
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dependence of math
xmlns="http://www.w3.org/1998/Math/MathML">mrow>mo
>(/mo>mi>n/mi>mo>,/mo>mi>γ/mi>mo>)/mo>mtext>−
/mtext>mo>(/mo>mi>γ/mi>mo>,/mo>mi>n/mi>mo>)/m

o>/mrow>/math> equilibrium math
xmlns="http://www.w3.org/1998/Math/MathML">mi>r/mi>/
math>-process abundances on nuclear physics properties

Mengke Li and Bradley S. Meyer
Phys. Rev. C 106, 035803 — Published  6 September 2022

DOI: 10.1103/PhysRevC.106.035803

https://dx.doi.org/10.1103/PhysRevC.106.035803


Dependence of (n, γ)-(γ, n) Equilibrium r-Process Abundances on

Nuclear Physics Properties

Mengke Li and Bradley S. Meyer

Department of Physics and Astronomy,

Clemson University, Clemson, SC 29634-0978, USA

(Dated: August 8, 2022)

Abstract

In most r-process expansions, the dominant nuclear evolution occurs in an (n, γ)-(γ, n) equilib-

rium in which nuclei rapidly exchange neutrons but change charge much more slowly by beta decay.

Freezeout from this equilibrium shapes the final abundances but does not significantly alter the

overall global abundance pattern; therefore, it is important to understand the details of (n, γ)-(γ, n)

equilibrium both because it is the main evolution phase that determines the final abundance pat-

tern and because it is the starting point for the freeze out. Through use of a simple, but realistic,

phenomenological nuclear physics model, we show that isotopic abundances versus neutron number

in (n, γ)-(γ, n) equilibrium are well approximated as Gaussians. Nuclear pairing causes isotopic

abundances to alternate between two Gaussians, and shell effects cause the isotopic abundances

to shift from one gaussian to another when the neutron number crosses a magic number. More

complex neutron-separation energy curves versus mass number can be generated by adding a spike

function to a linearly declining curve. In such a case, the equilibrium abundance curve jumps from

one Gaussian to another for each added spike. Insights from our model can help shed light on

how detailed theoretical or experimental nuclear data affect r-process nucleosynthesis during the

(n, γ)-(γ, n) equilibrium phase.
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I. INTRODUCTION

Many details of the origins of Nature’s heaviest elements have long been understood

[1]. In stars or stellar disruptions, seed nuclei can capture neutrons to increase their nuclear

mass and beta decay to increase their nuclear charge. In a low neutron-density environment,

neutron capture occurs more slowly than beta decay. This is the slow (s) process, and, owing

to the slowness of the neutron captures, it only involves stable nuclei or nuclei near beta

stability. In higher neutron-density environments, rapid capture of neutrons by seed nuclei

leads to a population of neutron-rich isotopes that then increase their charge more slowly by

beta decay. This is the rapid (r) process. As nuclei proceed through the sequence of neutron

capture and beta decay in the r proces, they eventually acquire a magic (closed neutron

shell) number of neutrons. It is thermodynamically favorable for nuclei to retain this magic

number of neutrons through the course of several beta decays, with each subsequent decay

tending to take longer time than the previous one, before finally breaking away from this

bottleneck number of neutrons and proceeding again more rapidly to higher charge. Since

the r-process neutron captures are so rapid, the flow to higher charge is unimpeded by alpha

decay. This is in contrast to the s-process flow, which terminates in the lead-bismuth region

when nuclei are able to alpha decay faster than they capture neutrons. Only when r-process

nuclei reach well into the actinide region do they become unstable to fission, a process that

can occur much faster than neutron capture, and break into smaller fragments that begin

their climb to higher mass and charge anew. This growth of nuclei by absorption of neutrons,

mediated by beta decays to allow further neutron absorption, and interrupted by fission to

create new seeds for further growth ceases when the supply of free neutrons disappears and

nuclei decay to their ultimate stable daughters. Since a given nucleus spends most of its

time during the r process with a magic number of neutrons, the final abundance distribution

of the ensemble of nuclei undergoing this r (rapid) process shows peaks that arose from the

high abundance of closed-shell progenitor species.

While this overall understanding of the r process is well in place, many research avenues

remain open. Foremost among these is probably the pursuit of a detailed knowledge of

the astrophysical site or sites that can provide the free neutron density and timescales

appropriate for r-process nucleosynthesis. Sites involving ejecta from neutron stars have

long been implicated, in particular, either from newly born neutron stars in a core-collapse
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supernove (e.g., [2–4]) or from disrupted neutron stars in merger events (e.g., [5–7]), but the

exact setting or settings is not clear. In addition, the accretion disk forms in collapsars (the

supernova-triggering collapse of rapidly rotating massive stars) is also expected to be the

r-process elements production site [8].

Astronomical observations are providing crucial insights. The LIGO and Virgo obser-

vatories detected gravitational wave signal GW 170817 from the merger of two neutron

stars [9]. Follow up observations of the electromagnetic signal counterparts to GW 170817

showed evidence of a kilonova [10], which is likely powered by the decay of r-process pro-

duced isotopes [11]. The significant implication is that neutron star mergers are indeed a

site of r-process nucleosynthesis. This exciting result does not, however, rule out supernovae

as another source of r-process isotopes. Models indicate that only certain rare supernovae,

such as magnetorotational supernovae, can attain the conditions necessary to produce the

heaviest r-process elements (e.g., [12]). Given the rarity of such events, direct detection is

not likely forthcoming. On the other hand, observations of metal-poor stars provide key

insights into early enrichment of the Galaxy by the r process (e.g., [13]), and comparison

of detailed chemical evolution models to those observations can shed light on the relative

contribution of supernovae and neutron-star mergers to r-process nucleosynthesis (e.g., [14]).

Another avenue of research into the r process that is of clear importance for the nu-

clear physics community is the question of how the properties of the nuclei involved in the

nucleosynthesis influence the resulting r-process abundance pattern. As discussed above,

the essential knowledge behind formation of the telltale r-process abundance peaks is under-

stood. The precise shape and location of the peaks, however, depends on detailed knowledge

of beta-decay rates along closed neutron shells. Experimental campaigns to measure these

rates are crucial in providing this knowledge (e.g., [15]). Studies show, however, that it is

not just decay rates along closed shells that are important for understanding the r-process

abundance pattern–it is a full range of nuclear properties, including masses, cross sections,

decay rates, and beta-delayed neutron emission probabilities that play a crucial role (e.g.,

[16, 17]). Many of these properties are being measured now or will be soon at facilities such

as Radioactive Isotope Beam Factory (RIBF) in RIKEN or the Facility for Rare Isotope

Beams (FRIB) at Michigan State University.

The nuclear properties governing r-process abundance patterns impose themselves during

the nucleosynthesis; thus, the abundances result from nuclear reaction flows that arise from
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the interplay of the nuclear properties and the thermodynamics of the expanding matter.

This interplay therefore links the two questions discussed above: nuclear properties deter-

mine the reaction flows in the thermodynamic landscape largely determined by the particular

expansion trajectory in a given astrophysical site. By studying how final r-process abun-

dances depend on both the nuclear properties and thermodynamics, one may shed light on

both the r-process site and the important nuclear properties for measurement or theoretical

study.

One way of studying this interplay is to run a large suite of network calculations to

explore the r-process abundances resulting from a range of thermodynamic trajectories for

fixed nuclear physics (e.g., [18]) or from a range of nuclear properties for a set of chosen

thermodynamic trajectories (e.g., [16, 19–22]). Such sensitivity studies provide valuable

insight. They identify key nuclear parameters that govern final abundance distributions

or particular trajectories that yield outcomes most similar to observed abundances. They

also shed light on the range of abundance uncertainties that result from uncertainties in

the nuclear or thermodynamic input. That knowledge can guide efforts to narrow the input

uncertainties, either by nuclear experiment or more detailed computer modeling.

Another approach in studying the impact of the nuclear physics and thermodynamic

trajectory on r-process abundances is to seek some general principles that can guide our

understanding of how abundance patterns develop in the r process. With such knowledge,

one can then predict the effect of variations in nuclear properties and/or trajectory thermo-

dynamics on final abundances. Of course the original ideas regarding the development of the

r-process peaks fall into this category. Such an approach also is important for understanding

the origin of the rare-earth element peak in the r-process abundance pattern (e.g., [23, 24]).

Complicating this effort, however, is the fact that local variations in nuclear proper-

ties make the reaction flows that set abundances complex and difficult to follow in detail.

Neighboring isotopes may have significantly varying rates for beta decay, neutron capture, or

photodisintegration. This can make general flow patterns difficult to identify. Our approach

then is to construct a simplified model of the nuclear properties important for the r process

and use that model to gain insight into the details of the development of the r-process abun-

dances. We then systematically add complexity to the nuclear model and study how those

variations affect our understanding developed from the previous stage of complexity. At the

final stage of complexity, our nuclear model matches realistic nuclear models well, so, by
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our stepwise process, we are able to develop some general principles for understanding how

nuclear properties and trajectory thermodynamics set r-process abundances.

In this paper, we apply our approach to the (n, γ)-(γ, n) equilibrium phase of the r

process. This is the phase in which the global abundance pattern is largely established in

most r-process expansions. The first r-process network calculations assumed (n, γ)-(γ, n)

equilibrium [25] for computational feasibility. (n, γ)-(γ, n) equilibrium, however, is not the

phase that sets the final r-process abundances. That is the r-process freezeout in which

a final flurry of reactions shuffle neutrons among the nuclei until all free neutrons have

disappeared. Nevertheless, (n, γ)-(γ, n), or “classical”, r-process calculations have provided

important insights into r-process flows and nuclear physics input (e.g., [26, 27]). Also good

knowledge of (n, γ)-(γ, n) equilibrium abundances provide a basis to study the freezeout in

subsequent work since (n, γ)-(γ, n) equilibrium is the starting point for the freezeout and

is the goal of the system during freezeout, even if that goal is not reachable in the final

moments of the nucleosynthesis.

We begin by discussing the (n, γ)-(γ, n) equilibrium phase of the r process in the context

of the full expansion of the matter from high temperature and density. The (n, γ)-(γ, n)

equilibrium isotopic abundances depend on the run of neutron-separation energy with mass

number. We then demonstrate how that run depends on a mix of parameters in a simple

nuclear mass model. That mix of parameters makes it difficulty to cull the essential de-

pendence of the equilibrium abundances on the neutron-separation energy as a function of

mass number, so we develop our own nuclear model. To do so, we apply a finite calculus to

turn power series expressions of neutron-separation and beta-decay energies into a nuclear

mass model. We then use our nuclear mass model to understand (n, γ)-(γ, n) equilibrium

abundances in terms of our purely mathematical prescription. We then demonstrate how

to use our model to understand equilibrium abundances from more realistic nuclear models.

Finally, we show that our results can also be applied to proton-rich nucleosynthesis. Since

(n, γ)-(γ, n) equilibrium is the starting point for the r-process freezeout, our work sets the

stage for understanding that final phase of the nucleosynthesis. In order to further illustrate

the ideas in this paper, we have also prepared a number of Jupyter notebooks that allow the

user to study (n, γ)-(γ, n) equilibrium isotopic abundances with either our simple nuclear

physics model or more realistic ones [28].
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II. (n, γ)− (γ, n) EQUILIBRIUM

The nucleosynthesis of matter expanding from high temperature and density is well de-

scribed as a “descent of the hierarchy of statistical equilibria” [29]. Each stage in the

hierarchy is characterized by a set of rate-based constraints on the abundances which in-

crease in number as time progresses in the expansion. The (n, γ)− (γ, n) equilibrium phase

of r-process nucleosynthesis is one phase in the nucleosynthesis occurring in the expansion

of neutron-rich matter in which isotopes are in equilibrium under exchange of neutrons due

to the rapid neutron capture and disintegration reaction rates that prevail, but the isotope

chains are not in equilibrium with each other due to the slowness of charged-particle and

β− decay rates that allow nuclei to flow from one element to another [30]. Much of the

abundance pattern resulting from an r-process expansion is established in (n, γ) − (γ, n)

equilibrium, so it is a crucial phase in the nucleosynthesis. That abundance pattern is

shaped by final freezeout reactions after the (n, γ)− (γ, n) equilibrium breaks down.

To explore this evolution quantitatively, we follow the approach of comparing network

abundances to constrained equilibria [29]. For a system at constant temperature and volume,

or, equivalently, at constant mass density for a fixed number of nucleons, the change in the

free energy per nucleon f is given by

df =
∑
i

µidYi (1)

where µi is the chemical potential i and Yi is the abundance per nucleon of species i,

respectively. Equilibrium abundances are then those abundances that give a free energy

minimum such that df = 0. That minimum is subject to constraints. First, the general

constraint is that the number of nucleons is fixed such that∑
Z

∑
A

AY (Z,A) = 1 (2)

where Y (Z,A) is the abundance per nucleon of the species with atomic number Z and mass

number A. If the weak reaction timescales are long compared to other timescales in the

problem, the electron-to-nucleon ratio Ye may be taken to be fixed as well. For charge

neutral matter, then, the constraint is∑
Z

∑
A

ZY (Z,A) = Ye (3)
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the condition df = 0 with the constraints in Eqs. (2) and (3) results in the condition for

nuclear statistical equilibrium (NSE)

µ(Z,A) = Zµp + (A− Z)µn (4)

where µp and µn are the chemical potentials of the free protons and neutrons, respectively.

Further constraints on equilibrium may be applied. If the sum of abundances of some

cluster C of species changes slowly in time due to slow reaction rates, that abundance sum

may be taken to be fixed such that ∑
i∈C

Yi = YC (5)

In this case, the quasi-equilibrium (QSE) condition results:

µ(Z,A) = µ̃(Z,A) + Zµp + (A− Z)µn (6)

where µ̃(Z,A) is a Lagrange multiplier (a chemical potential offset from NSE). The QSE

condition is that all species i in the cluster C have the same chemical potential offset such

that µ̃(Zi, Ai) = µC for i ∈ C. The main QSE condition is that all heavy nuclei (nuclei

with, say, Z > 2) are in a single cluster. In this case, the nuclei in the cluster are able to

exchange neutrons and protons as rapidly as required to maintain the QSE, but the total

number of heavy nuclei is not changing in time because the three-body reactions assembling

heavy nuclei from neutrons, protons, and alpha particles are slow [31].

In an expanding and cooling system, eventually new rates become too slow to maintain

the QSE. New clusters appear, denoted Cj with index j distinguishing the different clusters.

Each cluster has its own abundance constraint YCj
, analogous to Eq. 5, and its own chemical

potential offset µ̃Cj
. As the expansion continues, further clusters appear until final freezeout

when there is a separate abundance constraint on each species.

r-process expansions typically proceed through such a history. The (n, γ) − (γ, n) equi-

librium phase of the expansion is the stage when each isotope chain is an abundance cluster.

Nuclei in the isotope chain exchange neutrons freely, but charged-particle reactions have

frozen out. Nuclei increase charge by β− decay only.

We explore this evolution with an r-process network calculation. The calculation used

the NucNet Tools network code suite [32]. It began with an initial temperature T9 =

T/109 K = 10 and density ρ = 109 g/cc. The initial electron fraction Ye = 0.2, and the
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matter expanded such that the density declined with time as ρ(t) = ρ(0) exp(−t/τ), with

τ = 0.1 s. The temperature behaved as ρ ∝ T 3. The calculations ran for a total duration of

106 seconds.

Fig. 1 shows the chemical potential offset of a subset of species in the range from Cr

(Z = 24) to Ru (Z = 44) in the network at time t = 0.243 s into the expansion. At this

moment, the temperature is T9 = 4.44 and the density is ρ = 8.78 × 107 g/cc. The color

for each species shows the chemical potential offset relative to that for the most abundant

species (79Cu) in the range of species in the figure at that moment in the expansion. To

make a dimensionless quantity, the chemical potential offsets are also divided by kT , where

k is Boltzmann’s constant. The values of the scaled chemical potential offset for each species

may be inferred from the color bar in Fig. 4. As is evident, all isotopes in the scope of the

figure at this point in the expansion have a chemical potential offset near that of 79Cu. The

high temperature means neutron-capture and charged-particle reaction rates are sufficiently

large that all heavy isotopes are in equilibrium under exchange of neutrons and protons.

Fig. 2 shows the chemical potential offsets at t = 0.332 s in the expansion. The tempera-

ture has dropped to T9 = 3.30 and the density has fallen to ρ = 3.60× 107 g/cc. Differences

in the chemical potential offsets are now evident. The most abundant species is 84Zn, with

Z = 30. Isotopes with Z < 30 have chemical potential offsets greater than that for 84Zn,

which indicates that the abundance of those nuclei are in excess of the full QSE demands.

In contrast, isotopes with Z > 30 have chemical less than that for 84Zn. The spontaneous

evolution of the system would favor a decrease in the free energy and therefore would favor

a decrease in the abundance of Z < 30 species and an increase in the abundance of Z > 30

isotopes. At this point in the expansion, however, the charged-particle reactions that would

effect this change are too slow to keep up with the equilibrium demands. Within an isotope

chain, however, chemical potential offsets are uniform, which means that neutron capture

and disintegration reactions are sufficiently fast to maintain the equilibrium under exchange

of neutrons.

Fig. 3 shows the chemical potential offsets at t = 0.432 s. The temperature has dropped

further to T9 = 2.369 and the density is ρ = 1.33× 107 g/cc. By this point, isotope chains,

while still in equilibrium under exchange of neutrons, are now largely out of equilibrium with

each other due to the slowness of the charged-particle reactions. The network is entering

the (n, γ) − (γ, n) equilibrium phase of the expansion. From this point on, nuclei increase
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their charge only by β− decays. The double-outlined circles in the figure give the abundance

maximum for each isotope chain (other than the one with the overall maximum); therefore,

the locus of these circles (plus the triple-outlined octagon) is the “r-process path” at this

moment, and the path shows the characteristic kinks along the closed shells at neutron

numbers N = 50 and N = 82 due to the strong neutron binding at those magic numbers.

The (n, γ) − (γ, n) equilibrium phase is crucial for the r process expansion because it

is here that the global abundances are set. Fig. 5 shows the network abundances versus

mass number A at the last moment when the (n, γ) − (γ, n) equilibrium holds and at the

end of the calculation. The last moment of the equilibrium is when the isotopic equilibrium

abundances first start to deviate from the network isotopic abundances, or, equivalently,

when the neutron-capture reaction flows no longer balance the photodissociation flows. We

recognize that there is not a single moment when all isotope chains fall out of (n, γ) −

(γ, n) equilibrium. Nevertheless, the spread in times when the different chains fall out

of equilibrium is quite narrow relative to the duration of the nucleosynthesis; thus, the

last equilibrium abundances in Fig. 5 are indeed a good representation of the network

abundances at the end of (n, γ)− (γ, n) equilibrium.

The figure shows the dramatic smoothing (that is, the reduction of the variation of abun-

dances versus mass number) that occurs during the freezeout from the (n, γ)− (γ, n) equi-

librium, but it also shows that smoothing is largely just a reshaping of the global abundance

pattern that was already set during the (n, γ)− (γ, n) equilibrium.

Because species with the same atomic number Z have the same chemical potential offset

in (n, γ)− (γ, n) equilibrium, it is clear that

µ(Z,A)− µ(Z,A− 1) = µn (7)

which is the well-known (n, γ) − (γ, n) equilibrium condition [1]. In the form µ(Z,A) =

µ(Z,A − 1) + µn, it expresses the equilibrium as the condition that the neutron capture

reaction on (Z,A−1), which adds a species (Z,A) with free energy cost µ(Z,A), is balanced

by the disintegration reaction on (Z,A), which adds a species (Z,A − 1) and a neutron n

with free energy cost µ(Z,A− 1) + µn.

Another interpretation of Eq. (7) is possible. µn is the chemical potential of the

free neutrons, that is, the neutrons outside of nuclei; thus, we can label µn = µ
(out)
n .

We imagine transferring some of those neutrons to species (Z,A − 1). In this case,
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dY (Z,A) = −dY (Z,A− 1) = −dYn, and the free energy change (Eq. (1)) is

df = (µ(Z,A)− µ(Z,A− 1)) (−dYn)− µ(out)
n dYn (8)

We now note that −dYn is the increase in the number of neutrons per nucleon contained in

species (Z,A); thus, we infer that the chemical potential of neutrons inside nucleus (Z,A)

is

µ(in)
n (Z,A) = µ(Z,A)− µ(Z,A− 1) (9)

in which case, (n, γ) − (γ, n) equilibrium is the condition that the chemical potential of

neutrons inside each nuclear species is equal to the chemical potential of neutrons outside

the nuclei: µ
(in)
n (Z,A) = µ

(out)
n .

The chemical potential of species i may be written in terms of the rest mass mi as

µi = mic
2 + µ′i, in which case Eq. (7) may be written

µ′(Z,A)− µ′(Z,A− 1) = µ′n + Sn(Z,A) (10)

where Sn(Z,A) is the neutron-separation energy

Sn(Z,A) = m(Z,A− 1)c2 +mnc
2 −m(Z,A)c2 (11)

Under the largely valid assumption that all species undergoing r-process nucleosynthesis are

non-interacting and non-relativistic, the chemical potential of species (Z,A) is given by

µ′(Z,A) = kT ln

ρNAY (Z,A)

G(Z,A)

(
2π}

m(Z,A)kT

)3
2

 (12)

In this equation, NA is Avogadro’s number and G(Z,A) is the nuclear partition function.

From these equations, we can thus write

Y (Z,A)

Y (Z,A− 1)
=

G(Z,A)

G(Z,A− 1)

[
m(Z,A)

m(Z,A− 1)

]3/2

exp

{
1

kT
[µ′n + Sn(Z,A)]

}
(13)

This equation shows the relative abundances of neighboring species in an isotopic chain in

(n, γ)− (γ, n) equilibrium. Products of such ratios will give the abundance of species (Z,A)

relative to the species (Z,A0) at the beginning of the isotope chain:

Y (Z,A)

Y (Z,A0)
=

Y (Z,A)

Y (Z,A− 1)
× Y (Z,A− 1)

Y (Z,A− 2)
× ...Y (Z,A0 + 1)

Y (Z,A0)

=
G(Z,A)

G(Z,A0)

[
m(Z,A)

m(Z,A0)

]3/2

exp

{
1

kT

[
(A− A0)µ′n +

A∑
A′=A0+1

Sn(Z,A′)

]}
(14)
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The abundances Y (Z,A) in Eq. (14) are scaled to the abundance at the beginning of the

isotopic chain. They can be normalized as appropriate, for example, to give the total isotopic

abundance in a corresponding network calculation or to give the maximum abundance in

the chain a value of unity. In what follows, we thus refer to Eq. (14) as the (n, γ) − (γ, n)

equilibrium isotopic abundance distribution for element Z.

III. NEUTRON-SEPARATION ENERGY DEPENDENCE ON MASS NUMBER

Eq. (14) shows that the abundances in an isotope chain in (n, γ) − (γ, n) equilibrium

depend on the variation of the neutron-separation energy with mass number A. To get a

sense of that variation, we consider a simple liquid-drop model for the nucleus [33]. In this

semi-empirical model, the rest mass energy for a nuclear species (Z,A) is given by

m(Z,A)c2 = Zmpc
2 + (A− Z)mnc

2 − aVA+ aSA
2/3 + aC

Z2

A1/3
+ aA

(A− 2Z)2

A
(15)

where the last four terms are the volume term, surface term, Coulomb term, and asymmetry

term, respectively. With this formula, the neutron-separation energy can be written as

Sn(Z,A) = aV −aA−aS[A
2
3 − (A−1)

2
3 ]−acZ2[A−

1
3 − (A−1)−

1
3 ] −4aAZ

2[A−1− (A−1)−1]

(16)

In order to find the run of neutron-separation energy with mass number, we simultaneously

expand Sn in a Taylor and power series about A0. Thus, we write

Sn(Z,A) =
∞∑
k=0

1

k!

(
∂kSn
∂Ak

)
A0

(A− A0)k (17)

and

Sn(Z,A) =
∞∑
k=0

Sk(A0 − A)k (18)

The power series coefficients Sk in Eq. (18) are then given by

Sk = (−1)k
1

k!

(
∂kSn
∂Ak

)
A0

(19)

By computing the derivative of Eq. (16) and making the largely valid assumption that

A0 � 1, we find

Sk =
Cs(aSA

2/3
0 ) + Cc

aCZ
2

A
1/3
0

+ Ca
4aAZ

2

A0

Ak+1
0

+ C0 (20)
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where

Cs =
−2(3k − 2)!!!

3k+1k!

Cc =
(3k + 1)!!!

3k+1k!

Ca = k + 1

(21)

with the triple-factorial defined as x!!! = x(x− 3)(x− 6)... with the understanding that any

term in the product less than or equal to zero should be set to one. For k = 0, C0 = aV −aA,

otherwise C0 = 0.

From Eq. (20), we may notice that the power-series coefficients are a complex mix of terms

in the liquid-drop model. This is even more true for more complex nuclear physics models

that include other macroscopic or microscopic terms. Such complexities make it difficult

to disentangle the effects of variations of nuclear mass model properties on (n, γ) − (γ, n)

equilibrium abundances. Our approach instead will be to assume a power-series form for the

neutron-separation energy, as in Eq. (18), and study the dependence of the abundances on

individual coefficients. We will then add microscopic effects due to neutron pairing and shell

phenomena. With a good understanding of the dependence of abundances on the power-

series coefficients (and simple shell and pairing parameterizations), one may then compare

particular nuclear mass models to our parameterizations to infer how isotopic abundances

will depend on the details of those models.

From Eq. (20), we may also notice that Sk+1

Sk
∼ O( 1

A0
). This means that, as long as

A−A0 . A0, the power-series expansion of Sn will be dominated by the lowest-order terms.

We will find it sufficient to restrict our considerations to k ≤ 2.

IV. FINITE CALCULUS

The isotopes of nature are distinguished by integer numbers of nucleons, and the prop-

erties of these isotopes are functions of these nucleon numbers or differences between them.

For this reason, it is convenient for our purpose of studying the dependence of isotopic

abundances on power-series expansions of nuclear properties to use a “discrete” or “finite”

calculus to derive and characterize these quantities.
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A. Finite Differentiation

Finite differences (our “finite derivatives”) were introduced by Taylor in 1715 [34] and

have played an important role in the development of calculus and computational mathemat-

ics. This section introduces our notation.

In continuous calculus, the partial derivative of a multivariate function f(x, y) is defined

as (
∂f(x, y)

∂x

)
y

= lim
∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
(22)

To denote our finite derivatives, we proceed analogously. The step ∆x away from x is

constrained to have unit value. Consider a function F (x, y), where x is the integer variable

of interest and y is an integer variable or set of variables other than x. Now ∆x = 1 can be

taken in one of two directions. We denote the backward derivative of F as[
∂F (x, y)

∂x

]−
y

≡ F (x, y)− F (x− 1, y) (23)

Similarly, we denote the forward derivative of F as[
∂F (x, y)

∂x

]+

y

≡ F (x+ 1, y)− F (x, y) (24)

In either case, the subscript y indicates that the variable (or set of variables) y is held

constant.

There are cases where it is useful to consider quantities such as F (x, y)− F (x− 2, y). It

is a simple matter to show that

F (x, y)− F (x− 2, y) =

[
∂F (x, y)

∂x

]−
y

+

[
∂F (x− 1, y)

∂x

]−
y

(25)

B. Finite Integration

In continuous calculus, the integral of a function may be defined in terms of a Riemann

sum. Suppose [a, b] is a closed interval of real numbers and f(x, y) is a function that maps

real numbers x ∈ [a, b] to real numbers. The variable y is a real number or set of real

numbers that remains fixed during the mapping. We let

P = {[x0, x1], [x1, x2], ..., [xn−1, xn]} (26)
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be a partition of the real numbers over [a, b], with

a = x0 < x1 < x2 < ... < xn = b (27)

We may define our integral as∫ b

a

f(x, y)dx = lim
n→∞

n∑
i=1

f(x∗i , y)∆xi (28)

where ∆xi = xi − xi−1 and x∗i ∈ [xi−1, xi].

We proceed analogously to define our finite integrals. We consider two integers a and b,

with a < b, and the closed interval of integers [a, b]. We consider a function F (x, y) that

maps integer x ∈ [a, b] to numbers. We let

P = {[x0, x1], [a+ 1, x2], ..., [xn−1, xn]} (29)

be a partition of the integers over [a, b], with

a = x0 < x1 = a+ 1 < x2 = a+ 2 < ... < xn−1 = b− 1 < xn = b (30)

Since the variable x in F (x, y) is now integer, we have an ambiguity in defining x∗i : it must

either be xi−1 or xi. In the former case, our finite integral becomes[∫ b

a

F (x, y)dx

]−
=

n−1∑
i=0

F (xi, y) =
b−1∑
x=a

F (x, y) (31)

In the latter case, our finite integral becomes[∫ b

a

F (x, y)dx

]+

=
n∑
i=1

F (xi, y) =
b∑

x=a+1

F (x, y) (32)

The limits on the sums show that we are to understand both integrals to be zero in the case

a = b

The superscripts in finite derivatives and finite integrals so defined are such that in-

tegrals can properly be considered the antiderivatives of the finite derivatives of opposite

superscripts, where the ± of a derivative in a sense undoes the ∓ of an integral, and vice

versa. Explicitly, this means,[
∂

∂x

[∫ x

x0

F (x′, y)dx′
]−]+

y

= F (x, y) (33)

and [
∂

∂x

[∫ x

x0

F (x′, y)dx′
]+
]−
y

= F (x, y) (34)
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C. Application to Polynomials

In most cases, we will deal with polynomial integer functions. This means we consider

functions built up of terms like F (x, y) = Cxpyq, where C is a constant and p and q are

integers. In general, if we focus on x, the Cyq term will be a simple multiplicative factor on

the resulting derivative or integral. In such a case, we may compute[
∂

∂x
(xp)

]−
y

= xp − (x− 1)p =

p−1∑
k=0

(
p

k

)
xk (−1)p−k+1 (35)

Here
(
p
k

)
is the usual binomial coefficient. Similarly,[

∂

∂x
(xp)

]+

y

= (x+ 1)p − xp =

p−1∑
k=0

(
p

k

)
xk (36)

For either derivative, the leading term is pxp−1, as expected from continuous calculus, but

there are other terms due to our discrete treatment. For the special case p = 0, and in the

case of any constant with respect to the variable of differentiation, the finite derivatives work

out to x0 − (x − 1)0 = (x + 1)0 − x0 = 1 − 1 = 0. Table I shows both kinds of derivatives

for the first few values of p.

p
[
∂
∂x(xp)

]+
y

[
∂
∂x(xp)

]−
y

0 0 0

1 1 1

2 2x+ 1 2x− 1

3 3x2 + 3x+ 1 3x2 − 3x+ 1

TABLE I: Finite derivatives of xp for p = 0, 1, 2, 3.

For integrals, we find[∫ x

x0

x′pdx′
]−

=
x−1∑
x′=x0

x′p =
x−1∑
x′=0

x′p −
x0−1∑
x′=0

x′p (37)

This may be written [∫ x

x0

x′pdx′
]−

=
1

p+ 1
[Bp+1(x)−Bp+1(x0)] (38)
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where Bp+1(x) is the Bernoulli polynomial of order p + 1. The explicit formula for the

Bernoulli polynomial of order n is

Bn(x) =
n∑
k=0

(
n

k

)
Bn−kx

k (39)

where Bn−k is the Bernoulli number of order n−k. The Bernoulli number Bn is the Bernoulli

polynomial Bn(x) evaluated at x = 0. Table II shows the first few Bernoulli polynomials.

p Bp(x)

0 1

1 x− 1
2

2 x2 − x+ 1
6

3 x3 − 3
2x

2 + 1
2x

TABLE II: The first four Bernoulli polynomials.

For Bp(x), the highest-power term of x is xp; thus, the leading term in x in Eq. (38) is

1
p+1

[
xp+1 − xp+1

0

]
, as expected from continuous calculus, although the full finite integral is

a sum of many terms.

We similarly find[∫ x

x0

x′pdx′
]+

=
1

p+ 1
[Bp+1(x+ 1)−Bp+1(x0 + 1)] (40)

The leading term for this integral is 1
p+1

[
xp+1 − xp+1

0

]
, which again is as expected. Table

III shows the integrals for the first few values of p.

It is evident, but also explicitly confirmed in Appendix A, that a change of variable

u = x′ − x0 leads to[∫ x

x0

(x′ − x0)
p
dx′
]+

=

[∫ x−x0

0

updu

]+

=
1

p+ 1
[Bp+1(x− x0 + 1)−Bp+1(1)] (41)

One similarly finds [∫ x

x0

(x′ − x0)
p
dx′
]−

=
1

p+ 1
[Bp+1(x− x0)−Bp+1] (42)

From the relation between Bernoulli polynomials Bn(x) that

Bn(x+ 1)−Bn(x) = nxn−1 (43)
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p
[∫ x
x0
x′pdx′

]+ [∫ x
x0
x′pdx′

]−
0 x− x0 x− x0

1 1
2 [(x2 − x2

0) + (x− x0)] 1
2 [(x2 − x2

0)− (x− x0)]

2 1
3 [(x3 − x3

0) + 3
2(x2 − x2

0) + 1
2(x− x0)] 1

3 [(x3 − x3
0)− 3

2(x2 − x2
0) + 1

2(x− x0)]

3 1
4 [(x4 − x4

0) + 2(x3 − x3
0) + (x2 − x2

0)] 1
4 [(x4 − x4

0)− 2(x3 − x3
0) + (x2 − x2

0)]

TABLE III: Finite integrals of xp for p = 0, 1, 2, 3.

it is clear that the inverse relations in Eqs. (33) and (34) between finite derivatives and

integrals hold for these polynomial forms.

For completeness, we note some relations for functions with F (x) = x−p, where p is an

integer and p > 0, in Appendix B.

V. NUCLEAR PHYSICS

Isotopes are distinguished by the atomic number Z and mass number A. The rest mass

of an isotope (Z,A) is M(Z,A)c2, with c the speed of light. The rest mass of species (Z,A)

can be quantified conveniently in terms of the mass excess ∆(Z,A) such that

M(Z,A)c2 = AMuc
2 + ∆(Z,A) (44)

where Mu is the atomic mass unit (masses are typically given in terms of atomic masses,

which include the electrons). The binding energy B(Z,A) of a species, which is the excess

of the masses of the constituent nucleons over the mass of the species is then

B(Z,A) = Z∆(1, 1) + (A− Z)∆n −∆(Z,A) (45)

where ∆n is the mass excess of the free neutron.

The neutron-separation energy Sn(Z,A) is the minimum energy required to remove a

neutron from species (Z,A) and is given by

Sn(Z,A) = ∆n + ∆(Z,A− 1)−∆(Z,A) (46)

From Eqs. (23) and (45), we thus find

Sn(Z,A) = ∆n −
[
∂∆(Z,A)

∂A

]−
Z

(47)
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Equivalently, this gives

Sn(Z,A) =

[
∂B(Z,A)

∂A

]−
Z

(48)

We see that the neutron-separation energy of a species is the rate of change (by the finite,

backward derivative) of the nuclear binding energy of the species with the mass number at

constant Z.

The proton-separation energy of species (Z,A), that is, the minimum energy required to

remove a proton from species (Z,A), is given by

Sp(Z,A) = ∆(Z − 1, A− 1) + ∆(1, 1)−∆(Z,A) (49)

This can be recast in our finite-calculus language, for example, by

Sp(Z,A) = ∆(1, 1)−
[
∂∆(Z,A)

∂Z

]−
N=A−Z

(50)

A related quantity to the neutron-separation energy is the two-neutron-separation energy,

which is convenient for comparing nuclei with the same neutron number parity. For species

(Z,A), it given by

S2n(Z,A) = 2∆n + ∆(Z,A− 2)−∆(Z,A) (51)

From Eqs. (25) and (45), we see that

S2n(Z,A) =

[
∂B(Z,A)

∂A

]−
Z

+

[
∂B(Z,A− 1)

∂A

]−
Z

(52)

The beta-decay Q value of a species (Z,A) is Qβ(Z,A) and is the energy released from

the decay that does not go into the rest mass of product particles. It is given by

Qβ(Z,A) = ∆(Z,A)−∆(Z + 1, A) (53)

From Eq. (24) we may identify this as

Qβ(Z,A) = −
[
∂∆(Z,A)

∂Z

]+

A

(54)

This can also be written

Qβ(Z,A) =

[
∂B(Z,A)

∂Z

]+

A

+ (∆n −∆(1, 1)) (55)

The beta-decay Q value of a species is thus the rate of change (by the finite, forward

derivative) of the binding energy of the species with Z at constant A plus the energy a

neutron releases in turning into a proton (plus electron).
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Normally (and most realistically) one proceeds by measuring or computing nuclear masses

(or mass excesses) and then deriving by computing from those masses the needed quantities

for r-process calculations such as Sn(Z,A) or Qβ(Z,A). In our finite calculus language, this

approach is to take finite derivatives of measured or computed quantities.

Our approach will be different. Since we will be beginning with simplified nuclear physics

relevant to r-process nucleosynthesis, we will specify quantities like Sn and Qβ and then

integrate to find binding energies and masses. With this approach, we would find, for

example, that

B(Z,A) = B(Z, Ã) +

[∫ A

Ã

Sn(Z,A′)dA′
]+

(56)

or, similarly,

∆(Z,A) = ∆(Z, Ã) +
(
A− Ã

)
∆n −

[∫ A

Ã

Sn(Z,A′)dA′
]+

(57)

We can also find

B(Z,A) = B(Z̃, A) +

[∫ Z

Z̃

(Qβ(Z ′, A)− {∆n −∆(1, 1)}) dZ ′
]−

(58)

or, similarly,

∆(Z,A) = ∆(Z̃, A)−
[∫ Z

Z̃

Qβ(Z ′, A)dZ ′
]−

(59)

VI. SIMPLE NUCLEAR MODEL

We build up our simple nuclear model from prescribed forms for the neutron-separation

and beta-decay energies. We begin by assuming smooth variations in these energies that

come from macroscopic terms in a nuclear mass model. We then add microscopic terms that

contribute non-smooth variations in the nuclear properties.

A. Macroscopic Mass Model

We construct our macroscopic mass model by assuming smooth variation of the neutron-

separation energy in the form

Sn(Z,A) =
km∑
k=0

Sk(A0(Z)− A)k (60)
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and the beta-decay energy in the form

Qβ(Z,A) =
km∑
k=0

Qk(Z0(A)− Z)k (61)

Here A0(Z) and Z0(A) are functions that define the reference curve for our network of nuclei

where Sn = S0 and Qβ = Q0. We choose a linear reference curve such that

A0(Z) = C1 + (C2 + 1)Z (62)

and

Z0(A) =
A− C1

C2 + 1
(63)

where C1 and C2 are constants defining the intercept and slope of the reference curve.

We start from a given species (Z̃, Ã). From Eq. (57), we derive the mass excess ∆(Z̃, A)

by integrating over A. Similarly, with Eq. (59), we derive the mass excess ∆(Z,A) by

integrating over Z. Since the relevant quantities will be differences in ∆(Z,A), we choose

∆(Z̃, Ã) = 0 for convenience. From Eq. (40), we thus obtain

∆(Z,A) = (A− Ã)∆n

−
km∑
k=0

k∑
p=0

(−1)p
(
k

p

)[
SkA0(Z̃)k−p

{
Bp+1(A+ 1)−Bp+1(Ã+ 1)

}
+QkZ0(A)k−p

{
Bp+1(Z)−Bp+1(Z̃)

}]
/(p+ 1)

(64)

We now seek Qβ and Sn from Eq. (64). We confirm our original definition of Qβ:

Qβ(Z,A) = ∆(Z,A)−∆(Z + 1, A) = −
[
∂∆(Z,A)

∂Z

]+

A

= Q0((Z + 1)− Z) +
km∑
k=1

Qk

k∑
p=0

(−1)p
(
k

p

)
Z0(A)k−p

Bp+1(Z + 1)−Bp+1(Z)

p+ 1

= Q0 +
km∑
k=1

Qk(Z0(A)− Z)k

(65)

where we used Eq. (43) in simplifying the difference of the Bernoulli polynomials that

appears in the expression for Qβ..

For Sn(Z,A) we find from Eq. (47)

Sn(Z,A) = S0 +
km∑
k=1

k∑
p=0

(−1)p
(
k

p

)[
SkA0(Z̃)k−pAp

+Qk{Z0(A)k−p − Z0(A− 1)k−p}Bp+1(Z)−Bp+1(Z̃)

p+1

] (66)
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The neutron-separation energy should not depend on the choice of Z̃. By eliminating this

dependence, we are able to derive in Appendix C the following relation between Qk and Sk

for k ≥ 1:

Q` =
1

β
(`)
`

[
km∑
k=`

Skα
(k)
` −

km∑
k=`+1

Qkβ
(k)
`

]
(67)

where

α
(k)
` =

(
k

k − `

)
Ck−`

1 (C2 + 1)` (68)

and

β
(k)
` = (−1)k−1k!

`!

k−`+1∑
j=1

[(C1+1)j−Cj
1]

(k−`−j+1)!j!(C2+1)j
Bk−`−j+1 (69)

and C1 and C2 are the coefficients defining the network reference curve.

From Eq. (67), we may determine Qk for k ≥ 1 from the already specified Sk’s and

C1 and C2. We begin with ` = km, from which we find Qkm = Skmα
(km)
km

/β
(km)
km

=

(−1)km−1 (C2 + 1)km+1 Skm . With knowledge of Qkm , we then proceed to find Qkm−1. In

this way, we iterate down to Q1. For example, if km = 2, then Q2 = − (C2 + 1)3 S2. Then

Q1 = (C2 + 1)2 (S1 + S2C2). S0 and Q0 are free parameters that must be specified.

B. Microscopic Mass Terms

Single-particle effects contribute to the final neutron-separation energies and beta Q

values of nuclei. One single-particle effect is nucleon pairing, which accounts for extra

nuclear binding in the nucleus when the spin-1/2 nucleons pair up. Shell effects are another

single-particle phenomenon that arises from coupling of nucleons in their single-particle

orbitals in the nuclear potential. We can account for these effects in our simple model.

First, it is useful to define three functions of integer argument x. These are

Σ(x) =

 1 if x is even

−1 if x is odd
(70)

Θ(x) =

 1 if x > 0

0 if x ≤ 0
(71)

Π(x) =

 0 if x is even

1 if x is odd
(72)
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Eq. (70) is a sign function, Eq. (71) is a step function, and we term Eq. (72) the Pi function.

With these functions, our Sn(Z,A) with shell and pairing effects is

Sn(Z,A) = S(0)
n (Z,A) + δnΣ(A− Z)−

∑
s

CsΘ(A− Z −Ns) (73)

where S
(0)
n is the separation function without shell and pairing effects [Eq. (60)]. The first

correction, δnΣ(A − Z), where δn is a constant, is the pairing correction. It increases or

decreases the separation energy by a constant amount depending on whether the neutron

number of the nucleus is even or odd, such that the neutrons are fully paired up or not. The

second correction is the shell correction. It is a sum over neutron shells (s). As the neutron

number of the nucleus increases one unit past a magic number Ns, the neutron-separation

energy drops by a uniform amount given by the constant Cs.

We now compute Qβ(Z,A) with pairing and shell effects. From Eqs. (46), (49), and (53),

we may note that

Qβ(Z,A) = Sp(Z + 1, A+ 1)− Sn(Z,A) + (∆(1, 1)−∆n) (74)

The full beta decay energy is

Qβ(Z,A) = Q
(0)
β (Z,A)− δnΣ(A−Z)− δpΣ(Z)−

∑
t

CtΘ(Z+1−Zt)+
∑
s

CsΘ(A−Z−Ns)

(75)

where Q
(0)
β (Z,A) is the beta decay energy without the shell and pairing effects. δp and Ct

are the paring and shell corrections for protons.

Finite integration yields[∫ x

x0

Σ(x′)dx′
]+

=
x∑

x0+1

Σ(x′) = Σ(x0 + 1)Π(x− x0) = −Σ(x0)Π(x− x0) (76)

and[∫ x

x0

Θ(x′ − xs)dx′
]+

=
x∑

x0+1

Θ(x′ − xs) = Θ(x− xs)
x∑

xm+1

(x′)0 = Θ(x− xs) (x− xm) (77)

where xm is the maximum of x0 and xs. With these results and the full expressions of Sn

and Qβ, we can get the mass of any species (Z,A) by finite integration over A of Eq. (73)

and then over Z of Eq. (75)

∆(Z,A) = ∆(0)(Z,A) + δn (Π(A− Z)− 1) + δp (Π(Z)− 1)

+
∑
s

CsΘ(A− Z + 1−Ns)(A− Z + 1−Nm) +
∑
t

CtΘ(Z − Zt)(Z − Zm)
(78)
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The proton-separation energy can be derived as

Sp(Z,A) = ∆(1, 1) + ∆(Z − 1, A− 1)−∆(Z,A)

= S(0)
p (Z,A) + δpΣ(Z)−

∑
t

CtΘ(Z − Zt)
(79)

where S
(0)
p (Z,A) is the separation energy without the pairing and shell effects.

Fig. 6 compares neutron-separation energies from our model with those derived from the

REACLIB V2.2 database [35]. While our model cannot reproduce subtle local variations

(e.g. N around 85 in this figure) in the separation energies of the real data or values from

the detailed microscopic-macroscopic nuclear model in the database, it does capture many

of the key features, like even-odd staggering and the sharp drops at neutron closed-shells.

C. Nuclear Partition Function

The nuclear partition function G(Z,A) accounts for the number of states available to a

nuclear species (Z,A) among the nuclear levels within the nucleus. In what follows, it will

be convenient to assume in our model that the nuclear partition function scales inversely

with the 3/2 power of the species mass m(Z,A):

G(Z,A)m(Z,A)3/2 = C (80)

where C is a constant independent of Z and A.

The assumption in Eq. (80) is a matter of convenience. m(Z,A) scales with A and

G(Z,A) scales with the ground-state spin of the species and the number of accessible energy

levels at the given temperature, which can vary by factors of several from species to species.

This is illustrated in Fig. 7, which shows this factor and the separate mass and partition

function factors. There is clear variation over the mass number for the given isotopic chain.

Nevertheless, these quantities enter as ratios over a limited range in mass number [Eq. (13)].

The resulting ratio varies much less than that of the other quantities in the abundance

expression, so the approximation in Eq. (80) is sufficiently accurate for our purposes of

delineating the main features of equilibrium isotopic abundance distributions, though we

return to this issue in §VIII.
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VII. ISOTOPIC ABUNDANCES IN (n, γ)− (γ, n) EQUILIBRIUM

We now consider isotopic abundances in (n, γ) − (γ, n) equilibrium in our simple nu-

clear physics model. With the assumption of Eq. (80), the equilibrium isotopic abundance

distribution is
Y (Z,A)

Y (Z,A0)
= exp

{
1

kT

[∫ A

A0

[µ′n + Sn(Z,A′)] dA′
]+

Z

}
(81)

With Eq. (41) and Eq. (73), this can be written:

Y (Z,A)

Y (Z,A0)
= exp

{
1

kT

[
(A− A0)µ′n +

km∑
k=0

(−1)kSk
Bk+1(A− A0 + 1)−Bk+1(1)

k + 1

]}

× exp

{
− δn
kT

Σ(A0 − Z)Π(A− A0)

}
exp

{
−
∑

sCsΘ(A− Z −Ns)(A− Z −Nm)

kT

}
(82)

This equation is the basis for our subsequent discussion.

A. Constant Sn ([km, δn, Cs] = [0, 0, 0])

Constant neutron-separation energy, though physically implausible, means that no nu-

clear species preferentially binds neutrons. In our simple model, this corresponds to km = 0,

δn = 0 and Cs = 0 in Eq. (73), in which case Eq. (82) becomes

Y (Z,A)

Y (Z,A0)
= exp

{
1

kT
(µ′n + S0) (A− A0)

}
(83)

The chemical potential of the neutrons less the rest mass, µ′n, is a negative quantity for

non-degenerate matter. This means that the isotopic abundances are either exponentially

growing or declining with mass number depending on whether µ′n + S0 is a positive or

negative quantity. If the quantity is positive, it is thermodynamically favorable for nuclei to

capture more neutrons. As neutrons disappear, however, µ′n becomes increasingly negative;

thus, captures would continue until µ′n + S0 = 0. In this case, the isotopic pattern would be

flat with A. No species in the chain would be favored over any other.

If µ′n + S0 is negative, nuclei would tend to disintegrate neutrons, which would tend to

increase µ′n in the positive direction. This would occur until µ′n + S0 = 0. The isotopic

abundance pattern for constant Sn, then, would tend to be flat, unless limits on the network

prevent the neutron captures or disintegrations that would establish the flat pattern. If such
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limits exist, the isotopic pattern would be a rising or declining exponential, as previously

noted.

B. Linear Sn ([km, δn, Cs] = [1, 0, 0])

For linear Sn, km = 1, δn = 0 and Cs = 0 in Eq. (73). In this case, Eq. (82) becomes

(see Table III)

Y (Z,A)

Y (Z,A0)
= exp

{
1

kT

[(
µ′n + S0 −

S1

2

)
(A− A0)− S1

2
(A− A0)2

]}
(84)

This may be written

Y (Z,A)

Y (Z,A0)
= exp

{(
Ā− A0

)2

2σ2

}
exp

{
−
(
A− Ā

)2

2σ2

}
(85)

where

Ā =
µ′n + S0

S1

− 1

2
+ A0 (86)

and where

σ =

√
kT

S1

(87)

For the linear Sn, the isotopic abundance distribution in (n, γ) − (γ, n) equilibrium is

a Gaussian centered at Ā and with width σ. The location of the abundance maximum is

governed by the quantity µ′n + Sn. Again, for non-relativistic, non-degenerate neutrons, µ′n

is negative, and, as the neutron number density increases, µ′n is a smaller negative number.

This causes the maximum to shift higher in A at a constant temperature. By Le Chatlier’s

Principle, the equilibrium would respond to an increase in the neutron number density by

trying to counter that increase. It would do so by having the nuclei capture neutrons, which

would decrease the neutron abundance. The reverse is true if the neutron number density

decreases.

Similarly, at constant neutron number density, Ā will increase with decreasing temper-

ature. Lower temperature means lower neutron disintegration rates, which tends to drive

the abundance distribution toward more neutron-rich species. The neutron captures release

energy since the capture reactions are exothermic. This tends to deposit energy locally,

which counters the temperature decrease, again in agreement with Le Chatelier’s Principle.

The shift in the location of the maximum in the abundance distribution is also governed

by the slope. A shallower slope leads to a bigger change in Ā with change in µ′n. This is due
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to the more equal binding of neutrons in nuclei so that a bigger change in mass number is

needed to realign the binding of neutrons inside and outside nuclei.

The width of the abundance distribution scales with the square root of the temperature.

As the temperature declines, the width of the abundance distribution becomes sharper. The

width also scales inversely with the square root of the slope of Sn. A shallower slope means

the binding of neutrons in nuclei is more equal across mass numbers, so the abundance

distribution will be broader. An example of the equilibrium isotopic abundance distribution

for the linearly declining neutron-separation energy is shown in Fig. 8.

C. Linear Sn and Pairing ([km, δn, Cs] = [1, δn, 0])

For a linear neutron-separation energy that includes pairing, application of Eq. (76) to

Eq. (82) yields

Y (Z,A)

Y (Z,A0)
= exp

{(
Ā− A0

)2

2σ2

}
exp

{
−
(
A− Ā

)2

2σ2

}
exp

{
− δn
kT

Σ(A0 − Z)Π(A− A0)

}
(88)

with Ā and σ as defined in Eqs. (86) and (87), respectively. The pairing term adds a

multiplicative factor on the abundance that depends on the parity of A − A0. If A − A0

is even, the abundance is unchanged from purely linear neutron-separation energy case. If

A − A0 is odd, the abundance is increased or decreased from the linear case depending on

the parity of A0−Z, the neutron number of the first species in the chain. If A0−Z is even,

odd A − A0 corresponds to odd A − Z, and the abundance is decreased from the baseline

linear case. If A0 −Z is odd, odd A−A0 corresponds to even A−Z, and the abundance is

increased from the baseline linear case.

Fig. 9 shows a linear neutron-separation energy with pairing and the resulting normalized

equilibrium isotopic abundance. It is evident that the isotopic abundance pattern jumps

between two Gaussians (an even neutron-number gaussian and an odd neutron-number

gaussian). The size of the jumps in the abundance increases with larger pairing energy δn

and with decreasing temperature.
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D. Linear Sn and Shell effect ([km, δn, Cs] = [1, 0, Cs])

For a linear neutron-separation energy function including the shell effect, application of

Eq. (77) to Eq. (82) yields

Y (Z,A)

Y (Z,A0)
= exp {Φ(Z,A)} exp

{(
Ā− A0

)2

2σ2

}
exp

{
−
(
A− Ā

)2

2σ2

}
(89)

where Ā and σ are defined in Eq. (86) and Eq. (87).

Φ(Z,A) = − 1

kT

∑
s

CsΘ(A− Z −Ns)(A− Z −Nm) (90)

Here Nm is the maximum of Ns and A0−Z. If the value A−Z = N is smaller than the first

closed-shell, exp{Φ(Z,A)} = 0, the abundance keeps its initial form. If N ∈ [Nj, Nj+1], with

j the jth closed-shell, the abundances in shell j will be its initial form times exp{Φ(Z,A)},

which can also be written as

Yj(Z,A)

Y (Z,A0)
= exp {φj} exp

{(
Āj − A0

)2

2σ2

}
exp

{
−
(
A− Āj

)2

2σ2

}
(91)

The Āj is the peak position between shell j and j + 1.

Āj = Ā−
∑j

s=1CsΘ(A− Z −Nj)

S1

(92)

So, if the neutron number is larger than a neutron closed-shell, the isotopic abundance peak

position will shift to the left by a factor of Cs/S1.

The φj is fixed between shell j and j + 1 if we keep the temperature constant.

φj = − 1

kT

j∑
s=1

Cs(A0 − Z −Nm) (93)

Therefore, if A−Z in an isotope chain is between Nj and Nj+1, the abundance distribution

will follow a new Gaussian distribution with abundance maximum at Āj, which can be seen in

Fig. 10. However, if the value of A−Z is between Nj−1 and Nj+1, the abundance distribution

before Nj follows a Gaussian curve Yj−1(Z,A), while it changes to another Gaussian Yj(Z,A)

once the value of A− Z crosses Nj. The closed-shell is where this transition occurs, which

means Yj−1(Z,A) = Yj(Z,A) when A − Z = Nj. This behavior is shown in Fig. 11, which

illustrates how the equilibrium abundance distribution is affected by magic number Nj = 50

or by Nj = 82.
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E. Quadratic Sn ([km, δn, Cs] = [2, 0, 0])

In the neutron-separation energy curve plotted from the REACLIB V2.2 database Fig.

6, we notice that when Sn drops, there is a small curvature. Inspired by this feature, we

need to consider a quadratic Sn. This corresponds to km = 2 in Eq. (60), in which case Eq.

(82) becomes (see Table III).

Y (Z,A)

Y (Z,A0)
= exp

{
1

kT

[
(S0 + µ′n −

S1

2
+
S2

6
)(A− A0)− S1 − S2

2
(A− A0)2 +

S2

3
(A− A0)3

]}
(94)

If we expand Eq. (94) in Ā′ as we did in Eq. (85), the new peak position Ā′ can be written

as:

Ā′ ≈ 1

1− S2

S1

{
Ā− A0 +

S2

S1

[
(Ā− A0)2 +

1

6

]}
+ A0 (95)

The new standard deviation:

σ =

√
kT

S1 − S2(1 + 2(Ā′ − A0)))
(96)

From Eq. (95) and Eq. (96), we expect that the peak position of this new abundance dis-

tribution shifts to a higher mass number A. At the same time, the width of this distribution

would be broader than the linear case. This new abundance distribution is presented in Fig.

12. It is clear that the slight curvature in Sn pushes the intersection of Sn and −µ′n slightly

to the right. This intersection movement leads to the right movement of abundance peak in

the lower panel, which is consistent with our Eq. (95). If we compare both sides’ deviations,

we find that the difference on the left is smaller than the right, which means the quadratic

term also makes the abundance distribution have a positive skew. This is reasonable, since

from Eq. (82), the abundance is affected by the summation of Sn and µ′n. If Sn + µ′n in the

linear and quadratic cases are close, the deviation is slight, otherwise, the deviation is large.

F. Quadratic Sn with Pairing and Shell effects ([km, δn, Cs] = [2, δn, Cs])

The separation energy is not only determined by the value of Sk but also affected by

both the shell and pairing effects. Now we include both effects in the quadratic separation

function, which makes our separation energy data closer to the database. Integrating this
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well-defined separation energy function, we can find the final abundance expression; its

distribution curve is shown in Fig. 13.

From the upper part of each panel in Fig. 13, we can see the separation energy decreases

when the neutron number increases, and the decreasing is steep when it encounters neutron

closed shells. We can also notice a slight curvature when Sn drops, which is the quadratic

term’s contribution. The intersection of Sn and µ′n is the abundance peak in the lower part

of each panel. From the lower part of each panel in Fig. 13, We can see the spikes on

the Gaussian distribution due to the paring effect. Moreover, the abundance ratio curve

transfers from one Gaussian to another Gaussian when N (or A−Z) crosses the closed shell

50 and 82, which can be seen from the left panels. The right panels demonstrates a full

Gaussian since N does not cross any closed-shell.

VIII. SPIKES IN THE SEPARATION-ENERGY CURVE AND A GENERAL AP-

PROACH TO INFERRING EQUILIBRIUM ABUNDANCES

In this section we consider modifications to the equilibrium abundances when the linear

separation energy curve is modified by addition of an extra energy ε at mass number Aε.

We write

Sn(Z,A) = S0 + S1(A0 − A) + εδ(A− Aε) (97)

with the finite delta function δ(x−y) = 1 if x = y and δ(x−y) = 0 otherwise. We then find[∫ x

x0

δ(x′ − y)dx′
]+

= Θ(x− y + 1)Θ(y − x0) (98)

In this case, the abundance function is

Y (Z,A)

Y (Z,A0)
=

(
Y (Z,A)

Y (Z,A0)

)(0)

×

 exp(0); A < Aε

exp
( ε

kT

)
; A ≥ Aε

 (99)

Where the
(
Y (Z,A)
Y (Z,A0)

)(0)

is the abundance for a linear Sn in Eq. (85). Therefore, the abun-

dance curve does not change when mass number A is less than Aε, but transfers to another

Gaussian that is a factor of exp( ε
kT

) larger or smaller than its initial distribution depending

on the value of ε. Similarly, if two continuous spikes appear in the neutron-separation energy,

the abundances curve will transfer twice. Those behaviors are shown in Fig. 14. From part

(a) of Fig. 14, we can see a positive spike in Sn in the upper panel and a transformation

29



from one Gaussian to another Gaussian curve at the spike position (N = 70) in the lower

panel. From part (b) of Fig. 14, the upper panel shows the Sn with two continuous negative

spikes. Therefore, the corresponding abundances curve transfers to one Gaussian after the

first spike (N = 51) and then transfer to another Gaussian after the second negative spike

(N = 52).

The idea of spikes on top of a separation energy curve decreasing linearly with mass

number in fact provides a general way of inferring the abundance distribution in (n, γ)−(γ, n)

equilibrium. Add to the linearly decreasing separation function a series of spikes with the

necessary magnitude at the appropriate mass numbers. The abundance curve will shift from

the Gaussian resulting from the original separation energy curve to other Gaussians either

above or below the first according to the spike function prescription. For example, add the

spike function ε(A) = S1(A − Ā) to the linear function Sn = S0 + S1(A0 − A). This spike

function adds continuously decreasing negative spikes before the peak position Ā and adds

continuously increasing positive spikes after Ā. The result is a flat separation energy curve

Sn = S0 + S1(A0 − Ā) and an abundance distribution that shifts to lower-lying Gaussians

as A increases towards Ā and to higher-lying Gaussians as A increases past Ā with the

result in Eq. (83). We may also view the microscopic terms in Eq. (73) in terms of spikes.

The pairing term is an alternating set of spikes with magnitude δn and sign determined by

the parity of the neutron number. The abundance distribution for the originally linearly

decreasing separation energy then bounces between two Gaussians, as shown in Fig. 9. The

shell term is a series of spikes with magnitude given by a sum on the shell strengths Cs for the

shells crossed. These spikes are subtracted from the original smooth separation energy. This

correction makes the abundance curve jump to a set of decreasing Gaussian curves which

can be seen in Fig. 15. The resulting abundance curve after the neutron magic number is

in fact a new Gaussian, as noted in Eq. (91). Fig. 16 shows the effect of two shell crossings.

The spikes after the second shell crossing are twice as large in magnitude as the spikes just

after the first shell crossing. As a last example, a quadratic neutron-separation energy is

equivalent to a linear Sn with the spike function ε(A) = S2(A− A0)2. This correction adds

increasing spikes in Sn when the mass number increases and therefore skews the abundance

curve because it is shifting to increasingly displaced Gaussians. This idea naturally extends

to higher orders in the power-series expansion of the separation energy.

The procedure for determining a general abundance curve then is to add an appropriate
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spike function to the linearly decreasing neutron-separation energy curve. The spikes define

the displacement of Gaussians away from the original Gaussian due to the linear separation

energy, and each spike magnitude may depend on the mass number locating the spike.

The abundance curve is the result of steps from the Gaussian for one mass number to the

Gaussian for the next mass number.

It is worth noting here that should species (Z,A) have an unequilibrated isomeric state

such that the isomeric state is effectively a separate species from the ground state, the

neutron-separation energy for the isomer will be lowered relative to that for the ground

state of (Z,A). As a result, the neutron-separation energy curve versus mass number for

element Z would show a spike down at (Z,A) for the isomer relative to the ground state.

Similarly, there would be a spike up of the same magnitude at (Z,A + 1). The abundance

curve including the isomer would thus show a notch at (Z,A) relative to the curve for the

ground state for (Z,A). The spike down in the neutron-separation energy curve versus mass

number shifts the abundance to a lower curve while the spike up shifts the curve back up to

the original abundance curve. This creates the notch in a fashion analogous to pairing.

We may finally return to the question of the prefactor on the abundances that we have

previously neglected through the approximation in Eq. (80). If we do not make this approx-

imation, we can see from Eq. (13) that we effectively add to the neutron-separation energy

a quantity

3

2
kT ln

[
m(Z,A)

m(Z,A− 1)

]
+ kT ln

[
G(Z,A)

G(Z,A− 1)

]
≈ 3

2

kT

A
+ εG(Z,A) (100)

where we have used the fact that m(Z,A) scales with A and A� 1, and we have defined

εG(Z,A) = kT ln

[
G(Z,A)

G(Z,A− 1)

]
(101)

From Eq. (B6), inclusion of the prefactor would then result in the isotopic abundances

in Eq. (81) being multiplied by the slowly varying factor exp
{

3
2

(HA,1 −HA0,1)
}

times

modifications given by the spike factor εG(Z,A).

IX. APPLICATION TO REALISTIC NUCLEAR MODELS

In this section, we analyze the effects of realistic, or at least more traditional, nuclear

physics models on (n, γ) − (γ, n) equilibrium abundances in terms of the simple model we
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have thus far presented. The goal is to illustrate ways nuclear physicists can use our analysis

to interpret how their own nuclear data affects equilibrium abundance curves.

A. Liquid-Drop Model

The equilibrium abundance formula with k = 2 is written in Eq. (94). From Eq. (20),

we know the value of Sk depends the liquid-drop model parameters aS, aC , aA, aV ; thus,

these parameters play the crucial role in determining the equilibrium isotopic abundance

pattern. We explore the effect of fractional variation of those nuclear physics coefficients on

the value of Sk and the consequences for the equilibrium abundance patter. We choose to

analyze Z = 50 and A0 = 100. For reference values of the liquid-drop model parameters,

we use reference values aS = 17.8 MeV, aC = 0.711 MeV, and aA = 23.7 MeV [36]. These

parameters result in power-series coefficients S0 = 14.47 MeV, S1 = 0.4825 MeV, and

S2 = 0.0073 MeV.

Fig. 17 shows the effect of varying aS, the surface term coefficient while holding other

parameters fixed. An increase in aS causes S0, S1, and S2 all to decrease, but the largest

effect is in S0. Because S1 and S2 remain nearly constant and S2 is small, the equilibrium

abundance curve maintains its nearly Gaussian shape. The decrease in S0 with increasing

aS causes the peak of the abundance curve to move to lower mass number, as expected from

Eq. (86).

When the Coulomb term coefficient is increased, the power-series coefficients all increase,

as seen in Fig. 18. From Eq. (86), an increase in S0 shifts Ā to larger value while an increase

in S1 does the reverse. The magnitude of the change in S0 is larger than that in S1, so Ā

does move to larger vslue for the increase in aC , but the change in peak position is not as

pronounced as in Fig. 17 because in the latter case, the magnitude of the change in S0 is

greater and there is no compensating effect from S1. The slight increase in S2 adds more of

a positive skew for larger aC , but that effect is hardly visible in the present case.

The change in the asymmetry term aA produces some dramatic effects as seen from Fig.

19. From our particular choice of Z and A0, S0 is independent of aA. The fractional changes

in S1 and S2 with aA variations are identical. The increase in S1 with increasing aA causes

the peak equilibrium abundance to shift to lower mass and narrow, as expected; however,

the increase in S2 with increasing aA tends to shift the abundance peak to higher mass
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number, so the increase in S2 tends to compensate the decrease in peak mass number and

slows the shift to lower mass with increasing aA.

B. Detailed Nuclear Data

We now turn to the detailed nuclear data in the REACLIB V2.2 database [35]. We

analyze the equilibrium abundance curves for selected isotope chains in order to illustrate

the application of our treatment to realistic nuclear models.

Fig. 20 shows data for Z = 70. When −µ′n crosses a spike, we see that the equilibrium

abundance curve shifts up, as expected from Eq. (99) we know the abundance curve does

not change when mass number A is less than Aε, but transfers to another Gaussian that is a

factor of exp( ε
kT

) larger than its initial distribution. At a somewhat lower −µ′n, as shown in

Fig. 21, when −µ′n intersects the Sn curve where the curve is flat leads to a flat abundance

distribution (modulated by pairing spikes), as expected from Eq. (83).

From Eq. (88), we know that the pairing correction in the isotopic abundance is de-

termined by the parity of the neutron number, the value δn and the temperature T. Fig.

22 shows results for Z = 55. The Sn curve has distinctive δn’s before and after the closed

neutron shell at N = 82. Two different −µ′n are presented, both computed at T9 = 2 but at

different neutron densities so that the −µ′n curves intersect Sn in different shells. Because

the shells have different δn, the jaggedness is different for the two resulting equilibrium abun-

dance curves. Fig. 23 shows results for a given −µ′n for Z = 68. Here the pairing δn shifts

within the shell so that the left half of the resulting equilibrium abundance curve shows a

jagged distribution due to the large δn, while the right half is less jagged due to the smaller

δn.

Temperature also affects the pairing correction. Decreasing temperature enhances the

pairing effect on the abundance distribution. Fig. 24 shows results for Z = 55 for a fixed

neutron density but for two different temperatures, T9 = 3 and T9 = 1. The higher temper-

ature gives an abundance distribution at lower mass number than for the lower temperature

case, as expected. The lower temperature distribution is more jagged than the higher tem-

perature case despite the smaller pairing energy δn for Sn at the peak mass number for the

lower temperature case. This is of course due to the pairing term exponential in Eq. (88)

that depends on δn/kT .
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These examples certainly do not exhaust all possible analyses one may make of the

expected equilibrium isotopic abundance curves from detailed Sn curves. Nevertheless, they

do give a sense of how our analysis can be applied to such realistic nuclear models.

X. (p, γ)− (γ, p) EQUILIBRIUM

Though the production sites for r-process elements are not yet fully determined due to

difficulties in computing the complete dynamics of the extreme astrophysical environments in

which the nucleosynthesis occurs, neutrino-driven winds are typically considered as plausible

candidates [3, 37] for at least some of the r-process species. However, if the ejecta is proton-

rich (electron fraction Ye>0.5), especially due to neutrino-nucleus interactions during the

expansion of the material, r-process nucleosynthesis is unlikely to occur. The matter in

these proton-rich winds is initially hot and fully dissociated[38]. When the matter expands

and cools, it will freeze out from nuclear statistical equilibrium (NSE) to quasi-equilibrium

(QSE). At this process continue, nuclei up to 56Ni and even 64Ge are formed once the

temperature is lower than 3 GK. When the temperature decreases to 3 GK-1.5 GK, a proton

capture process occurs, which creates heavy elements that cannot be formed by either s-

and r-process, and β+ decays shift the flow from one value of N to the next. During this

phase, neutrinos can enhance the production of neutrons which facilitates the nuclear flow

to mass A > 64 in what is termed the νp process [39]. (p, γ)− (γ, p) equilibrium is a crucial

phase in determining the final p-nuclei abundances, which is similar to the (n,γ)-(γ,n) phase

discussed above. Based on our simple nuclear model, the isotonic (a fixed neutron number N

with varying proton number Z) abundance pattern in each isotonic chain also has features

analogous to the isotopic chain abundance features of (n, γ)− (γ, n) equilibrium. The only

difference between these two phases is that the isotopic abundance is determined by the

neutron-separation energy Sn, while the isotonic abundance is determined by the proton-

separation energy Sp. The corresponding abundance distribution for isotonic chain N is

Y (Z,A = Z +N)

Y (Z0, A0 = Z0 +N)
=

G(Z,A = Z +N)

G(Z0, A0 = Z0 +N)

[
m(Z,A = Z +N)

m(Z,A0 = Z0 +N)

]3/2

× exp

{
1

kT

[∫ Z

Z0

[
µ′p + Sp(Z

′, A′ = Z ′ +N)
]
dZ ′
]+

N

} (102)
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To explore the (p, γ)− (γ, p) equilibrium in such expansions, we ran a νp-process network

calculation with the same network code used for our previously discussed r-process calcu-

lation. The matter began at T9 = 10 and a density of ρ = 1.68 × 107 g/cc. The density

decreased exponentially on an e-folding timescale of 0.2 seconds. We included neutrino-

nucleus interactions reactions [30] and followed the expansion for 10 seconds. Fig. 25 shows

the chemical potential offset of a subset of species in the range from Cl (Z = 17) to Zr (Z

= 40) in the network at time 0.914 s into the expansion. The network now, in each isotonic

chain, is in the (p, γ) − (γ, p) equilibrium phase of the expansion such that the species are

in equilibrium under exchange of protons, but movement from one isotonic chain to another

is slow. Similar to the (n, γ) − (γ, n) equilibrium phase, the relative isotonic abundance

pattern also peaks at the intersection of Sp(Z,A) and -µ′p. The pairing term of Sp in Eq.

(79) adds alternating spikes in the abundance curve, which can be seen from the right panel

of Fig. 26. It is clear that much of our analysis for (n, γ) − (γ, n) equilibrium carries over

to the (p, γ)− (γ, p) equilibrium phase of proton-rich expansions.

XI. CONCLUSION

We have studied the effects of nuclear physics inputs on (n, γ)−(γ, n) equilibrium isotopic

abundances. To do so, we reversed the usual route of determining key nuclear physics prop-

erties for r-process nucleosynthesis, namely, neutron-separation energies and the beta-decay

Q values by finite differentiating experimentally or theoretically derived nuclear masses. We

instead developed our own nuclear model by setting the key properties to mathematically

convenient forms and then finite integrating them to derive the nuclear masses. This allowed

us to compute equiilibrium isotopic abundances with well-defined input.

Up to slowly varying prefactors depending on ratios of masses and nuclear partition

functions, a linearly declining neutron-separation energy with mass number for an isotopic

chain gives a Gaussian equilibrium abundance distribution. The location of the peak of the

Gaussian is essentially the mass number at which the neutron-separation energy is equal to

the negative of the free neutron chemical potential less the neutron rest mass. The width of

the Gaussian is given by the square root of the ratio of kT/S1, the energy corresponding to

the equilibrium temperature, divided by the magnitude of the slope of the neutron-separation

energy curve. A lower temperature of the r-process environment or a steeper slope of the
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neutron-separation energy curve gives a narrower abundance distribution.

We studied the equilibrium isotopic abundance curves from other neutron-separation en-

ergy curves with isotope mass number. We found that all effects could be interpreted in

terms of modifications to the original linearly declining neutron-separation energy curve

with mass number through the addition of spikes of varying magnitude at particular mass

numbers. The result for the abundance curve was to transfer the abundance from one Gaus-

sian to another for each spike encountered. This result allows one to infer the effects of any

type of variation in nuclear masses or neutron-separation energies on resulting equilibrium

distributions. We then pointed out that our analysis applies equally well to the (p, γ)−(γ, p)

equilibrium that can occur in some proton-rich astrophysical environments.

In matter expansions relevant for r-process nucleosynthesis, the reaction network eventu-

ally falls out of (n, γ)− (γ, n) equilibrium. This occurs as the number of free neutrons falls

below the number of nuclei. In this r-process freezeout, reactions occur that shuffle neutrons

among the nuclei and shape the final abundance curve. Our next step is to follow that

complex phase. The knowledge developed in the present work regarding (n, γ)− (γ, n) equi-

librium will be essential for that work since it will delineate the starting point for freezeout.

Also, since the freezeout reactions still strive to drive the abundances towards equilibrium,

this knowledge will clarify the reaction network’s goal during freezeout, no matter how

unattainable.
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Appendix A: Confirmation of Eq. (41)

Since the finite integral in Eq. (32) is linear in its integrand, we may write[∫ x

x0

(x′ − x0)
p
dx′
]+

=

p∑
n=0

(
p

n

)
(−x0)p−n

[∫ x

x0

x′ndx′
]+

(A1)

for non-negative integer p. From Eq. (40), we then find[∫ x

x0

(x′ − x0)
p
dx′
]+

=

p∑
n=0

(
p

n

)
(−x0)p−n

[
Bn+1(x+1)−Bn+1(x0+1)

n+1

]
(A2)

With the substitution m = n+ 1, this may be written[∫ x

x0

(x′ − x0)
p
dx′
]+

=
1

p+ 1

p+1∑
m=0

(
p+ 1

m

)
(−x0)p+1−m [Bm(x+ 1)−Bm(x0 + 1)] (A3)

The lower limit m = 0 holds because B0(x) = 1 so the m = 0 term does not in fact contribute

to the sum which may thus be extended from the m = 1 limit arising from the m = n + 1

substitution. From the property of Bernoulli polynomials that

Bn(x+ y) =
n∑
k=0

(
n

k

)
Bk(x)yn−k (A4)

we then find [∫ x

x0

(x′ − x0)
p
dx′
]+

=
1

p+ 1
[Bp+1(x− x0 + 1)−Bp+1(1)] (A5)

This explicitly confirms Eq. (41). The integral in Eq. (42) may be confirmed similarly.

Appendix B: Integer polynomials of inversge argument

We consider integer functions with F (x) = x−p, where p is an integer and p > 0 for x > 1,

The backward derivative is[
∂

∂x
x−p
]−
y

= x−p − x−p
(
1− x−1

)−p
= −

∞∑
k=1

(
p+ k − 1

k

)
x−p−k (B1)

Similarly, the forward derivative is[
∂

∂x
x−p
]+

y

= x−p
(
1 + x−1

)−p − x−p =
∞∑
k=1

(−1)k
(
p+ k − 1

k

)
x−p−k (B2)
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In either case, the leading term is −px−p−1, as expected.

The negative integral is[∫ x

x0

(x′)
−p
dx′
]−

=
x−1∑
x′=x0

x′−p =
x−1∑
x′=1

x′−p −
x0−1∑
x′=1

x′−p (B3)

This may be written [∫ x

x0

(x′)
−p
dx′
]−

= Hx−1,p −Hx0−1,p (B4)

where Hx,p is the generalized harmonic number given by

Hx,p =
x∑
k=1

1

kp
(B5)

Similarly, [∫ x

x0

(x′)
−p
dx′
]+

= Hx,p −Hx0,p (B6)

We can check those integrals by taking their inverse derivatives[
∂

∂x

[∫ x

x0

(x′)
−p
dx′
]+
]−
y

= Hx,p −Hx−1,p = x−p (B7)

[
∂

∂x

[∫ x

x0

(x′)
−p
dx′
]−]+

y

= H(x−1)+1,p −Hx−1,p = x−p (B8)

which are the expected results.

Appendix C: Derivation of Eq. (67)

From Eq. (62), we may use the binomial expansion to find

A0(Z̃)k−p = Ck−p
1 +

k−p−1∑
j=0

(
k − p
j

)
Cj

1 (C2 + 1)k−p−j Z̃k−p−j (C1)

Similarly, from Eq. (63), we find

Z0(A)k−p−Z0(A−1)k−p =
1

(C2 + 1)k−p

k−p∑
j=1

(
k − p
j

)
(−1)j−1

[
(C1 + 1)j − Cj

1

]
Ak−p−j (C2)

Finally, through the use of Eq. (39), we find

Bp+1(Z)−Bp+1(Z̃) =

p+1∑
m=1

Bp+1−mZ
m −

p+1∑
m=1

Bp+1−mZ̃
m (C3)
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With these results, Eq. (66) becomes

Sn(Z,A) = S0 +
km∑
k=1

Sk

k∑
p=0

(−1)p
(
k

p

)
Ck−p

1 Ap

+
km∑
k=1

Sk

k∑
p=0

(−1)p
(
k

p

)
Ap

k−p−1∑
j=0

(
k − p
j

)
Cj

1 (C2 + 1)k−p−j Z̃k−p−j

+
km∑
k=1

Qk

k−1∑
p=0

(−1)p
(
k

p

)
1

(C2 + 1)k−p

k−p∑
j=1

(
k − p
j

)
(−1)j−1

[
(C1 + 1)j − Cj

1

]
Ak−p−j

1

p+ 1

p+1∑
m=1

(
p+ 1

m

)
Bp+1−m

(
Zm − Z̃m

)
(C4)

The neutron-separation energy is the difference between mass excesses and should there-

fore not be dependent on the choice of Z̃. That this dependence should disappear results in

the condition

km∑
k=1

Sk

k−1∑
p=0

(−1)p
(
k

p

)
Ap

k−p−1∑
j=0

(
k − p
j

)
Cj

1 (C2 + 1)k−p−j Z̃k−p−j

=
km∑
k=1

Qk

k−1∑
p=0

(−1)p
(
k

p

)
1

(C2 + 1)k−p

k−p∑
j=1

(
k − p
j

)
(−1)j−1

[
(C1 + 1)j − Cj

1

]
Ak−p−j

1

p+ 1

p+1∑
m=1

(
p+ 1

m

)
Bp+1−mZ̃

m

(C5)

We begin analyzing this equation by noting that, with the subsitution ` = k−j, the left-hand

side (LHS) of Eq. (C5) may be written

LHS =
km∑
k=1

Sk

k−1∑
p=0

k∑
`=p+1

(−1)p
(
k

p

)(
k − p
k − `

)
Ck−`

1 (C2 + 1)`−pApZ̃`−p (C6)

We now exchange the sums on p and ` to find

LHS =
km∑
k=1

Sk

k∑
`=1

(
k

k − `

)
Ck−`

1 (C2 + 1)`
`−1∑
p=0

(−1)p
(
`

p

)
(C2 + 1)−pApZ̃`−p (C7)

We write this as

LHS =
km∑
k=1

Sk

k∑
`=1

α
(k)
` Z̃ ′` (C8)

where

α
(k)
` =

(
k

k − `

)
Ck−`

1 (C2 + 1)` (C9)
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and

Z̃ ′` =
`−1∑
p=0

(−1)p
(
`

p

)
(C2 + 1)−pApZ̃`−p (C10)

Upon exchange of the sums on p and j, the right-hand side (RHS) of Eq. (C5) becomes

RHS =
km∑
k=1

Qk

k∑
j=1

k−j∑
p=0

p+1∑
m=1

(−1)p
(
k

p

)(
k − p
j

)(
p+ 1

m

)
(−1)j−1[(C1+1)j−Cj

1]
(C2+1)k−p

Bp+1−m

p+1
Z̃mAk−p−j

(C11)

We now exchange the sums on p and m and simplify terms to get

RHS =
km∑
k=1

Qk

k∑
j=1

k−j+1∑
m=1

k−j∑
p=m−1

(−1)p+j−1 k!
(k−p−j)!j!(p+1−m)!m!

[(C1+1)j−Cj
1]

(C2+1)k−p Bp+1−mZ̃
mAk−p−j

(C12)

We make the substitution ` = m+ k − p− j to find

RHS =
km∑
k=1

Qk

k∑
j=1

k−j+1∑
m=1

k−j+1∑
`=m

(−1)m+k−`−1 k!
(`−m)!j!(k−`−j+1)!m!

[(C1+1)j−Cj
1]

(C2+1)`−m+j Bk−`−j+1Z̃
mA`−m

(C13)

We now exchange the m and ` and then j and ` sums to get

RHS =
km∑
k=1

Qk(−1)k−1

k∑
`=1

(−1)`
k!

`!
(C2 + 1)−`

∑̀
m=1

(−1)m
(
`

m

)
(C2 + 1)m Z̃mA`−m

k−`+1∑
j=1

[(C1+1)j−Cj
1]

(k−`−j+1)!j!(C2+1)j
Bk−`−j+1

(C14)

Finally, with the replacement q = `−m we find

RHS =
km∑
k=1

Qk(−1)k−1

k∑
`=1

k!

`!

`−1∑
q=0

(−1)q
(
`

q

)
(C2 + 1)−q Z̃`−qAq

k−`+1∑
j=1

[(C1+1)j−Cj
1]

(k−`−j+1)!j!(C2+1)j
Bk−`−j+1

(C15)

With Eq. (C10), this becomes

RHS =
km∑
k=1

Qk

k∑
`=1

β
(k)
` Z̃ ′` (C16)

with

β
(k)
` = (−1)k−1k!

`!

k−`+1∑
j=1

[(C1+1)j−Cj
1]

(k−`−j+1)!j!(C2+1)j
Bk−`−j+1 (C17)
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From Eqs. (C8) and (C16), Eq. (C5) becomes

km∑
k=1

Sk

k∑
`=1

α
(k)
` Z̃ ′` =

km∑
k=1

Qk

k∑
`=1

β
(k)
` Z̃ ′` (C18)

If we exchange the sums on k and `, we then find

km∑
`=1

Z̃ ′`
km∑
k=`

α
(k)
` Sk =

km∑
`=1

Z̃ ′`
km∑
k=`

β
(k)
` Qk (C19)

Equating equal powers of Z̃ ′` results in the equation

km∑
k=`

β
(k)
` Qk =

km∑
k=`

α
(k)
` Sk (C20)

In specifying our nuclear model, we choose Sk for k = 0 to k = km. If we choose ` = km

in Eq. (C20), we find

Qkm =
α

(km)
km

β
(km)
km

Skm (C21)

Other values of Q` may then be found from the previously determined values Qk with k > `

from

Q` =
1

β
(`)
`

[
km∑
k=`

α
(k)
` Sk −

km∑
k=`+1

β
(k)
` Qk

]
(C22)
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[33] C. F. V. Weizsäcker, Zeitschrift fur Physik 96, 431 (1935).

[34] B. Taylor, Methodus incrementorum directa & inversa (William Innys, London, 1715).

[35] R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D.

Hoffman, T. Rauscher, A. Sakharuk, et al., Astrophys. J. Suppl. 189, 240 (2010).

[36] J. W. Rohlf, Modern Physics from aα to Z0 (1994).

[37] B. S. Meyer, G. J. Mathews, W. M. Howard, S. E. Woosley, and R. D. Hoffman, Astrophys.

J. 399, 656 (1992).
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FIG. 4: (Color online) The color bar for the chemical potential offset differences in Figs. 1,

2, and 3. The number inside each box gives the offset difference divided by kT for the

corresponding color.
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FIG. 5: (Color online) The abundances as a function of nucleon number for the last

moment of (n, γ)− (γ, n) equilibrium and the final frozen-out abundances.
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FIG. 6: (Color online) Neutron-separation energies as a function of neutron number

N = A− Z for Z = 50 from our model (orange line) and from those derived from the

REACLIB V2.2 database [35] (blue line). The separation energies in our model were

computed from Eq. (73) with [S0, S1, S2, δn, Cs] = [17, 0.25, 0.001, 1.2, 3.5].
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FIG. 7: (Color online) The upper panel shows the ratio values of G(Z,A)m(Z,A)3/2; The

middle and lower panels show the ratio values of masses and partition functions,

respectively, in an isotopic chain (Z = 50). Data are from the REACLIB V2.2 database.
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FIG. 8: (Color online) The upper panel shows the intersection of Sn and −µ′n. The lower

panel presents the isotopic abundances within an isotope chain. The intersection position

in the top panel is the abundance peak position in the lower panel
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FIG. 9: (Color online) This figure shows the abundance distribution including both the

linear and pairing term of Sn. The upper panel shows the intersection of Sn and −µ′n, while

the solid line in the lower panel illustrates the abundance distribution. The dashed and

dash-dotted lines are abundances curves, including purely even and odd N , respectively.
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FIG. 10: (Color online) The upper panel shows the intersection of Sn and −µ′n at two

different values of −µ′n. The intersections each occur at neutron numbers between two

magic numbers. The lower panel presents the resulting equilibrium abundance

distributions, which appear as full Gaussians since they do not cross any closed shell. This

figure is using A0 − Z = 40.
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(a) N = 50 Shell.

(b) N = 82 Shell.

FIG. 11: (Color online) Results for (a) the N = 50 shell crossing and (b) the N = 82 shell

crossing. The upper panel shows the intersection of relevant energies. The solid curve in

the lower panel represents the full abundance distribution. The dash-dotted and dotted

lines are Gaussian curves before and after a closed shell, respectively.54



FIG. 12: (Color online) The upper panel shows the intersection of Sn and −µ′n for the case

of the linear and quadratic Sn. The lower panel shows the resulting equilibrium abundance

distributions. The distribution for the quadratic Sn is normalized, and the distribution for

the linear Sn is computed from the same values of S0 and S1 as in the quadratic case. The

quadratic term in Sn shifts the intersection to higher neutron number relative to that for

the linear case. It also gives the resulting equilibrium abundance distribution a positive

skew.
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FIG. 13: (Color online) Each panel shows the intersection of Sn and µ′n in the upper part

and the abundance distribution considering pairing and shell as well as quadratic terms in

the lower part. From left to right, and top to bottom, we used −µ′n = 15, 10, 5, 3 in each

panel to demonstrate the abundance pattern.
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(a) Single spike

(b) Two spikes

FIG. 14: (Color online) (a) The neutron-separation energy Sn with a single spike (upper

panel) and the resulting equilibrium abundance curve. (b) The neutron-separation energy

Sn with two successive negative spikes and the resulting equilibrium abundance curve.
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FIG. 15: (Color online) Neutron-separation for a single-shell transition. The shell effect

may be considered a sequence of negative spikes added to the linearly declining separation

energy. The lower panel shows the full abundance distribution. The abundance point after

the neutron number corresponding to the first spike is on its own Gaussian distribution

labeled in the legend. The resulting abundance distribution is a new Gaussian after the

magic number.
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FIG. 16: (Color online) Neutron-separation for two shell transitions. As in Fig. 15, the

shell effect may be considered a sequence of negative spikes added to the linearly declining

separation energy. The second shell is then a second sequence of spikes added to the first.

The lower panel shows the full abundance distribution and illustrates the transformation

from one Gaussian to a second Gaussian after the first shell and then to a third Gaussian

after the second shell.
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FIG. 17: (Color online) The upper panel shows the fractional change in S0, S1, and S2

with the given variation in aS, the surface-term coefficient in the liquid-drop model of Eq.

(15). The lower panel shows the normalized equilibrium abundance curves resulting from

the indicated variations in the surface term coefficient away from the reference value aS for

a fixed −µ′n.
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FIG. 18: (Color online) The same as Fig. 17 but for variation in the Coulomb term

coefficient aC .
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FIG. 19: (Color online) The same as Fig. 17 but for variation in the asymmetry term

coefficient aA.
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FIG. 20: (Color online) Results for Z = 70. The upper panel shows the intersection of Sn

and the given −µ′n, and the lower panel presents the abundance distribution.

63



FIG. 21: (Color online) Results for Z = 70. The upper panel shows the intersection of Sn

and the given −µ′n, and the lower panel presents the abundance distribution.
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FIG. 22: (Color online) Results for Z = 55. The upper panel shows the intersections of

energies. The lower panel presents the abundance distribution when the pairing effect in

Sn is distinctive in each shell.
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FIG. 23: (Color online) Results for Z = 68. The upper panel shows the intersections of

energies. The lower panel demonstrates the abundance pattern when the pairing effect

varies inside a single shell.
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FIG. 24: (Color online) The upper panel shows the intersection of Sn and −µ′n (3 and 9

MeV). The lower panel presents the abundances distribution with different temperatures.
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FIG. 25: (Color online) Chemical potential offset differences for the reference νp-process

calculation at the time step t = 0.914 s, T9 = 2.18, and mass density ρ = 1.73× 105 g/cc.

The color indicates the value chemical potential offset difference, and the value for any

species may be inferred from the color bar.
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FIG. 26: (Color online) Relevant nuclear energies and abundances for the N = 24 isotones

in the νp process at the time step shown in Fig. 25. The left panel shows the intersection

of proton-separation energy (Sp) and proton chemical potential less proton rest mass

energy (-µ′p). The right panel presents the isotonic network abundances which overlap the

(p, γ)− (γ, p) equilibrium abundances at this time step.
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