
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nuclear level densities and math
xmlns="http://www.w3.org/1998/Math/MathML">mi>γ/mi>

/math>-ray strength functions in math
xmlns="http://www.w3.org/1998/Math/MathML">mmultiscri
pts>mi>Sn/mi>mprescripts>/mprescripts>none>/none>m
row>mn>120/mn>mo>,/mo>mn>124/mn>/mrow>/mmult

iscripts>/math> isotopes: Impact of Porter-Thomas
fluctuations

M. Markova, A. C. Larsen, P. von Neumann-Cosel, S. Bassauer, A. Görgen, M. Guttormsen,
F. L. Bello Garrote, H. C. Berg, M. M. Bjørøen, T. K. Eriksen, D. Gjestvang, J. Isaak, M.

Mbabane, W. Paulsen, L. G. Pedersen, N. I. J. Pettersen, A. Richter, E. Sahin, P. Scholz, S.
Siem, G. M. Tveten, V. M. Valsdottir, and M. Wiedeking

Phys. Rev. C 106, 034322 — Published 27 September 2022
DOI: 10.1103/PhysRevC.106.034322

https://dx.doi.org/10.1103/PhysRevC.106.034322


Nuclear level densities and γ−ray strength functions in 120,124Sn isotopes: impact of
Porter-Thomas fluctuations

M. Markova,1, ∗ A. C. Larsen,1, † P. von Neumann-Cosel,2 S. Bassauer,2 A. Görgen,1

M. Guttormsen,1 F. L. Bello Garrote,1 H. C. Berg,1 M. M. Bjørøen,1 T. K. Eriksen,1 D. Gjestvang,1

J. Isaak,2 M. Mbabane,1 W. Paulsen,1 L. G. Pedersen,1 N. I. J. Pettersen,1 A. Richter,2

E. Sahin,1 P. Scholz,3, 4 S. Siem,1 G. M. Tveten,1 V. M. Valsdottir,1 and M. Wiedeking5, 6

1Department of Physics, University of Oslo, N-0316 Oslo, Norway
2Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

3Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
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Nuclear level densities (NLDs) and γ-ray strength functions (GSFs) of 120,124Sn have been ex-
tracted with the Oslo method from proton-γ coincidences in the (p, p′γ) reaction. The functional
forms of the GSFs and NLDs have been further constrained with the Shape method by studying
primary γ-transitions to the ground and first excited states. The NLDs demonstrate good agreement
with the NLDs of 116,118,122Sn isotopes measured previously. Moreover, the extracted partial NLD
of 1− levels in 124Sn is shown to be in fair agreement with those deduced from spectra of relativistic
Coulomb excitation in forward-angle inelastic proton scattering.

The experimental NLDs have been applied to estimate the magnitude of the Porter-Thomas
(PT) fluctuations. Within the PT fluctuations, we conclude that the GSFs for both isotopes can
be considered to be independent of initial and final excitation energies, in accordance with the
generalized Brink-Axel hypothesis. Particularly large fluctuations observed in the Shape-method
GSFs present a considerable contribution to the uncertainty of the method, and may be one of the
reasons for deviations from the Oslo-method strength at low γ-ray energies and low values of the
NLD (below ≈ 1 · 103 − 2 · 103 MeV−1).

I. INTRODUCTION

Numerous experimental and theoretical efforts have
been dedicated to the study of γ−decay processes in
atomic nuclei. The decay properties of excited nuclei are
not only pivotal for the basic nuclear physics research,
but also are the core ingredients for large-scale calcula-
tions of nucleosynthesis and element abundances in the
universe [1, 2].

While gradually moving from the lowest to higher ex-
citation energies of a nucleus, the spacing between indi-
vidual excited states becomes smaller, and the sensitiv-
ity of experimental techniques might be no longer suffi-
cient to resolve them separately. Here, the nucleus enters
the quasi-continuum regime and the concept of the nu-
clear level density (NLD), i.e. the number of nuclear
states per excitation energy unit, becomes an indispens-
able tool for a statistical description of nuclei. By anal-
ogy, the γ-ray strength function (GSF), or the average,
reduced γ-transition probability, becomes more suitable
to describe the numerous γ-transitions. The statistical
model as formulated by Hauser and Feshbach [3] with in-
gredients such as the NLD and GSF, provides the main
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framework for modelling nuclear reactions and calculat-
ing their cross-sections for astrophysical purposes (e.g.
[2]), the design of nuclear reactors [4], and the transmu-
tation of nuclear waste [5].

Among all experimental techniques used for the extrac-
tion of GSFs [6], the Oslo method has been widely used
to obtain the dipole strength below the neutron thresh-
old by studying the γ-decay of residual nuclei formed in
light-ion induced reactions [7–9]. The main advantage of
the method is a simultaneous extraction of the NLD and
GSF from primary γ−decay spectra at excitation ener-
gies below the neutron separation energy Sn. The GSFs
for many nuclei obtained by employing different experi-
mental techniques have previously been reported to pro-
vide a rather good agreement in absolute values and/or
general shapes with the Oslo method strengths [10–12].
A few cases of large discrepancies have also been reported
(e.g. the comparison of the Oslo and (γ, γ′) data for 89Y
and 139La presented in Ref. [6]).

A large fraction of theoretical and experimental tech-
niques focusing on calculating or measuring the GSF,
including the Oslo method, rely on the validity of the
generalized Brink-Axel (gBA) hypothesis [13, 14]. In its
most general form, the hypothesis states that the GSF
is independent of excitation energies, spins and parities
of initial and final states and depends solely on the γ-
ray energy of involved transitions. This is often used
as a necessary approximation and simplification in many
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methods, and allows to set a direct correspondence be-
tween strengths extracted from the γ-decay and photo-
excitation processes [13, 15]. Even though this hypothesis
is experimentally established at high energies, i.e., in the
vicinity of the giant dipole resonance, its validity below
the neutron threshold still triggers quite some debate.
For example, several theoretical studies suggest the need
of a modification of the hypothesis [16–20], while exper-
imental studies range from claims of a violation [21–24]
to a validity [12, 15, 25–27]. The question regarding the
validity is a rather difficult one, partially depending on
what degree of violation is considered acceptable in dif-
ferent experimental and theoretical applications.

A crucial point to be considered when addressing the
applicability of the gBA hypothesis is the presence of
fluctuations of partial radiative widths, or the so-called
Porter-Thomas (PT) fluctuations [28]. The partial radia-
tive widths are proportional to the corresponding reduced
transition strengths (B(XL) values where X is the elec-
tromagnetic character and L the angular momentum of
the γ ray). At sufficiently high excitation energies and
high NLD values, the nuclear wave functions are quite
complex with many components. In this region, accord-
ing to random-matrix theory [29], the partial widths fol-
low a χ2

ν behavior with ν = 1 degree of freedom, while
the total widths are more narrowly distributed with the
variance inversely proportional to the number of inde-
pendently contributing partial widths.

Such a variation of partial widths is directly reflected
in the variation of the GSF, which may mask the ex-
citation energy independence of the strength, and thus
a test of the gBA hypothesis might become especially
difficult. Indeed, for relatively light nuclei, e.g. 64,65Ni
[26] and 46Ti [30], the NLDs are rather low, and tests of
the gBA hypothesis are limited. On the other hand, the
238Np nucleus [25] with a particularly high NLD, makes
a perfect case for studying the GSF as a function of ini-
tial and final excitation energies, as fluctuations of the
strength are strongly suppressed. The Sn isotopes inves-
tigated here present an intermediate case for studying to
what degree the PT fluctuations are expected to distort
excitation energy dependence of the GSF.

Moving away from the valley of stability opens up
new perspectives for studying exotic, neutron-rich nuclei,
with applications to heavy-element nucleosynthesis [31],
using for example the β-Oslo method [32] and the Oslo
method in inverse kinematics [33]. However, this leads
to additional complications, such as the lack of neutron-
resonance data for normalizing the NLD and GSF from
the Oslo-method data. Moreover, some of the light-ion
induced reactions may lead to a population of a limited
spin range, which might introduce additional assump-
tions and uncertainties when extracting the shapes of the
NLD and GSF.

A novel technique, the Shape method [34], has recently
been proposed to mend this problem. Applied to the pri-
mary γ-transitions to several low-lying discrete states at
consecutive excitation energy bins, it allows for an inde-

pendent determination of the shape of the GSF. Thus,
the shape of the strength and the interlinked slope of the
NLD extracted with the Oslo method can be addition-
ally constrained by the Shape method. However, as the
latter is using data on direct decays to low-lying discrete
states only, the PT fluctuations of the involved partial
widths are expected to be significantly larger than for
the Oslo-method GSF.

In this work, the potential role of PT fluctuations in
establishing the validity of the gBA hypothesis as well as
the application of the Shape method are addressed for
120Sn and 124Sn. Both the Oslo method and the Shape
method have been applied to the same data sets. Exper-
imental NLDs have been used to estimate fluctuations of
the strengths for different specific initial and final excita-
tion energies and compared with previous Oslo-method
NLDs for even-even isotopes [35–37]. In Sec. II the de-
tails of the experimental procedure, the application of
the Oslo method (Subsec. II A) and the Shape method
(Subsec. II B) are presented. Section III focuses on the
NLDs for 120,124Sn and the comparison with other exper-
imental and theoretical results. In Sec. IV the procedure
of estimating fluctuations of the strengths is presented
together with the Shape method results, and the study
of fluctuations and GSFs as functions of initial and fi-
nal excitation energies. Finally, the main conclusions are
summarised in Sec. V.

II. DETAILS OF THE EXPERIMENT AND
DATA ANALYSIS

Experiments on both 120Sn and 124Sn were performed
in February 2019 at the Oslo Cyclotron Laboratory
(OCL). The isotopes were studied through the inelastic
scattering reactions 120,124Sn(p, p′γ) with a proton beam
of energy 16 MeV and intensity I ≈ 3 − 4 nA provided
by the MC-35 Scanditronix cyclotron. Both targets used
in the experiment were self-supporting with thicknesses
and enrichments of 2.0 mg/cm2, 99.6% for 120Sn and 0.47
mg/cm2, 95.3% for 124Sn, respectively. The 120Sn target
was placed in the beam for approximately 24 hours, while
the whole run on 124Sn lasted approximately 17 hours. A
self-supporting 28Si target (natural Si, 92.2% 28Si) with
thickness of 4 mg/cm2 was placed in the same proton
beam for ≈ 1.5 hours at the end of the experiment for
the energy calibration of the γ detectors.

The experimental setup at the OCL comprises of
the target chamber surrounded by 30 cylindrical large-
volume LaBr3(Ce) detectors (Oslo SCintillator ARray,
OSCAR for short) [33, 38], and 64 Si particle ∆E − E
telescopes (SiRi) [39]. The LaBr3(Ce) scintillator detec-
tors with �3.5′′×8′′ crystals were mounted on a trun-
cated icosahedron frame with all front-ends fixed at a
distance of 16.3 cm from the center of the target cham-
ber, thus covering ≈ 57% of the total solid angle. The
full-energy peak efficiency and energy resolution of OS-
CAR have been measured to be ≈ 20% and ≈ 2.7%,



3

2 4 6 8 10 12 14
E (MeV)

0.5

1

1.5

2

2.5

3

3.5

4

4.5
 E

 (M
eV

)
D

1

10

210

310

410

510

p

d

t

Sn g.s.124

+Sn 2124

Sn g.s.122

FIG. 1. Experimental E-∆E spectrum measured for the
124Sn isotope. The proton channel used for the data analysis
is marked with the red solid line. The ground and first excited
states of 124Sn in the proton channel and the ground state of
122Sn in the triton channel, used for the calibration of the
particle telescope, are marked with yellow circles.

respectively, at Eγ = 662 keV for the 137Cs calibration
source placed at the same distance from the front-ends
of the detectors.

The (p, p′γ) reaction on 120,124Sn was one of the first
in the series of experiments performed with OSCAR, in-
stalled in 2018 at the OCL. As compared to the pre-
viously used array CACTUS, consisting of 28 5′′×5′′

NaI(Tl) detectors [40], OSCAR provides greatly im-
proved timing and γ−energy resolution. All the scin-
tillator crystals in the OSCAR array are coupled to
Hamamatsu R10233-100 photomultiplier tubes with ac-
tive voltage dividers (LABRVD) [41].

In these experiments, the SiRi particle-telescope array
was placed in backward angles with respect to the beam
direction, covering a rather narrow range of angles from
126◦ to 140◦ and making up ≈ 6% of the total solid-
angle coverage. SiRi consists of eight trapezoidal-shaped
∆E−E telescopes with a thick E-detector and a thinner
∆E-detector with thicknesses of 1550 µm and 130 µm,
respectively. Each of the eight ∆E detectors is segmented
into eight curved pads, amounting to 2◦ of particle scat-
tering angle per pad, yielding an angular resolution of
2◦. For the 120,124Sn(p, p′γ) experiment, the full width
at half maximum (FWHM) for SiRi was estimated to be
≈ 100 − 120 keV from a Gaussian fit to the elastically
scattered protons. All particle-γ coincidences in the ex-
periment were recorded using XIA digital electronics [42].

SiRi enables the exploitation of the ∆E−E technique
to differentiate between the various observed reaction

channels, as shown in Fig. 1. The elastic peak in the
proton channel and the ground-state peak in the triton
channel, combined with the known energy deposition in
each of the 64 ∆E − E pads, were used to perform a
linear calibration of the SiRi detectors for both targets.
The kinematics of the reactions were used to convert the
proton energies deposited in the SiRi detectors into the
corresponding excitation energies of the target nucleus.

As previously shown for �3.5′′×8′′ LaBr3(Ce) detec-
tors coupled to the same type of photomultiplier and volt-
age divider, the energy response of the detector remains
rather linear up to ≈ 17− 18 MeV [43]. However, to ac-
count for minor non-linearity effects, a quadratic calibra-
tion was applied to all 30 OSCAR detectors. Prominent
γ transitions in 28Si ranging from 1.78 to 7.93 MeV were
used for this purpose. Further, by applying graphical en-
ergy (see Fig. 1) and timing cuts on the studied proton
channel, putting gates on the prompt timing peak and
subtracting background for particle and γ detection in
SiRi and OSCAR, a so-called raw coincidence matrix was
constructed for both studied nuclei. The raw matrices are
shown in Figs. 2(a) and (d) for 120Sn and 124Sn, respec-
tively. Consecutive diagonals indicate direct transitions
to the ground and first excited states. For excitation en-
ergies between 7 and 9 MeV, peaks that are due to minor
12C and 16O contaminants in the targets are observed.
At further stages of the analysis these peaks were re-
moved1 to minimize the effect of these contaminants and
any related artefacts on the final results. Approximately
5.3×107 and 1.3×107 p-γ events in the excitation-energy
range up to the neutron separation energy were collected
for 120Sn and 124Sn, respectively.

The γ spectra for each excitation-energy bin of the
coincidence matrices were further unfolded according to
the procedure outlined in [7], using the most recent re-
sponse function of the OSCAR detectors [44] simulated
with the Geant4 simulation tool [45–47]. This procedure
has been applied to a large number of Oslo-type data
published throughout the past two decades, and has been
repeatedly shown to provide valuable results. A great
advantage of the method is the preservation of statis-
tical fluctuations of the raw coincidence spectrum into
the unfolded one by using the so-called Compton sub-
traction method [7]. This technique strongly suppresses
additional, artificial fluctuations. The unfolded matrices
for 120Sn and 124Sn are shown in Figs. 2(b) and (e).

The main objective of the analysis is to extract the sta-
tistical nuclear properties, namely the NLD and GSF, by
exploiting their proportionality to the decay probability
at each specific excitation energy and γ energy. Infor-
mation regarding this decay probability can be obtained

1 The contaminants were removed after unfolding of the γ spectra.
A narrow graphical gate is put on each Gaussian-like contami-
nant peak in the unfolded matrix, and the parts of the spectra
within the gate are obtained by interpolating the neighbouring
regions of the matrix.
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FIG. 2. Experimental raw p − γ coincidence ((a) and (d)), unfolded ((b) and (e)) and primary ((c) and (f)) matrices for
120,124Sn obtained in the (p, p′γ) experiments. Yellow dashed lines indicate the neutron separation energies. Red and green
dashed lines in panels (c) and (f) confine transitions to the ground (region 1) and the first excited Jπ = 2+ (region 2) states.
Blue solid lines (region 3) indicate the areas of the primary matrices used further in the Oslo method. Bin sizes are 64 keV×64
keV and 80 keV×80 keV for 120Sn and 124Sn, respectively. Blue arrows mark the sequence of the analysis steps.

by isolating the first γ rays in a cascade emitted by the
nucleus at a certain excitation energy, i.e. primary γ
rays originating directly from the nucleus decaying from
this excited state, or the so-called first-generation γ rays.
The unfolded matrix contains all possible generations of
γ rays emitted in every cascade from all excitation ener-
gies up to the neutron separation energy. The γ-ray spec-
tra for each excitation-energy bin in the unfolded matrix
are expected to contain the same γ rays as in the lower-
lying bins, in addition to the γ rays originating from the
excited states confined by this energy bin. This fact is
the key for the iterative subtraction technique, the so-
called first-generation method, applied to both unfolded
matrices for 120Sn and 124Sn. This technique relies on
the assumption that γ decay is independent of whether
states were populated directly in a reaction or via decays
from higher-lying states. The details of the procedure
are outlined in [8]. The primary matrices obtained after
23 iterations for both nuclei are shown in Figs. 2(c) and
(f).

At this stage, two alternative methods can be used
in order to extract the GSF from the primary matrix,
namely the Oslo method and the Shape method. The
former is a well-developed procedure primarily used to
extract nuclear properties from the OCL data and it has

been in use for more than two decades (see e.g. [48]).
In addition to the GSF, it provides the simultaneous ex-
traction of the NLD, which are the main characteristics of
interest in this article. The latter procedure, the Shape
method, has been recently presented and published in
Ref. [34]. The two methods are expected to complement
each other and a combined analysis yields an improved
normalisation of the GSF and, therefore, the NLD. All
details of these procedures applied to the 120,124Sn iso-
topes are provided in the subsequent sections.

A. Analysis with the Oslo method

As already mentioned, the primary matrix is propor-
tional to the decay probability from a set of initial excited
states i within a chosen bin Ei to final states f confined
within a bin Ef of the same size with γ rays of energy
Eγ = Ei − Ef . The first step of the Oslo-type of anal-
ysis is the decomposition of the primary matrix into the
density of final states ρf and the γ-ray transmission co-
efficient Ti→f :

P (Eγ , Ei) ∝ Ti→f · ρf . (1)

Here, Ti→f , the transmission coefficient, is a function
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of γ-ray energy depending on both the initial and final
state. The thorough derivations of this decomposition
using Fermi’s golden rule and the HauserFeshbach the-
ory of statistical reactions as starting points can be found
in Refs. [49] and [50], correspondingly. This relation is
expected to hold for relatively high excitation energies
below the neutron threshold, corresponding to the com-
pound states and their decay [48]. This energy range es-
sentially coincides with the range of applicability of the
first generation method.

This form of dependence on Ei, Ef and Eγ , however,
does not allow a simultaneous extraction of the transmis-
sion coefficient and NLD. To enable such an extraction,
the gBA hypothesis is adopted as one of the central as-
sumptions in the Oslo method [13, 14]. As mentioned
previously, the gBA hypothesis suggests an independence
of the GSF (and, therefore, the transmission coefficient)
of spins, parities and energies of initial and final states,
leading to a dependence on γ-ray energy only. This signif-
icantly simplifies the form of the relation given in Eq. (1):
Ti→f → T (Eγ) and ρf = ρ(Ef ) = ρ(Ei − Eγ).

In earlier applications of the Oslo method, the gBA hy-
pothesis has been found to be adequate for the relatively
low-temperature regimes studied (T ≈ 0.7 − 1.5 MeV)
[30]. However, as the Oslo method relies on the gBA hy-
pothesis, it cannot be used alone to test its validity. To
investigate the validity of the hypothesis, either compar-
isons of independent experimental methods [15] or addi-
tional tests suggested in, e.g., [25, 26] are required. This
matter is of particular importance and will be discussed
in more detail in Sec. IV.

The next step of the Oslo method includes an itera-
tive χ2-minimization procedure between the experimen-
tal first-generation matrix P (Eγ , Ei) normalized to unity
for each Ei bin and the theoretical Pth(Eγ , Ei) given by
the following expression [9]:

Pth(Eγ , Ei) =
T (Eγ)ρ(Ei − Eγ)∑Ei

Eγ=Eminγ
T (Eγ)ρ(Ei − Eγ)

. (2)

This χ2 fit of the transmission coefficient and NLD nor-
mally gives a very good agreement with the experimental
matrix P (Eγ , Ei) when applied to the statistical region of
excitation energies. The step-by-step description of the
minimization procedure is provided in Ref. [9]. To ensure
the applicability of the statistical assumptions, minimum
excitation energies of Emini = 4.5 MeV for 120Sn and 5.0
MeV for 124Sn were chosen. Sufficient statistics at higher
energies allows us to set Emaxi to the neutron separation
energy for each isotope, Sn = 9.1 and 8.5 MeV for 120Sn
and 124Sn, respectively. To exclude regions where counts
have been over-subtracted in the first-generation proce-
dure, minimum γ-ray energies Eminγ = 1.3 and 1.6 MeV

were set accordingly for 120Sn and 124Sn. The resulting
areas where the Oslo method was applied in this work
are marked by the blue lines in Figs. 2(c) and (f).

The global χ2 fit yields only functional forms of the
transmission coefficient T (Eγ) and NLD ρ(Ei − Eγ). It

can be shown mathematically that one can construct an
infinite set of T (Eγ) and ρ(Ei − Eγ) combinations cor-
responding to the obtained fit and given by the forms
[9]:

ρ̃(Ei − Eγ) =Aρ(Ei − Eγ) exp(α(Ei − Eγ)),

T̃ (Eγ) =BT (Eγ) exp(αEγ),
(3)

where ρ and T are two fixed solutions, A and B are the
scaling parameters, and α is the slope parameter shared
by both the transmission coefficient and NLD. For each
studied nucleus this ambiguity must be removed via de-
termining unique normalization parameters A,B and α
from external experimental data. If available, low-lying
discrete states and neutron-resonance data are the main
input parameters, combined with models for the spin dis-
tribution and for extrapolations where there is a lack of
experimental data.

The first step of the normalization procedure is to
determine the unique NLD solution ρ(Ei − Eγ). The
parameters A and α can be constrained by fitting the
NLD to low-lying discrete states [51] in the excitation-
energy range where the level scheme can be considered
complete. At the neutron separation energy, the NLD
can be normalized to the total NLD calculated from
neutron-resonance spacings [52]. These data also pro-
vide the average, total radiative width 〈Γγ〉 used to de-
termine the scaling parameter B for the transmission co-
efficient. All details of the normalization procedure for
120Sn and 124Sn have been presented in the Supplemen-
tal Material of Ref. [15]. However, some minor changes
were introduced in this work to improve the normaliza-
tion and the estimated uncertainties. We would like to
stress that these changes do not affect the results pre-
sented in Ref. [15] in any significant way, and do not
undermine any of the presented conclusions. To avoid
any confusion regarding the normalization parameters,
we provide the updated and complete description of this
procedure in the following.

The most recent compilation of the discrete states [51]
was used to anchor the NLD for 120,124Sn at low excita-
tion energies. As compared to the compilation from 2003
used in the previous analysis, some changes in the num-
ber and the excitation energies of low-lying states appear
and give a slightly different slope of the NLD. The anchor
point at the neutron separation energy, ρ(Sn), is usually
extracted from the neutron resonance spacing D0 for s-
wave neutrons or D1 for p-wave neutrons. As 123Sn is an
unstable target nucleus (T1/2 = 129.2 d [51]), no neutron
resonance data are available, and we used other means
to estimate ρ(Sn) and 〈Γγ〉 for 124Sn.

The normalization procedure for 120Sn is rather
straightforward, in accordance with the steps outlined
in Ref. [48], due to the available s-wave neutron capture
data. The target spin of 119Sn is Iπt = 1/2+, thus spins
0+ and 1+ of the compound nucleus 120Sn are populated
in s-wave capture. Assuming that both positive and neg-
ative parities contribute equally to ρ(Sn), the average
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s-wave neutron resonance spacing D0 can be written as
[48]:

1

D0
=

1

2
[ρ(Sn, It + 1/2) + ρ(Sn, It − 1/2)] . (4)

A transformation of the partial NLD for specific spins
into the total NLD can be performed by adopting the
back-shifted Fermi gas model (BSFG) for the NLD
ρ(Ex, J) = ρ(Ex)·g(Ex, J) (Ex here stands for the excita-
tion energy variable) with the spin distribution function
given by [53, 54]:

g(Ex, J) ' 2J + 1

2σ2
exp

[
− (J + 1/2)2

2σ2

]
, (5)

where σ is the spin-cutoff parameter. Given this distri-
bution function, Eq. (5) can be rewritten for the total
NLD at the neutron separation energy as a function of
the experimental resonance spacing D0 (taken from Ref.

[52]) and the target nucleus spin [48]:

ρ(Sn) =
2σ2

D0

1

(It + 1) exp
(
− (It+1)2

2σ2

)
+ It exp

(
− I2t

2σ2

) .
(6)

Note that the spin-cutoff parameter is an excitation-
energy dependent function. The form of the spin-cutoff
parameter at Sn of Ref. [55] was chosen for 120,124Sn

σ2(Sn) = 0.0146A5/3 1 +
√

1 + 4a(Sn − E1)

2a
. (7)

Here, a and E1 are the level-density parameter and the
back-shift parameter for the BSFG model taken from
Ref. [55].

In the Oslo method, the measured level densities do
not reach up to Ex = Sn due to the non-zero minimum
γ-ray energy limit in the extraction of ρ(Ei−Eγ). To use
the ρ(Sn) value as an anchor point for the normalization,
the experimental Oslo data were extrapolated using the
constant temperature (CT) level density model [54–56]:

ρCT (Ex) =
1

TCT
exp

(
Ex − E0

TCT

)
, (8)

characterized by temperature (TCT ) and shift energy
(E0) parameters. Earlier Oslo-method analyses exploited
the BSFG model as an alternative for the interpolation
procedure [48], however, the choice between these two al-
ternatives is defined by the fit quality in each particular
case (see Sec.III).

As the experimental information on the s-wave
neutron-resonance spacing is available for 120Sn, Eq. (6)
was used directly to transform the D0 value into ρ(Sn).
For 124Sn, this value was estimated from the systematics
for even-even and even-odd Sn isotopes in the following
way. The ρ(Sn) values were estimated for each Sn iso-
tope with available neutron-resonance spacing D0 using
Eq. (6). The resulting systematics for the ρ(Sn) values
are shown in the lower panel of Fig. 3. The values of
ρ(Sn) for even-even isotopes were shifted by the corre-
sponding values of the neutron pairing gaps calculated
from the AME 2003 mass evaluation [57] using Eq. (1)
of Ref. [58]. Finally, the value of ρ(Sn) for 124Sn was
calculated from a log-linear fit through the data points
for even-odd and shifted even-even isotopes as shown by
the red dashed line in Fig. 3(b).

The second step after constraining the A and α param-
eters for the NLD is to normalize the transmission coeffi-
cient (and thus the GSF). As the slope α is already deter-
mined by the NLD normalization, the scaling parameter
B is the only parameter that remains to be estimated.
The starting point for normalizing the γ-transmission co-
efficient is the following relation [59]:

〈Γ(Ex, J, π)〉 =
1

2πρ(Ex, J, π)

∑
XL

∑
Jf ,πf

∫ Ex

Eγ=0

dEγ×

× TXL(Eγ)ρ(Ex − Eγ , J, π),

(9)
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where 〈Γ(Ex, J, π)〉 is the average radiative width for
states with spin J , parity π at excitation energy Ex, and
X and L indicate the electromagnetic character and mul-
tipolarity, respectively. The GSF, fXL(Eγ), is connected
to the transmission coefficient by [60]:

TXL(Eγ) = 2πE(2L+1)
γ fXL(Eγ). (10)

At high excitation energies, there is experimental ev-
idence the dipole radiation is dominant (L = 1) (e.g.,
Ref. [59]). The Oslo-type of experiments and analysis
does not allow for distinguishing between different types
of radiation, and, thus, the strength extracted with the
Oslo method is presented by the total contribution of
both electric and magnetic types of dipole transitions,
E1 and M1.

Insertion into Eq. (9) links the experimental dipole
GSF f(Eγ) to the value of the total average radiative
width 〈Γγ〉 obtained from s-wave neutron capture [52].
For a target nucleus with ground state spin It and parity
πt, Eq. (9) can be rewritten as

〈Γγ〉 = 〈Γ(Sn, It ± 1/2, πt)〉 =
1

2ρ(Sn, It ± 1/2, πt)
×

×
∫ Sn

Eγ=0

dEγE
3
γf(Eγ)ρ(Sn − Eγ)×

×
1∑

J=−1
g(Sn − Eγ , It ± 1/2 + J).

(11)

Here, we adopt again the assumption on an equal contri-
bution of states with positive and negative parities, and
apply the spin distribution function of Eq. (5). It can be
easily seen that the 1/ρ(Sn, It ± 1/2, πt) term equals the
D0 value. For the spin-cutoff parameter dependence on
the excitation energy, we follow the procedure outlined
in Ref. [61]:

σ2(Ex) = σ2
d +

Ex − Ed
Sn − Ed

[σ2(Sn)− σ2
d], (12)

where σd is estimated from the discrete lower-lying states
at Ex ≈ Ed [51] (see Table I).

In the case of 120Sn, the average total radiative width
〈Γγ〉 was estimated as an average of three s-wave neu-
tron resonances with energies in the range of ≈ 455-
828 eV [52]. The remaining two resonances presented in
[52] were excluded due to either being possibly of p-wave
nature, or having a significantly lower value as compared
to values for confirmed s-wave resonances found in the
neighbouring Sn isotopes. In the case of 124Sn, we per-
formed a linear fit through all values of 〈Γγ〉 available for
other Sn isotopes as shown in Fig. 3(a) to estimate the
〈Γγ〉 value for 124Sn.

Ideally, the fit of the NLD to the low-lying discrete
levels and the ρ(Sn) value are sufficient to constrain the
slope parameter α for the GSF and NLD. However, the
latter can be influenced by the range of experimentally
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FIG. 4. Experimental nuclear level densities for 120Sn (a) and
124Sn (b). The NLDs at Sn are marked with crosses, discrete
states are shown as shaded areas. For the 124Sn isotope both
the total and reduced NLDs are shown. The first two vertical
arrows at lower Ex energies on each figure constrain the lower
excitation energy fit region, while the last two arrows at higher
Ex energies mark the lower and upper limits for the higher
excitation energy fit region.

populated spins, which might be narrower than the in-
trinsic2 spin distribution. This issue was previously dis-
cussed in Refs. [62, 63]. An analysis of the observed tran-
sitions in the unfolded matrices below Ei ≈ 4 − 5 MeV
and their relative intensities can aid to reveal the popu-
lated spins of the 120,124Sn nuclei populated in the (p, p′γ)
reaction. However, this method has a large uncertainty
in the determination of the exact maximum spin popu-
lated in the reaction. Alternatively, one can make use
of the new Shape method [34] to obtain the NLD slope
that corresponds to the experimental spin range. This
is of particular importance for 124Sn with no available
neutron-resonance parameters. The application of the
Shape method will be discussed in detail in Sec. II B.
From the Shape method we obtained a reduction factor
β for ρ(Sn), representing a certain fraction of the total

2 All existing spins possible for a given nucleus at a given excitation
energy.



8

TABLE I. Parameters used for the normalization of the nuclear LD and GSF for 120,124Sn.

Nucleus Sn D0 a E1 Ed σd σ(Sn) ρ(Sn) T E0 β 〈Γγ〉
(MeV) (eV) (MeV−1) (MeV) (MeV) (105 MeV −1) (MeV) (MeV) (meV)

120Sn 9.105 95(14) 13.92 1.12 2.53(4) 3.4(5) 5.82 3.66(54) 0.72+1
−2 0.19+9

−4 0.70 121(25)b
124Sn 8.489 – 12.92 1.03 2.77(3) 3.3(5) 6.00 1.38(30)a 0.75+2

−2 -0.11+11
−6 0.20 82(19)a

a From systematics.
b Modified with respect to the value pubished in Ref. [52].

spin distribution from Eq. (5), corresponding to the re-
duced spin range from J = 0 to a certain maximum spin.
This was done by requesting optimally matching slopes
of the Oslo method and the Shape method GSFs above
Eγ ≈ 5 MeV. A rather strong reduction of the level den-
sity in 124Sn at the neutron separation energy might re-
flect some maximum limit of the experimental spin range.
However, it is important to note that using experimental
systematics of the ρ(Sn) and 〈Γγ〉 might have large un-
certainties. In the case of 124Sn, it is quite probable that
such a large reduction factor is needed due to, e.g., an
overestimated ρ(Sn) from the χ2 fit of the systematics.
The simultaneous use of the Oslo and Shape methods
can therefore significantly reduce systematic uncertain-
ties for the slopes of extracted strengths and level densi-
ties. All parameters used in the normalization procedure
for 120,124Sn are listed in Table I. The resulting NLDs
for 120Sn and 124Sn with their estimated error bands are
shown in Fig. 4.

We note that the errors in Table I and the resulting
error bands for the NLD and the GSF presented in sec-
tions III and IV combine statistical and systematic com-
ponents. The latter includes uncertainties introduced
by the unfolding and the first-generation procedures for
both 120,124Sn isotopes. These are propagated through
the Oslo method according to the procedure outlined
in Ref. [9]. In addition, systematic uncertainties due
to the normalization parameters are included. For the
120Sn isotope, the experimental uncertainty (1 standard
deviation) of the D0 value was propagated to estimate
the error for the NLD at the neutron separation energy.
The experimental uncertainties of the radiative widths
in 120Sn [52] were used to estimate the error of the aver-
age, total radiative width 〈Γγ〉, contributing to the un-
certainty of the scaling factor B. In the case of the 124Sn
isotope, the errors of the ρ(Sn) and 〈Γγ〉 were calculated
from the uncertainties of the χ2 fit parameters and prop-
agated into the total uncertainties of the NLD and GSF.
In the previously published result on 124Sn [15], a 50%
uncertainty of ρ(Sn) was assumed to account for presum-
ably underestimated errors from the χ2 fit. However, the
excellent agreement within the estimated error bands of
the slopes of the GSFs obtained with the Oslo and Shape
method allows us to apply a more modest error band as
presented in this work. All errors of the normalization
parameters described above are summarised in Table I.

B. Analysis with the Shape method

Quite often, nuclei with no available neutron resonance
data and/or a restricted experimental spin range are en-
countered. One possible way to overcome this is the use
of isotopic systematics comprising of nuclei with stable
neighbouring A − 1 isotopes as applied in the present
case for 124Sn. However, this is often not possible in
other isotopic chains due to the lack of data (e.g. 127Sb
[64]). Moreover, the question on whether systematics
from neighbouring isotopic chains can be used for a given
nucleus, and to what extent one can rely on these sys-
tematics, is still open. Hence, an alternative way to con-
strain the normalization parameters is required. The
novel Shape method [34] provides a way to determine
the slope parameter α for the NLD and the GSF without
making use of neutron resonance data.

The starting point for the method is extracting ex-
perimental intensities of first generation γ transitions to
specific final states with spins and parities Jπ at final
excitation energies Ef , represented by diagonals in the
primary matrix. The intensities (related to the branch-
ing ratios) of these γ transitions are proportional to the
number of counts ND in the diagonals. The selection
of which diagonals are to be used depends on a partic-
ular nucleus, the spacing between the final states, and
whether the resolution is sufficient to distinguish between
different diagonals. The main concept behind the Shape
method is that the intensities of the γ transitions are
proportional to the partial widths and hence to the GSF.
By taking intensities of transitions in successive excita-
tion energy bins, the functional form of the GSF can be
obtained.

In the case of 120,124Sn, the only two diagonals clearly
seen in the primary matrices are the ground state di-
agonal D1 and the diagonal corresponding to the first
excited state D2 (marked accordingly as regions 1 and 2
in Fig. 2(c) and (f)). For given initial excitation-energy
bins Ei (horizontal line) they define the direct decay to
the final excitation energy Ef at the ground state with
Jπ = 0+ and the first excited state with Jπ = 2+ with
γ-ray energies Eγ = Ei − Ef .

The Shape method adopts the same form of the spin
distribution, given by Eq. (5), as used in the Oslo
method, and assumes γ transitions to be of predomi-
nantly dipole nature (this has been confirmed by mea-
suring angular distributions). According to Eq. (13) in
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Ref. [34], the number of counts in a chosen diagonal
ND corresponding to the final energy Ef is proportional
to the population cross-section of initial states Ei with
Ji = Jf−1, Jf , Jf+1, spin distribution function g(Ei, Ji)
and the partial γ-decay width. For the case of 120,124Sn
with the ground and first excited state diagonals D1 and
D2, the following relations can be written

f(Eγ1) ∝ ND1

E3
γ1 · g(Ei, 1)

f(Eγ2) ∝ ND2

E3
γ2 · [g(Ei, 1) + g(Ei, 2) + g(Ei, 3)]

.

(13)

By varying Ei, one obtains corresponding pairs of values
f(Eγ = Ei) and f(Eγ = Ei − Ex(2+)). As Eqs. (13)
only give the proportionality with the GSF, these pairs
are not normalized in absolute value.

Firstly, the consecutive pairs of values are normalized
internally, as shown and described in Fig. 2 of Ref. [34],
to reconstruct the functional shape of the GSF. Thus,
one can extract two GSFs, corresponding to decays to
the ground state and decays to the first excited state.
Secondly, the general shape of both GSF must be scaled
to match any available strength below the neutron sepa-
ration energy, i.e. normalizing to external experimental
data. This is the main limitation of the method, as it
provides only a slope, or a shape of the strength, but not
the absolute GSF, and therefore requires some additional
experimental information. For the 120,124Sn isotopes, the
GSFs extracted from relativistic Coulomb excitation in
forward-angle inelastic proton scattering below the neu-
tron separation energy [65] were used to scale the GSF
points obtained for both diagonals separately [15].

The upper excitation energy limit for the application
of the Shape method can, in principle, be extended to
Sn, whilst the definition of the lower limit is rather ar-
bitrary. The applicability of Eqs. (13) is restricted to
the statistical excitation energy region where the spin
distribution function g(Ex, J) can be trusted. There is
no clear criterion for the minimum level density which
can be considered high enough to assume this is fulfilled.
In this work, we require that the level density must be
at least 10 levels per excitation energy bin for the spin
distribution g(Ex, J) to be applied.

III. NUCLEAR LEVEL DENSITIES

The experimental NLDs of 120,124Sn displayed in Fig. 4
follow nicely the discrete low-lying states up to ≈ 3 MeV
for 120Sn and ≈ 2.7 MeV for 124Sn. At higher ener-
gies, the NLDs increase rapidly and reach an exponen-
tial, constant-temperature behavior. This suggests that
the level schemes used for the normalization of the NLDs
can be considered complete up to ≈ 3 and 2.7 MeV for
120Sn and 124Sn, respectively. The energy resolution is
sufficient to distinguish the ground state and the first ex-
cited states, presented by two bumps at 0 and ≈ 1.1−1.2

MeV for both nuclei. The presence of the data points
between the ground and first excited states can be ex-
plained by the finite excitation energy resolution of order
100 keV and presence of the leftover counts between the
diagonals in the primary matrices after the background
subtraction procedure. At higher excitation energies, the
experimental points are following the CT model predic-
tion, starting from ≈ 4 MeV. The normalization of the
NLDs was found to be rather insensitive to the exact
choice of the two upper normalization limits (the two ar-
rows at higher excitation energies in Fig. 4), due to the
smooth behaviour of the NLDs at higher excitation en-
ergies.

In Fig. 5 we show a comparison of the total
NLDs for Sn isotopes extracted with the Oslo method,
including the present results for 120,124Sn. The
116,117,118,119,121,122Sn isotopes were previously studied
with a 38-MeV beam of 3He using the (3He, αγ) and
(3He, 3He γ) reaction channels and reported in Refs. [35–
37]. The slopes of the NLDs for 120,124Sn are quite similar
to each other (T = 0.72 and 0.75 MeV, see Table I) and
those of other even-mass isotopes. All NLDs of even-
mass nuclei agree quite well within the estimated error
bands below the neutron separation energy. However, it
is important to note some differences in the normaliza-
tion procedures in the newest analysis of 120,124Sn and
the older analyses of even-mass isotopes. Firstly, all pre-
vious analyses exploited the BSFG for the extrapolation
of the highest experimental NLD points to the ρ(Sn) val-
ues instead of the CT model. As was previously shown in
Ref. [66] and confirmed for 120,124Sn, the CT model re-
sults in a better χ2 fit value. For example, between ≈ 4.8
and 6.8 MeV in 124Sn, the reduced χ2 value is a factor
of 4 smaller for the CT model than for the BSFG model.
This factor becomes larger and might exceed 10 if lower
excitation energy points above ≈ 3 MeV are included.
Secondly, the different form of the spin-cutoff parame-
ter taken from Ref. [54] was used in the older analyses.
The immediate consequence of this choice is slightly less
steep slopes of the NLDs if the CT extrapolation is used.
However, in combination with the BSFG extrapolation
model, the resulting slopes of the NLDs in 116,118,122Sn
are expected to be close to those obtained for 120,124Sn,
as can also be observed in Fig. 5.

In general, the NLDs of odd-mass Sn isotopes are by a
factor of 7-8 higher than for the even-mass isotopes, pri-
marily due to the unpaired valence neutron [69]. As com-
pared to other even-mass isotopes, 120,124Sn demonstrate
essentially the same features, such as the well-defined
bumps at the ground and the first excited state and a
step-like structure right below 3 MeV excitation energy.
Earlier studies exploiting microscopic calculations based
on the seniority model link the latter feature to break-
ing of consecutive nucleon Cooper pairs [70]. Due to
the closed proton shell, Z = 50, the breaking of pro-
ton Cooper pairs is suppressed until higher excitation
energies are reached. Thus, these step-like structures are
likely to be correlated with the breaking of neutron pairs
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FIG. 5. Experimental total nuclear level densities for 116Sn
[35], 117Sn [35], 118Sn [36], 118Sn [36], 120Sn, 121Sn [37], 122Sn
[37], 124Sn.

at energies exceeding 2∆n = 2.6 and 2.5 MeV [58] for
120Sn and 124Sn, respectively. For higher excitation en-
ergies, where a continuous “melting” of Cooper pairs sets
in, the NLDs follow a smooth trend with no distinctive
structures, as previously observed for 116,118,122Sn [35–
37].

The inelastic proton scattering data [65], used for the
absolute normalization of the Shape method GSFs, can
also provide information on the partial NLD. The NLD
of 1− states in 124Sn was extracted for the excitation-
energy range ≈ 4.5 − 14.5 MeV by means of the fluctu-
ation analysis [71], applying procedures analog to those
used in Refs. [11, 72]. All details of the extraction proce-
dure can be found in Ref. [73]. To compare with the Oslo
data, we apply the spin distribution function in Eq. (5)
to the total NLD of 124Sn to reduce it to the density
of J = 1 levels for excitation energies above ≈ 3.2 MeV,
where this function can be assumed to be applicable. Fur-
ther, applying the assumption on equal contribution of
positive- and negative-parity states [74, 75], the density
of J = 1− states was obtained. In contrast to the previ-
ously published results on 96Mo [12] and 208Pb [11], there
is in fact a region of overlap between the two data sets, as
shown in Fig. 6. The Oslo data, as well as the CT model
used in the normalization procedure (blue dashed line),
lie within, but closer to the lower edge of the error band
for the inelastic proton scattering data up to ≈ 10.5 MeV.
This provides support of the spin-cutoff model adopted
in the Oslo-method normalization. A model predicting a
higher spin-cutoff value than presented in Table I would
imply a wider spin distribution and, therefore, a signifi-
cantly lower fraction of J = 1 states leading to a larger
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FIG. 6. Experimental nuclear level densities for 1± states
for 124Sn obtained with the Oslo method (blue data points)
and the (p, p′) data [65] (orange data points). The pre-
diction of the CT model used for the normalization of the
Oslo method data is shown by the dashed blue line. A
fit with the BSFG through all data and with the compos-
ite formula [54] are shown by the dashed magenta and solid
cyan lines. Predictions of the microscopic Hartree-Fock-
Bogoliubov+combinatorial method [67] and Hartree-Fock-
Bogolyubov+Gogny force calculations [68] are marked by the
dashed light and dark grey lines respectively.

discrepancy between the Oslo and the (p, p′) data in the
overlapping area. Thus, we can conclude that the spin-
cutoff estimate provided by Eq. (7) is reasonable, and
probably lies closer to the upper limit in the range of
acceptable spin-cutoff values that would make the two
experimental NLDs agree with each other.

The constant temperature regime, characterized by the
pair-breaking process, continues at least up to the neu-
tron separation energy or higher, where the temperature
begins to rise and the Fermi gas behaviour of nucleons
sets in. As shown in Fig. 6, the CT model begins to
deviate quite drastically from the (p, p′) data at higher
excitation energies, well above the Sn value. For this
reason, the BSFG model is expected to provide a more
accurate description of the NLD at high excitation en-
ergies, although it is not an appropriate model at lower
excitation energies. The global fit of all data with the
BSFG model only indeed fails to reproduce the regime of
increasing nuclear temperature between ≈ 6.5−14 MeV,
especially in the vicinity of the neutron separation energy
and slightly above. The composite NLD formula, intro-
duced by Gilbert and Cameron in Ref. [54] (denoted as
G&C), combines the CT model at lower excitation ener-
gies and the BSFG model at higher energies, and appears
to be more suitable for the simultaneous description of
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the Oslo and (p, p′) data. From the result of the fit with
the composite NLD formula, the constant temperature
regime holds up to ≈ 8.5 MeV, i.e. in the vicinity of the
neutron separation energy. Even though this formula re-
produces the general trend and performs better than the
BSFG, it is still not able to completely describe the NLD
above the neutron separation limit.

Microscopic spin- and parity-dependent NLD calcula-
tions based on the Hartree-Fock-Bogoliubov plus com-
binatorial method [67] deviate from both the Oslo and
the (p, p′) data throughout the whole energy range
(from 3.2 to 14 MeV), being higher by a factor of ≈4-
5 on average. On the other hand, the NLD calcu-
lated within the temperature-dependent Hartree-Fock-
Bogolyubov approach with the Gogny force [68] follows
the (p, p′) data and the composite formula prediction
nicely from ≈ 6.5 MeV excitation energy and above,
while still being about a factor of 3 higher than the Oslo-
method NLD. For the case of the total NLD, this devia-
tion might reach up to two orders of magnitude. We con-
clude that although microscopic models are appealing, as
they should in principle grasp the underlying physics in
contrast to simple analytical formulae, they are at this
point not able to describe experimental data well enough
over a wide excitation-energy range.

IV. PORTER-THOMAS FLUCTUATIONS AND
γ−RAY STRENGTH FUNCTIONS

The experimental GSFs extracted with the Oslo
method result from averaging γ transitions over relatively
wide excitation-energy windows, ≈ 4.6 for 120Sn and 3.5
MeV for 124Sn (region 3 in Fig. 2(c) and (f)). Therefore,
any variations of the strength due to PT fluctuations are
expected to be strongly suppressed, lying well within the
estimated error bands. As such, PT fluctuations play a
minor role and have little influence on the overall shapes
of the GSFs. However, to test the gBA hypothesis, it is
necessary to investigate how the GSF varies as a function
of excitation energy (and also, in principle, spin and par-
ity of the initial and final states). Then, a complication
arises, because the action of narrowing down the aver-
aging interval to study the GSF for different specific ini-
tial and final excitation energies will inevitably introduce
larger uncertainties due to increased PT fluctuations of
the partial radiative widths.

Oslo-method data have previously been used to study
the shapes of the GSFs as functions of initial and final
excitation energies to address the question on the validity
of the gBA hypothesis [25, 26, 30, 76]. With the excep-
tion of Ref. [26], which presents a detailed discussion and
estimates of the PT fluctuations for the case of 64,65Ni,
the role of these fluctuations are approached mostly in a
qualitative way. Due to the particularly high density of
initial and accessible final states in 238Np, studied in Ref.
[25], reaching up to ≈ 4.3 ·106 states at Sn = 5.488 MeV,
the PT fluctuations are expected to be negligible for the

comparison of individual GSFs for different individual
initial and final excitation energies with the Oslo-method
strength. An excellent agreement of all strengths was
found, and this indeed serves as a strong argument for
the validity of the gBA hypothesis [25]. Such a compari-
son, however, is much more difficult in the case of lighter
nuclei such as 46Ti [30], 64,65Ni [26], and 92Zr [34]. For
example, the density of levels at Sn = 9.658 MeV in 64Ni
is only ≈ 2.6·103 MeV−1, and variations on the strengths
for specific excitation energies might reach some tens of
percent of the absolute value [26]. In this regard, the nu-
clei studied in this work present an intermediate case be-
tween the heavy 238Np and relatively light 64,65Ni nuclei,
with the total NLDs of ≈ 2.5 · 105 MeV−1 at Sn = 9.104
MeV for 120Sn and ≈ 8.8 ·104 MeV−1 at Sn = 8.489 MeV
for 124Sn.

To study the variation in the GSFs of 120,124Sn, we
follow the procedure outlined in Refs. [26, 76], assuming
that the fluctuations of the GSF follow a χ2

ν distribution
with the number of degrees of freedom corresponding to
the number of γ-ray transitions n(Eγ) at a given tran-
sition energy Eγ . Relative fluctuations of the GSF are
given by the ratio between the deviation σPT and average
µ, or r = σPT /µ =

√
2/ν, of the χ2

ν distribution [28].
The number of transitions (i.e., the number of partial

widths, or primary transitions) n can be calculated for
each Eγ for specific initial and final excitation energies,
allowing to study how the fluctuations evolve with γ-ray
and excitation energy. We adopt the following relation
from Refs. [26, 76] to estimate the number of transitions
n(Eγ , Ei):

n(Eγ , Ei) =∆E2
∑
Jπ

1∑
L=−1

∑
π′

ρ(Ei, J, π)×

× ρ(Ei − Eγ , J + L, π′),

(14)

where we consider dipole transitions only, and ∆E is the
excitation energy bin width. By substituting Ei with Ef
and Ei − Eγ with Ef + Eγ , it is also possible to obtain
the number of transitions as a function of Eγ and final
excitation energy.

We limit ourselves to two types of cases in estimating
the GSF fluctuations. Firstly, we study the case when the
initial Ei and final Ef excitation energies both lie within
the quasi-continuum region, for which the spin distribu-
tion of Eq. (5) is considered applicable. This allows to
apply this distribution to account for the spin dependence
of the NLDs in Eq. (14). Further, it is assumed again an
equal contribution of positive- and negative-parity states
within the quasi-continuum. We also require a mini-
mum level density of 10 levels per bin, corresponding
to Ef ≈ 3.2 MeV in 120Sn and Ef ≈ 3.0 MeV in 124Sn.
Note that this is a rather crude estimate that should be
taken with some caution. However, since we want to ob-
tain an approximate magnitude of the fluctuations, small
deviations from the spin distribution formula are not ex-
pected to impact the results. Secondly, we consider ini-
tial excited states within the quasi-continuum and final
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FIG. 7. Relative fluctuations of the GSF r(Eγ , Ei) for dif-
ferent initial excitation energies for (a) 120Sn and (b) 124Sn.
All initial Ei and final energies Ei − Eγ lie within the quasi-
continuum region. The excitation and γ-ray energy bins are
128 keV for 120Sn and 160 keV for 124Sn.

states with known parities and spins within the discrete
region. Here, the level density at the final excitation en-
ergy can be calculated directly using the known states
from Ref. [51].

Figure 7 shows the relative GSF fluctuations
r(Eγ , Ei) =

√
2/n(Eγ , Ei) as functions of Eγ for transi-

tions from different initial excitation-energy bins within
the quasi-continuum for 120Sn and 124Sn. The data are
shown for Ef ≥ 3.2 MeV for 120Sn and Ef ≥ 3.0 MeV
for 124Sn, so that the final excitation energies of the in-
cluded transitions lie within the quasi-continuum. The
experimental level densities were used for the calculation.
Similar to the results for 64,65Ni [26], the fluctuations in-
crease exponentially with γ-ray energy for a given Ei, as
well as from the lowest to the highest initial excitation
energy at a given Eγ . This behaviour can easily be ex-
plained by the decreasing number of possible transitions
for consecutively lower excitation energies, given the ex-
ponentially decreasing density of accessible levels.

The magnitudes of the fluctuations in both nuclei are
quite similar due to the similar values of the total NLDs,
and all minor differences stem primarily from a slight
difference in the bin width. At the neutron separation
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FIG. 8. Relative fluctuations of the GSF r(Eγ , Ef ) for dif-
ferent final excitation energies for (a) 120Sn and (b) 124Sn.
All initial energies Ei − Eγ lie within the quasi-continuum
region. The same applies to the different final energies Ef
represented by blue lines. The red dashed line corresponds to
the ground state as the final state, the green one corresponds
to the first excited 2+ state as the final state, and the yellow
one corresponds to several discrete final low-lying states. The
excitation and γ-ray energy bins are 128 keV for 120Sn and
160 keV for 124Sn.

energy, fluctuations in both nuclei range from ≈ 10−4 to
4− 5 · 10−3 %, while for the lower excitation energy they
reach up to ≈ 3 − 6%. Fluctuations of these orders of
magnitude are indeed expected for the relatively heavy
120,124Sn nuclei. For example, based on the NLD of 64Ni
[26] and 120Sn, the number of transitions at Ei ≈ 7.7
MeV at Eγ ≈ 2.3 MeV in 120Sn is roughly by a factor
of 1000 larger than in 64Ni, which indeed yields larger
fluctuations in 64Ni by approximately a factor of 30.

The relative GSF fluctuations calculated from the tran-
sitions to specific final excitation energies demonstrate an
opposite trend, exponentially decreasing with γ-ray en-
ergies, as shown in Fig. 8. These trends are displayed
with an approximately equal spacing for several final ex-
citation energy bins within the quasi-continuum, as well
as the bins containing the ground state, the first excited
state, and several known low-lying excited states. In con-
trast to the lowest initial excitation energies, fluctuations
at final excitation energies below Ef ≈ 3 MeV reach up
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to tens of percent and might become a considerable con-
tribution to the total uncertainty of the GSF.

The estimates of the PT fluctuations can be fur-
ther put into the context of testing the gBA hypothesis
for 120,124Sn. By analogy with the 238Np results from
Ref. [25], the experimental data obtained for 120,124Sn
can be readily used to test whether the transmission co-
efficients, and, therefore, the GSFs, are dependent on the
initial and final excitation energies. Equation (1) can be
rewritten in the form [25]:

P (Eγ , Ei)N(Ei) = T (Eγ) · ρ(Ei − Eγ), (15)

where we introduce an additional energy-dependent fac-
tor N(Ei) given by:

N(Ei) =

∫ Ei
0
T (Eγ) · ρ(Ei − Eγ)dEγ∫ Ei

0
P (Eγ , Ei)dEγ

. (16)

Here, we make use of the transmission coefficient ex-
tracted from the Oslo method, and hence averaged over
a wide range of excitation energies. We can deduce the
transmission coefficient as a function of excitation energy
and γ energy through

T (Eγ , Ei) =
P (Eγ , Ei)N(Ei)

ρ(Ei − Eγ)
. (17)

A similar relation can be obtained for the final excitation
energy by substituting Ei with Ef + Eγ .

The GSFs for several initial excitation energies in the
case of 120Sn were previously published in Ref. [15], where
they were compared with the strength extracted with the
Oslo method. In this work, we present the comparison
of the individual GSFs for different initial and final ex-
citation energy bins for both 120Sn and 124Sn with the
corresponding Oslo-method results. Individual strengths
are shown together with the error band due to the sta-
tistical uncertainty propagated through the method, de-
noted by statistical for short. As the Oslo-method GSF
is an averaged strength with heavily suppressed PT fluc-
tuations, it is shown with the total error band as well
as additional error bars, denoting the expected PT fluc-
tuations, or rather expected deviations of the individual
strengths due to PT fluctuations. The latter is essential
to assess whether there is an agreement or not between
the strengths extracted for various excitation-energy bins
and the Oslo-method strengths.

The results for 120Sn at four initial excitation energies
are shown in the upper row of Fig. 9. The dark grey
shaded areas indicate regions of potential infinite fluctu-
ations due to the expected zero values of the NLD at the
final excitation energies in the energy gaps between the
first few discrete states. As can be seen from Fig. 4, the
experimental NLD has small non-zero values between the
ground state and the first and second excited states at
≈ 1.171 and 1.875 MeV due to the experimental resolu-
tion and the presence of some residual counts in the raw
matrix after the background subtraction. The analysis

applied to each individual excitation energy Ei gener-
ates a continuous data set for the GSF from the high-
est possible gamma-ray energy at Eγ = Ei downward
to gamma-ray energies below 2 MeV shown for 120Sn in
Fig. 9(a)-(d). The GSF values in the dark grey region at
higher gamma energies belong to hypothetical primary
gamma-ray transitions in the energy range between the
ground state and 1.171 MeV, while the dark grey region
at lower energies belongs to decays into the energy range
from 1.171 MeV to 1.875 MeV. However, it should be
mentioned that direct gamma decays to those final exci-
tation energy regions are physically not possible and that
the corresponding data points are artifacts of the contin-
uous analysis. It is, however, interesting to observe that
the PT fluctuation analysis reveals those regions by un-
usually large PT fluctuations

In case of fixed initial excitation energies, light grey
shaded areas correspond to energy bins where the fluc-
tuations can not be estimated either due to to Eγ > Ei
or unambiguous spins of some final excited states. In the
latter case it is no longer possible to define what spins of
initial states within the quasi-continuum yielding dipole
transitions must be included to the sum in Eq. 14 . For
the rest of the experimental points, the fluctuations were
estimated and shown in Fig. 9 as vertical error bars. The
values of these errors exceed or are of the same magni-
tude as the statistical uncertainties for high Eγ for all
of the presented cases. For the highest initial excitation
energies in Fig. 9, Ei = 7.74 and 7.10 MeV, they become
increasingly suppressed as compared to the statistical er-
rors, by roughly a factor of 10 at Eγ ≈ 4.5 MeV, gradu-
ally increasing to ≈ 102 toward Eγ ≈ 1 MeV. For lower
initial excitation energies, this factors are of order 1 and
10. Except for the strong deviations in the areas with ex-
pected large fluctuations (dark grey areas), all strengths
are in fairly good agreement with the Oslo-method result
within its error band.

Similar results with an excitation energy bin width of
160 keV are shown for 124Sn in the upper row of Fig. 10.
Since the range of populated spins might be limited in
this case, using the total NLD provides a lower estimate
of the PT fluctuations, and they might be slightly larger
than shown in the figure. By analogy with the case
of 120Sn, the GSFs for different initial excitation ener-
gies are in rather good agreement with the Oslo-method
strength within the shown error bands and areas of ex-
pected finite PT fluctuations. These results for both the
120,124Sn isotopes bring further support to the GSF be-
ing independent on the initial excitation energy, in ac-
cordance with the gBA hypothesis.

At lower excitation energies, the uncertainty due to PT
fluctuations is expected to gradually outweigh the statis-
tical error bar. This effect becomes especially apparent
for the GSFs extracted for specific final excitation-energy
bins. The GSF for the ground state and the first excited
state at 1.171 MeV in 120Sn are demonstrated in compari-
son with the Oslo-method GSF in Figs. 9(e) and (f). The
data are shown for Ef +Eγ ≥ 3.2 MeV. The area below
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FIG. 9. GSFs for 120Sn at initial excitation energies (a) 5.82 MeV, (b) 6.46 MeV, (c) 7.10 MeV, (d) 7.74 MeV and final
excitation energies (e) ground state, (f) first excited state, (g) 2.50 MeV, (h) 3.26 MeV compared to the Oslo method strength
(blue shaded band). For each strength the statistical error band is shown together with the error due to the PT fluctuations.
Dark grey regions correspond to the areas of expected infinite PT fluctuations, light grey area marks energies for which the
fluctuations of the strength were not determined. The γ-ray and excitation energy bin widths are both 128 keV.

8−10

7−10

6−10

)
-3

G
SF

 (
M

eV

 = 5.52 MeVi E

 PT fluctuations

 Oslo method

(a)

)
-3

G
SF

 (
M

eV

 = 6.16 MeVi E(b)

8−
10

7−
10

6−
10  = 6.96 MeVi E(c)

8−10

7−10

6−10  = 7.76 MeVi E(d)

1 2 3 4 5 6 7 8 9
 (MeV)γE

8−10

7−10

6−10

)
-3

G
SF

 (
M

eV

(e)  = 0 MeV, g.s.f E

 PT fluctuations

1 2 3 4 5 6 7 8 9
 (MeV)γE

8−10

7−10

6−10

)
-3

G
SF

 (
M

eV

(f)  = 1.13 MeVf E

1 2 3 4 5 6 7 8 9
 (MeV)γE

8−10

7−10

6−10

)
-3

G
SF

 (
M

eV

(g)  = 2.80 MeVf E

1 2 3 4 5 6 7 8 9
 (MeV)γE

8−10

7−10

6−10

)
-3

G
SF

 (
M

eV

Sn124

(h)  = 3.44 MeVf E

FIG. 10. GSFs for 124Sn at initial excitation energies (a) 5.52 MeV, (b) 6.16 MeV, (c) 6.96 MeV, (d) 7.76 MeV and final
excitation energies (e) ground state, (f) first excited state, (g) 2.80 MeV, (h) 3.44 MeV compared to the Oslo method strength
(blue shaded band). For each strength the statistical error band is shown together with the error due to the PT fluctuations.
Dark grey regions correspond to the areas of expected infinite PT fluctuations, light grey area marks energies for which the
fluctuations of the strength were not determined. The γ-ray and excitation energy bin widths are both 160 keV.

this energy and the area corresponding to Ef +Eγ > Sn
are shaded. The fluctuations of the ground-state strength
are large below ≈ 5 MeV, where they reach ≈ 40% of the
absolute value. Between Eγ ≈ 3.3 and 5 MeV, the fluc-

tuations of the strength are ≈ 60% on average and reach
up to 90% toward the lowest γ energy. The latter case
corresponds to only 1-3 possible dipole transitions at this
Eγ . Applying the χ2

ν distribution for fluctuations of so
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FIG. 11. Shape-method GSFs of 120Sn for γ−rays feeding
the ground state (a) and the first excited state (b) compared
to the Oslo method result (blue band). The Shape method re-
sults are shown together with the statistical error propagated
through the method, shown as a band (significantly smaller
in width than the size of the data points), and the error bars
due to the PT fluctuations. The Oslo method GSF is shown
with the total (stat.+syst.) error band.

few transition widths is not justified as it is valid solely
in the statistical regime. Thus, the estimation procedure
should be taken with great care when r(Eγ) approaches
values of 1.

Below ≈ 5 MeV, some strong deviations of the ground
state strength from the Oslo-method result are observed.
Besides the strong PT fluctuations at these γ-ray ener-
gies, there might be some quadrupole transitions that
cause methodical problems in this region. As the extrac-
tion of the GSF relies on dipole radiation being dom-
inant, quadrupole transitions from numerous low-lying
2+ states to the ground state could distort the strength
as the factor of E5

γ should be used instead of E3
γ . At

higher γ-ray energies, the ground-state strength repro-
duces the slope of the Oslo method strength, lying well
within the Oslo-method error band. Similar effects can
be seen for the 124Sn (in Fig. 10(e), Ef +Eγ ≥ 3.0 MeV),
where the fluctuations were again estimated with the to-
tal NLD and, therefore, should be considered lower-limit
estimates.
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FIG. 12. Same as Fig. 11, but for 124Sn.

High PT fluctuations of 10-60% are observed also for
the GSF to the first excited states in both isotopes, as
shown in Fig. 9(f) and 10(f). For both nuclei these
strengths reproduce the slopes of the Oslo method GSF
in the region between 5 and 6.5 MeV quite well. For the
higher final excitation energies, the fluctuations of the
strengths are at most by one order of magnitude larger
than the statistical uncertainties at low γ−ray energies,
whilst at higher γ−ray energies they are by one order of
magnitude smaller. For these strengths it is challenging
to argue for an exact agreement with the Oslo method
result. If taking a general agreement of the strengths
within the error bars as a criterion, it can be possible to
claim an overall independence of the strengths of final
excitation energy for 120,124Sn.

As the PT fluctuations become more significant at
lower final excitation energies, they are expected to make
a considerable contribution to the total error band of the
Shape-method results. In figures 11 and 12, the GSFs
for γ rays feeding the ground state and the first excited
2+ state are shown for 120Sn and 124Sn, respectively, to-
gether with the corresponding Oslo-method strengths.
To test what a reasonable minimum excitation-energy
limit would be for the application of the Shape method,
we choose Ei = 4 MeV in both nuclei as a starting point.
The Shape method results are presented with their statis-
tical uncertainties, propagated through the unfolding and
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the first generation method. The Oslo-method strength
is shown with the total error band and the expected vari-
ations of the corresponding ground-state or first-excited
state strengths due to the PT fluctuations. Both of these
strengths for 120Sn follow the shape of the Oslo-method
strength quite well from the neutron separation energy
and down to ≈ 5.5 − 6 MeV. Here, they start deviating
gradually for lower γ-ray energies. In 124Sn, the agree-
ment between the GSFs is quite good from Eγ ≈ 5 MeV
and higher.

Remarkably, the ground-state strengths and the first-
excited state strengths for 120,124Sn demonstrate quite
significant enhancements between 3 and 5 MeV, which
can not be attributed to any real features of the strength.
Moreover, there are no noticeable structures on the diag-
onals at 4 < Ei < 5 MeV that might have induced these
features. No similar effect was previously reported for
even-even isotopes [34]. The appearance of these bumps
might partly arise from the failure of the internal normal-
isation technique at relatively low γ-ray energies where
large fluctuations of the strengths are observed. The fluc-
tuations of the ground-state strength in 120,124Sn range
from ≈30 to 70% below 5.5 MeV, and from ≈15-35%
below 4.3 MeV for the GSF corresponding to the first
excited state. Since the pairs of data points for the two
diagonals at each excitation energy are normalized in-
ternally to each other (see Ref. [34]), large variations of
the strengths could lead to an erratic internal normal-
ization at relatively low γ-ray energies. When reaching
densities of 1·103-2·103 levels per MeV, the distorting ef-
fect due to the PT fluctuations becomes smaller, and
the Shape-method results follow nicely the Oslo-method
strength in both cases. This potential problem should be
considered in future studies performed with the Shape
method. When approaching the neutron separation en-
ergies in 120,124Sn, fluctuations of the strengths do not
exceed a few percent, which is comparable to the sta-
tistical error bands shown in Figs. 11 and 12, whilst for
the rest of the energy range, the PT fluctuations make a
noticeable contribution to the uncertainties.

Additional explanations for the smooth bump-like
structures observed in the GSF might come from the fail-
ure of some basic assumptions in the Shape method such
as a symmetric parity distribution of the initial nuclear
levels, pure dipole transitions of the involved γ-ray de-
cays, and a spin-independent excitation probability in
the (p, p′γ) reaction at 16 MeV. The lower the excitation
energy, the less the assumption of a symmetric parity dis-
tribution might be justified, especially in the magic Sn
isotopes, so this may lead to deviations when using the
Shape method at excitation energies below 5-6 MeV. Fur-
thermore, similar to the discussion of the Oslo method,
potential contributions of quadrupole transitions can dis-
tort the analysis procedure due to the different energy
factor of E5

γ as compared to E3
γ for dipole transitions.

In particular, the excited 2+ states will most likely de-
cay (on average) preferably to the first 2+ instead to the
ground state. Within the Shape method, this can lead

to the fact that the value of the GSF for the ground
state γ-decay is (on average) smaller than for the decay
into the first 2+ state. Thus the value pair in the Shape
method has an increasing course towards low gamma en-
ergies due to fto 2+ [Ei−Ex(2+)] > fto g.s.[Ei−Ex(g.s.)]
and might explain the increasing bump-like trend of the
GSF. It remains an open question as to why the devia-
tion of the strengths is systematically upward (always an
increase) and whether the PT fluctuations, asymmetric
parity distributions or the specific decay behavior of 2+

states at low excitation energies are the main cause of
the observed deviation

V. CONCLUSIONS

The nuclear level densities and γ-ray strength func-
tions of 120,124Sn were extracted using the Oslo method,
and the slopes of the strengths were additionally con-
strained with the Shape method. The NLDs were found
to be in good agreement with previously deduced NLDs
for 116,118,122Sn, with slight deviations primarily due to
some differences in the normalization procedures. The
Oslo-method NLD for 1− states in 124Sn is in fairly
good agreement within the estimated error bands with
the result obtained from the fluctuation analysis of high-
resolution inelastic proton scattering spectra above 6
MeV. Given the model-independence of the (p, p′) result,
this agreement supports the choice of the spin distribu-
tion function and the spin-cutoff parameter employed in
the Oslo method. The combined results covering excita-
tion energies up to 14 MeV clearly demonstrate the tran-
sition between the constant temperature and the Fermi
gas regimes at ≈ 7 MeV.

The experimental NLDs were used to estimate the role
of the Porter-Thomas fluctuations in assessing the gen-
eralised Brink-Axel hypothesis below the neutron sepa-
ration energy in 120,124Sn, as well as the applicability of
the Shape method. Most of the deviations of the GSFs
for different initial and final excitation energies from
the Oslo-method strength can be explained by strong
PT fluctuations due to very few γ transitions. For the
ground-state and the first-excited state strengths, this
effect is especially apparent, with the PT fluctuations
reaching up to 90-100% at low γ-ray energies. Despite
some local discrepancies, the individual GSFs are in over-
all good agreement with the Oslo-method strength within
the error bands, suggesting an independence of initial
and final excitation energies in support of the general-
ized Brink-Axel hypothesis within uncertainties of the
Oslo method.

Strong PT fluctuations were found to play a notice-
able role in the extraction of the GSFs with the Shape
method, as they might contribute to considerable devia-
tions from the Oslo-method result at low γ-ray energies.
The reliability of the Shape method applied to 120,124Sn
is under question for values of the NLDs below 1·103-
2·103 levels per MeV, but quite satisfactory above this
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limit in both nuclei. Further investigations are needed
to understand why the Shape method seemingly leads to
an overestimate of the low-energy strength in the region
where the PT fluctuations are large.
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