This is the accepted manuscript made available via CHORUS. The article has been published as:

Chiral-like doublet band structure and octupole correlations in math
xmlns="http://www.w3.org/1998/Math/MathML">mmultiscri pts $>\mathrm{mi}>\mathrm{Ag} / \mathrm{mi}>\mathrm{mprescripts}>/ \mathrm{mprescripts}>$ none>/none> mn>104/mn>/mmultiscripts>/math $>$

Kaushik Katre et al.
Phys. Rev. C 106, 034323 - Published 27 September 2022
DOI: 10.1103/PhysRevC.106.034323

Chiral like doublet band structure and octupole correlations in ${ }^{104} \mathrm{Ag}$

Kaushik Katre,, , ${ }^{*}$ P. V. Madhusudhana Rao, ${ }^{2}$ R. Raut, ${ }^{3}$ A. Sharma, ${ }^{4}$ K. Suryanarayana, ${ }^{2}$ A. Tejaswi, ${ }^{2}$ M.
Ratna Raju, ${ }^{2}$ D. Vijaya Lakshmi, ${ }^{2}$ T. Seshi Reddy, ${ }^{2}$ M. Kumar Raju, ${ }^{5}$ S. Jehangir, ${ }^{6}$ N. Rather, ${ }^{6}$ G. H. Bhat, ${ }^{7}$ Nazira Nazir, ${ }^{7}$ J. A. Sheikh, ${ }^{7}$ Y. P. Wang, ${ }^{8}$ J. T. Matta, ${ }^{9}$ A. D. Ayangeakaa, ${ }^{10}$ U. Garg, ${ }^{11}$ S. S. Ghugre, ${ }^{3}$ T. Trivedi, ${ }^{12}$ B. S. Naidu, ${ }^{13}$ R. Palit, ${ }^{13}$ S. Saha, ${ }^{14}$ S. Muralithar, ${ }^{1}$ and R. P. Singh ${ }^{1, \forall}$
${ }^{1}$ Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi 110067, India
${ }^{2}$ Department of Nuclear Physics, Andhra University, Visakhapatnam 530003, India
${ }^{3}$ UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata 700098, India
${ }^{4}$ Department of Physics, Himachal Pradesh University, Shimla 171005, India
${ }^{5}$ Department of Physics, GITAM School of Science, Visakhapatnam, 530045, India
${ }^{6}$ Department of Physics, Islamic University of Science and Technology, Jammu and Kashmir 192122, India
${ }^{7}$ Department of Physics, University of Kashmir, Srinagar 190006, India
${ }^{8}$ State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
${ }^{9}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{10}$ Department of Physics and Astronomy, University of North Carolina Chapel Hill,
North Carolina 27599, USA and Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
${ }^{11}$ Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{12}$ Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India
${ }^{13}$ Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005, India
${ }^{14}$ School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India

(Dated: August 8, 2022)

Abstract

The nature of the yrast negative-parity band and its 'chiral' like partner band in ${ }^{104} \mathrm{Ag}$ is investigated experimentally and theoretically. Lifetimes of states in the negative-parity yrast band and positive-parity band based on the 4424 keV level is measured using Doppler shift attenuation technique. Lifetime of 3 more states have been determined along with upper limit for the lifetime of the highest observed yrast states. Further, lifetime known from earlier studies are determined with better precision. The level scheme of ${ }^{104} \mathrm{Ag}$ has also been extended with the addition of new enhanced E1 transitions linking the positive-parity band based on the 4424 keV levels and the yrast negative-parity and its partner band. $\mathrm{B}(\mathrm{E} 1)$ and/or $\mathrm{B}(\mathrm{E} 1) / \mathrm{B}(\mathrm{M} 1)$ values for the transitions from positive parity band to the yrast and its partner band have been determined for the first time; these suggest strong octupole correlation between the positive parity and the negative parity bands. Calculations based on Triaxial Projected Shell Model (TPSM) and Covariant Density Functional Theory (CDFT) have been performed to unravel the intrinsic structures of the partner band and the excited positive-parity band. TPSM calculations predict that doublet bands have significant angular momentum contributions along the three principle axis, suggesting that bands could have chiral symmetry breaking origin. The CDFT calculations predict a $\pi\left(\mathrm{g}_{9 / 2}\right)^{-1} \otimes \nu\left(\mathrm{~h}_{11 / 2}\right)\left(\mathrm{g}_{7 / 2}, \mathrm{~d}_{5 / 2}\right)^{2}$ aligned quasi-particle configuration for the negative-parity doublet bands with deformation parameters $\beta \approx 0.20$ and $\gamma \approx 5^{\circ}$. The partner band could be interpreted as a chiral vibration mode built on top of the yrast band. The excited positive-parity band is predicted to have aligned four quasi-particle configuration, namely, $\pi\left(\mathrm{g}_{9 / 2}\right)^{-1} \otimes \nu\left(\mathrm{~h}_{11 / 2}\right)^{2}\left(\mathrm{~g}_{7 / 2}, \mathrm{~d}_{5 / 2}\right)^{1}$. Further, these calculations predict significant octupole softness in ${ }^{104} \mathrm{Ag}$ which could be the reason for enhanced E1 transitions between the four quasi-particle positive-parity band and the doublet negative-parity bands.

I. INTRODUCTION

The structure of nuclei in A ~ 100 region exhibit single- ${ }^{11}$ particle and a variety of collective features. The rich band ${ }^{12}$ structures observed and the transitions among them ren- ${ }^{13}$ der this region an ideal laboratory to test various nuclear ${ }^{14}$ structure models and the approximations used therein. ${ }^{15}$ Apart from the usual collective rotation of a deformed nu- ${ }^{16}$ cleus, many magnetic and anti-magnetic rotational (MR ${ }^{17}$

[^0]and AMR) bands have also been reported in nuclei in this region (1) [4]. These bands are observed in nuclei near the shell closures having small deformation values. The MR bands are understood be arising from the coupling of neutron and proton angular momenta oriented almost perpendicular to each other at the band head and the generation of angular momentum is due to the alignment of these angular momenta along the rotational axis. This resembles closing of a pair of blades of a shear with neutron and proton angular momenta as the blades of the shear, thus these bands are also sometimes referred as shears band. AMR bands are interpreted to be arising due to the simultaneous alignment of two (or more) symmetric anti-aligned proton hole blades along the neu-
tron particle angular momentum, a twin (or more) shears 80 mechanism. Further, the phenomenon of chirality in nu- 81 clei, first suggested by Frauendorf and Meng [5] is gener- 82 ally accepted as one of the signatures of triaxial shapes in 83 nuclei and it has been a major focus of recent studies in 84 the A ~ 100 region [6 9]. The phenomenon of chirality 85 arises in nuclei due to spontaneous left-right symmetry 86 breaking in triaxial shaped nuclei giving rise to a pair ${ }_{87}$ of nearly degenerate bands with identical energy states. 88 These bands in odd-odd triaxial nuclei are thought to 89 arise due to the alignment of angular momentum of the 90 two odd nucleons along the long and the short axis of the nucleus for a hole and particle like nature, respectively and the angular momentum of the triaxial core aligned 9_{91} along the intermediate axis; thus giving rise to a left or a right-handed system in the intrinsic frame of reference, ${ }_{92}$ depending on which side of the short-long plane is the ${ }_{93}$ total angular momentum vector of the nucleus. How- ${ }_{94}$ ever, states in bands of different configuration could also ${ }_{95}$ have accidental degeneracy, thus to qualify as true chi- ${ }_{96}^{95}$ ral bands the states in the two bands must have very ${ }_{97}^{96}$ similar physical properties like moment of inertia, quasi- ${ }_{98}$ particle alignments, in-band $\mathrm{B}(\mathrm{M} 1), \mathrm{B}(\mathrm{E} 2)$ values and ${ }_{99}$ $\mathrm{B}(\mathrm{M} 1) / \mathrm{B}(\mathrm{E} 2)$ ratios. Additionally they must also have ${ }_{100}$ a smooth energy staggering as a function of spin and a_{101}^{100} characteristic staggering of $B(M 1) / B(E 2)$ ratios for the ${ }_{102}^{101}$ in-band and out of band and energy degeneracy of states ${ }_{103}$ at same spin $10-12]$.

In many cases near energy degeneracy of 'chiral bands ${ }^{105}$ is observed but the transition probabilities in the two ${ }^{106}$ bands are found to be different, as in the case of ${ }^{134} \operatorname{Pr}^{107}$ [13] and ${ }^{102} \mathrm{Rh}$ [14]. In the silver isotope ${ }^{106} \mathrm{Ag}$, chiral like ${ }^{108}$ bands were observed by P. Joshi et al. [10] based on $\pi g_{9 / 2}^{-1} 109$ $\otimes \nu \mathrm{h}_{11 / 2}$ configuration. This is the only case other than the best known candidates for chiral bands in ${ }^{126,128} \mathrm{Cs}^{110}$ [15, 16] where a crossing is observed between the chiral ${ }^{110}$ partners. However, Joshi et al. found that the bands have different shapes near the crossover point (I~14 \hbar). ${ }^{111}$ These bands were further investigated by E.O. Lieder et al. [17] based on lifetime measurements but in conclusion ${ }^{112}$ they found that the yrast negative-parity band based on ${ }^{113}$ $\pi \mathrm{g}_{9 / 2}^{-1} \otimes \nu \mathrm{~h}_{11 / 2}$ configuration and its proposed partner ${ }^{114}$ bands are not chiral partners. In fact, they suggested a ${ }^{115}$ different configuration, discussed in detail in the present ${ }^{116}$ work, to the partner band. Wang et al. [18] reported ob- ${ }^{117}$ servation of chiral doublet bands based on $\pi \mathrm{g}_{9 / 2}^{-1} \otimes \nu \mathrm{~h}_{11 / 2}{ }^{118}$ configuration in ${ }^{104} \mathrm{Ag}$, however, earlier study by Datta $e t^{119}$ al. [19] had found these bands to be magnetic rotational ${ }_{121}^{120}$ bands. Dar et al. 20] analysed such doublet bands in A^{121} ~ 100 (including such bands in ${ }^{106,104} \mathrm{Ag}$) based on Tri ${ }^{122}$ axial Projected Shell Model (TPSM) and concluded that ${ }^{123}$ these bands have different intrinsic structures. Further, few relatively strong E1 transitions were observed from a positive-parity band with band head at 4424 keV and the yrast negative-parity band. The positive-parity band was suggested to have a four quasi-particle $\pi\left(\mathrm{g}_{9 / 2}\right)^{-1} \otimes_{125}$ $\nu\left(\mathrm{h}_{11 / 2}\right)^{2}\left(\mathrm{~g}_{7 / 2}, \mathrm{~d}_{5 / 2}\right)$ configuration in Ref. [18, 19]. In an ${ }_{126}$
effort to have a better understanding of the underlying intrinsic structures and interactions between the bands, lifetime measurements of the levels in the yrast and the excited bands were performed in the present work. In section II, the details of the experiment are described; section III gives the details of analysis and results including the observation some new interband and intraband γ-transitions, in section IV the results are discussed using the TPSM and Covariant Density Functional Theory (CDFT); and finally section V summarizes the present work.

II. EXPERIMENTAL DETAILS

High spin excited states of ${ }^{104} \mathrm{Ag}$ nucleus were populated by using ${ }^{76} \mathrm{Ge}\left({ }^{32} \mathrm{~S}\right.$, p3n$\left.\gamma\right){ }^{104} \mathrm{Ag}$ fusion evaporation reaction at beam energy of 110 MeV . The ${ }^{32} \mathrm{~S}$ beam was delivered by 14-UD BARC-TIFR Pelletron Facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The target was fabricated by evaporating enriched ${ }^{76} \mathrm{Ge}\left(500 \mu \mathrm{~g} / \mathrm{cm}^{2}\right)$ on gold foil of thickness $26 \mathrm{mg} / \mathrm{cm}^{2}$. A thin layer of aluminium $\left(11 \mathrm{\mu g} / \mathrm{cm}^{2}\right)$ acted as adhesive was placed between ${ }^{76} \mathrm{Ge}$ and gold foil. The emitted deexciting gamma rays were detected by Indian National Gamma Array (INGA) consisting of 18 Compton suppressed clover detectors [21]. The clover detectors were placed at 6 different angles viz. $40^{\circ}, 65^{\circ}, 90^{\circ}, 115^{\circ}, 140^{\circ}$ and 157° with respect to the beam direction. Approximately 3.2×10^{9} two and higher-fold $\gamma-\gamma$ coincidence event collected. The energy and efficiency calibration were done by using standard ${ }^{152} \mathrm{Eu}$ and ${ }^{133} \mathrm{Ba}$ radioactive sources placed at the target position.

III. DATA ANALYSIS AND RESULTS

A. Level Scheme

The data were sorted in $\gamma-\gamma$ symmetric and asymmetric matrices by using MARCOS program 21] and analysed using RADWARE software packages [22, 23]. The symmetric matrix was used to check the published level scheme and to place new gamma rays in the level scheme by generating various gated spectra and asymmetric matrix were used to determine the multipolarities of the γ-ray transitions from the measurement of the ratio of directional correlation from oriented states $\left(\mathrm{R}_{D C O}\right)$ 24]. The asymmetric matrix with gamma rays detected by detectors at 140° ring on one axis and gamma rays detected by detectors at 90° on other axis was used to determine DCO ratios and defined as

$$
R_{D C O}=\frac{\mathrm{I}_{\gamma}\left(\text { Observed at } 140^{\circ}, \text { gate on } 90^{\circ}\right)}{\mathrm{I}_{\gamma}\left(\text { Observed at } 90^{\circ}, \text { gate on } 140^{\circ}\right)}
$$

The DCO ratios determined for most of the transitions are by using $346 \mathrm{keV}\left(10^{-} \rightarrow 9^{-}\right) \gamma$-ray as gate, the
typical value of DCO ratio for a quadrupole transition ${ }_{182}$ was found to be ~ 1.6 and for a dipole transition it was ${ }_{183}$ ~ 1.0. The DCO ratios determined were found consistent 184 with earlier study by P. Datta et al. [19].

The partial level scheme of the odd-odd ${ }^{104} \mathrm{Ag}$ nucleus186 obtained from present work is shown in Fig. [1] In Fig. ${ }^{187}$ 2(a) gated gamma ray spectra are shown with gate on ${ }^{188}$ $865 \mathrm{keV}\left(8^{-} \rightarrow 7^{+}\right.$, band A), $406 \mathrm{keV}\left(17^{+} \rightarrow 16^{+}\right.$, band ${ }^{189}$ C) γ-ray in $2(\mathrm{~b})$ and with gate on $450 \mathrm{keV}\left(15^{-} \rightarrow 14^{-}, 190\right.$ band B) γ-ray in $2(\mathrm{c})$. The level scheme was built on ${ }_{191}$ the basis of coincidence relationship, relative intensities192 and directional correlation of gamma rays. Most of the193 γ-transitions reported in the earlier studies [[18], [19]] $]_{194}$ were observed, however, transitions only relevant to the195 present study are shown in partial level scheme in Fig. ${ }^{196}$ [1 as listed in Table (I) Four new gamma transitions 947197 $\mathrm{keV}, 1069 \mathrm{keV}, 607 \mathrm{keV}$ and 747 keV were also observed198 and placed in the level scheme. The details of gamma en-199 ergies, level energies, initial and final spin states, $\mathrm{R}_{D C O}{ }^{200}$ are given in Table In the previous study by Z. Wang ${ }_{201}$ et al. [18] the placement of $1232.6 \mathrm{keV} \gamma$-ray transition, 202 de-exciting 6133 keV level in the yrast band was tenta-203 tive. In the present study, the placement and spin of $19 \hbar_{204}$ for the 6133 keV level based on coincidence conditions205 and DCO ratio measurements of 605 keV transition are206 confirmed. The negative-parity for 6133 keV level is be-207 cause 1233 keV transition could only be E2 since M2 or208 other higher multipolarities are much less likely. There-209 fore, for this level spin-parity adopted is 19^{-}.

In band B , the $\mathrm{R}_{D C O}$ values of 499 keV and $329 \mathrm{keV}_{211}$ transitions de-exciting from 2711 keV and 3040 keV lev-212 els, respectively, are found to be close to 1 with a gate on ${ }_{213}$ a dipole 175 keV transition with very little mixing [19, [25] $]_{214}$ thus, the spin assignments of levels 2711 and $3040 \mathrm{keV}_{215}$ levels are confirmed, however, parities are still kept ten- ${ }_{216}$ tative following the adoption by Z. Wang et al. 18]. A_{217} new transition $(607 \mathrm{keV})$ de-exciting from level at 3648_{218} keV to level at 3040 keV was observed and is placed in_{219} the level scheme. Two new E1 transitions from band C_{220} to band B from 17^{+}to $16^{-}(947 \mathrm{keV})$ and from $16^{+} \mathrm{to}_{221}$ $15^{-}(1069 \mathrm{keV})$ were also observed and are placed in the ${ }_{222}$ level scheme. These new transitions can be seen in Fig. ${ }^{223}$ 2(c) in the gated spectra with gate on $450 \mathrm{keV}\left(15^{-} \rightarrow_{224}\right.$ 14^{-}) transition in band B with E_{γ} marked in red colour. Other gated γ-spectra are also shown in Fig. 2(a) and ${ }^{225}$ (b).

B. Level Lifetime Analysis using the Doppler Shift ${ }_{230}$

 Attenuation Method (DSAM)DSAM analysis was carried out to extract lifetime of f_{233} excited states of band A and band C. Data were sorted ${ }_{234}$ into angle dependent asymmetric matrices, wherein the ${ }_{235}$ γ-rays observed at one of the four $\left(40^{\circ}, 65^{\circ}, 140^{\circ}\right.$ and ${ }_{236}$ 157°) possible angles on the y-axis and coincident γ-rays ${ }_{237}$ detected at the 90° on the x-axis. The analysis was car-238 ried out by using the LINESHAPE [26] package together ${ }_{239}$
with developments reported in the Ref. 27. The same is merited with the use of stopping powers of SRIM 28] software for simulation of residue trajectories through target and backing media and thus reduces systematic uncertainty on the lifetime results vis-a-vis that from the use of older stopping power models as implemented in the LINESHAPE package. As per the routine procedure of the DSAM analysis, the calculated Doppler-broadened lineshapes were least square fitted to the experimental spectra at different angles in order to determine the lifetime of the respective level. The detailed methodology is described in a number of papers such as Ref. [29]. The parameters of fitting include the level lifetime, the side feeding lifetime, the spectrum background and the height of the transition peak along with that of the neighbouring contamination peak, if any. For each level of interest, a single feeder state was used to model the side feeding contribution to the observed experimental γ-ray transition peak. During the analysis χ^{2} minimization was carried out for experimental spectra beginning from the topmost level which was assumed to be 100% side fed. Lifetime of the level, the side feeding time and other parameter were allowed to vary for converging into a χ^{2} minimum. In the second step, the side feeding time and the lifetime of levels were allowed to vary simultaneously while keeping the other (spectrum) parameters of individual states fixed at the values obtained in the previous steps. The lifetimes corresponding to those arrived at from this global minimization were the final values quoted herein.

In the present DSAM analysis both spectra generated with gate on transition below (GTB) as well as spectra with gate on transition above (GTA) the transition of interest wherever feasible, are used. One of the spectra corresponding to the GTB was generated by summing gates on $346 \mathrm{keV}, 333 \mathrm{keV}$ and 444 keV transitions of the yrast band (Band A). Lifetimes of the states $15^{-}, 16^{-}$, $17^{-}, 18^{-}$and 19^{-}belonging to Band A, were extracted from analysis of this spectrum. The experimental spectra along with fitted Doppler shapes at four different angles for some of these de-exciting transitions are shown in Fig. 3 (a,b). Lifetimes of the 16^{+}and the 17^{+}states of band C were also extracted from analysis of the same spectrum with GTB.

As far as the present data are concerned, no Doppler shapes were observed for transition de-exciting the 14^{+} and the 15^{+}states of Band C. Given the stopping time of the ${ }^{104} \mathrm{Ag}$ residues in the target and backing media for the experiment is $\sim 1.3 \mathrm{ps}$, not observing Doppler shape for these transitions would mean that the lifetimes of the corresponding levels are $>4 \mathrm{ps}$. This is consistent with the propositions of Datta et al. [19]. The lifetime of the 16^{+} and 17^{+}states, as mentioned earlier, could be determined from the analysis of the GTB spectrum corresponding to the sum gates on $346 \mathrm{keV}, 333 \mathrm{keV}$ and 444 keV keV transitions of Band A. The lifetimes of the still higher $\left(18^{+}, 19^{+}\right)$states of Band C were extracted from analysis of another GTB spectrum generated from the sum of gates on $361 \mathrm{keV}, 1604 \mathrm{keV}, 1484 \mathrm{keV}, 926 \mathrm{keV}$ and

TABLE I. γ energy $\left(E_{\gamma}\right)$, level energy $\left(E_{i}\right)$, relative intensity $\left(I_{\gamma}\right), \mathrm{R}_{D C O}$ of the γ transitions in ${ }^{104} \mathrm{Ag}$ obtain from the gate on pure dipole 346 keV transition.

$\mathrm{E}_{\gamma}(\mathrm{keV})^{*}$	$\mathrm{E}_{i}(\mathrm{keV})$	$J_{i}^{\pi} \rightarrow J_{j}^{\pi}$	Intensity (I_{γ})	DCO ratio $\left(\mathrm{R}_{D C O}\right)$
99.3	212	$7^{+} \rightarrow 6^{+}$	120.6(60)	
112.6	113	$6^{+} \rightarrow 5^{+}$	162.9(81)	
175.2	1253	$9^{-} \rightarrow 8^{-}$	126.0(63)	0.95(1)
297.2	3648	$14^{-} \rightarrow 13^{-}$	5.1(3)	1.06(8)
310.1	3351	$13^{-} \rightarrow 12^{-}$	$3.7(2)$	1.06(11)
328.9	3040	$12^{-} \rightarrow 11^{(-)}$	1.7(1)	$1.07(11)^{a}$
332.8	1932	$11^{-} \rightarrow 10^{-}$	89.6(45)	1.01(3)
346.3	1599	$10^{-} \rightarrow 9^{-}$	100.0(50)	$1.13(1)^{b}$
361.4	4786	$15^{+} \rightarrow 14^{+}$	2.9(2)	0.91(9)
380.8	5166	$16^{+} \rightarrow 15^{+}$	7.3(4)	0.99 (12)
406.1	5572	$17^{+} \rightarrow 16^{+}$	9.9(5)	0.92(5)
443.8	2376	$12^{-} \rightarrow 11^{-}$	53.9(52)	0.99(1)
444.7	2820	$13^{-} \rightarrow 12^{-}$	50.9(25)	0.99(1)
449.6	4097	$15^{-} \rightarrow 14^{-}$	5.8(3)	0.90(7)
480.1	6053	$18^{+} \rightarrow 17^{+}$	10.5(5)	
481.2	3301	$14^{-} \rightarrow 13^{-}$	40.3(20)	1.02(2)
499.3	2711	$11^{(-)} \rightarrow 10^{(-)}$	1.6(3)	$1.02(14)^{a}$
507.8	3809	$15^{-} \rightarrow 14^{-}$	26.4(13)	0.93(2)
519.8	4329	$16^{-} \rightarrow 15^{-}$	15.6(8)	0.90(5)
521.7	1599	$10^{-} \rightarrow 8^{-}$	3.7(2)	
527.6	4625	$16^{-} \rightarrow 15^{-}$	4.8(2)	1.08(11)
543.6	6596	$19^{+} \rightarrow 18^{+}$	2.9(2)	
564.2	7161	$20^{+} \rightarrow 19^{+}$	2.7(2)	
572.3	4901	$17^{-} \rightarrow 16^{-}$	7.9(4)	0.90(6)
604.8	6133	$19^{-} \rightarrow 18^{-}$	4.8(3)	0.91(9)
606.6	3648	$14^{-} \rightarrow 12^{-}$	0.6(2)	
627.7	5529	$18^{-} \rightarrow 17^{-}$	5.5(3)	1.00(13)
638.9	3351	$13^{-} \rightarrow 11^{(-)}$	0.7(1)	
678.9	1932	$11^{-} \rightarrow 9^{-}$	17.4(9)	$1.55(3)^{b}$
746.7	4097	$15^{-} \rightarrow 13^{-}$	≤ 1	
776.7	2376	$12^{-} \rightarrow 10^{-}$	12.3(6)	1.64(8)
796.2	4097	$15^{-} \rightarrow 14^{-}$	0.7(1)	
827.7	3040	$12^{-} \rightarrow 10^{(-)}$	0.8(2)	
828.1	3648	$14^{-} \rightarrow 13^{-}$	3.4(2)	1.13(8)
865.2	1077	$8^{-} \rightarrow 7^{+}$	40.6(21) ${ }^{\text {\# }}$	
888.4	2820	$13^{-} \rightarrow 11^{-}$	15.5(8)	1.56(13)
925.8	3301	$14^{-} \rightarrow 12^{-}$	11.2(6)	1.49 (14)
946.9	5572	$17^{+} \rightarrow 16^{-}$	1.0(1)	
959.3	2212	$10^{(-)} \rightarrow 9^{-}$	2.4(2)	
975.3	3351	$13^{-} \rightarrow 12^{-}$	2.6(2)	1.03(18)
977.1	4625	$16^{-} \rightarrow 14^{-}$	1.0(2)	
989.0	3809	$15^{-} \rightarrow 13^{-}$	7.6(4)	1.40 (7)
1027.3	4329	$16^{-} \rightarrow 14^{-}$	4.9(3)	
1069.4	5166	$16^{+} \rightarrow 15^{-}$	1.0(1)	
1091.8	4901	$17^{-} \rightarrow 15^{-}$	2.2(1)	
1108.9	3040	$12^{-} \rightarrow 11^{-}$	3.3(2)	1.09(10)
1112.9	2711	${ }^{11^{(-)} \rightarrow 10^{-}}$	$1.5(1)$	
1200.1	5529	$18^{-} \rightarrow 16^{-}$	2.1(3)	
1232.6	6133	$19^{-} \rightarrow 17^{-}$	1.8(3)	
1357.4	5166	$16^{+} \rightarrow 15^{-}$	3.1(2)	1.10(33)
1399.3	5208	$\rightarrow 15^{-}$	1.1(1)	
1484.4	4786	$15^{+} \rightarrow 14^{-}$	$5.2(3)$	0.88(12)
1604.4	4424	$14^{+} \rightarrow 13^{-}$	3.0(2)	1.04(25)

${ }^{a}$ DCO ratio from gate on 175 keV dipole transition
${ }^{b}$ DCO ratio from gate on 444 keV dipole transition

* The uncertainty in γ-ray energy is within 0.5 keV and the level energies are rounded of to the nearest integer value.
\# The level at 1077 keV de-excites by other transitions to lower levels as reported in [18], these were observed in the present study but not listed in this table.

Band C

FIG. 1. Partial level scheme of the ${ }^{104} \mathrm{Ag}$ nucleus obtained from the present work, only γ-ray transitions relevant to the present study are shown, see text for details. The newly added γ-ray transitions are shown in red colour and the confirmed γ-ray transitions or spin/parity are shown in blue colour. The widths of the arrow correspond approximately to the intensity of the γ-ray transition.

989 keV transitions. The choice of gates was such that ${ }_{252}$ there was no contribution of the $481 \mathrm{keV}\left(14^{-} \rightarrow 13^{-}\right)_{253}$ transition in the observed Doppler shape of the 480 keV $\left(18^{+} \rightarrow 17^{+}\right)$transition peak of Band C. That, because in ${ }^{254}$ this selection of gates, the 481 keV transition of Band A^{255} is being contributed only by the 1484 keV transition de- ${ }^{256}$ exciting the long-lived 15^{+}state of Band C. Thus, the ${ }^{257}$ 481 keV transition peak could be defined as a stopped ${ }^{258}$ contaminant one in the analysis of the Doppler shape of ${ }^{259}$ the 480 keV transition.

The $B(E 1) / B(M 1)$ and $B(E 1)$ values determined for ${ }_{262}$
transitions from Band C to Band A and Band B are given in Table III.

Lifetimes of some of the states of Band A could also be determined from analysis of spectrum corresponding to a gate set on transition above (GTA) the levels of interest. Such analysis is known to eliminate the uncertainties associated with the sidefeeding, albeit the count statistics in the (GTA) spectra is often sparse and the technique cannot be practiced at large. In the present analysis, a gate on the $572 \mathrm{keV}\left(17^{-} \rightarrow 16^{-}\right)$was used to determine the lifetimes of the $14^{-}, 15^{-}, 16^{-}$levels of Band A, that

TABLE II. Spin (I^{π}), γ-energy (E_{γ}), level energy, measured level lifetime from present work using the GTB ($\tau_{G T B}$), side feeding lifetime obtain from GTB technique ($\tau_{S . F}$.) and level lifetime obtain using GTA ($\tau_{G T A}$) technique, Adopted lifetime (τ), the reduced transition probabilities $\mathrm{B}(\mathrm{M} 1)$ for band A and band C .

I^{π}	E_{γ}	Level energy	$\tau_{G T B}$	$\tau_{\text {S.F. }}$	$\tau_{G T A}$	Adopted τ	$\mathrm{B}(\mathrm{M} 1) \downarrow$	$\mathrm{B}(\mathrm{M} 1) \downarrow$
($\ddagger)$	(keV)	(keV)	(ps)	(ps)	(ps)	(ps)	μ_{N}^{2}	(W.u.)

Band A

14^{-}	481.2	3301			$0.52_{-0.06}^{+0.06}$	$0.52_{-0.06}^{+0.06}$	$0.76_{-0.09}^{+0.09}$	$0.42_{-0.05}^{+0.05}$
15^{-}	507.8	3809	$0.37_{-0.05}^{+0.05}$	$0.43_{-0.05}^{+0.05}$	$0.40_{-0.05}^{+0.06}$	$0.40_{-0.05}^{+0.06}$	$0.85_{-0.11}^{+0.13}$	$0.47_{-0.06}^{+0.07}$
16^{-}	519.8	4329	$0.37_{-0.05}^{+0.05}$	$0.35_{-0.05}^{+0.05}$	$0.37_{-0.06}^{+0.06}$	$0.37_{-0.05}^{+0.06}$	$0.83_{-0.11}^{+0.13}$	$0.46_{-0.06}^{+0.07}$
17^{-}	572.3	4901	$0.25_{-0.05}^{+0.05}$	$0.31_{-0.05}^{+0.06}$		$0.25_{-0.05}^{+0.05}$	$0.95_{-0.19}^{+0.19}$	$0.53_{-0.11}^{+0.11}$
18^{-}	627.7	5529	$0.29_{-0.05}^{+0.05}$	$0.19_{-0.05}^{+0.08}$		$0.29_{-0.05}^{+0.05}$	$0.58_{-0.10}^{+0.10}$	$0.32_{-0.06}^{+0.06}$
19^{-}	604.8	6133	$0.68 \downarrow$		$0.68 \downarrow$	$0.28 \uparrow$	$0.16 \uparrow$	
Band C						$0.61_{-0.05}^{+0.05}$	$1.08_{-0.09}^{+0.09}$	$0.60_{-0.05}^{+0.05}$
16^{+}	380.8	5166	$0.61_{-0.05}^{+0.05}$	$0.79_{-0.06}^{+0.06}$		$1.34 \downarrow$	$0.58 \uparrow$	$0.32 \uparrow$
17^{+}	406.1	5572	$1.34 \downarrow$		$0.39_{-0.05}^{+0.05}$	$1.31_{-0.17}^{+0.17}$	$0.73_{-0.09}^{+0.09}$	
18^{+}	480.1	6053	$0.39_{-0.05}^{+0.05}$	$0.41_{-0.05}^{+0.05}$	$0.86 \downarrow$	$0.41 \uparrow$	$0.23 \uparrow$	
19^{+}	543.6	6596	$0.86 \downarrow$					

TABLE III. Spin (I^{π}), γ-energy (E_{γ}), branching ratio, $\mathrm{B}(\mathrm{E} 1) / \mathrm{B}(\mathrm{M} 1)$ values, the reduced transition probabilities $\mathrm{B}(\mathrm{E} 1)$.

I^{π} (\hbar)	$\mathrm{E}_{\gamma}(\mathrm{E} 1)$ (MeV)	Br	$\mathrm{B}(\mathrm{E} 1) / \mathrm{B}(\mathrm{M} 1)$ $\left(10^{-4} \mathrm{efm} / \mu_{N}\right)^{2}$	$\mathrm{B}(\mathrm{E} 1) \downarrow$ $\left(10^{-5} \mathrm{~W} . \mathrm{u}.\right)$
15^{+}	1.484	0.64	$2.84_{-0.25}^{+0.25}$	
16^{+}	1.357	0.27	$1.03_{-0.09}^{+0.09}$	$0.68_{-0.08}^{+0.08}$

are respectively de-excited by the $481 \mathrm{keV}, 508 \mathrm{keV}$ and $_{276}$ 520 keV transitions. The fitted lineshapes to the experimental spectra at four different angles for 481 keV deexciting transition is shown in Fig. 3 (c). The extracted lifetimes of $14^{-}, 15^{-}, 16^{-}$states has been tabulated in Table [II. The lifetime values obtained for the 15^{-}and 16^{-}states are in superior overlap with these obtained from the previous analysis using spectrum corresponding ${ }_{277}$ to the GTB. This provides a validation for the latter. ${ }^{278}$ The uncertainties on lifetime values have been calculated ${ }_{279}$ from χ^{2} analysis added in quadrature to the systematic ${ }_{280}$ contribution of the stopping powers that is $\sim 5 \%$ 28] . ${ }^{281}$

The reduced transitional probability was calculated 2_{283}
from the measured level lifetime τ, using 30

$$
\begin{equation*}
B(M 1) \downarrow=\frac{0.05697 B_{\gamma}(M 1)}{E_{\gamma}^{3}(M 1) \tau\left[1+\alpha_{t}(M 1)\right]}\left[\left(\mu_{N}\right)^{2}\right] \tag{1}
\end{equation*}
$$

where $\alpha_{t}(M 1)$ is the total internal conversion coefficient of the transition and $B_{\gamma}(M 1)$ is the branching ratio. The E_{γ} in the above expression is in MeV and τ is in picosecond. We have assumed the values of mixing ratio to be negligible to estimate the $\mathrm{B}(\mathrm{M} 1)$ values. Further, for $E_{\gamma}>300 \mathrm{keV}$ the total internal conversion coefficient of the transition $\alpha_{t}(M 1)$ is found to be negligible.

FIG. 2. $\gamma-\gamma$ coincidence spectra with the (a) 865 keV , (b) ${ }^{331}$ 406 keV and (c) 450 keV gates belonging to Band A, Band ${ }_{332}$ C and Band B respectively. The newly observed γ transition ${ }_{333}$ from the present work are shown with energy marking in red ${ }_{334}$ colour. formed and transitional nuclei reasonably well [39, 40]. In particular, it has been shown that it reproduces the properties of doublet bands observed in odd-odd [41], odd-mass [42] and also in even-even [39] systems quite well. In the earlier version, the basis space in the TPSM approach for odd-odd nuclei was composed of one-neutron coupled to one-proton quasiparticle configurations (43]. This basis space was obviously quite restrictive and allowed to study only low-lying states in odd-odd nuclei. To study the high-spin states in oddodd nuclei around and beyond the band crossing, it is important to include two-neutron and two-proton states coupled to the basic one-neutron plus one-proton state. These basis states have been recently included in the TPSM approach and already some studies have been performed 41]. In order to investigate the properties of ${ }^{104} \mathrm{Ag}$, the TPSM basis states have been constructed with the basis deformation of $\epsilon=0.142$ and $\epsilon^{\prime}=0.100$, which correspond to quadrupole deformation $\beta \sim 0.15$ and $\gamma \sim 35^{\circ}$ 19, 44]. The deformed triaxial basis generated are projected onto good angular-momentum states through

FIG. 3. The experimental spectra along with the fitted lineshape for the γ transitions $406 \mathrm{keV}, 508 \mathrm{keV}, 520 \mathrm{keV}$ and 481 keV transition of band A and C. The lineshape of the γ transition, contamination peaks and total lineshape are shown by blue, green and red curves, respectively.
three-dimensional angular-momentum projection formalism (45). The projected basis are then employed to diagonalize the shell model Hamiltonian consisting of pairing plus quadrupole-quadrupole interaction terms. The projected energies obtained after shell model diagonalization for ${ }^{104} \mathrm{Ag}$ odd-odd nucleus are depicted and compared with the corresponding experimental data in Fig. [4 It is evident from the figure that overall agreement between the calculated and the measured energies is quite reasonable.

In order to shed light on the possibility that two observed negative bands may be associated with the chiral symmetry breaking mechanism, we have calculated the angular momentum projections along the three principle axis. As is well known that chiral symmetry results for a triaxial system, having finite angular-momentum projection along all the three principle axis. The angularmomentum projections are plotted in Fig. 5 for the two doublet bands, and it is evident from the results that three axis have finite angular-momentum projections. This suggests that two negative-parity observed bands could be associated with the chiral symmetry. Similar analysis have recently been carried out for ${ }^{104} \mathrm{Mo}$ in ref. [48], and more details on the calculations can be found in the cited article.

In Fig. 6 the experimental kinematic moment of in-

$20-6.464$	20-6.408
19.5 .693	$19^{-5.659}$
18.4 .818	18-4.914
$1 7 \longdiv { 4 . 1 0 9 }$	$17 \underline{-4.313}$
$16 \underline{ } \mathbf{3 . 4 5 2}$	$16^{-3.745}$
15-2.839	
	14-2.609
$14-2.318$	13-2.287
13-1.803	12-1.854
$12-1.344$	$11^{-1.508}$
11-0.881	
10-0.547	
$9_{0}^{-}-\frac{0.189}{0}$	

FIG. 4. Comparison of the measured energy levels of negativeparity yrast and excited bands for ${ }^{104} \mathrm{Ag}$ nucleus (left side) with that of the results of TPSM calculation (right side).

FIG. 5. The expectation values of the squared angular momentum components in band A and band B for the nucleus ${ }^{104} \mathrm{Ag}$.

FIG. 6. Comparison between experimental and calculated moment of inertia, $\mathrm{J}^{(1)}$ of the yrast band and partner band for ${ }^{104} \mathrm{Ag}$. The Harries parameters used are $\Im_{0}=7.0 \hbar^{2} / \mathrm{MeV}$, $\Im_{1}=15.0 \hbar^{4} / \mathrm{MeV}$ [46].

FIG. 7. Comparison of the experimental and theoretical $\mathrm{B}(\mathrm{M} 1) / \mathrm{B}(\mathrm{E} 2)$ ratios for ${ }^{104} \mathrm{Ag}$.

FIG. 8. Comparison of the experimental and theoretical $B(M 1)$ and $B(E 2)$ for Band A of ${ }^{104} \mathrm{Ag}$ nucleus. The error depicted for the present study include error in stopping power $\sim 5 \%$ (The error bars shown for data points from the previous studies [19, 47] does not include the stopping power error)
ertia is compared with the calculated moment of inertia for bands A and B. The moment of inertia for the two bands are quite different at spins below $15 \hbar$, however they tend to become similar at higher spins. The transition probabilities have also been evaluated using the projected wave functions after diagonalization with the expressions given in Ref. [43]. The parameters of $g_{l}^{\pi}=1, g_{l}^{\nu}=0, g_{s}^{\pi}=5.586 \times 0.85, g_{s}^{\nu}=-3.826 \times 0.85$ and the effective charges of $e^{\pi}=1.5 e$ and $e^{\nu}=0.5 e$ have been employed as in our earlier work [43]. It is evident from Fig 7 that $\mathrm{B}(\mathrm{M} 1) / \mathrm{B}(\mathrm{E} 2)$ ratios of the yrast and the partner band are in good agreement with the experimental data. The calculated transition probabilities B(M1) and $\mathrm{B}(\mathrm{E} 2)$ versus spin are compared with the experimental data in Fig. 8 Individual calculated values are compared with the known values from various experimental measurements. The TPSM calculated $\mathrm{B}(\mathrm{E} 2)$ values are slightly higher than the measured ones. To investigate positive-parity states in ${ }^{104} \mathrm{Ag}$, TPSM approach needs to be generalised to include two major shells for the valence space. This development is presently under progress and the results will be published in a separate communica-
tion.

B. Covariant Density Functional Theory Results

To understand the structure of the bands in ${ }^{104} \mathrm{Ag}_{4}{ }_{437}$ calculations based on the covariant density functional ${ }_{438}$ theory (CDFT) 49 51] have been carried out. The en-439 ergy spectra, angular momenta and electromagnetic tran-440 sition probabilities have been calculated by the three-441 dimensional cranking covariant density functional the-442 ory (3DTAC-CDFT) [52 54]. The octupole deformation ${ }_{443}$ of the ground state in ${ }^{104} \mathrm{Ag}$ has been examined based ${ }_{444}$ on CDFT in 3D lattice 55 57]. The relativistic density ${ }_{445}$ functional PC-PK1 [58] is used, which has demonstrated ${ }_{446}$ high predictive power to describe nuclear masses [59-61],447 magnetic and antimagnetic rotations [62 64] and chiral448 rotations 52], etc. For the 3DTAC-CDFT calculation,449 the Dirac equation is solved in a 3D harmonic oscilla-450 tor basis in Cartesian coordinates with 10 major shells 451 which provide convergent results for nuclei in $A \sim 100_{452}$ mass region 52]. The configuration-fixed constrained tri-453 axial CDFT calculations similar to those in Ref. [65] were ${ }_{454}$ performed for various low-lying particle-hole excitations 4_{455} in ${ }^{104} \mathrm{Ag}$. Detailed results are listed in Table. IV] Three 4_{456} positive-parity configurations are labelled as $\alpha+, \beta+$ and $_{457}$ $\gamma+$. Two negative-parity configurations are labeled as_{458} $\alpha-$ and β - .

The energy spectra based on these configurations are 4_{60} shown in Fig. 9 in comparison with the experimental461 data. For the negative-parity band A, the configuration462 β - can be excluded because its energy is too high. The 4_{63} possible configuration is $\alpha-$. At the rotational frequency ${ }_{464}$ $\hbar \omega=0.0 \mathrm{MeV}$, the alignment of the valence neutrons in ${ }_{465}$ $\left(g_{7 / 2}, d_{5 / 2}\right)$ orbits of α - is roughly zero, indicating they ${ }_{466}$ are fully paired. As the rotational frequency increases,467

FIG. 9. Calculated rotational energies as function of the angular momenta in comparison with the data.
two of the valence neutrons in $\left(g_{7 / 2}, d_{5 / 2}\right)$ orbits align toward each other and contribute an angular momentum of roughly $6 \hbar$ at the rotational frequency $\hbar \omega=0.4 \mathrm{MeV}$ (I $\sim 12 \hbar$). There is no proper configuration for band B in the present calculations. Considering the fact that bands A and B are lying close to each other, band B might be a chiral partner band of band A.

To justify the chiral nature of bands A and B , the magnitude of triaxial deformation and the orientation angles θ and ϕ of the total angular momentum \boldsymbol{J} in the intrinsic frame are examined. The obtained results are very similar its neighbouring odd-odd nucleus ${ }^{106} \mathrm{Ag}$ [53]. In Fig. 10(a), the potential energy surface of ${ }^{104} \mathrm{Ag}$ at the rotational frequency $\hbar \omega=0.4 \mathrm{MeV}$ is shown with the configuration fixed to $\alpha-$. Although the triaxial deformation is only $\gamma \approx 5^{\circ}$ at the minimum, the potential energy surface is soft in the triaxial direction; the energy rise is less than 1.5 MeV with the change in triaxial deformation of 22°. For the orientation angles of the total angular momentum \boldsymbol{J} in the intrinsic frame, the polar angle θ varies from 64° to 80° driven by the increasing rotational frequency from 0.1 MeV to 0.6 MeV , while the azimuth angle ϕ vanishes at all rotational frequencies. Although this corresponds to a planar rotation, the angular momentum \boldsymbol{J} can execute a quantal motion, oscillating around the planar equilibrium into the left- and right-handed sectors, which leads to the so-called chiral vibration. The experimental observation of chiral vibration requires a relatively low vibrational energy, which in turn requires a slow rise in Routhian curve along the ϕ degree of freedom. In Fig. 10(b), the total Routhian curve at rotational frequency $\hbar \omega=0.4 \mathrm{MeV}$ for the configuration α - is shown as a function of the azimuth angle ϕ_{ω} of the angular velocity $\boldsymbol{\omega}$. It can be seen that the Routhian grows very slowly with the increasing ϕ_{ω}; rising only several tens of keV from $\phi_{\omega}=0^{\circ}$ to 30°. This indicates that the chiral vibration around the planar equilibrium into

FIG. 10. Potential energy surface in the $\beta-\gamma$ deformation plane (left) and total Routhian curve as a function of the azimuth angle ϕ_{ω} of the angular velocity $\boldsymbol{\omega}$ (right) for the configuration $\pi g_{9 / 2}^{-1} \otimes \nu h_{11 / 2}(g d)^{2}$ at the rotational frequency $\hbar \omega=0.4 \mathrm{MeV}$. The star denotes the position of the minimum energy in the potential energy surface. The Routhian curve is renormalized to its minima at $\phi_{\omega}=0^{\circ}$.

FIG. 11. The angular momentum as a function of rotational frequency and B (M1) as a function of spin for configurations $\alpha-, \beta+$ and $\gamma+$ in comparison with the data.
the left- and right-handed sectors should be substantial, 477 and a pair of chiral vibrational bands can be generated d_{478} based on the configuration $\alpha-$.

Amongst the positive-parity configurations, $\alpha+$ corre-480 sponds to the low-lying states with single-particle nature481 as suggested in Ref. [18]. Both configurations $\beta+$ and $_{482}$ $\gamma+$ are possible for band C from the energy spectra and d_{483} the final result needs the help from the angular momenta484 and $B(M 1)$ results in Fig. 11

The angular momentum vs. rotational frequency and $B(M 1)$ vs. spin curves for configurations $\alpha-, \beta+$ and $\gamma+$ are also compared with the data as shown in Fig. [11] The calculated angular momenta and $B(M 1)$ values based on α - reproduce the data reasonably well, thus the configuration assignment to bands A and B is validated. For band C , the angular momenta and $B(M 1)$ values are reproduced well based on the configuration $\beta+$. Even though the calculated angular momenta based

TABLE IV. Binding energies, deformations β and γ, and the corresponding configurations for the minima $\alpha+, \beta+, \gamma+, \alpha-$ and $\beta-$ in ${ }^{104} \mathrm{Ag}$ obtained in the configuration-fixed 3DTAC-CDFT calculations with PC-PK1.

State	$\mathrm{E}(\mathrm{MeV})$	β	γ	Configurations
$\alpha+$	886.9	0.189	0.0°	$\pi\left(g_{9 / 2}^{-3}\right) \otimes \nu\left(g_{7 / 2}, d_{5 / 2}\right)^{7}$
$\beta+$	883.7	0.240	7.5°	$\pi\left(g_{9 / 2}^{-3}\right) \otimes \nu\left(h_{11 / 2}^{2}\right)\left(g_{7 / 2}, d_{5 / 2}\right)^{5}$
$\gamma+$	884.5	0.220	19.4°	$\pi\left(g_{9 / 2}^{-2}\right)\left(p_{1 / 2}, p_{3 / 2}\right)^{-1} \otimes \nu\left(h_{11 / 2}^{1}\right)\left(g_{7 / 2}, d_{5 / 2}\right)^{6}$
$\alpha-$	885.7	0.220	0.0°	$\pi\left(g_{9 / 2}^{-3}\right) \otimes \nu\left(h_{11 / 2}^{1}\right)\left(g_{7 / 2}, d_{5 / 2}{ }^{6}\right.$
$\beta-$	883.4	0.242	39.0°	$\pi\left(g_{9 / 2}^{-1}\right)\left(p_{1 / 2}, p_{3 / 2}\right)^{-2} \otimes \nu\left(h_{11 / 2}^{1}\right)\left(g_{7 / 2}, d_{5 / 2}\right)^{6}$

FIG. 12. Plot of the quasiparticle alignment as a function of spin for ${ }^{104} \mathrm{Ag}$ and ${ }^{106} \mathrm{Ag}$. The Harries parameters used are $\Im_{0}=7.0 \hbar^{2} / \mathrm{MeV}, \Im_{1}=15.0 \hbar^{4} / \mathrm{MeV}$ [46].
on $\gamma+$ reproduce the data satisfactorily, $\gamma+$ should be_{508} excluded because it strongly overestimates the $B(M 1)_{509}$ values. The theoretically suggested configuration is con-510 sistent with the one suggested in Ref. [19], however, the ${ }_{511}$ deformation parameters predicted from present calcula-512 tions are $\beta=0.24$ and $\gamma=7.5^{\circ}$ while in Ref. 19] it was $_{513}$ suggested to be $\beta=0.18$ and $\gamma=25^{\circ}$.

The quasiparticle alignments of bands A and B can be515 compared with those of bands 1-3 from the neighbour-516 ing odd-odd nucleus ${ }^{106} \mathrm{Ag}$ [17, 53] as shown in Fig. 125 ${ }^{517}$ The configuration of band A can be assigned as $\pi \mathrm{g}_{9 / 2}^{-1} \otimes{ }_{518}$ $\nu \mathrm{h}_{11 / 2}$ at low spins and as $\pi \mathrm{g}_{9 / 2}^{-1} \otimes \nu \mathrm{~h}_{11 / 2}(g d)^{2}$ at $\operatorname{high}^{519}$ spins. The configuration of band B can be assigned as ${ }^{520}$ $\pi \mathrm{g}_{9 / 2}^{-1} \otimes \nu \mathrm{~h}_{11 / 2}(g d)^{2}$. Bands A and B are probably chiral doublet bands based on $\pi \mathrm{g}_{9 / 2}^{-1} \otimes \nu \mathrm{~h}_{11 / 2}(g d)^{2}$, similar to_{521} the bands 2 and 3 in ${ }^{106} \mathrm{Ag}$.

Experimentally, there are a few relatively strong E1522 transitions connecting the positive-parity band and the 5_{23} yrast negative-parity band. To explore the octupole cor-524 relations in ${ }^{104} \mathrm{Ag}$, the potential energy surface in the ${ }_{525}$ $\beta_{20}-\beta_{30}$ plane for the ground state of ${ }^{104} \mathrm{Ag}$ is calcu-526 lated by CDFT in 3D lattice and shown in Fig. 13. For ${ }_{527}$

FIG. 13. The potential energy surface of ${ }^{104} \mathrm{Ag}$ calculated using 3D lattice CDFT. The energies are normalized to the ground state with $\left(\beta_{20}, \beta_{30}\right)=(0.195,0.0)$. The contour separation is 0.2 MeV .
the CDFT calculations, the step sizes along the x, y and z axes are chosen as 1.0 fm . The grid numbers are 24 for the x and y axes and 28 for the z axis. The size of the space adopted here is sufficient to obtain converged solutions. Although the octupole deformation $\beta_{30}=0^{\circ}$ at the minimum, the potential energy surface is rather soft in the octupole direction; the energy rise is less than 0.4 MeV with change in octupole deformation of 0.05 . Similar to the interpretation for the chiral doublet bands with octupole correlations in ${ }^{124} \mathrm{Cs}$ 37] and ${ }^{78} \mathrm{Br}$ [66], the octupole soft nature predicted in ${ }^{104} \mathrm{Ag}$ is expected to be responsible for the enhanced $E 1$ transitions between the positive and negative-parity bands.

V. SUMMARY

High spin structure in ${ }^{104} \mathrm{Ag}$ nucleus has been investigated through the fusion evaporation reaction ${ }^{76} \mathrm{Ge}\left({ }^{32} \mathrm{~S}\right.$, p3n) at beam energy of 110 MeV . In the present study, lifetime measurements have been done for various states in the negative-parity yrast band and positive-parity magnetic rotational band at an excitation energy of 4424
keV . Lifetimes of 7 states and upper limits on lifetime ${ }_{564}$ of 3 states were obtained using the DSAM technique. 565 Lifetime of 3 states ($17^{-}, 18^{-}, 19^{-}$) of yrast band and566 16^{+}state of positive band based on 4424 keV have been n_{567} determined for the first time. In case of states where lifetime have been known from earlier studies, the errors have been reduced significantly. From our directional568 correlation measurements of gamma rays (DCO) we have also been able to confirm some of the spin-parity assign- ${ }_{569}$ ments which were tentatively assigned before. We have ${ }_{570}$ observed enhanced E1 transitions (three known from earlier studies and two more from the present study) from ${ }_{572}$ the positive-parity band based on 4424 keV to the yrast_{573} and its proposed (from earlier study) chiral partner band. ${ }_{574}$ We have performed calculations based on TPSM and ${ }_{575}^{574}$ CDFT approaches to understand the above mentioned ${ }_{576}$ band structures. It is evident from the presented re^{577} sults that TPSM provides a reasonable description of all ${ }_{578}$ the properties of the two observed negative-parity bands ${ }_{579}$ Further, it has been shown that two bands have finite ${ }_{580}$ angular-momentum projections along the three princi- ${ }_{581}^{500}$ ple axis, which indicates that two bands could be asso- ${ }_{582}$ ciated with the chiral symmetry breaking. The $\mathrm{CDFT}_{583}^{582}$ calculations suggest assignment of $\pi \mathrm{g}_{9 / 2}{ }^{-1} \otimes \nu \mathrm{~h}_{11 / 2}$ for ${ }_{584}^{583}$ the yrast band and above spin of $\sim 12 \hbar, \pi\left(\mathrm{~g}_{9 / 2}\right)^{-1} \otimes_{585}$ $\nu\left(\mathrm{h}_{11 / 2}\right)\left(\mathrm{g}_{7 / 2}, \mathrm{~d}_{5 / 2}\right)^{2}$ aligned quasiparticle configuration ${ }_{586}$ for the yrast and the partner band. The deformations ${ }_{587}$ predicted for the yrast and the partner band are $\beta \approx_{588}$ 0.20 and $\gamma \approx 5^{\circ}$ at higher spins. The partner band $_{589}$ can be thought to be a chiral vibrational mode built ${ }_{590}$ on top of the yrast band. The positive-parity band ${ }_{591}$ based on 4424 keV state is predicted to have $\pi\left(\mathrm{g}_{9 / 2}\right)^{-1}{ }_{592}$ $\otimes \nu\left(\mathrm{h}_{11 / 2}\right)^{2}\left(\mathrm{~g}_{7 / 2}, \mathrm{~d}_{5 / 2}\right)^{1}$ aligned quasiparticle configura-593 tion. The potential energy surface calculations based on594 CDFT predicts significant softness with respect to Oc-595 tupole deformation and this could be the reason for the ${ }_{596}$
enhanced E1 transitions from the above positive-parity band to the yrast and it's chiral partner band. This is analogous to the octupole correlations observed along with chiral doublet bands in ${ }^{78} \mathrm{Br}$ and ${ }^{124} \mathrm{Cs}$.

ACKNOWLEDGEMENT

We would like to acknowledge BARC-TIFR pelletron staff for delivering a stable beam of ${ }^{32} \mathrm{~S}$ during the experiment. We acknowledge the help of all INGA collaboration. Authors gratefully to Department of Science and Technology (DST) for INGA project (No.IR/S2/PF-30/2003-II). This work was supported by the Department of Atomic Energy, Government of India (Project Identification No. RTI 4002). One of the author K.K. acknowledges CSIR (09/760(0032)/2017-EMR-I) for financial support as research grant. This work was supported by the National Science Foundation (Grant No. PHY1068192 and PHY-2011890) and by the APS-IUSSTF Physics Student and Post-doc Visitation Program. The authors S. Jehangir, G. H. Bhat, N. Rather and J. A. Sheikh like to acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (Government of India) for providing financial assistance under the Project No.CRG/2019/004960 to carry out a part of the present research work. We would also like to thank R. Bhattacharjee, S. S. Bhattacharjee, S. Samanta, S. Das, N. Ghosh, A. K. Sinha, S. Mukhopadhyay, L. Dhanu, B. K. Nayak, D. C. Biswas, A. Y. Deo, S. K. Tandel, N. Kaur, Ashok Kumar, J. Sethi and S. Chattopadhyay for their initial involvement in the project. Fruitful discussion with J. Meng and Z. X. Ren on the theoretical interpretation are also acknowledged. A special thanks to Prof. S. C. Pancholi for his unconditional guidance.
[1] S. Frauendorf, Nucl. Phys. A 557, 259 (1993).
[2] R. M. Clark and A. O. Macchiavelli, Annual Review of617 Nuclear and Particle Science 50, 1 (2000).
[3] H. Hubel, Progress in Particle and Nuclear Physics 54,619 1 (2005).
[4] S. Frauendorf, Reviews of Modern Physics 73, 463621 (2001).
[5] S. Frauendorf and J. Meng, Nucl. Phys. A 617, 131623 (1997).
[6] P. Joshi, D. G. Jenkins, P. M. Raddon, A. J. Simons,625 R. Wadsworth, A. R. Wilkinson, D. B. Fossan, T. Koike, 626 K. Starosta, C. Vaman, J. Timár, Z. Dombrádi, A. Krasz-627 nahorkay, J. Molnár, D. Sohler, L. Zolnai, A. Algora, 628 E. S. Paul, G. Rainovski, A. Gizon, J. Gizon, P. Bednar-629 czyk, D. Curien, G. Duchêne, and J. N. Scheurer, Phys.630 Lett B. 595, 135 (2004).
[7] C. Vaman, D. B. Fossan, T. Koike, K. Starosta, I. Y. 632 Lee, and A. O. Macchiavelli, Phys. Rev. Lett 92, 032501633 (2004).
[8] T. Suzuki, G. Rainovski, T. Koike, T. Ahn, M. P. Carpenter, A. Costin, M. Danchev, A. Dewald, R. V. F. Janssens, P. Joshi, C. J. Lister, O. Möller, N. Pietralla, T. Shinozuka, J. Timár, R. Wadsworth, C. Vaman, and S. Zhu, Phys. Rev. C 78, 031302(R) (2008).
[9] J. Timar, C. Vaman, K. Starosta, D. B. Fossan, T. Koike, D. Sohler, I. Y. Lee, and A. O. Macchiavelli, Phys. Rev. C 73, 011301(R) (2006).
[10] P. Joshi, M. P. Carpenter, D. B. Fossan, T. Koike, E. S. Paul, G. Rainovski, K. Starosta, C. Vaman, and R. Wadsworth, Phys. Rev. Lett 98, 102501 (2007).
[11] T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, and D. R. LaFosse, Phys. Rev. C 67, 044319 (2003).
[12] W. Shou-Yu, Z. Shuang-Quan, Q. Bin, and M. Jie, Chinese Phys. Lett. 24, 664 (2007).
[13] D. Tonev, G. de Angelis, S. Brant, S. Frauendorf, P. Petkov, A. Dewald, F. Dönau, D. L. Balabanski, Q. Zhong, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, D. Curien, F. D. Vedova, A. Fitzler, A. Gadea, G. L. Bianco, S. Lenzi, S. Lunardi,
N. Marginean, O. Möller, D. R. Napoli, R. Orlandi,7oo E. Sahin, A. Saltarelli, J. V. Dobon, K. O. Zell,701 J. ye Zhang, and Y. H. Zhang, Phys. Rev. C 76, 044313702 (2007).
[14] D. Tonev, M. Yavahchova, N. Goutev, G. de Angelis,704 P. Petkov, R. Bhowmik, R. Singh, S. Muralithar, N. Mad-705 havan, R. Kumar, M. K. Raju, J. Kaur, G. Mohanto,706 A. Singh, N. Kaur, R. Garg, A. Shukla, T. Marinov, and707 S. Brant, Phys. Rev. Lett 112, 052501 (2014).

708
[15] E. Grodner, I. Sankowska, T. Morek, S. G. Rohoziński,709 C. Droste, J. Srebrny, A. A. Pasternak, M. Kisieliński,710 M. Kowalczyk, J. Kownacki, J. Mierzejewski, A. Król,711 and K. Wrzosek, Phys. Lett. B 703, 46 (2011).
[16] E. Grodner, J. Srebrny, A. A. Pasternak, I. Zalewska,713 T. Morek, C. Droste, J. Mierzejewski, M. Kowal-714 czyk, J. Kownacki, M. Kisieliński, S. G. Rohoziński,715 T. Koike, K. Starosta, A. Kordyasz, P. J. Napiorkowski,716 M. Wolińska-Cichocka, E. Ruchowska, W. Płóciennik, 717 and J. Perkowski, Phys. Rev. Lett 97, 172501 (2006). ${ }_{718}$
[17] E. Lieder, R. Lieder, R. Bark, Q. Chen, S. Zhang,,719 J. Meng, E. Lawrie, J. Lawrie, S. Bvumbi, N. Kheswa,720 S. Ntshangase, T. Madiba, P. Masiteng, S. Mullins,721 S. Murray, P. Papka, D. Roux, O. Shirinda, Z. Zhang,722 P. Zhao, Z. Li, J. Peng, B. Qi, S. Wang, Z. Xiao, and723 C. Xu, Phys. Rev. Lett 112, 202502 (2014).

724
[18] Z. G. Wang, M. L. Liu, Y. H. Zhang, X. H. Zhou, B. T.725 Hu, N. T. Zhang, S. Guo, B. Ding, Y. D. Fang, J. G.726 Wang, G. S. Li, Y. H. Qiang, S. C. Li, B. S. Gao,727 Y. Zheng, W. Hua, X. G. Wu, C. Y. He, Y. Zheng, C. B. 728 Li, J. J. Liu, and S. P. Hu, Phys. Rev. C 88, 024306729 (2013).
[19] P. Datta, S. Chattopadhyay, P. Banerjee, S. Bhat-731 tacharya, B. Dasmahapatra, T. K. Ghosh, A. Goswami, 732 S. Pal, M. S. Sarkar, S. Sen, H. C. Jain, P. K. Joshi, and733 Amita, Phys. Rev. C 69, 044317 (2003).
[20] W. A. Dar, J. A. Sheikh, G. H. Bhat, R. Palit, R. N. Ali,735 and S. Frauendorf, Nucl. Phys. A 933, 123 (2015). ${ }^{736}$
[21] R. Palit, S. Saha, J. Sethi, T. Trivedi, S. Sharma, B. S.737 Naidu, S. Jadhav, R. Donthi, P. B. Chavan, H. Tan, and 738 W. Hennig, Nuclear Instruments and Methods in Physics739 Research A 680, 90 (2012).
[22] D. C. Radford, Nuclear Instruments and Methods in741 Physics Research A 361, 297 (1995).
[23] D. C. Radford, Nuclear Instruments and Methods in743 Physics Research A 361, 306 (1995).
[24] K. S. Krane, R. M. Steffen, and R. M. Wheeler, Atomic745 Data and Nuclear Data Tables 11, 351 (1973).

746
[25] J. Tréherne, J. Genevey, S. André, R. Béraud,747 A. Charvet, R. Duffait, A. Emsallem, M. Meyer, C. Bour-748 geois, P. Kilcher, J. Sauvage, F. A. Beck, and T. Byrski,749 Phys. Rev. C 27, 166 (1983).
[26] J. C. Wells and N. R. Johnson, Report No. ORNL-6689,751 44 (1991).

752
[27] S. Das, S. Samanta, R. Bhattacharjee, R. Raut,753 S. S. Ghugre, A. K. Sinha, U. Garg, R. Chakrabarti,754 S. Mukhopadhyay, A. Dhal, M. K. Raju, N. Madhavan, 755 S. Muralithar, R. P. Singh, K. Suryanarayana, P. V. M.756 Rao, R. Palit, S. Saha, and J. Sethi, Nucl. Phys. A 841,757 17 (2017).

758
[28] www.srim.org.
759
[29] A. Sharma, R. Raut, S. Muralithar, R. P. Singh,760 S. S. Bhattacharjee, S. Das, S. Samanta, S. S. Ghugre,761 R. Palit, S. Jehangir, N. Rather, G. H. Bhat, J. A. 762 Sheikh, S. S. Tiwary, Neelam, P. V. M. Rao, U. Garg,
and S. K. Dhiman, Phys. Rev. C 103, 044322 (2021).
[30] T. K. Alexander and J. S. Forster, Advances in Nuclear Physics 10, 197 (1978).
[31] C. Y. He, L. H. Zhu, X. G. Wu, S. X. Wen, G. S. Li, Y. Liu, Z. M. Wang, X. Q. Li, X. Z. Cui, H. B. Sun, R. G. Ma, and C. X. Yang, Phys. Rev. C 81, 057301 (2010).
[32] C. Liu, S. Y. Wang, B. Qi, D. P. Sun, C. J. Xu, L. Liu, B. Wang, X. C. Shen, M. R. Qin, H. Chen, L. H. Zhu, X. G. Wu, G. S. Li, C. Y. He, Y. Zheng, L. L. Wang, B. Zhang, G. Y. Liu, and Y. W. Wang, Int. J. Mod. Phys. E 20, 2351 (2011).
[33] G. de Angelis, C. Fahlander, A. Gadea, E. Farnea, D. Bazzacco, N. Belcari, N. Blasi, P. G. Bizzeti, A. Bizzeti-Sona, D. de Acuña, M. D. Poli, H. Grawe, A. Johnson, G. L. Bianco, S. Lunardi, D. R. Napoli, J. Nyberg, P. Pavan, J. Persson, C. R. Alvarez, D. Rudolph, R. Schubart, P. Spolaore, R. Wyss, and F. Xu, Phys. Lett. B 437, 236 (1998).
[34] G. J. Lane, D. B. Fossan, J. M. Sears, J. F. Smith, J. A. Cameron, R. M. Clark, I. M. Hibbert, V. P. Janzen, R. Krucken, I. Y. Lee, A. O. Macchiavelli, and C. M. Parry, Phys. Rev. C 57, R1022 (1998).
[35] G. de Angelis, A. Gadea, E. Farnea, R. Isocrate, P. Petkov, N. Marginean, D. R. Napoli, A. Dewald, M. Bellato, A. Bracco, F. Camera, D. Curien, M. De Poli, E. Fioretto, A. Fitzler, S. Kasemann, N. Kintz, T. Klug, S. Lenzi, S. Lunardi, R. Menegazzo, P. Pavan, J. L. Pedroza, V. Pucknell, C. Ring, J. Sampson, and R. Wyss, Phys. Lett. B 535, 93 (2002).
[36] Z. Liu, X. Sun, X. Zhou, X. Lei, Y. Guo, Y. Zhang, X. Chen, H. Jin, Y. Luo, S. X. Wen, C. X. Yang, G. J. Yuan, G. S. Li, X. A. Liu, W. D. Luo, and Y. S. Chen, Eur. Phys. J. A. 1, 125 (1998).
[37] K. Selvakumar, A. K. Singh, C. Ghosh, P. Singh, A. Goswami, R. Raut, A. Mukherjee, U. Datta, P. Datta, S. Roy, G. Gangopadhyay, S. Bhowal, S. Muralithar, R. Kumar, R. P. Singh, and M. K. Raju, Phys. Rev. C 92, 064307 (2015).
[38] P. Mason, G. Benzoni, A. Bracco, F. Camera, B. Million, O. Wieland, S. Leoni, A. K. Singh, A. A. Khatib, H. Hubel, P. Bringel, A. Burger, A. Neusser, G. Schonwasser, B. M. Nyako, J. Timar, A. Algora, Z. Dombradi, J. Gal, G. Kalinka, J. Molnar, D. Sohler, L. Zolnai, K. Juhasz, G. B. Hagemann, C. R. Hansen, B. Herskind, G. Sletten, M. Kmiecik, A. Maj, J. Styczen, K. Zuber, F. Azaiez, K. Hauschild, A. Korichi, A. Lopez-Martens, J. Roccaz, S. Siem, F. Hannachi, J. N. Scheurer, P. Bednarczyk, T. Byrski, D. Curien, O. Dorvaux, G. Duchene, B. Gall, F. Khalfallah, I. Piqueras, J. Robin, S. B. Patel, O. A. Evans, G. Rainovski, C. M. Petrache, D. Petrache, G. L. Rana, R. Moro, G. D. Angelis, P. Fallon, I. Y. Lee, J. C. Lisle, B. Cederwall, K. Lagergen, R. M. Lieder, E. Podsvirova, W. Gast, H. Jager, N. Redon, and A. Gorgen, Phys. Rev. C 72, 064315 (2005).
[39] J. A. Sheikh, G. H. Bhat, W. A. Dar, S. Jehangir, and P. A. Ganai, Phys.Scr. 91, 063015 (2016).
[40] S. Jehangir, G. H. Bhat, N. Rather, J. A. Sheikh, and R. Palit, Phys. Rev. C 104, 044322 (2021).
[41] S. Jehangir, I. Maqbool, G. H. Bhat, J. A. Sheikh, R. Palit, and N. Rather, Eur. Phys. J. A 56, 197 (2020).
[42] G. H. Bhat, J. A. Sheikh, W. A. Dar, S. Jehangir, R. Palit, and P. A. Ganai, Phys. Lett. B 738, 218 (2014).
[43] G. H. Bhat, J. A. Sheikh, and R. Palit, Phys. Lett. B807 707, 250 (2012).

808
[44] P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki,809 Atomic Data and Nuclear Data Tables 59, 185 (1995). 810
[45] P. S. Peter Ring, Springer Berlin Heidelberg (1980). ${ }_{81}$
[46] P. H. Regan, A. E. Stuchbery, G. D. Dracoulis, A. P. 812 Byrne, G. J. Lane, T. Kibédi, D. C. Radford, A. Galindo-813 Uribarri, V. P. Janzen, D. Ward, S. M. Mullins, G. Hack-814 man, J. H. DeGraaf, M. Cromaz, and S. Pilotte, Nucl.815 Phys. A 586, 351 (1995).
${ }^{816}$
[47] D. A. Volkov, A. I. Kovalenko, A. I. Levon, A. S. Mishin,817 A. A. Pas-ternak, and L. A. Rassadin, Izv. Akad. Nauk8ı SSSR Ser. Fiz.Izv. Akad. Nauk SSSR Ser. Fiz. 53, 923819 (1989).
[48] B. M. Musangu, E. H. Wang, J. H. Hamilton, S. Jehangir,821 G. H. Bhat, J. A. Sheikh, S. Frauendorf, C. J. Zachary,822 J. M. Eldridge, A. V. Ramayya, A. C. Dai, F. R. Xu,823 J. O. Rasmussen, Y. X. Luo, G. M. Ter-Akopian, Y. T. 824 Oganessian, and S. J. Zhu, Phys. Rev. C 104, 064318825 (2021).
[49] P. Ring, Progress in Particle and Nuclear Physics 37, 193827 (1996).

828
[50] J. Meng, ed., Relativistic Density Functional for Nu-829 clear Structure, International Review of Nuclear Physics,830 Vol. 10 (World Scientific, Singapore, 2016).
[51] J. Meng and P. Zhao, AAPPS 31, 2 (2021).
[52] P. W. Zhao, Phys. Lett. B 773, 1 (2017).
[53] P. W. Zhao, Y. K. Wang, and Q. B. Chen, Phys. Rev. C834 99, 054319 (2019).
[54] C. M. Petrache, B. F. Lv, A. Astier, E. Dupont, Y. K. 836 Wang, S. Q. Zhang, P. W. Zhao, Z. X. Ren, J. Meng, P. T. 837 Greenlees, H. Badran, D. M. Cox, T. Grahn, R. Julin,838 S. Juutinen, J. Konki, J. Pakarinen, P. Papadakis, J. Par-839 tanen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey,840 J. Sorri, S. Stolze, J. Uusitalo, B. Cederwall, O. Aktas,841 A. Ertoprak, H. Liu, S. Matta, P. Subramaniam, S. Guo,842 M. L. Liu, X. H. Zhou, K. L. Wang, I. Kuti, J. Timar, 843 A. Tucholski, J. Srebrny, and C. Andreoiu, Phys. Rev. C844 97, 041304(R) (2018).
[55] Z. X. Ren, S. Q. Zhang, and J. Meng, Phys. Rev. C 95,846 024313 (2017).

847
[56] Z. Ren, S. Zhang, P. Zhao, N. Itagaki, J. A. Maruhn, and848 J. Meng, China Physics, Machenics and Astronomy 62,849 112062 (2019).
[57] Z. X. Ren, P. W. Zhao, S. Q. Zhang, and J. Meng, Nucl. Phys. A 996, 121696 (2020).
[58] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010).
[59] K. Zhang, M.-K. Cheoun, Y.-B. Choi, P. S. Chong, J. Dong, L. Geng, E. Ha, X. He, C. Heo, M. C. Ho, E. J. In, S. Kim, Y. Kim, C.-H. Lee, J. Lee, Z. Li, T. Luo, J. Meng, M.-H. Mun, Z. Niu, C. Pan, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X.-X. Sun, C. K. Tam, Thaivayongnou, C. Wang, S. H. Wong, X. Xia, Y. Yan, R. W. Y. Yeung, T. C. Yiu, S. Zhang, W. Zhang, and S. G. Zhou, Phys. Rev. C 102, 024314 (2020).
[60] Y. L. Yang, Y. K. Wang, P. W. Zhao, and Z. P. Li, Phys. Rev. C 104, 054312 (2021).
[61] K. Zhang, M.-K. Cheoun, Y.-B. Choi, P. S. Chong, J. Dong, Z. Dong, X. Du, L. Geng, E. Ha, X.-T. He, C. Heo, M. C. Ho, E. J. In, S. Kim, Y. Kim, C.-H. Lee, J. Lee, H. Li, Z. Li, T. Luo, J. Meng, M.-H. Mun, Z. Niu, C. Pan, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X.-X. Sun, C. K. Tam, Thaivayongnou, C. Wang, X. Wang, S. H. Wong, J. Wu, X. Wu, X. Xia, Y. Yan, R. W.-Y. Yeung, T. C. Yiu, S. Zhang, W. Zhang, X. Zhang, Q. Zhao, and S. G. Zhou, Atomic Data and Nuclear Data Tables 144, 101488 (2022).
[62] P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett 107, 122501 (2011).
[63] P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B 699, 181 (2011).
[64] J. Meng and P. Zhao, Phys. Scr. 91, 053008 (2016).
[65] J. Meng, J. Peng, S. Q. Zhang, and S.-G. Zhou, Phys. Rev. C 73, 037303 (2006).
[66] C. Liu, S. Wang, R. Bark, S. Zhang, J. Meng, B. Qi, P. Jones, S. Wyngaardt, J. Zhao, C. Xu, S.-G. Zhou, S. Wang, D. Sun, L. Liu, Z. Li, N. Zhang, H. Jia, X. Li, H. Hua, Q. Chen, Z. Xiao, H. Li, L. Zhu, T. Bucher, T. Dinoko, J. Easton, K. Juhász, A. Kamblawe, E. Khaleel, N. Khumalo, E. Lawrie, J. Lawrie, S. Majola, S. Mullins, S. Murray, J. Ndayishimye, D. Negi, S. Noncolela, S. Ntshangase, B. Nyakó, J. Orce, P. Papka, J. Sharpey-Schafer, O. Shirinda, P. Sithole, M. Stankiewicz, and M. Wiedeking, Phys. Rev. Lett 116, 112501 (2016).

[^0]: * k_katre@yahoo.com
 † rajeshpratap07@gmail.com

