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Breakup reactions are one of the favored probes to study loosely bound nuclei, particularly those in
the limit of stability forming a halo. In order to interpret such breakup experiments, the continuum
discretized coupled channel method is typically used. In this study, the first Bayesian analysis of a
breakup reaction model is performed. We use a combination of statistical methods together with
a three-body reaction model (the continuum discretized coupled channel method) to quantify the
uncertainties on the breakup observables due to the parameters in the effective potential describing
the loosely bound projectile of interest. The combination of tools we develop opens the path for a
Bayesian analysis of not only breakup processes, but also a wide array of complex processes that
require computationally intensive reaction models.
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I. INTRODUCTION

The study of rare isotopes has unveiled an array of
surprising exotic phenomena, arising from the subtle in-
terplay of the different forces acting on loosely bound
nucleons. In some instances, these nucleons are allowed
to reside at unusually large distances from the center of
mass of the system, creating a halo. In these so-called
halo nuclei [1], there is a strong decoupling of the core
degrees of freedom and the degrees of freedom associated
with the halo nucleons. Halo nuclei can be found for
many different isotopic chains, both at the neutron-rich
limit as well as the proton-rich extreme. For example,
in the Carbon isotopic chain, one finds the exotic 9C [2]
in the proton-rich side and the two-neutron halo 22C [3–
5] on the neutron dripline; in the Boron isotopic chain,
while 8B exhibits a well studied proton halo (e.g., [6–8]),
19B has a neutron halo [9, 10].

Halo nuclei are primarily studied through reactions
and, over recent decades, a variety of experimental pro-
grams at many rare isotope facilities worldwide have un-
veiled their properties (e.g., [9, 11–14]). Breakup reac-
tions offer a unique probe into these systems: since the
halo nucleus breaks up so easily, the cross sections for the
process are large. From the analysis of breakup experi-
ments we learn about the halo properties of the ground
state (particularly the asymptotic normalization coeffi-
cient (ANC)) as well as the low-lying continuum includ-

∗Electronic address: surero@miamioh.edu
†Electronic address: nunes@frib.msu.edu
‡Electronic address: mplumlee@northwestern.edu
§Electronic address: wild@anl.gov

ing resonances (e.g., [15]). From breakup measurements,
we can also infer capture reactions for astrophysics [16].

Reaction theory is needed in order to connect the
breakup measurement to the quantities of interest, be it
specific properties of the projectile or a capture reaction
of astrophysical interest. One challenge faced when mod-
eling breakup is that, for most cases, it becomes compu-
tationally intensive to evaluate observables given theory
parameters. It has been shown that the simple perturba-
tive approaches are unreliable [17] and instead there are
large coupled equations that need to be solved, requiring
a significant amount of run time (e.g., [18–20]). As a con-
sequence, the current predictions include no uncertainty
quantification.

Progress on uncertainty quantification in reaction the-
ory has offered important insights, particularly concern-
ing the effective potential, a strong contributor to the
theoretical error [21, 22]. Many of the recent uncertainty
quantification studies involve a Bayesian analysis of elas-
tic scattering within the optical model, and at times, the
propagation of uncertainties on the optical potential to
specific reaction channels that can be modeled in a sim-
ple perturbative description [23–27]. It is important to go
beyond the first-order reaction models covered in these
pioneering works, and enable a Bayesian analysis of the
state-of-the-art reaction theory models [18–20]. Obvi-
ously, from the computational cost, it is not feasible to
do statistical calculations (such as Markov chain Monte
Carlo) directly on the model. Emulators that can effi-
ciently leverage model outputs are called for to solve this
problem.

Recently, emulators for two-body elastic scattering
have been developed based on the eigenvector continu-
ation method [28–30]. To describe the breakup dynam-
ics one needs at least a three-body theory, as is the case
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for the Continuum Discretized Coupled Channel method
(CDCC) [31], the working horse in most analyses of
breakup reactions. Despite some preliminary work [32], it
is not straightforward to extend such an eigenvector con-
tinuation method to the general three-body problem. In-
stead, a standard emulation by Gaussian Processes (GPs)
(see [33, 34]) should be considered. GP emulators often
outperform other statistical learning tools for these types
of tasks [35].

In this work, we implement an emulator based on
GPs for breakup cross sections and couple this to a
Bayesian framework. We focus on the breakup reaction of
8B+208Pb→7Be+p+208Pb at 80 MeVA, which has been
studied extensively [11, 36]. The emulator is trained with
CDCC calculations and the sharpness and accuracy of
the uncertainty quantification of the emulator is studied.
We then use the emulator for calibration, and extract
posterior distributions for the parameters of the effec-
tive interaction between the halo nucleon and the core.
Lastly, we obtain credible intervals for relevant reaction
observables.

II. MODEL DESCRIPTION

We now detail our reaction model and Bayesian cali-
bration.

A. Modeling breakup reactions

Breakup reactions of halo nuclei of the type a + t →
c+v+t are typically formulated in terms of a three-body
problem c+v+t with the projectile assumed to have two-
body structure a = c+ v. The three-body Hamiltonian

H3B = Tr + TR + Vcv(r) + Uct(Rct) + Uvt(Rvt) (1)

is written in terms of the respective pairwise interactions,
the interaction describing the internal states of the pro-
jectile Vcv and the optical potentials describing the scat-
tering of the core (valence nucleons) and the target Uct
(Uvt). Here, Tr and TR are the kinetic energy operators
associated with the Jacobi coordinates: r is the relative
coordinate between the core and the valence nucleon and
R is the relative coordinate connecting the center of mass
of the projectile and the target.

The CDCC method [31] expands the full three-body
wavefunction Ψ(r,R) in terms of the eigenstates of the
projectile ϕi(r) defined by

[Tr + Vcv(r)]ϕi(ε, r) = εϕi(ε, r). (2)

For halo nuclei, typically there is one bound state i = 0
and the remaining states lie in the continuum. Because
the continuum solutions of Eq. 2 are not square inte-
grable, the CDCC method discretizes the continuum into
energy bins and averages the scattering states over the
energy or momentum as described in [37]. When this

expansion is introduced in the three-body Schrödinger
equation H3BΨ = EΨ, one obtains the so-called CDCC
equations, which consist of tightly coupled second-order
differential equations that must be solved with the ap-
propriate boundary conditions. For more details, please
consult [37, 38].

There are three pairwise interactions in this model, in-
troducing close to 30 parameters. Clearly breakup data
alone would not be sufficient to inform all these parame-
ters. Since this is the first Bayesian study for this type of
reaction, here we choose to focus only on the uncertainty
from the core-valence effective interaction, and thus fix
the optical potentials to those used in a previous study
[36, 39]. The effective interaction Vcv has been shown to
have a very important effect in the breakup cross section
distributions, renormalizing the cross section according
to the ANC of the ground state [15] and thus we expect
the breakup data will be highly informative for the Vcv
parameters. This Vcv interaction is typically parameter-
ized by a Woods-Saxon form [36]. We take the radius and
diffuseness for the spin-orbit term to be the same as that
for the central term. We then vary the Coulomb radius,
the Woods-Saxon radius, the diffuseness, and the depth
of the spin-orbit term (RC , Rws, aws, Vso) by adjusting
the depth of the central interaction Vws to reproduce the
binding energy of the 8B system with ε = 0.137 MeV.
For simplicity, the same interaction is used to produce
both the 8B ground state and all the continuum states.

For a combination of parameters (RC , Rws, aws, Vso) in
the physical intervals defined in Table I, the correspond-
ing CDCC cross sections are obtained using frescox
[40]. Given that the calculations of [36] reproduce well
the data, the parameters used therein, and in particu-
lar the core-valence interaction in the projectile (RC =
Rws = 2.391 fm, aws = 0.52 fm, and Vso = 4.898 MeV),
are used to produce our mock observable data, namely
the breakup angular distributions and the breakup en-
ergy distributions. In the next subsection, we discuss
the implementation of the emulators for these breakup
calculations.

TABLE I: Model parameters and their ranges.

Parameter Label Range [ρi, ρi]

RC ρ1 [2, 3] (fm)

Rws ρ2 [2, 3] (fm)

aws ρ3 [0.4, 0.9] (fm)

Vso ρ4 [2, 8] (MeV)

B. Bayesian calibration of breakup reactions

After reviewing Bayesian calibration principles and
notation, we present our methodology for emulation of
CDCC calculations.
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1. Bayesian calibration

We represent a CDCC simulation with a mathemati-
cal function σσσ(·) that takes values of parameters ρρρ and
returns output σσσ(ρρρ) ∈ Rd. We note that σσσ(ρρρ) represents
multidimensional output observables, which include both
cross section angular distributions and energy distribu-
tions. σσσ(ρρρ) should not be confused with total or reaction
cross sections. We collect the four parameters in Table I
in the vector ρρρ = (ρ1, . . . , ρ4). To emulate and then cali-
brate the breakup reactions, we use breakup angular dσ

dΩ

and energy dσ
dE distributions. We denote the dimension

of the dσ
dΩ and dσ

dE outputs by dΩ and dE , respectively,
with d = dΩ + dE .

Next we describe the model space needed for conver-
gence of the CDCC calculations. The model space is opti-
mized per observable and we find that the bin discretiza-
tion needed for producing converged dσ

dΩ is different than

that needed for converged dσ
dE . For the angular distribu-

tion, the continuum is discretized up to a maximum rela-
tive energy of εmax = 10 MeV, and all spin/parity states
are included up to a relative angular momentum between
core and valence of ` = 3. For each partial wave, the con-
tinuum is discretized into energy bins evenly spaced from
0 MeV to 3 MeV with a step size of 0.25 MeV, and from
3 MeV to 10 MeV with a step size of 1 MeV. The energy
distributions also contain all partial waves up to ` = 3,
but we take the maximum relative energy of εmax = 3
MeV with a uniform grid with a step size of 0.20 MeV.
This finer discretization is needed to capture the details
of the peak of the distribution.

A calibration process uses observations from the real
system (here, the mock data), denoted by vector y =
(y1, . . . , yd) = ({ dσ

dΩ mock
}, { dσ

dE mock
}) with d = dΩ + dE ,

to constrain the uncertainty on the input parameters ρρρ.
This is done using a statistical model of the form

y = σσσ(ρρρ) + εεε, (3)

where εεε ∼ MVN(0,ΣΣΣ) denotes the residual error follow-
ing a multivariate normal distribution (MVN) with mean
0 and covariance matrix ΣΣΣ.

In the Bayesian framework, the model parameters are
viewed as random variables, and the posterior probability
density p(ρρρ|y) indicates the posterior probability of the
parameters ρρρ given the observations y. Based on Bayes’
rule, the posterior density has the form

p(ρρρ|y) =
p(y|ρρρ)p(ρρρ)

p(y)
∝ p(y|ρρρ)p(ρρρ), (4)

where p(ρρρ) is the prior probability for the parameter ρρρ
and p(y|ρρρ) is the likelihood function indicating how the
model output of a set of parameters σσσ(ρρρ) agrees with the
observations y. Assuming εεε ∼ MVN(0,ΣΣΣ), the likelihood
satisfies

p(y|ρρρ) ∝ |ΣΣΣ|−1/2 exp

(
− 1

2
(y − σσσ(ρρρ))>ΣΣΣ−1(y − σσσ(ρρρ))

)
.

(5)

Markov chain Monte Carlo (MCMC) techniques [41]
(e.g., Metropolis-Hastings algorithm) are generally used
to sample from the posterior distribution in Eq. 4. Dur-
ing an MCMC procedure, an evaluation of the likelihood
p(y|ρρρ) in Eq. 5 is needed for each candidate parameter
ρρρ. The likelihood requires the simulation output σσσ(ρρρ)
to be evaluated at a given parameter setting ρρρ. MCMC
procedures usually require thousands or millions of eval-
uations of the simulation depending upon the model’s
complexity and the number of input parameters consid-
ered. Therefore, a direct evaluation of a reaction model
with MCMC techniques becomes computationally chal-
lenging when substantial computational time is required
to produce a single model evaluation, as is the case for
CDCC calculations (each run described here takes ap-
proximately 25 hours on a single core).

Emulators are computationally efficient approxima-
tions of the inputoutput relationships for expensive sim-
ulations, and they have been used to address the compu-
tational challenges associated with executing the simula-
tion run. To train an emulator, a sample of parameters is
generated, and the corresponding simulation outputs are
collected. Once an emulator is built, it can be used to
efficiently predict the simulation outputs for parameter
values that are not in the training set. In this study, we
use GP emulators since, in addition to a predictive mean,
they can produce a predictive variance, which allows us to
quantify the uncertainty on emulation predictions. For
an untried parameter ρρρ, the GP provides a probabilis-
tic representation of the simulation output with mean
µµµGP(ρρρ) and covariance ΣΣΣGP(ρρρ) based on training data
from a simulation experiment.

Once the emulator is built, for any parameter ρρρ one can
apply Eqs. 4 and 5 to approximate the posterior p(ρρρ|y)
via

p(ρρρ|y) ∝|V(ρρρ)|−1/2 exp

(
−1

2
m(ρρρ)>V(ρρρ)−1m(ρρρ)

)
p(ρρρ),

(6)

where, for our GP emulator, the quantities V(ρρρ) and
m(ρρρ) are defined as

V(ρρρ) = ΣΣΣ + ΣΣΣGP(ρρρ) and m(ρρρ) = y −µµµGP(ρρρ). (7)

In this study, we employ an MCMC method to draw ap-
proximate posterior samples from Eq. 6. Such sampling
employs the cheap GP emulator in place of the expen-
sive CDCC simulation, which would require many years
of computation. The details of the sampler are explained
in Sec. III.

2. Emulating breakup reactions

We generated three separate GP emulators for the
breakup cross sections, which were then used for cali-
bration. The first emulator considers only breakup an-
gular distributions dσ

dΩ . The second emulator takes into
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account only the breakup energy distributions dσ
dE . The

third emulator includes both the angular and energy dis-
tributions. For each of these emulators, we use the same
set of uncertain parameters as inputs to the CDCC cal-
culations. Principal component analysis (PCA) [42] is
used to project the high-dimensional outputs into a low-
dimensional space where the projection is a collection of
latent outputs. Then, each latent output is modeled us-
ing an independent GP model (see details in Apps. B–C).

Since computing a single CDCC simulation via fres-
cox takes 25 hours on average, we use a GP-based emu-
lator as a cheaper proxy to the CDCC simulation, as dis-
cussed before. We collect data via Latin hypercube sam-
pling (LHS) (see the texts [33, 34]) based on the ranges
in Table I. For evaluation purposes, we randomly split
75% of these data as training data and the remaining as
test data; we then fit an emulator using the training data
and evaluate the predictive quality of the trained emula-
tor using the test data. Both the training and test data
are illustrated in Fig. 1; diagnostic plots are provided in
Sec. II B 3.

Once the quality of the emulator has been established,
the final emulators are trained with a total of n = 500
samples, collected via LHS. There were no additional
difficulties found for the angular distribution emulator;
however, for the energy distribution, we obtained out-
puts that differed tremendously from the mock data in
some regions of the parameter space (see App. A for more
details). This is due to the existence of resonances in the
core-valence system that greatly augment the sensitivity
to parameters and reduce the precision in the resulting
emulator. To tackle this problem, we developed a filter
based on the deviation from the mock data of the pre-
dicted energy distributions: we discard from the training
set any case in which dσ

dE is larger than the threshold
of 1000 mb/MeV (corresponding to roughly five times
the peak of the “real” energy distribution). Discarding
parameter settings based on simulation outputs [43] has
been shown to provide emulators with better accuracy in
the reduced space. The goal of filtering here is to focus
the emulator on the parts of input space that are likely to
produce a good match with the real data y so that the
emulator can better predict the regions of interest. In
other words, our training process does not include points
that have approximately zero posterior density. As a con-
sequence of filtering, the number of samples ultimately
included in the training is n = 393. For the third em-
ulator, where the cross sections for angular and energy
distributions are jointly considered, we also use n = 393
samples. Simulation outputs before and after filtering
are provided in App. A.

For the rest of this section, let {ρρρtr
1 , . . . , ρρρ

tr
n } denote the

n parameter samples used to train each of the emulators.
For each ρρρtr

i , i = 1, . . . , n, we obtain the simulation out-
puts (CDCC cross sections) via frescox and use them
as training data. The simulation outputs are represented
in a d×n matrix Ξ = [σσσ(ρρρtr

1 ), . . . ,σσσ(ρρρtr
n )]. We standardize

each row of Ξ so that it has zero mean and unit variance.

FIG. 1: Space-filling Latin hypercube sample (LHS)
used to specify the set of breakup simulation runs to

train the GP emulator (black) and to test the emulator
(red). The 2-d projections of this design are shown for

each pair of parameters.

After standardization, we employ PCA to reduce the di-
mension of the data from d to q ≤ d. We let qΩ, qE , and
qtot denote the number of principal components used to
fit an emulator for dσ

dΩ , dσ
dE , and both dσ

dΩ and dσ
dE as ob-

servables, respectively. PCA reduces the (dΩ = 401)-
and (dE = 20)-dimensional cross sections to qΩ = 39 and
qE = 19, respectively; this reduction is able to capture
99% of the variance. Note that for energy distribution
there is no significant dimensionality reduction since all
dimensions contribute to the variance of data. Figs. 2–3
illustrate how much variance each principal component
explains.

To combine dσ
dΩ and dσ

dE cross sections, we first reduce

the dimension of dσ
dΩ (i.e., dΩ = 401) to 25 to treat dσ

dΩ

and dσ
dE in a fair manner when computing the likelihood.

To do that, we consider the cross sections up to the scat-
tering angle of 3°, which reduces the dimension from 401
to 50. This is a reasonable assumption because these
breakup simulations are forward focused, and typically
this is the angular range measured by detectors. We also
find that including the larger angles does not modify the
results. We then take dΩ = 25 evenly spaced angles
within these 3°. The final set contains dtot = 45 (i.e.,
25 for dσ

dΩ and 20 for dσ
dE ) dimensional observables. Dur-

ing emulation, PCA further reduces this set dtot = 45 to
qtot = 32.

The d×n CDCC cross section matrix Ξ is represented
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FIG. 2: The individual and cumulative contributions of
principal components to the complete data set (angular

distribution).

FIG. 3: The individual and cumulative contributions of
principal components to the complete data set (energy

distribution).

in the q-dimensional space via the q × n matrix W =
B>Ξ where the d× q matrix B = [b1, . . . ,bq] stores the
orthogonal basis vectors {b1, . . . ,bq}. We obtain W with
PCA as described in App. B, and fit a GP for each of q
latent outputs (i.e., each row of W) such that

wi(·) ∼ GP(γi, Ci(·, ·)), (8)

where γi is the mean and Ci(·, ·) is the covariance func-
tion. The details of GP emulator are given in Apps. B–C.
The full implementation of this GP emulator for multidi-
mensional simulation outputs is provided in the Python
package surmise [44].

3. Predicting simulation outputs with emulators

As mentioned above, we fit three different emulators
using training data. The next step is to test each of the
emulators at any test parameter ρρρ to check whether they
are able to predict the CDCC calculations. Let the n-
dimensional vector wi be wi = (wi(ρρρ

tr
1 ), . . . , wi(ρρρ

tr
n )) for

i = 1, . . . , q, and let the n×n matrix Ci be the covariance
matrix resulting from applying Eq. B2 to each pair of the
parameter settings ρρρtr

1 , . . . , ρρρ
tr
n . Following the results on

normal distribution presented in [45], one can derive that

wi(ρρρ)|wi ∼ N(νi(ρρρ), ς2i (ρρρ,ρρρ)), (9)

with mean νi(ρρρ) and variance ς2i (ρρρ,ρρρ) given by

νi(ρρρ) = γ̂i + ci(ρρρ)>C−1
i (wi − γ̂i1n)

ς2i (ρρρ,ρρρ) = Ci(ρρρ,ρρρ)− ci(ρρρ)>C−1
i ci(ρρρ).

(10)

Here, the n-dimensional vector ci(ρρρ) is obtained by eval-
uation of the covariance in Eq. B2 between ρρρ and the
training points {ρρρtr

1 , . . . , ρρρ
tr
n } and γ̂i is the estimated pa-

rameter for the mean function of a GP (see App. C).
For prediction at any test point ρρρ, first, we obtain

the mean νi(ρρρ) and variance ς2i (ρρρ,ρρρ) in Eq. 10 for each
of the corresponding latent outputs for i = 1, . . . , q.
Then, these are transformed back to the original high-
dimensional space through the inverse PCA transforma-
tion as follows. Define the q-dimensional vector µµµ(ρρρ) =
(ν1(ρρρ), . . . , νq(ρρρ)) and q × q diagonal matrix S(ρρρ) with
diagonal elements ς2i (ρρρ,ρρρ) for i = 1, . . . , q. Then, due to
the inverse PCA transformation, we obtain

σσσ(ρρρ) ∼ MVN(µµµGP(ρρρ),ΣΣΣGP(ρρρ)) (11)

where µµµGP(ρρρ) := Bµµµ(ρρρ) is the emulator predictive mean

and ΣΣΣGP(ρρρ) := BS(ρρρ)B> is the covariance matrix. By

plugging µµµGP(ρρρ) and ΣΣΣGP(ρρρ) in Eq. 7 we obtain m(ρρρ)
and V(ρρρ). Then from Eq. 6, we compute the posterior
p(ρρρ|y). In this way, by employing the MCMC method
on the emulators, we extract posterior distributions for
the parameters of the effective interaction between the
halo nucleon and the core without running the compu-
tationally expensive CDCC calculations when doing the
MCMC sampling.

In order to test the prediction quality of the trained
emulator, we use m parameter sets, which correspond
to the 25% of the parameter sets, namely ρρρtest

1 , . . . , ρρρtest
m ,

and their corresponding CDCC calculations as test data.
We evaluate the performance by computing the test r2

value, standardized error, and the relative error since
they are standard ways to evaluate the emulator qual-
ity (see App. D for the definition of the metrics). The
diagnostics plots are illustrated in Fig. 4 for fitting the
emulator based on the combined angular and energy dis-
tributions. For the sake of brevity, we provide the diag-
nostics plots for the remaining emulators in App. D. For
all the emulators, the test r2 value is very close to one,
and both relative and standardized errors are centered
around zero.
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(a) Standardized errors. (b) Relative errors.

FIG. 4: Diagnostic plots to check the quality of the
emulator using test parameters ρρρtest

1 , . . . , ρρρtest
l and their

corresponding simulation outputs σσσ(ρρρtest
1 ), . . . ,σσσ(ρρρtest

l )
for the emulator based on combined angular and energy

distributions with r2 = 0.99: (a) standardized errors
and (b) relative errors. Blue line shows the density of a

standard normal random variable.

FIG. 5: Univariate marginal estimates of the posterior
distribution for the 4-dimensional parameter vector of
the breakup reactions for the emulator based on both
angular and energy distributions: prior distributions

(light grey) and posterior distributions (dark grey) for
the Coulomb radius parameter (a), the Woods-Saxon
radius (b), the Woods-Saxon diffuseness (c) and the

spin-orbit depth (d). The red dashed line corresponds
to the true parameter values.

III. RESULTS AND DISCUSSION

With trained GP emulators of the computationally ex-
pensive CDCC reaction model in hand, we now discuss
the posterior distributions obtained for the parameters of
the effective interaction between the halo nucleon and the

core, as well as the resulting uncertainties on the breakup
cross sections.

As mentioned in Sec. II, mock data is generated with
the parameters of [36]. Based on the typical statisti-
cal errors in breakup experiments of halo nuclei, we in-
clude a standard deviation of 10% on the mock data.
Bayesian analysis requires the prior distributions for the
core-valence interaction parameters. We use a beta dis-
tribution with the shape parameters α = β = 3.5 as prior
for each core-valence parameter ρρρ = (ρ1, . . . , ρ4), mean-
ing

p(ρρρ) =

4∏
i=1

Γ(α+ β)

(
ρi−ρi
ρi−ρi

)α−1(
1− ρi−ρi

ρi−ρi

)β−1

Γ(α)Γ(β)
,

where ρi and ρi denote, respectively, the lower and up-
per bounds of the range of parameter ρi given in Table I.
The beta distribution is a widely used prior since it is a
bounded continuous distribution with a decreasing den-
sity at the edges of the parameter range. We implement
the parallel-tempering ensemble MCMC algorithm [46,
Chapter 10] through the surmise package in order to
generate a set of samples from the posterior distribution.

The posteriors obtained by combining both angular
and energy distributions are illustrated in Fig. 5. For
the sake of brevity, the results obtained for angular and
energy distributions as separate observables are provided
in App. E. As compared to the prior distributions rep-
resented by the light grey bins, the posterior distribu-
tions for Rws and aws are tightly concentrated around
the true parameter values (represented by the red line);
this indicates that Rws and aws are well constrained by
the breakup cross section distributions. On the other
hand, the posterior distributions of RC and Vso are not
very well constrained by this breakup data, implying that
those parameters are not very influential in predicting
both angular and energy distributions. We did not find
significant differences in the results obtained using the
other two emulators, which suggests that the informa-
tion on Vcv contained in the breakup energy distribution
is similar to that contained in the angular distribution.

Moreover, for the emulator based on the combined an-
gular and energy distributions, we obtain the pair plots
using posterior samples of four parameters as in Fig. 6.
The pair plots indicate a negative correlation between
the two most influential parameters Rws and aws.

One of the main advantages of using Bayesian tech-
niques is for a rigorous propagation of the quantified un-
certainties in the parameters to the predictions. That is,
once parameters are sampled from the posterior distribu-
tion, they can be used to produce predictions with quan-
tified uncertainties on the breakup cross section distribu-
tions. Figure 7 displays the 95% credible intervals (grey
band), along with the prediction means (black dashed
line) and the mock data (red circles) for (a) the breakup
angular and (b) the energy distribution. These intervals
do not include the uncertainty on the emulation itself.
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FIG. 6: Pair plots for the posterior samples of four
parameters obtained using MCMC with angular and

energy distribution data.

We find the credible interval is roughly within two stan-
dard deviations of the predicted mean (corresponding to
a 20% uncertainty).

Finally, from the posterior distributions shown in
Fig. 5, we compute the corresponding ANC parameters.
Figure 8 shows the ANC posterior distribution compared
to the prior used in the training set. In the model used for
the core-valence interaction, the radius and diffuseness
are correlated in such a way that the combined breakup
data is able to tightly constrain the ANC. This result
is consistent with a study on another halo nucleus [15].
From Fig. 8, we can extract the value for the 8B ANC
squared C2 = 0.49 ± 0.01 (fm−1) which agrees with the
value extracted from a different breakup reaction [47].

IV. CONCLUSIONS AND VISION

This work consists of the first Bayesian analysis for nu-
clear breakup reactions. Here, we focus on the breakup
reaction of 8B+208Pb→7Be+p+208Pb at 80 MeVA. The
reaction model used is the continuum discretized cou-
pled channel method, inherently a three-body non-
perturbative approach to breakup, widely used in the
field. Even though there are almost 30 parameters in
the model, in this study we consider only the uncer-
tainty from the core-valence effective interaction. The
free parameters then are the Coulomb radius RC , the
Woods-Saxon radius Rws and diffuseness aws and the
spin-orbit strength Vso. The depth of the central Woods-
Saxon term is fixed by imposing the experimental proton

(a) Angular distribution.

(b) Energy distribution.

FIG. 7: Cross section for 8B+208Pb→7Be+p+208Pb at
80 MeVA (a) angular distribution and (b) relative

7Be+p energy distribution: prediction mean (dashed
black line) and the 95% credible interval (shaded gray
area) obtained from the Bayesian analysis, compared
with mock data. Results correspond to the emulator
which uses combined angular and energy distribution

data.

separation energy in the core-valence system.

In order to perform the Bayesian calibration, we con-
structed three emulators, one based on the breakup angu-
lar distribution, another based on the breakup energy dis-
tribution, and a third one based on the combined data set
(angular and energy distributions). We used full CDCC
calculations to train the emulators and found that ap-
proximately 400 training sets were sufficient to obtain
an uncertainty on the emulation smaller than the typical
error bar on the experimental data (≈ 10%). We used
PCA to further reduce the dimensionality of the observ-
able space. We found no significant differences between
the predictions obtained with the three emulators. In
all three cases, posterior distributions obtained for Rws
and aws were significantly constrained, as opposed to the
posterior distributions for RC and Vso. Most important,
from the Bayesian calibration we obtained 95% credible
intervals for the breakup observables. The resulting un-
certainties on the breakup cross sections (both for the
angular distribution and the energy distribution) were
around 20%.

From this study, we also obtained a posterior distri-
bution for the ANC which allows for an extraction of
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FIG. 8: The estimate of the posterior distribution (dark
grey bins) of ANC parameters as compared to its prior
distribution obtained from training parameters (light

grey bins).

the ANC squared consistent with previous studies. We
should emphasize that, although the uncertainty on the
extracted ANC is less than 10%, this value only includes
the uncertainty arising from the core-valence interaction
in the three-body model. A larger study, including the
uncertainty from the optical potentials, need to be done
before the full parametric uncertainty in the model is
accounted for.

One can expect further challenges when augmenting
the parameter set to include all parameters in the core-
target and valence-target optical potential. Obviously,
increasing the number of parameters, the parameter
space to be explored becomes much larger and the per-
centage of the parameter space corresponding to a region
of high posterior becomes much smaller. In such cases,
the training data sets need to be increased considerably
to better explore the parameter space [48]. Moreover,
the computational cost to fit an accurate emulator and
run the MCMC sampler grows when the number of un-
certain parameters increases. Considering the amount of
computational time for a single run of frescox (e.g.,
25 hours), the one-shot, emulate-then-calibrate principle
can lead to an ineffective calibration procedure. In such a
case, a sequential Bayesian inference approach depending
on active learning procedures may be a better strategy
to perform the uncertainty quantification [49, 50].

Appendix A: Visualization of cross sections

In this appendix, for completeness, we present the in-
formation regarding the CDCC simulation cross sections
used to train the emulators. Using the parameter values
sampled from the LHS as discussed in Sec. II B 2 (illus-
trated in Fig. 1), we obtain a set of angular distributions
(Fig. 9) and energy distributions (Fig. 10). Figure 10a
contains all the outputs and Fig. 10b contains the set af-
ter filtering out the simulation outputs that drastically
differ from the mock data to increase the predictive accu-
racy of the emulators. It was the set of cross sections in
Fig. 10b that was ultimately used in the emulator based
on the energy distributions.

FIG. 9: CDCC angular distributions for the breakup of
8B on 208Pb at 80 MeVA (grey lines) compared to the

CDCC results corresponding to the mock data obtained
with RC = Rws = 2.391 fm, aws = 0.52 fm, and

Vso = 4.898 MeV (red circles).

Appendix B: Gaussian-process based emulator

In this appendix we explain how the emulator is con-
structed. The first step involves the reduction of dimen-
sionality through PCA. PCA represents the data matrix
Ξ in q-dimensional space as W = B>Ξ, where W is the
q × n score matrix of principal components in the latent
space and the d × q matrix B = [b1, . . . ,bq] stores the
orthogonal basis vectors {b1, . . . ,bq}. Once we obtain
W via PCA, we fit a GP for each of q latent outputs
(i.e., each row of W) as follows. To construct an emu-
lator, the simulation output is modeled using the basis
representation of [51]:

σσσ(ρρρ) =

q∑
i=1

biwi(ρρρ) + eee, (B1)

where wi(ρρρ) are weights modeled with independent, uni-
variate GPs and eee is a d-dimensional term that contains
the residual between the model and the span of the or-
thogonal basis vectors {b1, . . . ,bq}.
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(a) Simulation outputs before filtering.

(b) Simulation outputs after filtering.

FIG. 10: Same as Fig. 9 for the energy distributions:
(a) before filtering and (b) after filtering.

To construct a GP for a function mapping wi(ρρρ), fol-
lowing [45], we start by assuming a GP prior on the func-
tion wi(ρρρ) as provided in Eq. 8. The covariance function
is the key ingredient of a GP as it determines the simi-
larity of outputs for different parameters. Following [52],
the covariance between two outputs is denoted as

Ci(ρρρ,ρρρ
′) = τ2

i Ki(ρρρ,ρρρ
′) = τ2

i [R(ρρρ,ρρρ′;ζζζi) + υiδρρρ,ρρρ′ ] ,
(B2)

where Ki(ρρρ,ρρρ
′) := R(ρρρ,ρρρ′;ζζζi) + υiδρρρ,ρρρ′ and τ2

i represents
a scaling parameter, R(ρρρ,ρρρ′;ζζζi) is a correlation function,
υi is a nugget parameter, and δρρρ,ρρρ′ is a Kronecker delta
function which is 1 if ρρρ = ρρρ′. Here, τi, υi, and ζζζi are
unknown hyperparameters, and estimated as described in
App. C. For the correlation function R(·), in this work
we use the separable version of the Matérn correlation
function with smoothness parameter 1.5 [45] such that

R(ρρρ,ρρρ′;ζζζi) =

[ p∏
j=1

(1 + |(ρρρj − ρρρ′j) exp(ζζζi,j)|)
]
×

exp

(
−

p∑
j=1

|(ρρρj − ρρρ′j) exp(ζζζi,j)|
)
.

(B3)

The hyperparameter vector ζζζi = (ζζζi,1, . . . , ζζζi,p) controls

the correlation strength along each dimension of the la-
tent output wi(·). The Matérn correlation function is a
popular choice for GPs since it has differentiable sample
paths [53].

Recall that the n-vector wi stores wi =
(wi(ρρρ

tr
1 ), . . . , wi(ρρρ

tr
n )) for i = 1, . . . , q. We can also

write the prior for wi as wi ∼ N(γγγi,Ci). We assume a
constant mean for each GP such that γγγi = γi1n, and we
estimate the unknown hyperparameter γi in addition to
τi, υi, and ζζζi as described in the next section.

Appendix C: Hyperparameter estimation

There are many ways to infer the parameters γi, τi, υi,
and ζζζi given training data {ρρρtr

1 , . . . , ρρρ
tr
n } and {σσσ(ρρρtr

1 ), . . . ,
σσσ(ρρρtr

n )}. One common way is to maximize the resulting
likelihood due to wi ∼ N(γγγi,Ci). In this study, we use
the maximum likelihood estimation as it is computation-
ally more efficient than their Bayesian counterparts. The
multivariate normal distribution results in the likelihood

|Ki|−1/2

(2πτ2
i )n/2

exp

{
− 1

2τ2
i

(wi − γγγi)>K−1
i (wi − γγγi)

}
,

(C1)
with the n × n matrix Ki obtained from applying
Ki(·, ·) in Eq. B2 to each pair of the parameter set-
tings ρρρtr

1 , . . . , ρρρ
tr
n . Taking the log of Eq. C1 and applying

γγγi = γi1n yields the log-likelihood

=− n

2
log(2π)− n

2
log(τ2

i )− 1

2
log(|Ki|)

− 1

2τ2
i

(wi − γi1n)>K−1
i (wi − γi1n).

(C2)

The parameters γi and τ2
i are obtained by maximizing

the log-likelihood, yielding

γ̂i =
1>nK

−1
i wi

1>nK
−1
i 1n

and

τ̂2
i =

1

n
(wi − γ̂i1n)>K−1

i (wi − γ̂i1n).

(C3)

Plugging the estimates γ̂i and τ̂2
i in Eq. C3 into the

log-likelihood in Eq. C2 gives a revised log-likelihood of

l?(υi, ζζζi) = −n
2

log(τ̂2
i )− 1

2
log(|Ki|), (C4)

where the additive constant has been dropped. We then
employ scipy’s implementation of L-BFGS-B [54] to es-
timate υi and ζζζi by maximizing l?. With the estimates
for parameters γi, τi, υi, and ζζζi in hand, we can use q
independent GPs to make predictions on the simulators
output for unseen points as described in Sec. II B 3.

Appendix D: Diagnostics plots

In this study, we fit three different emulators using
breakup angular dσ

dΩ , energy dσ
dE , and both angular dσ

dΩ and
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energy dσ
dE distributions as observables. Once we fit the

emulators, we calibrate the computer model via MCMC
using each emulator as an input to the calibrator. Be-
fore we integrate the final emulators into the calibration
process, we make sure that the cross sections are well
emulated. To do that, we randomly separate out 25% of
data to use as test data, and fit each of the emulators
with the remaining data. We then evaluate the perfor-
mance of the emulator by computing the test r2 value,
standardized error, and the relative error via

r2 = 1−

m∑
i=1

d∑
j=1

(σσσj(ρρρ
test
i )−µµµGP

j (ρρρtest
i ))2

l∑
i=1

d∑
j=1

(σσσj(ρρρtest
i )− σ̄σσj)2

,

σσσj(ρρρ
test
i )−µµµGP

j (ρρρtest
i )√

diagj(ΣΣΣ
GP(ρρρtest

i ))
, and 1−

µµµGP
j (ρρρtest

i )

σσσj(ρρρtest
i )

,

(D1)

respectively, for i = 1, . . . ,m and j = 1, . . . , d. Here,
diagj(ΣΣΣ

GP(ρρρtest
i )) represents the diagonal elements of the

emulator covariance matrix, namely, the predictive vari-
ances, and the index j is used to denote the jth element
of the corresponding vectors. In addition, σ̄σσj is the aver-
age simulation output for the jth input dimension. The
main text contained the diagnostic results for the emula-
tor based on the combined data (angular and energy dis-
tributions). In this appendix we present the diagnostic
results for the emulator based on the angular distribu-
tions alone (Fig. 11) and for the emulator based on the
energy distributions alone (Fig. 12). Our results show
that all emulators have similar performance and are able
to reproduce the CDCC simulations within 10%.

(a) Standardized errors. (b) Relative errors.

FIG. 11: Diagnostic plots to check the quality of the
emulator using test parameters ρρρtest

1 , . . . , ρρρtest
l and their

corresponding simulation outputs σσσ(ρρρtest
1 ), . . . ,σσσ(ρρρtest

l )
for the emulator based on angular distribution with
r2 = 1: (a) standardized errors and (b) relative errors.

Blue line shows the density of a standard normal
random variable.

(a) Standardized errors. (b) Relative errors.

FIG. 12: Diagnostic plots to check the quality of the
emulator using test parameters ρρρtest

1 , . . . , ρρρtest
l and their

corresponding simulation outputs σσσ(ρρρtest
1 ), . . . ,σσσ(ρρρtest

l )
for the emulator based on energy distribution with
r2 = 0.96: (a) standardized errors and (b) relative

errors. Blue line shows the density of a standard normal
random variable.

FIG. 13: Univariate marginal estimates of the posterior
distribution for the 4-dimensional parameter vector of

the breakup reactions for the emulator based on angular
distributions: prior distributions (light grey) and

posterior distributions (dark grey) for the Coulomb
radius parameter (a), the Woods-Saxon radius (b), the
Woods-Saxon diffuseness (c) and the spin-orbit depth

(d). The red dashed line corresponds to the true
parameter values.

Appendix E: Constraining breakup angular and
energy distributions

In this appendix, we provide the calibration results for
the emulators that are trained with either dσ

dΩ or dσ
dE dis-

tributions. We first consider the posterior distribution for
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the parameters. Figure 13 corresponds to the emulator
based on angular distributions while Fig. 14 corresponds
to the results obtained with the emulator trained with en-
ergy distributions. As discussed in Sec. III, and for both
these emulators, only Rws and aws are well constrained
and, as expected, their posterior distributions are cen-
tered around the parameter values used to produce the
mock data.

We next consider the observables generated with the
two emulators. The emulator trained on angular distri-
butions is only capable of predicted angular distributions
while the emulator trained on energy distributions is only
able to predict energy distributions. Figure 15 shows the
confidence intervals obtained for the cross sections with
the emulator trained on angular distributions and Fig. 16
shows the confidence intervals obtained for the cross sec-
tion with the emulator trained on energy distributions.
These results are quantitatively similar to the results pre-
sented in Sec. III for the emulator based on the combined
set of data (both angular and energy distributions).
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