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The shell evolution of neutron-rich nuclei with temperature is studied in a beyond-mean-field framework
rooted in the meson-nucleon Lagrangian. The temperature-dependent Dyson equation with the dynamical
kernel taking into account the particle-vibration coupling (PVC) is solved for the fermionic propagators in
the basis of the thermal relativistic mean-field Dirac spinors. The calculations are performed for 68−78Ni in
a broad range of temperatures 0 ≤ T ≤ 4 MeV. The special focus is put on the fragmentation pattern of the
single-particle states, which is further investigated within toy models in truncated model spaces. Such mod-
els allow for quantifying the sensitivity of the fragmentation to the phonon frequencies, the PVC strength
and to the mean-field level density. This study provides insights into the temperature evolution of the PVC
mechanism in real nuclear systems under the conditions which occur in astrophysical environments. In
this connection, we discuss the temperature-dependent nucleon effective mass and symmetry energy coef-
ficient, which are key ingredients of the nuclear equation of state.

I. INTRODUCTION

Understanding the behavior of atomic nuclei and nu-
clear matter at finite temperature is extremely important
for advancements at the frontiers of the nuclear science.
The modification of in-medium nucleonic correlations with
temperature changes considerably the nuclear structure,
leading to the transition to the non-superfluid phase, weak-
ening of collective effects, the appearance of shape fluctua-
tions, and the formation of new structures in the excitation
spectra due to the thermal unblocking [1–6]. Microscopic
interpretation of these phenomena is crucial for accurate
predictions of nuclear processes in astrophysical environ-
ments, such as the neutron star mergers and supernovae
[7–12]. As it is found in the recent studies of Refs. [6, 13],
the emergent effects of the many-body correlations, of both
collective and non-collective origin, play a decisive role in
the key nuclear reaction rates employed in the r-process nu-
cleosynthesis and core-collapse supernovae (CCSN) simu-
lations. The precise knowledge about the evolution of nu-
clear emergent phenomena with temperature is, therefore,
mandatory for a high-quality nuclear physics input utilized
in astrophysical modeling [7, 14–16].

The equation of motion (EOM) method builds a system-
atic framework for the description of many-body correla-
tions, in particular, in strongly coupled fermionic systems
[17–22]. Within this framework, the EOM’s are generated
for various time-dependent quantities, such as the correla-
tion functions of field operators. One of the simplest cor-
relation functions is the fermionic propagator through the
correlated medium, which is directly related to the ener-
gies of quasiparticles and their occupancies of the basis or-
bitals [23, 24]. In principle, the single-particle propaga-
tors of the states below the Fermi energy define completely
the total ground state energy of the system, if the underly-
ing Hamiltonian is confined by the two-body interaction,
via the Midgal-Galitski-Koltun sum rule [25, 26]. This fact
is, in turn, in compliance with the density functional the-

ory, where the total ground state energy is defined by the
one-body density, which is the static limit of the single-
particle propagator. Thus, the correlated one-body propa-
gator plays a fundamental role in the description of quan-
tum many-body systems.

However, the exact EOM for the one-body propagator
does not have a closed form. Instead, it contains higher-
rank propagators in the dynamical part of the interac-
tion kernel, namely, the two-body propagator in the non-
symmetric form and the three-body propagator in the sym-
metric form of this kernel [27, 28]. This requires external
EOMs for the latter propagators, which, in turn, are coupled
to even higher-rank ones through the more complex dy-
namical kernels, leading to a hierarchy of coupled EOMs. In
nuclear physics applications, however, quantitatively most
important coupling is the one between the one-body and
two-body propagators, while the two-body EOM can be
formulated in various approximations, which allow one to
truncate the hierarchy of EOMs on a certain level with a rea-
sonable accuracy.

The simplest descriptions of quantum many-body sys-
tems take the dynamical kernels of the EOMs into account
in static approximations. Such descriptions are confined
by one-body densities and propagators and include the
Hartree-Fock approach [29–31], the random phase approxi-
mation (RPA) [32], the Gor’kov theory of superfluidity [33]
and the Bardeen-Cooper-Schrieffer (BCS) model [34], to
name a few. Needless to say, such approximations neglect
the explicit coupling between the one-body and two-body
EOM’s and, thus, are insufficient for an accurate description
of nuclear phenomena, which is required for modern appli-
cations and for a deep understanding of emergent effects.
A better accuracy can be achieved by cluster expansions of
the dynamical kernels of both the one-body and two-body
fermionic EOM’s in terms of the two-time two-body cor-
relation functions, as it is discussed, e.g., in the context of
the condensed matter and quantum chemistry applications
[17–19, 21]. For the nuclear physics calculations, possible
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truncation schemes of the dynamical kernels on the two-
body level were discussed, for instance, in Ref. [27]. The
great advantage of the EOM method is that both the static
and dynamical kernels are derived consistently from the
same underlying bare interaction. In nuclear physics, how-
ever, the implementations of EOM-based methods with dy-
namical kernels still mainly employ effective interactions.

Early approaches postulated phenomenological Hamil-
tonians implying the existence of fermionic quasipar-
ticles and phonons of a bosonic origin [35–43]. In
such approaches the effective residual interaction between
fermions is supplemented by the phonon-exchange inter-
action, or (quasi)particle-vibration coupling ((q)PVC). Rela-
tively simple calculation schemes are possible with the use
of effective phenomenological interactions, however, more
accurate and sophisticated versions of PVC were success-
fully implemented over the years [27, 44–52]. The models
operating mostly the phonon degrees of freedom [40–43],
include correlations of high complexity, and a few attempts
of using bare nucleon-nucleon interactions were reported
[53–56].

In this work we examine the EOM for the one-body prop-
agator, which is, in its most general form, the Dyson equa-
tion. We consider the finite-temperature case and employ
the approach developed in Ref. [57] as an extension of the
zero-temperature PVC model [58, 59]. The latter are both
built upon the relativistic quantum hadrodynamics [60–63]
adopting the PVC mechanism [27, 64–66] for the induced
interaction. As it follows from Refs. [27, 65], PVC is the
leading contribution to the one-fermion dynamical kernel,
or the self-energy, in finite nuclei. Qualitatively similar to
the phenomenological PVC proposed quite early by A. Bohr
and B. Mottelson [35, 36], further developed in Refs. [64, 67–
72] and later in self-consistent approaches [58, 59, 73, 74], it
is now understood in terms of the EOM derived from bare
nucleon-nucleon interactions [27, 28]. In this work we still
keep the phenomenological effective interaction adjusted
in the framework of the covariant density functional theory
(CDFT) [63] for the static part of the EOM kernel and the
PVC, that allows one to obtain the PVC vertices and phonon
propagators within the relativistic random phase approxi-
mation (RRPA) with a good accuracy. This feature remains
intact also at finite temperature, which is another important
ingredient of our present study. We focus on a systematic
application of the approach to the temperature evolution of
the PVC mechanism in the neutron-rich even-even nuclei
68−78Ni, which are of interest for various astrophysical ap-
plications. These nuclei represent a high-sensitivity region
of the nuclear chart for both the r-process nucleosynthesis
and the CCSN. In particular, the PVC effects are responsi-
ble for a non-trivial behavior of the nucleon effective mass
and symmetry energy, and this connection propagates to a
non-negligible temperature dependence of these quantities
in stellar environments with sizable impacts on the stellar
evolution [14, 15, 75–77].

II. DYSON EQUATION FOR THE FERMIONIC PROPAGATOR AT
FINITE TEMPERATURE

We define the hot nucleus as a system of Dirac nucleons
moving in a self-consistent field generated by an effective
meson-nucleon interaction at finite temperature. The elec-
tromagnetic interaction between protons is mediated by the
photon. One of the most convenient ways to quantify the
single-particle motion in a fermionic many-body system is
to evaluate the one-fermion propagator (also called Green
function), which describes the motion of a fermion through
the correlated medium formed by N identical interacting
fermions. The advantage of such a description is the sim-
ple relationship of this propagators to the excitation spectra
and ground-state properties of the systems with (N +1) and
(N −1) fermions. In this work we are interested in nuclear
systems in thermal equilibrium with the surroundings, that
can be associated with a certain temperature. The temper-
ature, or Matsubara, propagator of a fermion is defined as
[78–80]

G (1,1′) ≡Gk1k1′ (τ1 −τ1′ ) =−〈Tτψ(1)ψ(1′)〉, (1)

where the angular brackets stand for the thermal average
[79, 80] and the chronological ordering operator Tτ acts on
the fermionic field operators in the Wick-rotated picture:

ψ(1) ≡ψk1 (τ1) = eH τ1ψk1 e−H τ1 ,

ψ(1) ≡ψ†
k1

(τ1) = eH τ1ψ†
k1

e−H τ1 . (2)

In Eq. (2), the evolution is determined by the operator H =
H −µN , where H is the many-body Hamiltonian, µ is the
chemical potential, and N denotes the particle number. The
subscript k1 defines the full set of the single-particle quan-
tum numbers in a given representation, while the imaginary
time variable τ is related to the real time t as τ = i t . The
fermionic fields ψk1 and ψ†

k1
satisfy the usual anticommu-

tation relations.
For the many-body Hamiltonian H containing only the

free-motion and the mean-field contributions, i.e., confined
by the one-body part, the single-fermion Matsubara Green
function reads

G̃ (2,1) = ∑
σ=±1

G̃σ(2,1),

G̃σ(2,1) =−σδk2k1 n(−σ(εk1 −µ),T )e−(εk1−µ)τ21θ(στ21),

(3)

where τ21 = τ2−τ1 and εk1 are the eigenvalues of the single-
particle Hamiltonian diagonal in the {ki } basis. Accordingly,
n(ε,T ) is the Fermi-Dirac distribution,

n(ε,T ) = 1

exp(ε/T )+1
, (4)

at the temperature T and characterizes the mean-field oc-
cupancies of the orbits with the given single-particle ener-
gies. The Fourier transform of the propagator (3) to the en-
ergy domain,

G̃k2k1 (ε`) =
∫ 1/T

0
dτe iε`τG̃k2k1 (τ), (5)



3

leads to its spectral representation

G̃k2k1 (ε`) = δk2k1 G̃k1 (ε`), G̃k1 (ε`) = 1

iε`−εk1 +µ
, (6)

defined at the discrete Matsubara frequencies ε`,

ε` = (2`+1)πT, (7)

with the integer `. In Eqs. (3)-(6) we indicate the mean-field
character of the respective Green function by the "˜" sign.

The presence of two-body and higher-rank terms in the
many-body Hamiltonian induce correlations beyond mean
field originated from the residual interaction. The corre-
lated propagator can be found as a solution of the Dyson
equation

Gk1k2 (ε`) = G̃k1k2 (ε`)+ ∑
k3k4

G̃k1k3 (ε`)Σe
k3k4

(ε`)Gk4k2 (ε`), (8)

where the energy-dependent mass operator, or self-energy,
Σe describes the coupling between single fermions and in-
medium emergent degrees of freedom. In this work, we
employ the PVC model for Σe , which approximates the ex-
act energy-dependent self-energy Σe by a cluster expansion
truncated at the two-body level [81]. This self-energy, in the
leading approximation, reads

Σe
k1k2

(ε`) =−T
∑

k3,m

∑
`′

∑
σ=±1

G̃k3 (ε`′ )
σg m(σ)

k1k3
g m(σ)∗

k2k3

iε`− iε`′ −σωm
, (9)

where g m are the phonon vertices andωm are their frequen-
cies. The vertices corresponding to the specific frequencies
can be extracted from the EOM for the two-fermion propa-
gators as follows:

g m
k1k2

= ∑
k3k4

Ũk1k4,k2k3ρ
m
k3k4

, (10)

g m(σ)
k1k2

= δσ,+1g m
k1k2

+δσ,−1g m
k2k1

, (11)

where ρm
k3k4

are the matrix elements of the transition den-
sity for the m-th mode of excitation of the N -particle sys-
tem and Ũk1k4,k2k3 are the matrix elements of the nucleon-
nucleon interaction. As shown in Ref. [82], the relationship
(10) is model independent and includes the exact transi-
tion densities, while the interaction Ũ is the bare interac-
tion between nucleons in the vacuum. In practice, employ-
ing effective interactions and the random phase approxima-
tion based on these interactions for the computation of the
phonon characteristics provide quite a realistic description
of the dynamical self-energy. In this work, we use the effec-
tive interaction of the covariant energy density functional
(CEDF) [63, 83] with the NL3 parametrization [84] and the
relativistic random phase approximation [85] adopted to fi-
nite temperature in our previous developments for calcula-
tions of the phonon modes [4, 5, 82].

The summation over `′ in Eq. (9) is transformed into
a contour integral by the standard technique [80]. The fi-
nal expression for the mass operator Σe , after the analytical

continuation to complex energies, takes the form:

Σe
k1k2

(ε) = ∑
k3,m

{
g m

k1k3
g m∗

k2k3

N (ωm ,T )+1−n(εk3 −µ,T )

ε−εk3 +µ−ωm + iδ

+ g m∗
k3k1

g m
k3k2

n(εk3 −µ,T )+N (ωm ,T )

ε−εk3 +µ+ωm − iδ

}
, (12)

where δ→+0, and

N (ωm ,T ) = 1

exp(ωm/T )−1
(13)

are the occupation numbers of phonons with the frequen-
cies ωm , which arise from the summation over `′ in Eq. (9).

As in Ref. [57], in this work the self-energy (12) is treated
in the diagonal approximation: Σe

k1k2
(ε) = δk1k2Σ

e
k1

(ε). Fur-
thermore, Eq. (8) is equivalent to the nonlinear equation:

[
ε−εk +µ−Σe

k (ε)
]
Gk (ε) = 1, (14)

for each single-particle state k. The poles of the propagator
Gk (ε) correspond to the zeros of the function

f (ε) = ε−εk +µ−Σe
k (ε). (15)

For each single-particle mean-field state k, there exist
multiple solutions ε(λ)

k numbered by the additional in-
dex λ. In other words, the pole character of the energy-
dependent self-energy Σe

k (ε) causes fragmentation of the
single-particle states k due to the PVC mechanism. The so-
lutions ε(λ)

k can be determined by finding the zeros of f (ε)
or, alternatively, by the diagonalization of the arrowhead
matrix [67, 86]:

εk −µ ξ
m1(σ)
n1k ξ

m2(σ)
n2k · · ·

ξ
m1(σ)∗
n1k εn1 −µ−σωm1 0 · · ·
ξ

m2(σ)∗
n2k 0 εn2 −µ−σωm2 · · ·

...
...

...
. . .

 , (16)

where

ξm(σ)
nk = g m(σ)

nk

√
N (ωm ,T )+n(σ(εn −µ),T ), σ=±1. (17)

In the vicinity of the pole ε(λ)
k , where the function f (ε) can

be approximated by

f (ε) ≈
(
ε−ε(λ)

k

)[
1− d

dε
Σe

k (ε)

]
ε=ε(λ)

k

, (18)

the correlated Matsubara Green function Gk (ε) reads:

G (λ)
k (ε) ≈

S(λ)
k

ε−ε(λ)
k

, (19)

with the spectroscopic factor S(λ)
k , such as

S(λ)
k =

[
1− d

dε
Σe

k (ε)

]−1

ε=ε(λ)
k

. (20)
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The spectroscopic factor S(λ)
k provides a measure for the

occupancy of the state λ with the single-particle quantum
number k. The spectroscopic factors S(λ)

k and the energies

of the correlated states ε(λ)
k satisfy the well-known sum rules

[87]: ∑
λ

S(λ)
k = 1

∑
λ

ε(λ)
k S(λ)

k = εk , (21)

which remain valid at finite temperature.

III. NUMERICAL SCHEME

The numerical implementation is performed in three
steps. (i) The closed set of the relativistic mean-field (RMF)
equations with the NL3 parametrization [84] and the ther-
mal fermionic occupation numbers (4) is solved in a self-
consistent cycle. This procedure outputs the single-particle
spectrum as a set of temperature-dependent single-particle
Dirac spinors and the corresponding energies, which form
the basis {ki } employed in further calculations. (ii) The
finite-temperature RRPA (FT-RRPA) equations are solved
to obtain the phonon vertices g m and their frequencies
ωm . The FT-RRPA phonon spectrum with the RMF single
(quasi)particles, build the p ⊗phonon and h⊗phonon con-
figurations for the PVC self-energy Σe (ε). (iii) Eq. (8) is
solved in the configuration space, truncated as described in
[57]. The PVC self-energy Σe (ε) is treated in the diagonal
approximation, i.e., Σe

k1k2
(ε) = δk1k2Σ

e
k1

(ε). Pairing correla-
tions at T = 0 are taken into account in all the three steps:
in the Bardeen-Cooper-Schrieffer (BCS) approximation [34]
for the mean-field calculations, in the relativistic quasipar-
ticle RPA (RQRPA) [88] for the calculations of the phonon
spectra, and in the approach of Ref. [59] for the solution of
the Dyson equation. Pairing correlations were neglected in
calculations at temperature T ≥ 1 MeV as the critical tem-
perature of the superfluid phase transition is around 1 MeV
for the considered nuclei.

The particle-hole (ph) configurations with the energies
εph ≤ 100 MeV and the antiparticle-hole (αh) ones with
εαh ≥ −1800 MeV, with respect to the positive-energy con-
tinuum, were included in the particle-hole basis for the FT-
RRPA and RQRPA calculations of the phonon spectra. The
excitation spectra converge reasonably well with this trun-
cation, as it was verified by direct calculations within the
complete RMF basis. The resulting vibrations with the spin-
parities Jπ = 2+, 3−, 4+, 5−, 6+ below the energy cutoff of
20 MeV formed the phonon model space. This cutoff is
also justified by our previous calculations [57]. A further
truncation of the phonon space was made according to the
values of the reduced transition probabilities of the corre-
sponding electromagnetic transitions B(EL). Namely, the
phonon modes with the B(EL) values equal or more than
5% of the maximal one for each Jπ were retained in the self-
energy Σe (ε). The same truncation criteria were applied for
all temperature regimes. As in our previous calculations
[4, 5, 57, 82], at high temperatures many additional phonon
modes appear in the excitation spectra as a consequence

of the thermal unblocking, which leads to a significant ex-
pansion of the phonon model space with the temperature
growth. The single-particle intermediate states k3 were in-
cluded in the summation of Eq. (12) under the condition
|εk3 −εk1 | ≤ 50 MeV. The latter implies another truncation of
the model space, which is mild enough that the results con-
verge. In contrast to the number of the phonon modes, the
number of the intermediate fermionic states changes only
little with temperature.

IV. RESULTS AND DISCUSSION

A. The single-(quasi)particle states: (q)PVC and temperature
evolution in 68−78Ni isotopic chain

The numerical implementation was performed for the
chain of neutron-rich even-even Ni isotopes with the
atomic numbers A = 68 − 78, which lie on the r-process
path and belong to the high-sensitivity region of the nuclear
landscape with respect to the electron capture in CCSN [7–
12]. We investigated the thermal evolution of the single-
particle states located within the 20 MeV energy window
around the respective Fermi energies of the neutron and
proton subsystems. Among the selected isotopes, 78Ni is
a closed-shell nucleus as well as the proton subsystems
of the other five Ni isotopes. The neutron subsystems of
68,70,72,74,76Ni are open-shell. As discussed in detail in Refs.
[57, 89], the superfluidity in the Bogoliubov’s or BCS sense
vanishes at the critical temperature Tc ≈ 0.6∆p (T = 0),
where ∆p (T = 0) is the pairing gap ∆p at zero tempera-
ture. In the realistic self-consistent finite-temperature cal-
culations the coefficient between Tc and ∆p (T = 0) can be
slightly different, for instance, in the relativistic RMF+BCS
calculations it can get close to 0.7 [57, 89]. In the approaches
beyond BCS the critical temperature further increases as
shown, in particular, in Ref. [89]. In this work, however,
we stay within the RMF+BCS description, where the critical
temperature is around or below 1 MeV for the selected nu-
clei. Their zero-temperature neutron pairing gaps∆p (T = 0)
were determined using the three-point formula [90] and the
data on the nuclear binding energies from Ref. [91]. The
empirical values of the pairing gap ∆p (T = 0) and the cor-
responding empirical critical temperature Tc for the even-
even 68−76Ni nuclei are shown in Table I. Since our results
below are presented on 1 MeV temperature grid, the pairing
correlations are taken into account only at T = 0.

TABLE I: The zero-temperature pairing gaps ∆p (T = 0) and
critical temperatures Tc for even-even 68−76Ni nuclei.

68Ni 70Ni 72Ni 74Ni 76Ni
∆p (T = 0) (MeV) 1.57 1.55 1.41 1.49 1.30

Tc (MeV) 0.94 0.93 0.85 0.90 0.78

The reference single-particle spectra for 68−78Ni isotopes
obtained within the RMF(+BCS) approach at zero and finite
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FIG. 1: Single-particle states in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d) 74Ni, (e) 76Ni, and (f) 78Ni isotopes at zero and finite
temperature calculated within the RMF approximation.
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temperature are shown in Figs. 1a-1f. At T = 0, the sizable
effect of neutron pairing correlations is restricted by the
neighborhood of the Fermi surface. This is reflected in the
presented spectra, while the pure single-particle levels com-
puted without pairing at T = 0 are not very different from
those at T = 1 MeV. As a result of pairing correlations, the
neutron states above (below) Fermi surface are displaced to-
wards higher (lower) energies. Since the chemical potential
of the neutron subsystem increases with the increase of the
neutron number, the intruder state 1g9/2, shifted upward in
68−72Ni isotopes, is shifted downward in 74,76Ni isotopes. As
it is mentioned above, superfluid pairing does not show up
in the closed-shell 78Ni and in the closed-shell proton sub-
systems of 68−76Ni isotopes, although the proton states are
implicitly affected by the neutron superfluidity via the self-
consistent mean field.

In general, one observes that the neutron addition in-
duces displacements of the proton states altogether towards
lower energies. As a result, the two proton shell gaps,
which are associated with the magic numbers 20 and 28, are
slightly diminished with the increase of the neutron num-
ber. In the neutron subsystems of 68−76Ni isotopes, one ob-
serves an abrupt change of the neutron mean-field energies
at the temperature between T = 0 and T = 1 MeV due to
the superfluid phase transition at the critical temperatures
Tc , given in Table I. In contrast, the doubly-magic 78Ni nu-
cleus shows a smooth development of the neutron mean-
field energies due to the absence of the superfluid phase
transition. As the temperature increases from T = 1 MeV to
T = 4 MeV, the neutron mean-field states in the major shell
display a tendency to densifying. Analogously to the case of
T = 0, at T > 0 the proton mean-field states of isotopes with
larger neutron numbers also have lower energies. The over-
all trend of the proton mean-field energies exhibits a grad-
ual increment of 1-2 MeV in the 1 ≤ T ≤ 4 MeV temperature
interval.

Figs. 2a-2f display the dominant fragments of both neu-
tron and proton single-particle states for 68−78Ni isotopes
computed within the RMF+PVC approach. As in Refs. [57,
59, 86], we select the dominant fragment for each mean-
field state according to the spectroscopic factors of the frag-
ments. Generally, the dominant fragment is the one with the
largest spectroscopic factor. In the vicinity of the Fermi en-
ergy there is typically one fragment with the spectroscopic
factor of ∼ 0.7−0.9, while the other fragments are character-
ized by considerably smaller spectroscopic factors (below
0.1). This fragmentation pattern is preserved at all temper-
atures. The neutron 1g9/2 state and the proton 1f7/2 state
of 68−78Ni isotopes are the examples of such pattern and
called good single-particle states. The dominant fragments
of these states have the energies rather close to the ener-
gies of the original mean-field states. The states far away
from the Fermi surface are either strongly or weakly frag-
mented. The strongly fragmented states are characterized
by the presence of two (rarely more) competing fragments
with comparable spectroscopic factors. The first fragment
is chosen to be the fragment with the largest spectroscopic
factor, while another fragment has the spectroscopic factor

not smaller than 40% of the spectroscopic factor of the first
fragment. Analogously to the good single-particle states,
these two dominant fragments have energies close to their
original mean-field energies. The weakly fragmented states
are characterized by one fragment with a dominant spec-
troscopic factor, while other fragments have spectroscopic
factors smaller than 40% of the spectroscopic factor of the
first fragment. In this case, the dominant fragment is well
defined as the one with the largest spectroscopic factor. The
energy of the dominant fragment is again close to the orig-
inal mean-field energy. The degree of fragmentation of a
state far away from Fermi surface can vary with tempera-
ture. One example is the neutron 2p3/2 state in 74Ni, as dis-
played in Fig. 2d. While the neutron 2p3/2 state is weakly
fragmented at T = 0 and T = 3 MeV, it is strongly fragmented
at T = 1 MeV, T = 2 MeV, and T = 4 MeV with 0.30/0.27,
0.17/0.33, and 0.30/0.16 share of spectroscopic factors, re-
spectively. The degree of fragmentation of the same state
can also vary along the isotopic chain. At T = 1, the neu-
tron 2p3/2 state is a good single-particle state in 68,70,72Ni
(see Figs. 2a-2c), whereas it is a strongly fragmented state
in 74,76Ni (see Figs. 2d and 2e). At the same temperature,
the neutron 2p3/2 state is a weakly fragmented state in the
doubly-magic 78Ni nucleus (Fig. 2f). In contrast to the
neutron 2p3/2 state, which can be strongly fragmented at
some temperatures, the proton 2p1/2, 1f5/2, and 2p3/2 states
of 68−78Ni isotopes are either good single-particle states or
weakly fragmented states, as shown in the right panels of
Figs. 2a-2f.

For the states remote from the Fermi surface, one often
encounters two or more fragments, which exhibit compa-
rable spectroscopic factors. An example of such states is
the neutron 1f7/2 state of 68−78Ni isotopes. The temperature
evolution of this state in 72Ni is illustrated in Fig. 3. In gen-
eral, we observe a consistent fragmentation pattern, which
is preserved throughout all temperatures. For each temper-
ature, there exists a cluster of fragments with the energies
lower than the mean-field energy (low-energy cluster), and
another cluster with the energies larger than the mean-field
energy (high-energy cluster). Each cluster has one or two
major fragments with relatively large spectroscopic factors.
In this case, the major fragments play a role of the domi-
nant fragments. At T = 0, the dominant fragments consist
of three major fragments. The low-energy fragment has the
spectroscopic factor 0.20, while each of the other two frag-
ments has the spectroscopic factor 0.13. The phase tran-
sition, which occurs around T = 1 MeV, together with the
beginning of the thermal unblocking, modifies the strength
distribution from a predominantly three-peak structure to
a predominantly two-peak structure. As the temperature
increases from T = 2 MeV to T = 4 MeV, the low-energy
major fragment dominates, and the high-energy cluster ex-
hibits a strong fragmentation. For comparison, the temper-
ature evolution of the proton 2s1/2 state is illustrated in Fig.
4. Analogously to the neutron 1f7/2 state, the proton 2s1/2

state also exhibits a two-cluster structure, where the clusters
are located on the opposite sides of the original mean-field
state. At T = 0, the dominant fragments are the two ma-
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FIG. 2: The dominant fragments of the single-particle states in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d) 74Ni, (e) 76Ni, and (f) 78Ni
isotopes at zero and finite temperature calculated in the RMF+PVC approximation. For the strongly fragmented states, two

dominant fragments are shown, and their spectroscopic factors are specified.
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jor fragments with 0.25/0.48 share of the spectroscopic fac-
tors. As the temperature increases, the low-energy cluster
becomes strongly fragmented, while the high-energy ma-
jor fragment in the vicinity of the Fermi energy behaves as
a good single-particle state. A similar fragmentation pattern
holds for the proton 2s1/2 state in other Ni isotopes. Another
example from the neutron subsystem is represented by the
neutron 1g7/2 state, which is a particle state, i.e., located
above the Fermi energy. In 68−72Ni isotopes, this state ex-
hibits the fragmentation pattern, which is similar to that of
the neutron 1f7/2 state in all temperature regimes, as shown
in Figs. 2a-2c. However, in 74−78Ni isotopes, the state 1g7/2
suddenly becomes a good single-particle state at T = 1 MeV,
though it is gradually becoming more fragmented at higher
temperatures (see Figs. 2d-2f).

Thereby, while the evolution of the good single-particle
states in all Ni isotopes is quite similar to the evolution of
the corresponding mean-field states, the evolution of the
states remote from the Fermi surface exhibits various sce-
narios in both neutron and proton subsystems. The evo-
lution of single-particle states in the proton subsystem re-
mains almost unchanged across the Ni isotopic chain. In
contrast, a significant modification of the fragmentation
pattern occurs in the neutron subsystem. Therefore, we
confine our further discussion by only the neutron single-
particle states. To acquire detailed understanding of the
fragmentation mechanism caused by the PVC, we examine
some simplistic (toy) models of varying complexity in Ap-
pendix A. This study allows us to determine the essential
factors that are responsible for the fragmentation patterns
of the single-particle states at finite temperature.

Summarizing our qualitative study within the simplistic
models, we particularly conclude:

(i) The number Nλ of fragments generated by the PVC for
each phonon mode coupled to a single-particle state k
satisfies the following equation:

Nλ = 2Nk3 +1, (22)

where Nk3 denotes the number of intermediate states
k3 in the mass operator Σe (12).

(ii) The energy differences between a specific state k and
its neighboring states determine the degree of frag-
mentation of the state k. The state k is strongly frag-
mented if the energy differences are small.

(iii) The low-frequency phonons play the most important
role in the fragmentation of the single-particle states.

B. The influence of phonons

Our qualitative study within the toy models presented in
Appendix A is very instructive for understanding the gen-
eral trends of the PVC mechanism, however, the toy models
can not explain the whole variety of fragmentation patterns.
The deficiency of the simplistic toy models is that they do
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FIG. 3: Temperature evolution of the neutron 1f7/2 state of
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FIG. 4: Same as Fig. 3, but for proton 2s1/2 state of 72Ni
isotope.

not take into account the spins and parities of the mean-
field states and of the various phonon modes. For example,
the parity of the mean-field hole states 2p1/2, 2p3/2, 1f5/2,
and 1f7/2 is negative. Consequently, the transitions between
these mean-field hole states occur due to coupling to the
positive-parity phonons, e.g., 2+ and 4+ phonons. Some
mean-field particle states, such as 2d5/2, 3s1/2, 2d3/2, and
1g7/2, have a positive parity, whereas the states 3p3/2 and
3p1/2 lying in the continuum have a negative parity. In ad-
dition to the positive-parity phonons being responsible for
the coupling between the selected particle states, the transi-
tions between the bound and the continuum particle states



9

TABLE II: The temperature evolution of the dominant fragments of the continuum 3p1/2 and 3p3/2 states in 70,74Ni isotopes.
Here εdom

k and Sdom
k represent the energy and the corresponding spectroscopic factor for each dominant fragment.

T = 0 T = 1 MeV T = 2 MeV T = 3 MeV T = 4 MeV
Orbital εdom

k Sdom
k εdom

k Sdom
k εdom

k Sdom
k εdom

k Sdom
k εdom

k Sdom
k

[MeV] [MeV] [MeV] [MeV] [MeV]
70Ni
3p1/2 3.226 0.918 2.889 0.303 2.836 0.317 2.681 0.342 2.583 0.643

3.204 0.673 3.162 0.514 3.055 0.505 3.021 0.285
3p3/2 3.119 0.954 2.766 0.534 2.795 0.565 2.677 0.587 2.491 0.866

3.054 0.333 3.110 0.286
74Ni
3p1/2 3.082 0.348 2.992 0.885 2.948 0.245 2.750 0.386 2.213 0.379

3.106 0.602 3.053 0.536 2.938 0.186 2.689 0.569
3p3/2 2.979 0.950 2.884 0.967 2.624 0.292 2.538 0.348 2.209 0.622

2.825 0.662 2.707 0.175 2.508 0.279
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FIG. 5: Temperature dependence of the quadrupole (2+) phonon strength distributions in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d)
74Ni, (e) 76Ni, and (f) 78Ni.

originate from the coupling to the negative-parity phonons,
such as the 3− and 5− phonons. Analogously to the bound
state 1g7/2, the continuum states 3p3/2 and 3p1/2 are either
weakly or strongly fragmented in 68−72Ni isotopes at T > 0,
and suddenly become good single-particle states in 74−78Ni
isotopes at T = 1 MeV. For a quantitative comparison, Table
II shows the temperature evolution of the dominant frag-

ments of the above mentioned continuum states in 70,74Ni
isotopes.

It has been found in the previous studies, for instance, in
[92, 93] that the low-energy collective quadrupole 2+ and
octupole 3− phonons couple most strongly to the single-
particle degrees of freedom. This is consistent with our
qualitative study discussed in Appendix A, which empha-
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FIG. 6: Temperature dependence of the octupole (3−) phonon strength distributions in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d) 74Ni,
(e) 76Ni, and (f) 78Ni.

sizes the importance of the low-energy phonons for the
fragmentation of single-particle states. Recall that the
phonon vertices g m

k1k2
are the quantitative measure of the

coupling strength for the given phonon mode m, and they
are related to the phonon transition densities ρm

k1k2
by Eq.

(10). For each phonon mode m, at T = 0 the corresponding
reduced transition probability Bm(ω) reads

Bm(ω) =
∣∣∣∣∣ ∑
k1k2

V 0
k1k2

ρm
k1k2

(ω)

∣∣∣∣∣
2

, (23)

where V 0 is the external field, which induces an excitation
from the ground to the excited state m. At the pole of the
corresponding response function ω=ωm the reduced tran-
sition probability Bm(ωm) is related to the strength function
S(ωm) via [94]

S(ωm) = lim
∆→+0

Bm(ωm)

π ·∆ , (24)

where ∆ is the smearing parameter. From Eqs. (10), (23),
and (24), one deduces that the larger the strength func-
tion S(ωm) at the pole, the larger are the matrix elements
of the phonon vertices g m and the stronger is the PVC.
A similar correlation holds for the case of finite tempera-
ture [5, 89]. Therefore, it is instructive to investigate the

temperature dependence of the 2+ and 3− phonon low-
energy strength functions. Figs. 5a-5f display this depen-
dence for the quadrupole strength distributions in 68−78Ni.
At T = 1 MeV, one observes an attenuation of the low-
energy 2+ phonon strength in 70Ni before seeing it inten-
sifying in 72−78Ni. In contrast, a gradual enhancement of
the low-energy quadrupole phonon strengths has also been
observed across the Ni isotopes at T > 1 MeV. These ob-
servations correlate with the behavior of the neutron hole
2p1/2, 1f5/2, and 2p3/2 states, which are strongly fragmented
in 74,76Ni isotopes, whereas they are good single-particle
states in 68−72Ni isotopes, as follows from Figs. 2a-2e. The
temperature dependence of the octupole strength distribu-
tions across the Ni isotopes is again different, as shown in
Figs. 6a-6f. At T = 1 MeV, one observes a slow, but steady
attenuation of the low-lying phonon strengths throughout
the Ni isotopes. At other temperatures, one observes rather
a steady increase of the low-lying 3− phonon strength. The
attenuation of the low-lying phonon strengths at T = 1 MeV
is responsible, for instance, for the change of the fragmen-
tation pattern of the particle bound state 1g7/2 and of the
continuum states 3p1/2 and 3p3/2, which transit from be-
ing fragmented states in 68−72Ni to becoming good single-
particle states in 74−78Ni.
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C. Temperature dependence of the nucleon effective mass and
symmetry energy

The nucleon effective mass is a very important charac-
teristic of the nuclear matter and finite nuclei. On the mi-
croscopic level, it accounts for all effects of the strongly-
interacting medium on a single nucleon via the self-energy,
the dynamical (energy-dependent) part of which is modeled
by Eq. (9). The static part of the self-energy is convention-
ally included in the mean-field propagator (1), and it is as-
sociated with the k-mass [71, 95, 96]. The resulting effective
mass peaks at the Fermi surface, due to the pole structure of
the dynamical self-energy [71, 95]. This functional depen-
dence survives at finite temperature, although its sharpness
decreases with the temperature growth [15, 57]. Further-
more, the temperature dependence of the nuclear symme-
try energy, a key ingredient of the nuclear equation of state
(EOS), can be established via the temperature-dependent
nucleon effective mass [14–16].

The temperature-dependent nucleon effective mass m∗
is defined as [14, 16]

m∗(T )

M
= m̃

M

mω(T )

M
, (25)

where M , m̃, and mω(T ) are the bare nucleon mass, k-mass,
and ω-mass, respectively. The k-mass only weakly depends
on temperature, so that its value is mostly defined by the
parametrization being used. For the NL3 parametrization,
the value of k-mass is 0.60M [84]. To determine the value of
mω(T ) for each temperature T , we first define the quantity
m(k)(E ,T ) for each single-particle state k = {(k),mk } as

m(k)(E ,T )

M
= 1− ∂

∂ε
ReΣe

(k)(ε), (26)

where the energy argument ε is a complex variable, i.e.,
ε = E + i∆, the indices in the bracket stand for the reduced
matrix elements, and mk denotes the magnetic quantum
numbers. As in the effective mass calculations we should
target the vicinity of the Fermi surface, in the calculations
discussed below the real part E has the range of |E −µ| ≤ 5
MeV. The imaginary part ∆ can be chosen as the averaged
distance between the energy fragments with spectroscopic
factors larger than 0.5 within the given interval of E values.
The temperature-dependent ω-mass mω(T ) is then associ-
ated with the maximal value of the average m(k)(E ,T )/M
over the single-particle states k, viz.

mω(T )

M
= max

E

[∑
(k)

(
2 j(k) +1

)
m(k)(E ,T )/M∑

(k)
(
2 j(k) +1

) ]
. (27)

Following Ref. [14], the temperature dependence of the ω-
mass can be parameterized as follows:

mω(T )

M
= 1+

[
mω(T = 0)

M
−1

]
e−T /T0 , (28)

where mω(T = 0)/M and T0 are fitting parameters.

TABLE III: Best values of parameters mω(T = 0)/M and T0

for the exponential fit (28).

68Ni 70Ni 72Ni 74Ni 76Ni 78Ni
mω(T = 0)/M 1.33 1.34 1.39 1.54 1.34 1.14

T0 [MeV] 1.59 1.99 1.61 0.96 1.26 4.80

TABLE IV: The temperature evolution of the effective mass
m∗(T )/M and symmetry coefficient S(T )

T = 0 T = 1 MeV T = 1.5 MeV T = 2.0 MeV
m∗/M 0.83 0.72 0.68 0.66

S [MeV] 37.4 39.6 40.4 41.1

Furthermore, the impact of the temperature dependence
of the ω-mass on the symmetry energy can be determined.
In the nuclear EOS, the symmetry energy term reads

ES = S(T = 0)

(
1−2

Z

A

)2

, (29)

where S(T = 0) is the symmetry coefficient of the nuclear
matter at zero temperature. For the NL3 parameteriza-
tion, S(T = 0) = 37.4 MeV. It should be noted that this
value implicitly contains the contribution from the particle-
vibration coupling and pairing effects at zero temperature,
because the parameters of the NL3 meson-nucleon La-
grangian were obtained by fitting nuclear masses and radii
on the mean-field level [84]. One can, thus, estimate the
contribution of the PVC and pairing correlations at finite
temperature using the Fermi gas model. According to this
model, the contribution from the PVC and pairing effects
(qPVC) at temperature T contains two parts, i.e., the ki-
netic part which scales as 1/m∗(T ) and the temperature-
independent potential V :

EqPV C (T ) = ħ2c2k2
F

6M

[
M

m∗(T )

]
+V. (30)

Therefore, the symmetry coefficient S(T ) at finite tempera-
ture reads:

S(T ) = S(T = 0)+ ħ2c2k2
F

6M

[
M

m∗(T )
− M

m∗(T = 0)

]
, (31)

TABLE V: The dominant spectroscopic factors for the good
single-quasiparticle states around the Fermi surface

(strongly fragmented states not shown).

Nucleus 2d5/2 2d3/2 3s1/2 1g9/2 2p1/2 2p3/2 1f5/2
68Ni − − − 0.812 0.839 0.765 0.790
70Ni 0.540 − − 0.808 0.824 0.676 0.756
72Ni − − − 0.730 0.733 0.522 0.617
74Ni − − 0.653 0.752 0.708 0.537 0.580
76Ni − 0.597 0.755 0.655 0.752 0.608 0.605
78Ni 0.884 − 0.892 0.800 0.852 0.709 0.708
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on the asymmetry parameter δ2 for T = 1 MeV, T = 1.5 MeV,
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where the subtraction of the PVC and pairing contributions
at T = 0 aims to overcome the double counting. To complete
the calculation scheme, we use the expression for the Fermi
momentum kF via the nuclear matter density ρ0:

kF =
(

3

2
π2ρ0

)1/3

. (32)

For the NL3 parameterization, ρ0 = 0.148 fm−3 and, thus,
kF = 1.30 fm−1. For each temperature T , the effective mass
m∗(T ) was calculated using Eq. (25), where the value of
mω(T )/M was obtained from Eq. (28). By performing the
fitting of our microscopically computed ω-mass, we found
the best values of these parameters for 68−76Ni isotopes.
They are summarized in Table III for the 0 ≤ T ≤ 2 MeV
temperature interval, which is the most relevant range of
temperatures in astrophysical modeling, such as the CCSN
simulations [15]. Although these parameters are apparently
model-dependent, they are in a reasonable agreement with
those obtained in the semi-phenomenological calculations
of Ref. [14].

The best values of mω(T = 0) and T0 were obtained as the
averaged values of these two parameters over the five Ni iso-
topes under study: mω(T = 0)/M = 1.39 and T0 = 1.48 MeV.
The resulting values of the effective mass m∗(T ) and the
symmetry coefficient S(T ) for the 0 ≤ T ≤ 2 MeV tempera-
ture interval are summarized in Table IV. They illustrate a
remarkable increase of the symmetry coefficient with tem-
perature T , while the effective mass decreases considerably.
Fig. 7 displays the evolution of the symmetry coefficient
S(T ) with temperature in Ni isotopes associated with the
asymmetry parameter δ2, where δ= (N−Z )/A, for 0 ≤ T ≤ 2
MeV. One can see in Fig. 7 that, in particular, at all tem-
peratures (i) the symmetry coefficient peaks at 74Ni, and (ii)
the doubly magic nucleus 78Ni has the lowest symmetry co-
efficient. This trend can be explained by Eq. (31), which
indicates that the larger effective mass m∗(T = 0) at zero

temperature leads to the larger symmetry coefficient S(T ).
Meanwhile, since the k-mass is constant, the trend of the
effective mass m∗(T = 0) throughout the Ni isotopic chain
is solely governed by the ω-mass.

The temperature and energy dependencies of theω-mass
were analyzed in detail in Ref. [57] for the cases of 56,68Ni,
and the interested reader can be referred to this recent work
for a more complete picture of these dependencies. In the
present study we focused on the peak values of the ω-mass,
which is largely determined by m̄(k)(Em ,T ), where Em is the
energy of the peak. It is typically very close to the Fermi en-
ergy. As follows from Eq. (26), the mass m̄(k)(Em ,T ) is in-
versely proportional to the spectroscopic factor of the state
k as a function of energy and, furthermore, in the presence
of pairing correlations, to the occupation numbers (v2

(k) in
the BCS approximation) of the single-quasiparticle states
around the Fermi level. This explains why the symmetry
energy coefficient is maximal in 74Ni, if we compare the
spectroscopic factors of the dominant fragments around the
Fermi surface and the corresponding BCS occupation prob-
abilities. Table V summarizes the spectroscopic factors of
the dominant fragments around the Fermi surface for the
considered nickel isotopes. One can see immediately that
the mid-subshell isotopes 72−76Ni exhibit the lower spec-
troscopic factors, or stronger fragmentation, as compared
to those forming the closed subshell (68Ni) and closed shell
(78Ni). Moreover, 74Ni has the lowest value of the BCS oc-
cupation probability v2

(k) = 0.53 for the 1g9/2 state, which
makes the dominant contribution at the Fermi surface, that
further enhances the neutron effective mass in 74Ni at T = 0,
where the superfluid pairing vanishes. This explains the
maximum of the symmetry energy coefficient in 74Ni.

V. SUMMARY AND OUTLOOK

In this work, we investigated fragmentation patterns of
the single-particle states in neutron-rich nuclei at finite
temperature. The Dyson equation for the fermionic propa-
gator with the energy-dependent mass operator, or dynam-
ical self-energy, including the PVC mechanism was solved
numerically in the basis of the thermal relativistic mean
field for the even-even neutron-rich nickel isotopes with
the atomic masses A = 68−78. As in the zero-temperature
case, the dynamical self-energy at finite temperature is re-
sponsible for the fragmentation of the mean-field single-
particle states, while finite temperature represents another
dimension in the model parameter space to reveal the mi-
croscopic aspects of the particle-vibration coupling. Com-
plete fragmented single-particle spectra in the 20 MeV win-
dow around the Fermi energies of the considered nuclei
were extracted, and their temperature evolution was ana-
lyzed.

Furthermore, the temperature-dependent nucleon effec-
tive mass m∗(T ) was extracted from the calculated spectra
of nickel isotopes. Being itself a very important quantity
defining the nuclear EOS with significant consequences for
the CCSN [76], the nucleon effective mass is related to the
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symmetry energy, whose temperature dependence can be
deduced from m∗(T ). We found that the symmetry energy
coefficient S(T ) grows with temperature, in agreement with
earlier studies [14, 77], however, the concrete values of this
coefficient found in this work follow from a more advanced
microscopic calculations. In particular, an isotopic depen-
dence of S(T ) was accurately determined for the neutron-
rich nickel isotopes, which represent a high-sensitivity re-
gion of the nuclear landscape for the r-process and CCSN.
An enhancement of the symmetry energy coefficient was
found in the mid-subshell isotopes, that is linked to the en-
hancement of the superfluid pairing correlations below the
critical temperature as well as the PVC effects in those nu-
clear systems.

To investigate the essential factors determining the frag-
mentation patterns of single-particle states, we examined
the toy systems consisting of one, two and three single-
particle states and one phonon. We found that the frag-
mentation is sensitive to such quantities as the phonon
frequency, the PVC coupling strength, and the distance
between the single-particle states. The sensitivity of the
single-particle spectroscopic factors and fragment energies
to these characteristics is quantified by varying them inde-
pendently at various values of temperature. These studies
explain the fragmentation patterns obtained in the realistic
calculations, in particular, we established how the tempera-
ture evolution of the phonon modes translates to the evolu-
tion of the fragmentation patterns via the PVC mechanism.

The systematic studies presented in this work further ad-
vance the understanding of the behavior of atomic nuclei
at extremal conditions. Here we investigated the extremes
of the isospin and temperature, which are of prime im-
portance for astrophysical modeling of cataclysmic events,
such as the neutron star mergers and the supernova explo-
sions. The nuclear single-particle properties in the astro-
physical environments underly the behavior of the reaction
rates, such as the neutron capture, beta decay and electron
capture, which are pivotal for modeling the r-process nucle-
osynthesis and the core collapse of the supernovae. These
rates require calculations of fermionic two-body propaga-
tors in correlated media in a similar manner [6, 13], while
the results obtained in this work can be directly used for
studying the evolution of nuclear level densities with tem-
perature, which are another important part of the nuclear
physics input for the astrophysical modeling. Such studies
will be addressed by future efforts.
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Appendix A: Toy models

1. One-level model

Let us first consider a system which consists of one state
k1 and one phonon with frequency ω1. Under these condi-
tions, Eq. (12) for the diagonal mass operator Σe

k1
(ε) takes

the form:

Σe
k1

(ε) = g 1∗
k1k1

g 1
k1k1

{
N (ω1,T )+1−n(εk1 −µ,T )

ε−εk1 +µ−ω1

+ n(εk1 −µ,T )+N (ω1,T )

ε−εk1 +µ+ω1

}
. (A1)

The diagonalization of the matrix εk1 −µ ξ1(+1)
k1k1

ξ1(−1)
k1k1

ξ1(+1)∗
k1k1

εk1 −µ−ω1 0

ξ1(−1)∗
k1k1

0 εk1 −µ+ω1

 , (A2)

where

ξ1(±1)
k1k1

= g 1(±1)
k1k1

√
N (ω1,T )+n(±(εk1 −µ),T ), (A3)

results in three different energies ε(λ)
k1

(λ= 1, 2, 3). For each

λ, the corresponding spectroscopic factor S(λ)
k1

reads

S(λ)
k1

=
{

1+ g 1∗
k1k1

g 1
k1k1

[
N (ω1,T )+1−n(εk1 −µ,T )

[ε−εk1 +µ−ω1]2

+n(εk1 −µ,T )+N (ω1,T )

[ε−εk1 +µ+ω1]2

]}−1

ε=ε(λ)
k1

. (A4)

In contrast to the case of zero temperature, both forward-
going and backward-going terms (the first and the second
terms in the square brackets) take non-vanishing values for
the same mean-field reference state k1, regardless its loca-
tion. This occurs because of the smooth Fermi and Bose dis-
tribution functions in the numerators, and makes the frag-
mentation pattern different from the one at zero tempera-
ture.

To illustrate this model, we computed the spectroscopic
factors S(λ)

k1
for the specific neutron state 1f7/2 of 70Ni at fixed

temperature T = 1 MeV. From the thermal RMF calcula-
tions, the RMF energy εk1 of the state 1f7/2 and the chem-
ical potential µ at T = 1 MeV are obtained as −17.296 MeV
and −6.114 MeV, respectively. The phonon vertex g 1

k1k1
is

taken equal to 0.2 MeV, which is a typical value for the major
phonon vertices calculated within FT-RRPA. Fig. 8 (a) - (d)
demonstrates the evolution of the spectroscopic factors S(λ)

k1
with the phonon frequency ω1. As one can see, both first
and third energy fragments are dominant at ω1 ≤ 0.3 MeV,
while the second fragment becomes the dominant state at
ω1 > 0.3 MeV. The critical phonon frequency ωcrit

1 ≈ 0.3 MeV
refers to the phonon frequency, where the second fragment
starts becoming dominant, and the number of the compet-
ing fragments is maximal, i.e., equal to 3. A large number
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FIG. 8: Panels (a) - (d): The evolution of spectroscopic
factors S(λ)

k1
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FIG. 9: The evolution of the fragment energies ε(λ)
k1

with the
phonon frequency ω1 at T = 1 MeV (a) and the evolution of
the critical phonon frequency ωcrit

1 with temperature T for
g 1

k1k1
= 0.2 (upper line) and g 1

k1k1
= 2.0 (lower line )(b).

of the competing fragments can be associated with strong
PVC. Moreover, as shown in Fig. 9 (a), the energy differences
ε(2)

k1
− ε(1)

k1
and ε(3)

k1
− ε(2)

k1
between the fragmented states are

minimal at ω1 = ωcrit
1 . This implies a correlation between

the proximity of the fragments to each other and the degree
of fragmentation. Eq. (A4) suggests that the evolution of
the spectroscopic factors S(λ)

k1
with the phonon frequencyω1

is determined by the interplay between the forward-going
and the backward-going terms. To better understand this
interplay, we track the evolution of the forward-going and
backward-going terms with the phonon frequency ω1 for
each energy fragment ε(λ)

k1
, as displayed in Fig. 8 (e) - (g).

As it can be seen in Fig. 8 (f), there is an almost equal con-
tribution of the forward and the backward going terms to
the spectroscopic factor S(2)

k1
for all the phonon frequencies

FIG. 10: The two states k1 and k2 with the energy
difference δ in the second toy model.

ω1, while the backward (forward) going term is always dom-
inant in the first (third) energy fragment, as shown in Figs. 8
(e) (8 (g)). At ω1 < 0.3 MeV, the total contribution of the for-
ward and the backward going terms to the second energy
fragment is larger than to the other two fragments, leading
to the larger spectroscopic factors. Starting from ωcrit

1 ≈ 0.3
MeV, a rapid growth of the backward (forward) going terms
in the inverse spectroscopic factor S(1)

k1
(S(3)

k1
) occurs, that is

associated with a quick decrease of the spectroscopic factor
S(2)

k1
of the second fragment. Similar trends are observed for

different temperatures T and different values of the phonon
vertex g 1

k1k1
. For a fixed phonon vertex g 1

k1k1
= 0.2 MeV,

one observes an increase of the critical phonon frequency
ωcrit

1 by the amount of roughly 0.1 MeV per 1 MeV temper-
ature step. However, a somewhat faster increase of ωcrit

1 is
recorded when one increases the value of g 1

k1k1
by one or-

der of magnitude, as seen in Fig. 9 (b). Thus, the first toy
model demonstrates how the evolution of the spectroscopic
factors S(λ)

k1
with temperature T is governed by the phonon

frequencyω1 and the magnitude of the phonon vertex g 1
k1k1

.

2. Two-level model

In the second toy model, we add another state k2 to the
previous state k1 with the energy difference δ≡ εk2 −εk1 > 0,
as shown in Fig. 10. For the case of a two-level system with
one phonon mode, the two diagonal mass operators Σe

k1
(ε)

and Σe
k2

(ε), respectively, take the form:

Σe
k1

(ε) = g 1
k1k1

g 1∗
k1k1

N (ω1,T )+1−n(εk1 −µ,T )

ε−εk1 +µ−ω1

+ g 1∗
k1k1

g 1
k1k1

n(εk1 −µ,T )+N (ω1,T )

ε−εk1 +µ+ω1

+ g 1
k1k2

g 1∗
k1k2

N (ω1,T )+1−n(εk2 −µ,T )

ε−εk2 +µ−ω1

+ g 1∗
k2k1

g 1
k2k1

n(εk2 −µ,T )+N (ω1,T )

ε−εk2 +µ+ω1
(A5)
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FIG. 11: The evolution of the spectroscopic factors S(λ)
k1

(a)-(c) and S(λ)
k2

(d)-(f), and the fragment energies ε(λ)
k1

(g) and ε(λ)
k2

(h)
with the phonon frequency ω1 at T = 1 MeV and δ= 2.0 MeV.

and

Σe
k2

(ε) = g 1
k2k1

g 1∗
k2k1

N (ω1,T )+1−n(εk1 −µ,T )

ε−εk1 +µ−ω1

+ g 1∗
k1k2

g 1
k1k2

n(εk1 −µ,T )+N (ω1,T )

ε−εk1 +µ+ω1

+ g 1
k2k2

g 1∗
k2k2

N (ω1,T )+1−n(εk2 −µ,T )

ε−εk2 +µ−ω1

+ g 1∗
k2k2

g 1
k2k2

n(εk2 −µ,T )+N (ω1,T )

ε−εk2 +µ+ω1
. (A6)

The solutions ε(λ)
k1

and ε(λ)
k2

, where λ = 1, 2, ..., 5, are ob-
tained by diagonalizing the following two matrices:



εk1 −µ ξ1(+1)
k1k1

· · · · · · ξ1(−1)
k2k1

ξ1(+1)∗
k1k1

εk1 −µ−ω1 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0
ξ1(−1)∗

k2k1
0 0 0 εk2 −µ+ω1


(A7)

and 

εk2 −µ ξ1(+1)
k1k2

· · · · · · ξ1(−1)
k2k2

ξ1(+1)∗
k1k2

εk1 −µ−ω1 0 · · · 0
... 0

. . . · · · 0
...

...
...

. . . 0
ξ1(−1)∗

k2k2
0 0 0 εk2 −µ+ω1


. (A8)

According to Eq. (20), the corresponding spectroscopic fac-
tors S(λ)

k1
and S(λ)

k2
are determined via

S(λ)
ki

=
[

1− d

dε
Σe

ki
(ε)

]−1

ε=ε(λ)
ki

. (A9)

where i = 1,2. As before, we suppose the state k1 to be the
state 1f7/2 in the 70Ni nucleus and set all the phonon ver-
tices equal to 0.2 MeV. We first computed the spectroscopic
factors S(λ)

k1
and S(λ)

k2
for the fixed temperature T = 1 MeV, at

which the chemical potential µ=−6.114 MeV and the RMF
energy εk1 = −17.296 MeV. The energy of the second state
k2 is also fixed as εk2 = εk1 + δ, where δ = 2.0 MeV. Thus,
a smaller (larger) value of δ indicates a smaller (larger) en-
ergy distance between the states k2 and k1. The left (mid-
dle) panels of Fig. 11 display the evolution of the spec-
troscopic factors S(λ)

k1
(S(λ)

k2
) with the phonon frequency ω1

at T = 1 for the case of δ = 2.0 MeV. From that, one ob-
tains the critical phonon frequency ωcrit

1 of 0.3 MeV. This is
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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FIG. 12: The evolution of the spectroscopic factors S(λ)
k1

(a)-(c) and S(λ)
k2

(d)-(f) with the parameter δ at the fixed phonon

frequency ω1 = 0.4 MeV, and of the fragment energies ε(λ)
k1

with the phonon frequency ω1 for δ = 2.0 MeV (g), 4.0 MeV (h),
and 6.0 MeV (i), at T = 2 MeV.

in accordance with the observation that the fragment ener-
gies ε(1,2,3)

k1
(ε(3,4,5)

k2
) are most close to each other at ω1 = 0.3

MeV, as demonstrated in Fig. 11 (g) (11 (h)). A compari-
son between the left and middle panels of Fig. 11 shows an
apparent mirror symmetry between the two spectroscopic
strength distributions. This symmetry occurs as a conse-
quence of the single-valued phonon vertices, leading to the
symmetry between the mass operators Σe

k1
and Σe

k2
with re-

spect to the interchange k1 ↔ k2 (see Eqs. (A5) and (A6)).

Next, we increased the temperature T to 2 MeV and let
the parameter δ take the values of 2.0 MeV, 4.0 MeV, and
6.0 MeV. Fig. 12 (a) - (f) displays the spectroscopic factors
S(λ)

k1
and S(λ)

k2
at T = 2 MeV for various values of δ and fixed

phonon frequency ω1 = 0.4 MeV. One can notice that the
mirror symmetry between the two spectroscopic strength
distributions persists for larger δ and higher temperature
T . For several values of the parameter δ, the evolution of
the fragment energies ε(λ)

k1
with the phonon frequency ω1

at T = 2 MeV is shown in Fig. 12 (g) - (i). Furthermore,
one can see that the critical phonon frequencyωcrit

1 remains
constant, i.e., 0.4 MeV, as one varies the parameter δ. Anal-
ogously to the first toy model, the critical phonon frequency

ωcrit
1 increases roughly by 0.1 MeV per 1 MeV temperature

increase, regardless the value of δ. From Fig. 12, one ob-
serves that the fragments with the energies ε(1,2,3)

k1
become

more and more separated from those with ε(4,5)
k1

as the value
of the parameter δ increases. Meanwhile, the sum of the
spectroscopic factors S(1,2,3)

k1
exhausts the sum rule (21), as it

follows from Fig. 12.

3. Three-level model

In the third toy model, we consider a system which con-
sists of three states k1, k2, and k3, as shown in Fig. 13, and
one phonon mode with the frequency ω1. The energies of
both states k1 and k3 are fixed, while the state k2 is sepa-
rated by the energy δ from the state k1. As before, we as-
sociate the states k1 and k3 with the states 1f7/2 and 2p1/2
in the nucleus 70Ni. At T = 1 MeV, the RMF energy of the
state 2p1/2 is −8.717 MeV. We again set all the phonon ver-
tices equal to 0.2 and keep the energy difference between
the states k1 and k3 as ≈8.0 MeV. In this setting, it is instruc-
tive to vary the parameter δ and explore the sensitivity of



17

the results to the relative position of the state k2. Thus, by
varying δ, one can confront the cases of closed-shell and
open-shell nuclear systems. In this toy model we consider
the values of δ equal to 0.5, 4.0, and 8.0 MeV.

In the case of δ = 4.0 MeV, when the state k2 is located
approximately in the middle between the states k1 and k3,
all of the mean-field states exhibit a similar fragmentation
pattern in all temperature regimes and at various phonon
frequencies. For example, all of the three mean-field states
are weakly fragmented, as it can be seen in Fig. 14 (a) - (c),
and exhibit a manifestly dominant fragment with the spec-
troscopic factor around 0.6.

In contrast, for the case of δ= 0.5 MeV, when the states k1

and k2 get close to each other, they are strongly fragmented,
whereas the state k3 is weakly fragmented, as displayed in
Fig. 14 (d) - (f). This case illustrates the situation, when
the states k1 and k2 belong to the same major shell and be-
come strongly mixed by the PVC. The third state k3 belongs
to the next major shell, thus, becoming relatively isolated
and, therefore, less affected by the PVC.

For δ = 8.0 MeV the states k2 and k3 are strongly frag-
mented, leaving the state k1 weakly fragmented, as shown
in Fig. 14 (g) - (i). Here the states k2 and k3 would belong to

the same major shell, while the state k1 would be separated
by an energy gap with the previous major shell. Thereby, the
situation mirrors the case of δ= 0.5 MeV.

From the second and third toy models, one thus obtains
the most instructive information, which helps understand
why the fragmentation patterns are different for different
mean-field states and different PVC regimes. We conclude,
in particular, that the degree of fragmentation of each state
is sensitive to its relative distance from the neighboring
mean-field states, if they are connected by the PVC mech-
anism. Overall, the neighboring states, which are closer
to each other, are stronger fragmented. The low-frequency
phonons with larger coupling vertices contribute most sig-
nificantly to the fragmentation, as in the case of zero tem-
perature. However, the evolution of the phonon spectra
with temperature affects indirectly the fragmentation of the
single-particle states. For instance, more phonons with low
frequencies appear at higher temperatures due to the ther-
mal unblocking, as it was shown in Ref. [97], and their cou-
pling vertices, starting from small values, further grow with
the temperature increase. Finite temperature, thus, intro-
duces another dimension in the fragmentation pattern, that
may have an impact on the important nuclear properties,
such as symmetry energy, which is discussed in Section IV C.
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[88] N. Paar, P. Ring, T. Nikšić, and D. Vretenar, Quasiparticle ran-
dom phase approximation based on the relativistic hartree-
bogoliubov model, Physical Review C 67, 034312 (2003).

[89] E. Litvinova and P. Schuck, Nuclear superfluidity at finite tem-
perature, Physical Review C 104, 044330 (2021).

[90] R. A. Broglia and V. Zelevinsky, Fifty Years of Nuclear BCS

(WORLD SCIENTIFIC, 2013).
[91] G. Audi, A. Wapstra, and C. Thibault, The Ame2003 atomic

mass evaluation, Nucl. Phys. A 729, 337 (2003).
[92] E. Litvinova and H. Wibowo, Nuclear response in a finite-

temperature relativistic framework, Eur. Phys. J. A 55, 223
(2019).

[93] V. Vaquero et al., Fragmentation of single-particle strength
around the doubly magic nucleus sn132 and the position of
the 0f5/2 proton-hole state in in131, Physical Review Letters
124, 022501 (2020).

[94] E. Litvinova, P. Ring, and V. Tselyaev, Particle-vibration cou-
pling within covariant density functional theory, Physical Re-
view C 75, 064308 (2007).

[95] N. Van Giai and P. V. Thieu, Radial and energy dependences
of the nucleon effective mass in 208pb, Physics Letters B126,
421 (1983).

[96] Z. Ma and J. Wambach, Implications of a dynamical effective
mass on the nuclear shell model, Nuclear Physics A 402, 275
(1983).

[97] H. Wibowo and E. Litvinova, Physical Review C 100, 024307
(2019).

https://doi.org/10.1134/1.1320145
https://doi.org/10.1134/1.1320145
https://doi.org/10.1103/PhysRevC.104.044330
https://doi.org/10.1103/PhysRevLett.124.022501
https://doi.org/10.1103/PhysRevLett.124.022501
https://doi.org/https://doi.org/10.1016/0375-9474(83)90499-2
https://doi.org/https://doi.org/10.1016/0375-9474(83)90499-2

	Nuclear Shell Structure in a Finite-Temperature Relativistic Framework
	Abstract
	Introduction
	Dyson Equation for the Fermionic Propagator at Finite Temperature
	Numerical Scheme
	Results and Discussion
	The single-(quasi)particle states: (q)PVC and temperature evolution in 68-78Ni isotopic chain
	The influence of phonons 
	Temperature dependence of the nucleon effective mass and symmetry energy

	Summary and Outlook
	Acknowledgment
	Toy models
	One-level model
	Two-level model
	Three-level model

	References


