 10.7 21.2 14.7 24.4 18.5

4+ - 12.7 27.6 16.6 32.2 10.0

6+ - 8.3 31.6 13.0 37.9 10.6

8+ - 5.0 31.1 9.5 38.7 8.6

68Se (ground band)

2+ 27(4) 21.1 22.4 22.4 23.0 23.0

4+ - 30.1 30.5 30.5 31.0 31.0

6+ - 30.8 30.5 30.5 30.4 30.4

8+ - 23.7 26.9 26.9 26.4 26.4

68Se (side band)

2+ - 19.4 20.1 20.1 21.0 21.0

4+ - 26.8 27.7 27.7 28.6 28.6

6+ - 26.8 28.0 28.0 28.5 28.5

8+ - 22.7 24.9 24.9 25.1 25.1

to reproduce the level energies of the side band. For the

B(E2) values of the side band, the PNBCS2 and PHF2

results are much better than the PNBCS1 and PHF1

ones. Both the pair correlation and the configuration

mixing between the two HF states are important.

For 68Se, our HF calculation produces an oblate min-

imum with 〈β〉 = 0.22 and 〈γ〉 = 60◦ and a prolate one

with 〈β〉 = 0.21 and 〈γ〉 = 0◦. Our PNBCS1, PNBCS2,

PHF1, and PHF2 results are all closed to the SM re-

sults. The pair correlation and the configuration mixing

between the oblate and prolate states are not important

here.

C. 108,110Xe, 112,114Ba, 116,118,120Ce in the sdg7/2h11/2

space

The nuclides around the N = Z line above 100Sn are

of great interest due to their potential importance in

the study of superallowed α decay and nucleosynthesis.

In this work, we calculate low-lying states of 108,110Xe,
112,114Ba, 116,118,120Ce in the sdg7/2h11/2 space (i.e., the

2s1/21d3/21d5/20g7/20h11/2 space), using the monopole-

optimized effective interaction based on the CD-Bonn

potential renormalized by the perturbative G-matrix ap-
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FIG. 5: The ground band of 108,110Xe. SDGI represents

the result calculated by the SDGI-pair approximation in Ref.

[25]. The experimental data are taken from Ref. [68].

proach [69], and the standard effective charges eπ = 1.5

and eν = 0.5 for B(E2)s.

The N = Z nuclide 108Xe has been observed recently

[70], but the low-lying spectrum remains unknown. The

excitation energies of low-lying states of its neighbor
110Xe has been measured [68], showing collective rota-

tional features, and are well reproduced by the SM cal-

culation (see Fig. 5). Fig. 5 and Table IV compare
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TABLE IV: B(E2; I → I − 2) (in W.u.) for the ground band

of 108,110Xe.

Nuclide Iπ Expt. SM PNBCS PHF SDGI

108Xe

2+ - 30.9 30.6 32.4 28.3

4+ - 41.8 39.9 44.1 38.1

6+ - 44.9 45.4 48.8 38.7

8+ - 47.4 48.2 50.9 41.6

10+ - 44.8 47.0 49.3 40.2

12+ - 39.3 43.5 45.3 36.0

110Xe

2+ - 34.3 35.1 37.0 36.2

4+ - 48.4 49.5 52.0 51.1

6+ - 51.7 53.2 55.5 54.8

8+ - 52.1 53.5 55.4 54.5

10+ - 50.8 51.9 53.2 51.8

12+ - 46.9 48.6 49.4 47.4

TABLE V: B(E2; I → I − 2) (in W.u.) for the ground band

of 112,114Ba and 116,118,120Ce.

Nuclide Iπ PNBCS PHF SDGI SDG

112Ba

2+ 52.2 54.4 54.0 50.3

4+ 73.7 76.5 76.0 70.7

6+ 79.3 81.9 81.3 75.5

8+ 80.0 82.2 81.5 75.6

114Ba

2+ 54.4 55.6 54.6 50.2

4+ 77.0 78.2 76.9 70.6

6+ 82.9 83.8 82.4 75.5

8+ 83.8 84.2 82.8 75.9

116Ce

2+ 74.4 76.7 - -

4+ 101.4 104.7 - -

6+ 125.3 129.2 - -

8+ 136.1 140.0 - -

118Ce

2+ 64.3 64.0 - -

4+ 91.1 92.5 - -

6+ 98.6 97.9 - -

8+ 100.8 99.3 - -

120Ce

2+ 67.9 79.9 - -

4+ 97.9 107.7 - -

6+ 109.6 131.8 - -

8+ 117.4 142.8 - -

for the ground band of 108,110Xe from the full SM, PN-

BCS, PHF (and the experimental data for 110Xe). Since

the nucleon-pair approximation [16, 17, 24] is an efficient

truncation model of the full SM, the results obtained by

the SDGI-pair approximation [25] are also included for

comparison. As shown in Fig. 5 and Table IV, the PN-

BCS results are in good agreement with the data or the

SM results. The excitation energies obtained by the PHF

and the SDGI-pair approximation are slightly lower.

The low-lying spectra of 112Ba, 114Ba, 116Ce, 118Ce,

and 120Ce are not known experimentally. The SM M -

scheme dimensions of them are around 2×1010, 2×1011,

2×1012, 1×1013, and 5×1013, respectively, at the edge or

beyond the reach of what the modern large-scale SM can

do. We calculate these five nuclei using the PNBCS and

PHF. The calculated results are presented in Fig. 6 and

Table V, and the results of the SDG- and SDGI-pair

approximations for 112,114Ba [25] are also included. Co-

incidently, the excitation energies of 112,114Ba obtained

by the PNBCS and SDG are close to each other, and

those obtained by the PHF and SDGI are close to each

other. The B(E2) values of 112,114Ba obtained by the

PNBCS, PHF, and SDGI are close to each others, while

the SDG result is ∼ 8% smaller.

V. SUMMARY

In this work, we propose a simple approach to study

the pair truncation of the shell model (SM) for rotational

nuclei: the projected number conserved BCS (PNBCS).

We generate deformed single-particle states by the HF

calculation with Kramers degeneracy in a shell model

basis, generalize the number conserved BCS to the case

of open-shell nuclei, and project out collective states of

good angular momentum using the linear algebraic pro-

jection approach. We study the shape evolution in the

case of a 6-proton, 6-neutron system in the pf shell by

changing the relative strength of the schematic pairing

and quadrupole-quadrupole interactions. We find the

PNBCS provides a good description for low-lying states

of well deformed and transitional nuclei.

Applying the PNBCS to calculations of medium- and

heavy-mass nuclei with SM effective interactions, we find

that the low-lying level energies and B(E2) values of the

rotational bands are well reproduced by the PNBCS. In

particular our study of shape coexistence show that while

both of the pair correlation and the configuration mixing

between two different intrinsic states play a key role in

reproducing the collective feature of the ground and side

rotational bands in 66Ge and 68Ge, neither of them is

important in 68Se. Finally we point out our PNBCS pre-

diction of low-lying states of 112,114Ba and 116,118,120Ce,

which are beyond or almost beyond the capability of full-

scale configuration-interaction SM.

The PNBCS computation is fast. For the nucleus with

the largest dimension in this work, i.e., 120Ce, the PN-

BCS code takes about 17 minutes to compute level ener-

gies and B(E2) values on a workstation with a 20-core 2.2

GHz CPU. For 154Gd in the rare-earth region, the PN-

BCS code takes about 40 minutes if 154Gd is regarded as

a system of fourteen valence protons and eight valence

neutrons in the πsdg7/2h11/2 and νpfh9/2i13/2 (namely,

Z = 50-82 and N = 82-126) space. The PNBCS can

be a powerful tool to study well deformed heavy-mass

nuclei in a space larger than one major shell, e.g., the
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FIG. 6: The ground band of 112,114Ba and 116,118,120Ce.

so-called extended extruded-intruded space [4]. Consid-

ering the variation after angular momentum projection

and the number conserved Hartree-Fock-Bogoliubov are

expected to further improve the results. The general-

ization with broken-pair configurations can be a useful

tool to study the phenomena of backbending and nuclear

shape-phase transition in heavy nuclei.
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APPENDIX: Formulas of overlaps between pair

condensates and average energy of Hamiltonian

One refers to Ref. [42] for the following formulas. The

normalization factors χτ,N and χ
[α]
τ,N are calculated in the

following recursive formulae:

χτ,N = N
∑

α∈Oτ

v2τ,αχ
[α]
τ,N−1, (42)

χτ,N − χ
[α]
τ,N = (Nvτ,α)

2χ
[α]
τ,N−1 = χτ,N 〈φτ,N |n̂α|φτ,N 〉 ,

(43)

With the initial values χ
[α]
τ,N=0 = 1, one obtains χτ,N by

Eq. (42) and then χ
[α]
τ,N by Eq. (43). χ

[αβ]
τ,N and χ

[αβγ]
τ,N

are successively calculated in the following recursive for-

mulae:

χ
[β]
τ,N − χ

[αβ]
τ,N = (Nvτ,α)

2χ
[αβ]
τ,N−1 = χ

[β]
τ,N 〈φ[β]

τ,N |n̂α|φ[β]
τ,N 〉 ,

(44)

χ
[βγ]
τ,N − χ

[αβγ]
τ,N = (Nvτ,α)

2χ
[αβγ]
τ,N−1 = χ

[βγ]
τ,N 〈φ[βγ]

τ,N |n̂α|φ[βγ]
τ,N 〉 ,

(45)

with the initial values χ
[αβ]
τ,N=0 = χ

[αβγ]
τ,N=0 = 1.

Using Eq. (43), the expectation value of an one-body

operator, a†τ,αaτ,β, for the N -pair condensate is given by

〈φτ,N |a†τ,αaτ,β|φτ,N 〉

= δαβ 〈φτ,N |n̂α|φτ,N 〉 = δαβ

(

1−
χ
[α]
τ,N

χτ,N

)

,(46)

which is nonvanishing if α = β. For two-body oper-

ators a†τ,αa
†
τ,βaτ,δaτ,γ , there are three types contribute

nonvanishing values: a†τ,αa
†
τ,α̃aτ,α̃aτ,α, a

†
τ,αa

†
τ,α̃aτ,β̃aτ,β,

and a†τ,αa
†
τ,βaτ,βaτ,α (α 6= β). The expectation values

are given by

〈φτ,N |a†τ,αa†τ,α̃aτ,α̃aτ,α|φτ,N 〉

= 〈φτ,N |n̂α|φτ,N 〉 = 1−
χ
[α]
τ,N

χτ,N
, (47)

〈φτ,N |a†τ,αa†τ,α̃aτ,β̃aτ,β |φτ,N 〉
= 〈φτ,N |P †

τ,αPτ,β|φτ,N 〉

= N2vτ,αvτ,β
χ
[αβ]
τ,N−1

χτ,N
, (48)

〈φτ,N |a†τ,αa†τ,βaτ,βaτ,α|φτ,N 〉

=

(

1−
χ
[α]
τ,N + χ

[β]
τ,N − χ

[αβ]
τ,N

χτ,N

)

,(49)
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