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Background: Recent experiments have confirmed that the neutron-rich isotopes 28,29F belong to the so-called
island of inversion (IOI), a region of the nuclear chart around Z = 10 and N = 20 where nuclear structure deviates
from the standard shell model predictions due to deformation and continuum effects. However, while the general
principles leading to the IOI are relatively well understood, the details of the low-lying structure of the exotic
fluorine isotopes 28−33F are basically unknown.

Purpose: In this work, we perform large-scale shell model calculations including continuum states to investigate
the properties of the neutron-rich isotopes 25−33F, from a core of 24O and using an effective two-body interaction
with a small number of adjustable parameters in the central and tensor channels.

Methods: We develop two models adjusted on experimentally confirmed states in 25,26O and 25−27F based on
different assumptions concerning the positions of the neutron 0d3/2 and 1p3/2 shells, and solve the many-body
problem using the density matrix renormalization group (DMRG) method for open quantum systems in a sd-fp
model space.

Results: We obtain the first detailed spectroscopy of 25−33F in the continuum and show how the interplay between
continuum effects and deformation explains the recent data on 28,29F. Several deformed one- and two-neutron
halo states are predicted in 29,31F, and we provide some information about the possible structure of the heaviest
fluorine isotopes. We also suggest several experimental studies of interest to constraint models and test the present
predictions.

Conclusions: The complex structure of neutron-rich fluorine isotopes offers a trove of information about the
formation of the southern shore of the IOI through a subtle interplay of emergent deformation via the neutron
p3/2-f7/2 coupling, and continuum effects favoring the occupation of the 1p3/2 shell over the 0d3/2 shell. Further
experimental studies of this region will be essential to assess the quality of future theoretical approaches.

I. INTRODUCTION

Exotic nuclei provide a unique window on the nature
of the nuclear interaction and how nuclear systems self-
organize [1, 2], but also contribute to our understand-
ing of long-standing problems such as the nucleosynthe-
sis in the r process [3, 4]. As compared to stable nuclei,
their large N/Z asymmetry can produce dramatic rear-
rangements of nuclear structure with, for example, the
emergence of deformation [5–8] and new ”magic num-
bers” associated with new large shell gaps. Close to the
driplines, i.e. the limits of stability with respect to pro-
ton and neutron emission [9, 10], exotic nuclei also reveal
new stabilizing mechanisms such as the formation of halo
structures [11].

These effects are exemplified in the so-called island
of inversion (IOI), a neutron-rich region of the nuclear
chart located between the neutron numbers N = 20 and
N = 28 showing large quadrupole deformation and im-
portant continuum effects. The story behind the IOI
can be roughly summarized as starting with the effect
of tensor forces [12, 13] and the mass-dependance of the
nuclear mean-field, which slowly modify the positions of
single-particle states as one moves away from the valley
of β-stability, effectively reducing the energy gap between
the sd and fp shells. This shell evolution creates a sit-
uation where, in the shell model picture, the multipole

part of the interaction [14] can lower the energy of the
system by developing, for example, deformation through
the residual quadrupole interaction coupling orbits sat-
isfying ∆l = ∆j = 2 like the neutron shells ν1p3/2 and
ν0f7/2, as beautifully explained in Elliott’s theory [15].
Nuclear deformation can also be seen as an instance of
the Jahn-Teller effect [16], i.e. a spontaneous symmetry
breaking due to the coupling of near-degenerate single-
particle states [17–23]. For that reason, we will refer
to the Elliott-Jahn-Teller effect since both theories de-
scribe the same phenomenon in two different pictures. In
the present case of neutron-rich fluorine isotopes around
N = 20, the near-degeneracy of the neutron shells ν0d3/2
and ν1p3/2 will also play a crucial role as we will show,
but mostly due to their strong coupling to the continuum.
Indeed, the final twist to the story is that, as deforma-
tion develops, the occupation of the ν1p3/2 increases right
when weak binding appears [24], creating an interplay be-
tween continuum effects and deformation [22]. Of course,
all these mechanisms derive from the nuclear interaction
[25], which makes the IOI a particularly interesting place
to test nuclear models. A complete review of the litera-
ture on the IOI can be found in Ref. [2].

The experimental study of this region is now feasible
thanks to new technological developments on detectors
and the construction of rare isotope beam facilities. More
specifically, neutron-rich fluorine isotopes, located at the
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southern shore of the IOI with a proton number Z = 9,
present a unique opportunity to challenge our under-
standing of nuclear forces. Indeed, just below the IOI, in
oxygen isotopes (Z = 8), the neutron dripline extends up
to N = 16 (24O) and is well explained in a sd shell model
space, while in fluorine isotopes it goes up to N = 22
(31F) [26]. The story leading to the IOI gives an idea of
how this sudden extension of the dripline happens, but so
far no theoretical description including deformation and
continuum couplings has been provided.

Series of measurements in 26F [27–30] and 27F [31–
33] have clearly established that the low-lying spectra of
these nuclei are dominated by sd shells, and, until re-
cently, the same was believed about the ground state of
28F [34] from the observation of a positive-parity ground
state [35, 36] compatible with standard shell model pre-
dictions. However, the situation changed after a new
measurement giving a negative-parity ground state in 28F
[37], revealing that the ν1p3/2 shell is already occupied in
this isotope (N = 19). Compared to neutron-rich neon,
sodium, or magnesium isotopes where the IOI starts at
N = 20, this is an important change that needs to be
understood.

Likewise, the first measurements of the isotope 29F [32,
33, 38] gave a mass compatible with a Jπ = 5/2

+

spin-
parity assignment from the shell model, but the recent
observation of a two-neutron halo in the ground state [39]
suggests a stronger interplay between deformation and
continuum effects than expected, potentially leading to a
different spin-parity assignment. It will be interesting to
see how the increasing role of the ν1p3/2 shell noticed in
28,29F affects the spectroscopy of the unbound 30F and
bound 31F isotopes [40, 41].

On the theory side, systematic calculations in the
IOI essentially come into two flavors. There are den-
sity functional theory calculations of masses, radii, and
quadrupole deformations in even-even nuclei [9, 42], and
large-scale shell model calculations. Concerning the lat-
ter, they can provide low-lying spectra, radii, and a trove
of additional information about nuclear structure and the
presence of deformation. For more information, see the
excellent reviews in Refs. [43, 44]. Notable studies on
the IOI range from the pioneer works of Refs. [45, 46] to
modern applications of the shell model [47, 48] and Monte
Carlo shell model [25, 49, 50]. Hopefully, in the future
ab initio methods will be able to provide much needed
predictive power in the IOI [51]. There are, of course,
many other valuable works on individual isotopes using
various approaches, some of which will be mentioned in
the Results section.

Up to our knowledge, except for the recent Gamow
shell model calculations in 31F [52] where significant trun-
cations were applied, there is currently no large-scale
study including both continuum effects and the many-
body correlations necessary to describe the emergence
of deformation in neutron-rich fluorine isotopes. In this
work, we make a modest attempt to include the neces-
sary ingredients mentioned above with minimal trunca-

tions in a large model space and from 25F up to 33F. For
that matter, we apply the density matrix renormalization
group (DMRG) method [53, 54] to solve the shell model
problem from a core of 24O and including couplings to
continuum states, and using minimal effective Hamilto-
nians designed to qualitatively capture known low-lying
states in neutron-rich fluorine isotopes.

II. METHODS

The neutron-rich fluorine isotopes 25−33F are described
in the shell model picture starting from a core of 24O,
which has one-neutron and one-proton separation ener-
gies of Sn = 4.19 MeV and Sp = 27.11 MeV, respectively,
and is associated with the new shell closure N = 16
[55]. The 24O-n and 24O-p interactions are modeled
by two Woods-Saxon potentials as defined in Ref. [56],
and whose parameters are adjusted on the single-particle
states of 25O and 25F.

As mentioned in the previous section, the position of
the neutron shell ν1p3/2 plays a critical role in neutron-
rich fluorine isotopes. We originally generated a first
model “A” which reproduces reasonably well the low-
lying spectra of light neutron-rich fluorine isotopes and
gives a negative parity ground state in 28F as seen exper-
imentally, but at the cost of lowering the ν0d3/2 shell to
E = −0.041 MeV instead of E = 0.776 MeV (Γ = 88 keV)
experimentally, and the ν1p3/2 shell to E = 0.298 MeV
(Γ = 343 MeV) partly for numerical reasons as explained
below. Unfortunately, we will see below that this model
has a weak pairing interaction and hence lead to discrep-
ancies with experiment when looking at the ground-state
energy trend in heavier isotopes. Then, for comparison,
we generated a second model “B” in which the ν0d3/2
shell is at E = 0.809 MeV (Γ = 87 keV), close to its ex-
perimental value, and the ν1p3/2 shell is at E = 0.612
MeV (Γ = 1337 keV) given by the same core potential.
In addition, we imposed the ground-state energy trend
to be closer to experiment while keeping in mind the in-
creasing truncation effects with mass. The issue with
this model is that, contrary to model A, it does not de-
scribe well light neutron-rich fluorine isotopes, but the
agreement with experiment for A > 27 is much improved.
Parameters for each model are given in Tab. II.

Because only four states in total could be used to con-
strain the nine parameters (including the charge radius
Rch), for both potentials, we first fixed the diffuseness d
at 0.65 fm since this value is fairly constant across the
nuclear chart, and the potential radius R0 using using the
standard formula R0 = r0A

1/3 with r0 = 1.2 fm. Then,
we fixed the charge radius at Rch = 2.87 fm as a compro-
mise between experimental values in nuclei surrounding
24O such as 18O (Rch = 2.77 fm) or 26Ne (Rch = 2.92
fm), and predictions from density functional theory [42]
(Rch ≈ 2.82 fm) and ab initio methods [57] (Rch ≈ 3.1 fm)
in 24O. Only the depth V0 and the spin-orbit term V`s
were left free during the optimization. The parameters
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obtained as described above are shown in Tab. I (second
and third columns) and are in reasonable agreement with
those in Ref. [52].

TABLE I. Parameters of the Woods-Saxon potentials rep-
resenting the 24O-n and 24O-p interactions in both models.
The columns denoted ”` = 1”, ”` = 2”, and ` = 3 contain the
readjusted parameters for the neutron p, d, and f waves, re-
spectively. See text for details.

Parameter Proton Neutron ` = 1 ` = 2 ` = 3

Model A

Rch (fm) 2.87
d (fm) 0.65 0.65 0.70
R0 (fm) 3.47 3.47 3.61
V0 (MeV) 68.74 47.50 49.50 49.50
V`s (MeV.fm2) 3.795 10.8

Model B

d (fm) 0.65 0.65 0.70
R0 (fm) 3.47 3.47
V0 (MeV) 69.44 47.50 50.44 47.15 40.21
V`s (MeV.fm2) 4.183 10.8 10.55 10.33

In model A, the ν0d3/2 and ν1p3/2 shells were lowered
compared to experiment not only to improve spectra in
26−27F, but also because the ν1p3/2 shell would have had
a width of about Γ = 2.37 MeV. In practice, a single-
particle state with such a large width cannot be used
directly in many-body calculations. Even though the or-
der of the ν0d3/2 and ν1p3/2 shells has been changed, the
energy gap between the two shells is still fairly small and
the width of the ν1p3/2 shell is still large enough to give
this shell a more delocalized character than the ν0d3/2
shell. In model B, the ν0d3/2 shell was left at its experi-
mental value and the large width of the ν1p3/2 shell was
dealt with numerically by using a basis in which both
shells are weakly bound. We checked that the energy
positions of the corresponding basis states did not affect
the results due to the completeness of the single-particle
basis. We note that the ν0f7/2 shell is at E = 2.90 MeV
in model A, while it is at E = 5.23 MeV in model B.

Another difference between the two models is that
model B is defined in a smaller single-particle basis com-
pared to model A. This was necessary to perform the
optimization of the interaction in model B using informa-
tion on the heaviest fluorine isotopes and with less trun-
cations at the many-body level. Below, we describe the
two model spaces used. The proton space is comprised of
the πd5/2 and πs1/2 partial waves, each represented using
the harmonic oscillator (HO) basis with nmax = 10 and
0 in model A and B, respectively, and with an oscillator
length of b = 2.0 fm. This choice of basis is justified by
the fact that the proton above 24O in fluorine isotopes
is always bound by more than 10 MeV and hence must
have a well localized wave function.

On the other hand, the neutrons in neutron-rich flu-
orine isotopes are either weakly bound or unbound and

their wave function can be better expressed using the
Berggren basis [58, 59], which allows to explicitly include
resonant and scattering states at the single-particle level,
and to naturally generalize the configuration interaction
picture in the complex-energy plane [60].

This basis is built upon the selected eigenstates of a
finite-range potential for each partial wave c = (`, j) con-
sidered and is usually defined in the complex-momentum
plane as shown in Eq. (1):

∑
i

∣uc(ki)⟩ ⟨ũc(ki)∣+∫
L+c

dk ∣uc(k)⟩ ⟨ũc(k)∣ = 1̂c, (1)

where the sum runs over the resonant states (or poles of
the scattering matrix) selected, defined by their momenta
ki, and the integral goes over complex-energy scattering
states along a contour L+c in the fourth quadrant which
surrounds the poles included in the sum and then extends
to k →∞.

The completeness of this basis is ensured by Cauchy’s
integral theorem, which means that the precise form of
the contour L+c is unimportant, provided that all the se-
lected poles lie between the contour and the real-k axis.
For additional details see Ref. [60].

In the present work, the neutron space is comprised
of the νd3/2, νp3/2, and νf7/2 partial waves. We checked
that adding additional partial waves did not affect the
results significantly. Due to the large centrifugal barrier
for ` = 3 waves, which keeps the wave function localized,
the νf7/2 states are represented using the HO basis with
nmax = 5 and 0 in model A and B, respectively, and with
b = 2.0 fm.

Concerning the lower partial waves, in model A the
νd3/2 and νp3/2 states are both represented in the
Berggren basis by one decaying resonance (0d3/2 and
1p3/2 shells, respectively) and discretized contours made
of three segments defined by the following points in the
complex momentum plane: k0 = 0.0, k1 = (0.20,−0.05),
k2 = 0.4, and k3 = 4.0 fm−1 for d3/2 shells, with each seg-
ment is discretized by 8 scattering states using a Gauss-
Legendre quadrature; and k0 = 0.0, k1 = (0.25,−0.20),
k2 = 0.5, and k3 = 4.0 fm−1 for p3/2 shells, with each seg-
ment discretized by 12 scattering states. In model B, we
reduced the discretization to 5 and 7 scattering states per
segment and changed the position of k1 to (0.20,−0.00)
and (0.20,−0.10) for the νd3/2 and νp3/2 partial waves,
respectively.

We finally obtain a single-particle basis in model A (B)
made of 22 (2) proton shells and 67 (39) neutron shells,
from which Slater determinants (SDs) can be built as
usual. Before discussing the nucleon-nucleon (NN) inter-
action in the valence space and its optimization, below,
we introduce the many-body method used in this work.

One notes that a naive evaluation of the dimension
of the Hamiltonian in 33F gives d = (

22
Nπ

)(
67
Nν

) ≈ 1011 in

model A, which is already beyond the capabilities of most
shell model codes. For that reason, the many-body prob-
lem is solved in the configuration-interaction picture us-
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ing the density matrix renormalization group (DMRG)
method for open quantum systems [53, 54].

This powerful many-body method, originally intro-
duced in condensed matter physics [61, 62] and later im-
ported in nuclear physics [63–68], can handle large model
spaces by dividing the problem into two subspaces A and
B corresponding to the ”system” and the contributions
from the medium or environment.

The space A is fixed and composed of the many-body
states ∣iA(jA)⟩ built from a small number of selected
single-particle states, where iA is the index of the state
and jA its total angular momentum, and it is assumed
that the solution ∣Ψ0(J

π)⟩ in this subspace is a reason-
ably good approximation of the full solution ∣Ψ(Jπ)⟩.
The DMRG strategy to solve the many-body problem
efficiently consists in refining the starting approximation
in the reference space, by gradually including relevant
contributions from the medium while rejecting unneces-
sary contributions according to the DMRG truncation
scheme.

At the first iteration, one single-particle state from
the medium is added into the subspace B (empty at
first), and all the many-body states ∣iB(jB)⟩ in B are
built and then coupled to those in A to form the states

{∣iA(jA)⟩⊗ ∣iB(jB)⟩}
Jπ

in which the shell model prob-
lem is solved giving a solution of the form:

∣Ψ(Jπ)⟩ = ∑
iA,iB

c
iB(jB)

iA(jA)
[∣iA(jA)⟩⊗ ∣iB(jB)⟩]

Jπ
. (2)

In the present work, since the problem is not variational
with the use of complex energies, the retained solution
in A ⊗ B is the one that has the maximal overlap with
the initial solution in the reference space ∣Ψ0(J

π)⟩. From
this solution, the density matrix reduced in the reference
space is calculated for each block jB as:

ρ(iB , i
′

B)(jB) =∑
iA

c
iB(jB)

iA(jA)
c
i′B(jB)

iA(jA)
, (3)

and is then diagonalized to obtain the eigenvectors
{∣α⟩B} and eigenvalues {wα}. This is where the DMRG
truncation operates and reduces dramatically the compu-
tational cost. The eigenvectors are ordered by decreasing
∣wα∣ and one keeps in the subspace B only the first Nρ
vectors so that the following condition is satisfied:

RRRRRRRRRRR

1 −R
⎛

⎝
i
Nρ

∑
α=1

wα
⎞

⎠

RRRRRRRRRRR

< ε. (4)

where ε is the DMRG truncation. Of course, in the limit
ε → 0 results are exact. At the next iteration, a new
single-particle state from the medium is added into B,
and the same procedure is repeated until the contribu-
tions of all the states in the medium have been absorbed.

This is called the warm-up phase and it is typically
insufficient to reach convergence unless ε → 0 as some

many-body correlations have been lost at each iteration,
and for that reason it should be followed by sweep phases
[54]. However, the use of the Berggren basis gives an
advantage over this problem. Indeed, a Berggren ba-
sis is usually made of a small number of fairly localized
states (bound states and resonances) and a large number
of scattering states, that can be treated as a reference
space and an environment, respectively, with a weak en-
tanglement between the two, in the original spirit of the
DMRG method.

To improve the convergence further, natural orbitals
[69] generated from truncated DMRG calculations can
be used to more efficiently capture many-body correla-
tions as was done in Refs. [70–75]. However, in this work,
the emergence of deformation in the continuum makes
this method less attractive. Indeed, in a spherical ap-
proach deformation is expressed by a strong mixing of
various partial waves and large contributions from multi-
particle multi-hole excitations above the lowest energy
Slater determinant in the reference space. To make the
matter worse, due to the Berggren basis, the Hamilto-
nian is complex-symmetric and thus one must extract
solutions in the full space that are invariant with respect
to changes in the definition of the continuum, which is
impractical in large-scale calculations. Instead, at each
DMRG iteration one selects the physical state from the
renormalization group-transformed Hamiltonian that has
the maximal overlap with the reference state, providing
that a reference state reasonably close to the full solution
can be constructed. For these reasons, generating natural
orbitals from a truncated DMRG calculation can some-
times lead to a redefinition of the reference state which
does not converge to a physical state, and thus one must
try to converge the calculations directly in the original
basis.

Furthermore, even for a quasi-exact direct calculation
with a small value of ε the energy can start to drift after
a given number of iterations because of the identification
problem. In such a case, we found that simply reorder-
ing the single particle shells based on their contribution
to the energy during a truncated calculation, even when
the energy drifted toward the end, greatly stabilized the
subsequent calculation. This reordering method is not as
sophisticated as the use of natural orbitals or the reorder-
ing techniques in Ref. [76] based on quantum information
theory methods, but it allows for a quick optimization en-
suring minimal destabilization of the identification. After
reordering, the convergence of the energy with the num-
ber of iterations (shells) typically looks like a decreasing
exponential.

Finally and as mentioned previously, the quality of the
DMRG reference state is critical to ensure the proper
identification of many-body resonances, which means
that a large reference space usually provides a better
starting point at an increased computational cost. How-
ever, in applications using the Berggren basis, it is neces-
sary to consider a reference space build using poles of the
single-particle scattering matrix to ensure that the target
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state will be a physical state. We chose to include only
the shells ν0d3/2, ν1p3/2, π0d5/2, and π1s1/2. In light iso-
topes, enlarging the reference space using, for example,
f waves did not affect the results, but in larger isotopes
A ≥ 30 tests have shown that some binding energy could
be gained. For that reason, the present interaction has a
dependence on the reference space.

Now that the one-body interaction as well as the single-
particle space are defined, and the many-body approach
is specified, we turn our attention to the NN valence
space interaction and its optimization. We start from
the Furutani-Horiuchi-Tamagaki (FHT) finite-range two-
body interaction [77, 78], which contains central, spin-
orbit, and tensor terms expressed in all spin-isospin chan-
nels (S,T ) as described in details in Ref. [56], and we
reduce it using effective scale arguments as was done in
Ref. [75] for neutron-rich helium isotopes.

According to halo effective field theory [79, 80], the
leading-order terms should be in the central 1S0 and 3S1

interaction channels, which correspond to the (S,T ) =

(0,1) and (1.0) central terms in the FHT interaction,
denoted V 01

c and V 10
c , respectively. One note that these

two parameters were the only one well constrained in a
Bayesian analysis of a global fit of light nuclei above a
4He core [56].

In model A, our first strategy was to fix the parameter
V 01
c on the ground-state energy of 26O (two neutrons

above the core), and then to adjust the second parameter
V 10
c , which only acts on the pn interaction (T = 0), on

the ground state of 26F. However, while the value of V 01
c

obtained gave satisfactory results in 26−28O, there was
no value of V 10

c that could give the correct experimental
ordering of the multiplet Jπ = 1+, 2+, 4+, 3+ in 26F (we
obtained 4+, 1+, 2+, 3+), even though we had the correct
energy trend up to 31F.

This was an indication that the leading-order terms
were not enough and small additional contributions must
be considered. While in principle the tensor terms V 10

t

and V 11
t should be important [12, 13] because the domi-

nant configuration of the multiplet is made of spin-orbit
partner shells j</> = ` ± 1/2, empirically, we found that
they have a moderate effect in this case. Instead, only
the central term V 11

c allows to obtain the correct ordering
of the spectrum in 26F, as well as the near degeneracy of
the 2+ and 4+ states.

In fact, adding a small attractive tensor force overbinds
the heaviest fluorine isotopes as more neutrons fill the
ν0d3/2 shell and they coupled to the proton in the π0d5/2
shell. It is our understanding that, in 24O, the expected
lowering of the ν0d3/2 shell due to tensor forces has al-
ready been mostly absorbed by the one-body potential.

Finally, we adjusted the three selected parameters on
the experimentally confirmed states in 26−28F by solving
the many-body problem exactly in 26−27F and within a
DMRG truncation denoted 4p4h-ε = 10−5 (see next sec-
tion) in 28F, and obtained V 01

c = −1.360, V 10
c = −1.244,

and V 11
c = −68.00 (all in MeV). This step was particu-

larly difficult because of the lack of experimental data in

general, and the fact that only the energy and parity of
the ground state of 28F are known. We generated many
different sets of parameters fitting states in 26,27F and
post-selected those giving a negative parity ground state
in 28F (any spin) and a reasonable energy position for the
ground state of 29F (any spin and parity). This required
to compute all the low-lying states states in 28,29F at
every selection to ensure compliance with experimental
data.

In contrast, we developed model B as an attempt to
have a better energy trend in A > 27 isotopes compared
to model A and thus used a different strategy. We as-
sumed that the ground state of 31F had a spin-parity of
Jπ = 1/2

+

, which seemed reasonable since the 5/2
+

state
was already predicted close to the 1/2

+

in model A and
in large-scale shell model [48], and found out that we
needed to add a tensor force in the (S,T ) = (1,1) chan-
nel to correct the energy trend and the discrepancy in
the ground-state energy of 28F seen in model A. How-
ever, the ordering of the states in 26F was negatively
affected and the the 5/2

+

-1/2
+

energy gap in 27F was in-
creased significantly. The optimization in 31F was done
within a 4p4h-ε = 10−5 DMRG truncation (see next sec-
tion) to include as much many-body correlations as pos-
sible while ensuring the practical feasibility of the cal-
culations. Unfortunately, the present truncation might
not have been enough to fully capture deformation at
this point, leading to a ground-state energy higher than
experiment. The parameters obtained for model B are
V 01
c = −1.884, V 10

c = −2.214, and V 11
c = −73.77 (all in

MeV), and V 11
t = 26.17 MeV.fm−2. We note that as

single-particle states are higher in energy in model B
compared to model A, as a consequence the two-body
interaction is more attractive overall. In particular, the
parameter V 01

c responsible for the (J,T ) = (0,1) pairing
interaction is about 38% more attractive than in model
A.

Additionally, as in standard shell model calculations,
we multiplied the interaction matrix elements by a mass-

dependent factor ((Ac + 2)/A)
1/3

where Ac is the core
mass and A the mass. The results are shown in Tab. II.

In Ref. [37], it was established experimentally that the
ground state of 28F has a negative parity, but its spin was
assigned to Jπ = 4− using spectroscopic factors from the
standard shell model. However, in our calculations in-
cluding continuum couplings, we obtained Jπ = 2− as the
ground state in all fits and decided to use this assignment
in the optimization.

As compared to Gamow shell model study of 31F in
Ref. [52], where the same interaction was optimized using
seven parameters in a much smaller model space, we only
needed three parameters in model A and four in model B.
Our parameter V 11

c is comparatively similar to the one
in Ref. [52], but V 01

c and V 10
c differ significantly. One

note that in our case, V 01
c and V 10

c are about the same
size, which is consistent with their physical role as leading
order terms from an effective scale perspective, and the
result of a similar optimization of this interaction in light
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TABLE II. Experimental [30, 81, 82] and fitted energies with
respect to the 24O ground state (in MeV) and widths (in keV).
(†) The experimental ground state of 28F originally assigned
to Jπ = 4− in Ref. [37] was changed to 2− in the fit (see text
for details). (‡) In model B, the ground state of 28F is the 1−

state at E = −17.43 MeV

Nucleus Jπ Eexp Model A Model B

25O 3/2+ 0.776 -0.041 0.809

25F 5/2+ -14.43 -14.29 -14.88
1/2+ -12.71 -12.94 -12.11
3/2+ -11.03 -10.94 -11.18

26F 1+ -15.21 -15.83 -15.10
2+ -14.55 -15.14 -15.19
4+ -14.57 -14.87 -14.89

27F 5/2+ -17.32 -17.46 -17.36
1/2+ -16.54 -16.34 -15.71

28F 2−† -17.10 -17.64 -17.37‡
31F 1/2+ -18.67 -17.87

nuclei [56].
To summarize, the readjustment of the core parame-

ters in model A, which was necessary to qualitatively de-
scribe known states in light fluorine isotopes, effectively
led to a weakening of pairing correlations, which was cor-
rected to some extent in model B at the price of a degra-
dation of the results in light isotopes. In model A, the
energy difference Sn(

27F) − Sn(
26F) is about 0.09 MeV

instead of 1.33 MeV experimentally, while it is about
1.86 MeV in model B. Moreover, other important energy
differences are improved in model B, such as Sn(

26O) =

0.794 MeV (exp) obtained at 1.05 MeV (A) and 0.833
MeV (B), Sn(

26Ne) = 18.17 MeV (exp) obtained at 16.53
MeV (A) and 17.64 MeV (B), ∆2+−0+(

26O) = 1.316 MeV
(exp) obtained at 1.05 MeV (A) and 1.237 MeV (B), and
∆2+−0+(

26Ne) = 2.02 MeV (exp) obtained at -0.36 MeV
(A) and 1.33 MeV (B), where ∆2+−0+ represents the en-
ergy difference between the first 2+ and 0+ states.

III. RESULTS

In this Section, we first compare to experiment the
ground-state energies of 25−33F with respect to the
ground state of 24O obtained using both models, and
then discuss the spectroscopy of each system and ana-
lyze the occupation numbers of different partial waves in
the wave function to illustrate the emergence of defor-
mation around N = 20 and its interplay with continuum
couplings.

A. Energy trend in 25−33F and position of the
dripline

In all the calculations presented below, the many-body
problem is solved exactly for 25−28F, while in 29−33F the

many-body basis is truncated by allowing only up to four
particle-hole excitations (”4p4h”) above the lowest Slater
determinant. In model A, the DMRG truncation is low-
ered to ε = 10−8, which renders the results essentially
independent of ε, while in model B we only considered
ε = 10−6 for practical reasons. Because of the larger
model space considered in the final calculations, some
differences appear with the results of the fit.

In Ref. [52], a different choice was made where a 2p2h
truncation was applied above a small many-body space
built using only the pole states at the single-particle level.
Compared to such a truncated space, our near complete
calculations gave energy differences of 0.5-3.0 MeV.

While the DMRG truncation set by ε allows to ob-
tained almost converged energies for all neutron-rich flu-
orine isotopes, the dependence of our results to the size of
the reference space does not allow us to calculate widths
precisely in all cases. It has been noted in Ref. [83] that
widths are notoriously challenging to calculate in states
with many active nucleons. For that reason, we can
only provide reliable widths up to 28F, and only indicate
whether or not a state is narrow in heavier isotopes.

The ground-state energies of 25−33F with respect to the
ground state of 24O obtained using both models are com-
pared to experiment in Fig. 1. The overall energy trend
is respected but, when looking at A > 29 isotopes, one
can notice that both models underbind, most likely be-
cause deformation appears around A = 29 and the DMRG
truncation, which gets worse as the mass increases, does
not allow to fully capture deformation. In model A, the
energy even decreases slightly with increasing A, which
is a sign that the model might also require fine tuning in
the A > 29 isotopes.

In lighter isotopes, while model A gets the ordering
of energy spectra better than model B, as will be shown
below, it significantly overbinds in 26F and 28F. In the
latter case, the ground state of 28F gained about 700 keV
between the ε = 10−5 truncation of the fit and the almost
exact result, making it an outlier. We believe that the
optimization of the two-body interaction in model A did
not sufficiently capture pairing effects and overcompen-
sated in this system by generating too much deformation.

In addition to the ground-state energies, the one-
neutron separation energies Sn are shown in Fig. 1.
While both models reproduce qualitatively the Sn val-
ues in most isotopes, significant discrepancies are found
in 28F where the sign of Sn is incorrect, notably for model
A (see below), and also in 30F because of underbinding,
which we believe is due to many-body truncations.

Including the proton d3/2 shells did not change the re-
sults at all, and, for instance, increasing the number of
neutron f7/2 shells or adding neutron p1/2 shells in model
A had an impact of less than 100 keV overall. Overall,
even though we do not obtain all the threshold with a sat-
isfactory precision, the choice of the Hamiltonian, model
space, and the constraints applied give us models that
take into account most of the experimental information
available in the literature to some degree.
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FIG. 1. Top panel: ground-state energies in 25−33F with re-
spect to the 24O core. Experimental data [81] are compared
to the results obtained exactly or almost in 25−28F and with
the DMRG truncation 4p4h in 29−33F in both models. We
note that in Ref. [81] the energies for 30,31F are not measure-
ments but estimates. Bottom panel: one-neutron separation
energies in MeV.

B. Detailed spectroscopy of 26−33F

In Figs. 2 and 3, we show the detailed spectroscopy of
26−29F and 30−33F, respectively, where the ground-state
energies are set to E = 0.

In 26F, our results based on model A for positive par-
ity states are in relative agreement with the most re-
cent experimental results in Ref. [30] and the ab initio
and phenomenological results mentioned inside, includ-
ing the 3+ which was not adjusted. However, we also
predict negative parity states close to the 3+ state, which
were probably not produced in the one-proton knockout
reactions used in Ref. [30] because of the initial state of
the target. Finding experimentally the exact position of
these negative parity states would be particularly valu-
able to constrain theoretical models by imposing strict
conditions on the ν1p3/2 single particle state. As men-
tioned previously, model B does not reproduce well data
in the lightest isotopes as it gives an incorrect ordering
for the multiplet Jπ = 1+, 2+, 4+, 3+. Also, all negative-
parity states are found around the experimental 2+ and
4+ states.

In model A, the gap between the 5/2
+

and 1/2
+

states
of 27F that we obtained is too large but fairly robust,
and is even larger in model B. One possible explanation
is that some level of quadrupole deformation is already
present in 27F [84] but it cannot be fully accounted for
in our model due to the spherical core of 24O.

As in 26F, in 27F we also predict a mixing of positive
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FIG. 2. Calculated energy levels in 26−29F compared to exper-
iment. The results for 26−28F are virtually exact while those
for 29F are obtained with the 4p4h truncation. States with
uncertain spin and parity assignments are written in paren-
thesis.

and negative parity states above the first few low-lying
states whose experimental determination would be valu-
able to test theoretical models.

The situation becomes more interesting in 28F as there
is a controversy on the spin of the ground state and on the
exact nature of the excited spectrum. In model A, we pre-
dict a 2− ground state essentially indistinguishable from
a 1− state, a group of positive and negative parity excited
states about 700 keV higher where at least one state was
observed with an uncertain spin and parity assignment
[37], and two positive parity states slightly higher where
again at least one state was observed. One notes that
the spdf-u-mix shell model calculations [48] (refined in
Ref. [37]) also predict clusters of states in these regions.
The situation is similar in model B with a 1− ground state
almost degenerate with the 2− state. The two remaining
negative-parity states (3−, 4−) are predicted lower com-
pared to model A, and the positive parity states are pre-
dicted at similar energy positions compared to model A,
except for the 1+ state which is predicted higher.

The situation in 29F is rather intriguing. On the one
hand, the standard shell model predicts a 5/2

+

ground
state with a small occupation of the νp3/2 partial wave.
In fact, as noted in Ref. [85], this was the result obtained
in the Gamow shell model calculations of Ref. [52] limited
to a 2p2h truncation. On the other hand, a recent ex-
perimental observation [39] showed that the ground state
of 29F presents a significantly enlarged radius compared
to lighter fluorine isotopes, establishing the presence of a
halo structure and suggesting a large weight of the νp3/2
partial wave.
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Interestingly, the shell model study based on the EEdf1
interaction [86] reported in Ref. [39] predicts a 5/2

+

ground state, but also a possible excited state (presum-
ably 1/2

+

) just above the ground state. While this study
does not include continuum effects, it goes beyond the
2p2h truncation and hence better describes deformation.

In the present work, where we include continuum ef-
fects and go up to the 4p4h truncation, both models pre-
dict a 1/2

+

ground state with a pair of neutrons in the
νp3/2 partial wave and another pair in the νd3/2 par-

tial wave. The finding of a 1/2
+

ground state in 29F
would suggest the presence of a deformed two-neutron
halo structure compatible with the recent observation. In
model A, two negative parity states are predicted right
above the 1/2

+

state, as well as a 5/2
+

state slightly
higher, while in model B the 1/2

+

state is isolated and
the next excited state is about 1.0 MeV higher, where an
excited state has been found experimentally.

Surprisingly and contrary to all the low-lying states in
29F, model A predicts the 5/2

+

state to have a regular
shell model structure with basically four neutrons in the
νd3/2 shells and hence a negligible occupation of the νp3/2
shells, and it could even be spherical as a consequence.
This is rather surprising as, in principle, nothing pre-

vents contributions of the form (πd5/2)
1
(νd3/2)

2
(νp3/2)

2

to the wave function, which would likely lead to defor-
mation thanks to the Elliott-Jahn-Teller effect. If the
prediction of model A for the 5/2

+

state is correct, ex-
perimentally, the expected lack of a halo tail in its density
profile could easily be misunderstood as the result of the
pairing antihalo effect [87, 88]. In contrast, model B pre-
dicts on average one neutron in the νp3/2 shells and three
in the νd3/2 shells, suggesting a one-neutron halo. How-
ever, a closer look at the structure reveals that this state

is dominated by a mix of the (πd5/2)
1
(νd3/2)

2
(νp3/2)

2

and (πd5/2)
1
(νd3/2)

4
configurations.

Model A also predicts a 1/2
+

excited state at about 1.0
MeV above the ground state where a bound 1/2

+

state
was found experimentally [33], and two positive parity
excited state at about 1.4 MeV. All three states have sig-
nificant occupations of the νp3/2 partial wave. In com-

parison, model B predicts a 3/2
+

state close to the 5/2
+

state at about 1.0 MeV above the ground state, and the
negative parity states at about 1.4 MeV, but we did not
find excited 1/2

+

and 5/2
+

states. We attribute these
differences between the two models to the role played by
the ν1p3/2 shell. This shell is relatively low in model
A, which pushes negative parity states lower in energy
compared to model B.

In conclusion, the experimental confirmation of a halo
structure in 29F reported in Ref. [39] is consistent with a
1/2

+

ground state, but theoretical uncertainties in model
A do not rule out a possible negative parity state (1/2

−

or
3/2

−

) with a large occupation of νp3/2 shells. However, a

5/2
+

ground state seems highly unlikely in both models.
The spectra of the heavier isotopes 30−33F are shown

in Fig. 3.
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FIG. 3. Calculated energy levels in 30−33F compared to ex-
periment. Results are obtained with the 4p4h truncation.
States with uncertain spin and parity assignments are writ-
ten in parenthesis.

In 30F, the progressive compression of the spectrum
visible in 26−29F reaches its maximum in model A with
all the negative (positive) parity multiplet states located
in the lower (upper) part of the spectrum and all below
1.0 MeV. This is simply a consequence of the increasing
occupation of the ν1p3/2 shell pushing negative parity

states down. As in 28F, we predict a Jπ = 2− ground state
but the spin is not firm due to theoretical uncertainties.
In model B, the positive- and negative-parity multiplets
stay well separated with all the former being around 1.2
MeV above the ground state, and the latter below 500
keV like in model A.

Being the last bound fluorine isotope, 31F is particu-
larly interesting. Using both models, we predict a 1/2

+

ground state with two neutrons in the νp3/2 partial wave

as in 29F, followed by two positive parity states close in
energy (5/2

+

, 3/2
+

) and negative parity states at higher
energy.

Earlier shell model studies in the sd − fp space [48]
predicted a 5/2

+

ground state, but had already noticed a
drastic reduction of the gap between the 5/2

+

and 1/2
+

states in 31F due to deformation, with both states be-
ing dominated by intruder configuration by about 70%.
Additional details on the inversion of the 5/2

+

and 1/2
+

states will be provided below.
In 32,33F, model A fails to provide the correct behavior

for the ground-state energy trend as it decreases slightly
with the mass number, most likely due to the lack of pair-
ing interaction and the effect of many-body truncations.
The issue with pairing is partially solved in model B,
which gives an essentially flat ground-state energy trend
instead. In 32F, both models predict the positive-parity
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states to be pushed up in energy as compared to the sit-
uation in 30F, to the point that in model B they were too
unstable to be converged in DMRG. In addition, both
models predict the 5/2

+

and 1/2
+

states to be close in
energy in 33F, with the inversion of configuration per-
sisting in model A.

Finally, to provide a more complete picture of the evo-
lution of the structure of neutron-rich fluorine isotopes
25−33F, the occupations n`,j of different partial waves
(`, j) in the ground states are shown in Fig. 4.

Obviously, in a given system the sum of the occupa-
tions over all partial waves must give the number of par-
ticles in the valence space. Also, we need to be careful
not to interpret the occupations of the partial waves as
the occupations of the single-particle states in our basis
or of individual configurations. An occupation of 2.0 in
a given partial wave (`, j) could mean, for example, that
on average two particles occupy to some degree all the
shells (n, `, j), and thus, could be mostly scattered in the
continuum in our case.

0

1

2

3

4

n
l,
j

A

(×1)

νd3/2

νp3/2

νf7/2(×10)

πd5/2

πs1/2(×10)

25F 26F 27F 28F 29F 30F 31F 32F 33F
0

1

2

3

4

n
l,
j

Bνd3/2

νp3/2

νf7/2(×10)

πd5/2

πs1/2(×10)

FIG. 4. Occupation numbers of the neutron and proton par-
tial waves for the ground states in 25−33F in models A (top
panel) and B (bottom panel).

The emergence of deformation already visible in the
energy spectra in Figs. 2 and 3 becomes clearer when
looking at the occupation numbers. As mentioned be-
fore, the first break from the standard shell model picture
happens in 28F where one would expect a positive par-
ity ground state with about three neutrons in the νd3/2
shells. Instead, as shown in Fig. 4, the negative-parity
ground state of 28F has occupations of about 2.0 and
1.0 in the νd3/2 and νp3/2 shells, respectively. Moreover,
there is a substantial increase in the role of the νf7/2
and πs1/2 shells which could indicate some deformation.
We note that deformation is more present in model B,

as revealed by the significantly larger occupation of the
πs1/2 partial wave compared to model A. The interest-
ing consequence of this result is that deformation might
be induced by couplings to the continuum in 28F since
they enhance the occupation of the νp3/2 partial wave
leading to the Elliott-Jahn-Teller effect via the p3/2-f7/2
quadrupole coupling. One note that the same can be said
about the 1− state at about the same energy.

A similar picture emerges as well in the ground state
of 29F, where the additional neutron goes into the νp3/2
shells, giving the νd3/2 and νp3/2 shells almost equal
weights in the wave function. This suggests a significant
level of deformation in the ground state of 29F, which
translates into contributions beyond the 2p2h truncation
having a large weight in the wave function.

Then, rather surprisingly, in model A the νp3/2 par-

tial wave in 30F is partially depleted with an average
occupation of about 1.0 compared to about 2.0 in 29F,
while the occupation of the νd3/2 partial wave increases
to about 4.0 and the νf7/2 stops playing any significant
role. One also notes a decrease in the weight of the πs1/2
shells compared to 28,29F. Model B gives a different pic-
ture in which the νp3/2 partial wave stays occupied by
about two neutrons on average, and the occupation of
the νf7/2 shell stays significant, suggesting more defor-

mation in this model. In 31−33F, the additional neutrons
simply occupy the νp3/2 shells in model A, and in 33F,
the proton occupies the πs1/2 shells instead of the πd5/2
shells to couple to Jπ = 1/2

+

. A similar picture can be
seen in model B, but with a higher occupation of the
πs1/2 shell and a Jπ = 5/2

+

ground state in 33F.
Experimentally, it would be interesting to test the va-

lidity of the picture presented here by looking at the
neutron decay of 30F. While asymptotic normalization
coefficients could not be extracted readily in the present
approach, it is not difficult to see that the occupations
shown in Fig. 4 suggest a limited overlap between the
ground state wave functions of 29F and 30F in model A,
or for that matter any negative parity state in 30F. In
fact, as will be detailed in the next sections, the first
5/2

+

state of 29F should have a relatively larger overlap
with the ground state of 30F in model A.

C. Evolution of the 5/2+ and 1/2+ states

To investigate the evolution of the 5/2
+

and 1/2
+

states
noted in 29,31,33F, in Fig. 5, we show the evolution of the
occupations n`,j for the lowest 5/2

+

and 1/2
+

states in
both model A (left panels) and model B (right panels).
The energy differences ∆5/2+−1/2+ = E(5/2

+

) − E(1/2
+

)

between these states are also shown and compared to
experiment in the top panel to illustrate the evolution.

First, the evolution of the energy difference ∆5/2+−1/2+

in the top panel shows an inversion, or at least a rap-
prochement, of the 5/2

+

and 1/2
+

states starting in 29F
in both models. In 25,27F, where experimental data are
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available, both model give the correct sign for ∆5/2+−1/2+ ,
and otherwise the models qualitatively agree with each
other within theoretical uncertainties.

In 29F, the magnitude of the energy difference differs
significantly between model A and B, which we believe
comes from their different amount of deformation pre-
dicted in the 5/2

+

state. Indeed, both models predict sim-
ilar occupations in the 1/2

+

state of 29F but, according
to model A, in the 5/2

+

states the single proton occupies
almost exclusively the πd5/2 partial wave, while the neu-
trons fill the νd3/2 shells first, and then the νp3/2 shells as
the mass number increases. In model B, which seems to
have more deformation, a different picture emerges as the
νp3/2 partial wave is occupied contrary to the situation
in model A. This is most likely the source of the large dif-
ference seen in ∆5/2+−1/2+(

29F) between the two models.

A difference in occupations persists in 31F as well, where
model A predicts a lower occupation of the νp3/2 partial
wave than model B, but both models have substantial
occupations of the νd3/2 and νp3/2 waves which leads to

similar values of ∆5/2+−1/2+(
31F).

A look at the occupations in each partial wave reveals

that on average the 1/2
+

states in A > 27 isotopes have
larger occupations of the νp3/2 shells and a more complex

structure than the 5/2
+

states, which suggest that they
have more deformation. In particular, in 29F (N = 20),
the 1/2

+

wave function loses its single-particle character.
In both models, the four neutrons occupy the νd3/2 and
νp3/2 partial waves almost evenly, with a non-negligible
contribution from νf7/2 shells, while the proton occu-
pies the πd5/2 and πss/2 partial waves. We interpret
this strong mixing of various proton and neutron partial
waves as the emergence of deformation in our calcula-
tions, or in other words, of Nilsson orbitals. We note that
occupation numbers between the 1/2

+

and 5/2
+

are sig-
nificantly different, which indicates that they must have
different intrinsic structures and are not part of the same
rotational band. As a consequence, the energy difference
between these states must be sensitive to single-particle
energies.

The results of this study are strikingly similar to those
of the early shell model calculations in Ref. [45], showing
the onset of deformation at N = 20 for Z = 9 to 13 (29F to
33Al). In this work, it was noted that even though con-
figuration inversion could be obtained in a sd−f7/2 space,
adding the ν1p3/2 shell was the key to obtain deforma-
tion. Similar observations were also made in large-scale
sdfp shell model calculations [47, 48, 50], showing that
deformation might be the mechanism pushing the drip
line to A = 31 in fluorine isotopes, with a disappearance
of the N = 20 shell closure in 29F. One notes in passing
that, in Ref. [50], a lowering of the ν1p3/2 shell, yielded
improved results in A > 28 fluorine isotopes. In addition,
in a recent study of the role of quadrupole deformation
and continuum couplings in 28,29,31F based on relativis-
tic mean-field theory [89], it was shown that ` = 1 waves
contribute significantly to the wave function in those sys-
tems, but deformation only develops fully in 29,31F.

D. Halo structures

As mentioned previously, a halo was observed in the
ground state of 29F [39], which we predict to be a 1/2

+

state with an occupation of about 2.0 in in the νp3/2
shells, suggesting a deformed two-neutron halo structure.
Experimentally, if reality is closer to model A, it should
be possible to distinguish the 1/2

+

state from the next
two negative parity excited states 1/2

−

and 3/2
−

because
they have occupations of about 0.67 and 0.55 in the νp3/2
shells, respectively, and hence should appear as deformed
one-neutron halo systems. Moreover, in model A the next
excited state 5/2

+

has a negligible νp3/2 occupation and
should not present any halo property. If however model
B provides a better representation of 29F, there should be
a gap of about 1.0 MeV between the ground state and the
first excited state, and all excited states should present
a halo structure if bound. In fact, one bound excited
state was reported in 29F [33], which we identified as the
second 1/2

+

state in model A, and could be either the
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3/2
+

, 5/2
+

, or 3/2
−

state in model B.

The presence of a halo structure in the ground state of
29F was also investigated using a three-body approach in
Ref. [90], later updated in Ref. [85] using the new experi-
mental results in Ref. [37], were different scenarios based
on the positions of the relevant single-particle states were
proposed to cover the lack of firm data in this region.
Overall, these studies suggest a moderate halo forma-
tion, which is amplified when lowering the gap between
the the ν0d3/2 and ν1p3/2 states. A subsequent study of
the electric dipole response [91] found that the inversion
of parity in 28F led to strong dineutron correlations in
the ν1p3/2 shell indicative of a two-neutron halo.

The next candidate for halo structures is the 31F iso-
tope. The presence of a halo in the ground state was
already suspected in shell model calculations [50], but no
definitive conclusion could be reached without continuum
couplings.

From a different perspective, in a three-body model
[92], a spherical core of 29F was assumed, even though
shell model calculations indicate possible deformation in
this system, and by essentially playing with the energy
gap between the ν1p3/2 and ν0f7/2 shells, it was shown
that for a relatively large gap (⪆ 0.7 MeV), halos could be
obtained in both 29F and 31F, without any deformation,
while a small gap would lead to a new form of antihalo
effect. This finding is consistent with the fact that νf7/2
shells play a minor role in our calculations and do not
prevent the formation of halo structures.

In Ref. [52], it was found from Gamow shell model
[60] calculations that the tail of the radial density in the
ground state of 31F decreases polynomially and is asso-
ciated with a substantial increase in the matter radius,
as expected in halo nuclei. While this approach could in
principle capture deformation, by applying a 2p2h trun-
cation on the many-body basis, the correlations required
to describe deformation were severely limited. For that
reason, in Ref. [52] the halo obtained in the ground state
of 31F, be it 5/2

+

or 1/2
+

, must come mostly from the
occupation of the ν1p3/2 shell in a strict single-particle
sense, and less from the emergence of deformed (Nilsson)
orbitals. Nevertheless, the presence of a halo structure
in 31F seems to be a robust feature.

In this work, the predicted 1/2
+

ground state of 31F
has an occupation of the νp3/2 partial wave of about 2.0
in both models, which is compatible with the presence
of a deformed two-neutron halo. Interestingly, assuming
the predicted spectrum in model A would not change
with the correct thresholds, the next two excited states
5/2

+

and 3/2
+

could be bound since they are below the
one-neutron emission threshold at about 570 keV. Both
states have significant occupations in the νp3/2 partial
wave of about 2.0 and 2.1, respectively, and hence would
likely present deformed halo structures.

IV. CONCLUSION

In this work, we performed large-scale shell model
calculations of the low-lying states in 25−33F using the
DMRG method and including couplings to the contin-
uum. We started from a core of 24O and optimized two
effective two-body interactions with a few adjustable pa-
rameters in a sd-fp model space, and considered min-
imal truncations to properly describe the emergence of
deformation together with continuum effects. The two
models obtained differ mostly in the assumption made
on the positions of the ν0d3/2 and ν1p3/2 shells during
the optimization, which in turn led to differences in the
strength of the pairing interaction and the amount of de-
formation. While these models are simple, they explain
the most recent data on 28,29F from two different pictures
and provide predictions to be tested experimentally.

The main findings of this study are:

• The observed negative-parity ground state in 28F
can be explained as the result of continuum cou-
plings inducing some deformation based on energy
spectra and occupations of different partial waves.

• Negative-parity ground states are predicted in
30,32F.

• The halo structure observed in the ground state
of 29F is likely a deformed two-neutron halo 1/2

+

state, and several one-neutron halo structures are
predicted in the excited spectrum, with the excep-
tion of the first 5/2

+

state (model A only) which
should not present any halo.

• The ground state of 31F is predicted to be a 1/2
+

state and the three lowest states (including the
ground state) are expected to present deformed
two-neutron halo structures if bound.

Additionally, predictions are provided for excited states
in 28−33F and recommendations are made for experimen-
tal studies that could help to constraint models and im-
prove our understanding of how the IOI emerges.

Beyond the large-scale nature of the calculations, the
main difficulty encountered in this work was to deter-
mine a minimal Hamiltonian capable of describing the
phenomenology of all neutron-rich fluorine isotopes, and
in particular that properly accounts for the role of the
νp3/2 partial wave. For instance, our model B, which
captures pairing and deformation better than model A
and hence performs better in the heaviest isotopes, does
not reproduce the parabolic behavior [93] expected in
the 26F multiplet, suggesting that further improvements
are possible. The development of ab initio approaches in
this region could provide much needed predictive power
for more precise methods.

In the context of the IOI, the present results are in
line with previous studies in Z = 10 − 13 nuclei, except
that in fluorine isotopes continuum effects already ap-
pear at N = 19 (28F). We plan on studying neutron-rich
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Z = 10 − 13 nuclei including couplings to the continuum
to understand the mechanisms leading to the further ex-
tension of the drip line in these nuclei.
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