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Background: The quasi-deuteron model introduced by Levinger is used to explain cross sections for knocking out
high-momentum protons in photo-absorption on nuclei. This is within a framework we characterize as exhibiting
high renormalization group (RG) resolution. Assuming a one-body reaction operator, the nuclear wave function
must include two-body short-range correlations (SRCs) with deuteron-like quantum numbers. In [Tropiano et
al., Phys. Rev. C 104, 034311 (2021)], we showed that SRC physics can be naturally accounted for at low RG
resolution.

Purpose: Here we describe the quasi-deuteron model at low RG resolution and determine the Levinger constant,
which is proportional to the ratio of nuclear photo-absorption to that for photo-disintegration of a deuteron.

Method: We extract the Levinger constant based on the ratio of momentum distributions at high relative
momentum. We compute momentum distributions evolved under similarity RG (SRG) transformations, where
the SRC physics is shifted into the operator as a universal two-body term. The short-range nature of this
operator motivates using local-density approximations with uncorrelated wave functions in evaluating nuclear
matrix elements, which greatly simplifies the analysis. The operator must be consistently matched to the RG scale
and scheme of the interaction for a reliable extraction. We apply SRG transformations to different nucleon-nucleon
(NN) interactions and use the deuteron wave functions and Weinberg eigenvalues to determine approximate
matching scales.

Results: We predict the Levinger constant for several NN interactions and a wide range of nuclei comparing to
experimental extractions.

Conclusions: The predictions at low RG resolution are in good agreement with experiment when starting with
a hard NN interaction and the initial operator. Similar agreement is found using soft NN interactions when the
additional two-body operator induced by evolution from hard to soft is included.

I. INTRODUCTION

Changing the renormalization group (RG) resolution
is a powerful technique for analyzing nuclear processes.
In this context, the RG resolution is the scale of the
largest momentum components in the wave functions of
low-energy states. It should not be confused with the
experimental resolution that is set by the kinematics of
a process and which does not change under RG evolu-
tion. In Ref. [1], we showed how evolving to low resolu-
tion quantitatively accounts for short-range correlation
(SRC) physics phenomenology [2–11] with a cleanly in-
terpreted framework that enables simple yet systemat-
ically improvable approximations. More generally, RG
evolution enhances scale separation and hence factoriza-
tion of structure and reaction mechanisms, facilitating
the extraction of process-independent quantities and cor-
relations between observables. Here we show how the
quasi-deuteron model fits into this framework.

The quasi-deuteron model was introduced long ago by
Levinger to explain the knock-out of high-energy pro-
tons in photo-absorption on nuclei at energies of order
100 MeV [12–15]. In particular, the emitted protons were
argued to originate from two-body SRCs with deuteron-
like quantum numbers (“quasi-deuterons”) in the nuclear
wave function. The quasi-deuterons are induced by the
short-range tensor force and repulsive core of phenomeno-
logical nucleon-nucleon (NN) interactions. Only proton-

neutron (pn) pairs are relevant because the dipole term
in the photoelectric effect is expected to dominate at the
photon energies considered [16]. The picture is that the
photon is absorbed by a correlated pn pair (the SRC), fol-
lowed by the emission of the pn pair back-to-back, with-
out any further interaction.

The consequence is a proportionality of the photo-
absorption cross section of a nucleus with Z protons and
N neutrons, A = N +Z, to that for photo-disintegration
of the deuteron,

σA(Eγ) = L
NZ

A
σd(Eγ), (1)

where Eγ is the energy of the photon.1 The Levinger
constant L is independent of energy as the cross sections
have the same energy dependence, dictated by factoriza-
tion of short-distance physics [1]. In Ref. [13], Levinger
approximated the ratio of cross sections as an energy-
independent ratio of squared wave functions at small sep-
arations,

|ψk|2

|ψd|2
≈ LNZ

A
, (2)

1 We suppress here a factor that accounts for Pauli blocking in the
final state [14, 17, 18].



2

where ψk and ψd are the in-medium pn pair and deuteron
wave functions, respectively. The in-medium pn pair
wave function and the deuteron wave function of Ref. [13]
are proportional in the region of small separation r, hence
the ratio yields an r-independent expression in Eq. (2).
The factor NZ/A follows from scaling by the number of
pn pairs, so that L is a dimensionless measure of the
density of quasi-deuterons. Equation (2) shows that the
cross section ratio effectively counts the relative proba-
bility of quasi-deuterons in a nucleus. See Ref. [19] for a
detailed discussion and derivation of the quasi-deuteron
model. Assuming the quasi-deuteron model is a good ap-
proximation, L is a ratio of measurable quantities, and
is therefore scale and scheme independent.

A modern treatment of SRCs by Weiss and collabora-
tors relates the Levinger constant to so-called “nuclear
contacts” in a model called the generalized contact for-
malism (GCF) [16, 20, 21]. In these references, the A/d
photo-absorption cross section ratio is expressed in terms
of nuclear contacts, which measure the probability to find
two unlike nucleons close to each other. Therefore, the
ratio gives the relative probability of finding SRC pairs in
the nucleus. The many-body wave function Ψ is factor-
ized into an asymptotic pair wave function φij(rij) and
Aij , which is the regular part of Ψ describing the residual
A− 2 system and depends on the contacts. The φij(rij)
wave function is fixed in the two-body system, and thus
cancels in the ratio of cross sections, leaving dependence
on the contacts only.

At high relative momentum, the ratio of momentum
distributions is given by contacts as well [20]:

Fpn(X)

np(2H)
≈
Cs2=0
pn (X) + Cs2=1

pn (X)

Cs2=1
pn (2H)

, (3)

where X represents the nucleus and Cs2pn are the pn con-
tacts with total spin s2. Using the pn contacts, L is
shown to be proportional to the ratio of the pn pair rela-
tive momentum distribution Fpn and the proton momen-
tum distribution of the deuteron np(

2H),

Fpn(X)

np(2H)
≈ LNZ

A
. (4)

Consistent with the quasi-deuteron model, which as-
sumes only two-body contributions, Weiss et al. truncate
three-body correlations under the assumption that they
contribute much less than the two-body correlations [21].

The RG offers an alternative analysis that is simple
and universal. The picture that emerges for the con-
sidered photo-absorption kinematics is that the single-
nucleon reaction operator that dominates at high RG
resolution evolves to include a dominant two-body op-
erator at low RG resolution. The quasi-deuteron model
is now manifested as this two-body operator that is com-
mon to nuclear photo-absorption and deuteron photo-
disintegration. Factorization of reaction and structure
(rather than factorization of the many-body wave func-
tion as in the GCF) makes clear that the Levinger con-
stant only involves long-distance physics that should be

well-treated by simple approximations and amenable to
systematic corrections.

In this paper, we extract the Levinger constant us-
ing the ratio of momentum distributions at high relative
momentum as in Eq. (4). Our predictions utilize inter-
actions ranging from Argonne v18 (AV18) [22] to soft
χEFT interactions. To account for the scale dependence
associated with different interactions, we must include
an additional induced two-body operator found by ap-
plying inverse-SRG transformations of a harder poten-
tial. This is analogous to reaction operators inheriting
the RG scale and scheme of the underlying Hamiltonian.
In an exact low RG resolution calculation, every com-
ponent in the transition matrix element must be SRG-
evolved: the initial and final states, and the electromag-
netic operator. Each component would change; however,
due to the unitarity of SRG transformations, the matrix
element would stay the same preserving the cross section.
In this picture, the induced two-body operator acting on
low-momentum nucleons described by an uncorrelated
initial state is responsible for ejected high-momentum
nucleons. Refs. [23, 24] demonstrate these concepts for
deuteron electrodisintegration, though the consequences
follow more generally for breakup/knockout reactions.

In Section II we provide the necessary formalism for
the low-resolution treatment, building on the develop-
ments in Ref. [1]. Results are given in Section III for
several nuclei and compared with experimental extrac-
tions. We also examine scale and scheme dependence in
extracting L under various NN interactions. Section IV
has a summary and outlook.

II. FORMALISM AT LOW RG RESOLUTION

SRG transformations when applied to NN potentials
decouple momentum scales, through the suppression of
off-diagonal momentum-space matrix elements [25–28].
A common decoupling scheme is to drive the potential
to band-diagonal form in momentum space as a function
of the flow parameter λ, where λ2 roughly measures the
width of the band-diagonal potential with respect to rel-
ative momentum squared. Unevolved potentials start at
λ = ∞ and are typically evolved to some finite value of
λ by integrating the flow equation

dVλ
dλ

= − 4

λ5
[ηλ, Hλ], (5)

where Hλ is the evolving Hamiltonian and ηλ is the
anti-hermitian SRG generator defined as the commuta-
tor ηλ = [Gλ, Hλ]. In practice, the operators in (5) are
matrices in (discretized) relative partial-wave momentum
space and the flow is solved as coupled differential equa-
tions for each matrix element of Vλ. Choosing the op-
erator Gλ specifies a decoupling scheme. In this paper
we set Gλ = Hd

λ, that is, the diagonal of the evolving
Hamiltonian. Other operators can be evolved either by
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solving an analogous flow equation to (5) or by apply-
ing SRG transformations directly. In the latter case, one
can construct the transformations from the eigenvectors
of the initial and evolved Hamiltonians (see Ref. [29, 30]
for details on operator evolution).

In this paper we take λ = 1.35 fm−1 as a representa-
tive low-resolution RG scale for nuclear ground states
that sets the dividing line between low and high mo-
mentum. This separation of momentum scales has sig-
nificant implications when applying consistently evolved
operators that probe a high-momentum scale q. Decou-
pling in the potential leads to suppression of momenta
above λ in low-energy states, hence low resolution. For
q � λ, high-momentum operator expectation values are
factorized into a product of a universal two-body func-
tion encompassing the high-momentum dependence, and
a state-dependent matrix element sensitive only to low
momenta. This contrasts to factorization in the GCF
where the nuclear wave function factorizes into a uni-
versal two-body wave function and a contact dependent
term. The details of factorization from the SRG stand-
point can be found in Refs. [29, 31] and a schematic ver-
sion is presented in Ref. [1]. For clarity, we will use q
to denote the high-momentum scale and k for the low-
momentum scale.

At low RG resolution we calculate momentum distribu-
tions by using SRG transformations to evolve initial op-
erators (truncating three-body and higher contributions)
and evaluate nuclear matrix elements under simple ap-
proximations. As in Ref. [1], we will use a local-density
approximation (LDA) and average over local Fermi mo-
mentum kτF(R) to evaluate nuclear matrix elements. For
brevity we will only repeat the key points in this section
while further detail can be found in [1].

The SRG unitary transformation at flow parameter λ
has the following form in second quantization:

Ûλ = Î +
∑

δU
(2)
λ a†a†aa

+
∑

δU
(3)
λ a†a†a†aaa+ [4-body] + · · · , (6)

where we have suppressed the single-particle indices and

combinatoric factors. In practice, δU
(2)
λ is calculated in

relative partial-wave momentum states of the two-body

system alone; in the present approximation δU
(3)
λ does

not contribute. As mentioned in Sec. I, it is sufficient
to extract the Levinger constant from the ratio of mo-
mentum distributions at high relative momentum. We
apply SRG transformations to the momentum distribu-
tion operators and use Wick’s theorem in operator form
to truncate at the two-body (vacuum) level (i.e., omit
a†a†a†aaa and higher-body operators). For example, in
evaluating the pair momentum distribution for two nu-
cleons with isospin projections τ and τ ′ respectively, we
expand and truncate

n̂τ,τ
′

λ (q,Q) = Ûλn̂
τ,τ ′

∞ (q,Q)Û†λ, (7)

where the unevolved (λ = ∞) pair momentum distribu-

tion operator is

n̂τ,τ
′

∞ (q,Q) =
1

2

∑
σ,σ′

a†Q
2 +q,στ

a†Q
2 −q,σ′τ ′aQ

2 −q,σ′τ ′aQ
2 +q,στ

.

(8)
Here q is the relative momentum and Q is the center-of-
mass momentum.

An SRG-evolved low-energy state, e.g., the ground
state of a nucleus, only has low-momentum components
k < λ. If we take the matrix element of the SRG-
evolved distribution (7) at high-momentum q � λ in
such a state, this high-momentum tail will be dominated

by a term proportional to δU
(2)
λ (k,q)δU

† (2)
λ (q,k) [1].

For k < λ � q, the SRG transformation factorizes,

δU
(2)
λ (k,q) ≈ F lo(k)F hi(q), where the labels “hi” and

“lo” in the functions F hi(q) and F lo(k) refer to the sep-
aration of momentum scales above and below λ. Thus at
high momentum, SRG-evolved momentum distributions
factorize, as discussed previously. For example, the pair
momentum distribution operator at high relative momen-
tum, after truncating to two-body terms, is given by

n̂λ(q,Q) ≈
∣∣F hi(q)

∣∣2 λ∑
k,k′

F lo(k)F lo(k′)

× a†Q
2 +k

a†Q
2 −k

aQ
2 −k′aQ

2 +k′ , (9)

where we have suppressed the spin and isospin labels.

Extracting the Levinger constant involves taking a ra-
tio of the expectation value of the operator (9) in a
specified nucleus A with the same expectation value in
the deuteron. The proton distribution operator in the
deuteron is given by a similar expression as Eq. (9) and
also factorizes for q � λ. We integrate over the center-
of-mass momentum Q in evaluating the relative pair mo-
mentum distribution, leaving a ratio dependent only on
q, and after applying factorization we obtain

nApn(q)

ndp(q)
∝
∣∣F hi
pn(q)

∣∣2∣∣F hi
d (q)

∣∣2 ×
∫
〈A|F lo

pn(k)F lo
pn(k′)|A〉∫

〈d|F lo
d (k)F lo

d (k′)|d〉
, (10)

for q � λ. The soft wave functions restrict the integrals
over k and k′ to low momenta.

All partial wave channels contribute in the numerator
of Eq. (10) though the 3S1–3D1 channel dominates (see
Table I in Ref. [1]). With the denominator (deuteron)
taking contributions solely from the 3S1–3D1 channel, the
two-body high-momentum functions F hi

pn(q) and F hi
d (q)

roughly cancel, leaving a low-momentum ratio that is
approximately scale and scheme independent, and inde-
pendent of q � λ. The ratio is a “mean-field” quantity,
meaning it only depends on soft ground-state wave func-
tions. This is effectively the same as a ratio of GCF con-
tacts. We can then extract the Levinger constant from
the low-momentum ratio using Eq. (4).
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FIG. 1. Ratios of the pn momentum distribution for nucleus
A over the deuteron momentum distribution as a function of
relative momentum q using the AV18 potential. The gray line
and band indicate the average value of the Levinger constant
with its error from Ref. [16].

III. RESULTS

In evaluating the soft matrix elements in Eq. (10),
we use densities from the Gogny functional [32] for the
LDA and evolve the operators to λ = 1.35 fm−1 includ-
ing only S-wave contributions [1]. We have made the
same calculations with densities from the SLy4 Skyrme
functional [33] using the HFBRAD code [34] and found
nearly identical trends. The contribution of higher par-
tial waves is not significant (as documented in Table I of
Ref. [1]). We limit results to nuclei where extractions of
L from experimental data are available, though we can
easily extend to other nuclei.

In Fig. 1 we show ratios for several nuclei of the pn
relative momentum distribution to the proton distribu-
tion in the deuteron, scaled by A/NZ. We apply the
LDA to both the numerator and denominator to help
cancel systematic errors. At high momentum the ratio
plateaus to a constant value, that is, the Levinger con-
stant. The ratio maintains a relatively constant value
across high momentum values despite the momentum dis-
tributions individually dropping several orders of mag-
nitude. In the low RG resolution framework, both the
numerator and denominator factorize to a product of a
high-momentum two-body function which carries the q-
dependence, and a low-momentum nuclear matrix ele-
ment (see Eq. (10). The q-dependent functions approxi-
mately cancel in the ratio leaving a flat curve where fac-
torization holds (q � λ = 1.35 fm−1) as seen in Fig. 1
for all nuclei. The gray band shows the average value of
L = 5.5 with its uncertainty across several nuclei [16].
The ratio tends to increase with heavier nuclei. The be-
havior of the ratio near q ∼ 1.5 fm−1 depends on the
details of the individual momentum distributions near

the Fermi surface.

FIG. 2. Average Levinger constant for several nuclei with
AV18 comparing to extractions from experiment. The change
in predicted L from varying the interval of momentum q over
which L is averaged (see text for details) is smaller than the
the black AV18 circles.

Figure 2 shows our extracted values of L compared to
extractions of Refs. [17, 35] constrained by cross sections
of nuclear photo-absorption experiments [36–39]. In ex-
tracting L, we take the average value of the momentum
distribution ratios (shown in Fig. 1) over q from 4 to
5 fm−1 as in Ref. [20]. Analysis with other potentials
indicates that the factorization holds strongly in the mo-
mentum range of 2.5 to 3.4 fm−1 and consequently, we
average over this lower momentum range as well. Fig-
ure 2 shows results from both extraction schemes where
the spread from the two schemes is within the black AV18
circles. The low RG resolution calculations are in good
agreement with the data and their uncertainties. Calcu-
lated values of L monotonically increase with larger mass
number A similar to the behavior found in calculating the
SRC scaling factor a2 in Ref. [1].

In Fig. 3 we compare Levinger constants between sev-
eral NN interactions. We show results for AV18 [22],
Nijmegen II [40], CD-Bonn [41], SMS N4LO [42], and
GT+ N2LO [43] averaging over the momentum range of
2.5 to 3.4 fm−1. We find that the hard potentials (e.g.,
AV18) produce the highest values of L whereas the soft
potentials (e.g., SMS N4LO 450 MeV) produce relatively
low values. L is extracted from the ratio of inclusive
cross sections which, as an observable quantity, is RG
invariant; hence, we should not find any significant dis-
crepancies in calculations of L when using different NN
interactions. However, it is incorrect to assume the same
initial operator for interactions at different RG resolution
scales.

The momentum distribution is resolution dependent,
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FIG. 3. Average Levinger constant for several nuclei compar-
ing different NN interactions.

FIG. 4. Deuteron momentum distributions from SMS N4LO
550 MeV (blue) and 450 MeV (red) potentials. The dashed
lines show the distributions of the 550 MeV potential but
SRG-evolved to some λ value indicated by the legend.

but we can seek to match the results of L using a ref-
erence momentum distribution, in this case that of the
AV18 interaction. To do so, we must transform the mo-
mentum distribution operators of the other potentials for
a consistent extraction. For instance, if we take the usual
one-body single-nucleon momentum distribution opera-
tor when using a hard potential such as AV18, then we
must include an additional two-body contribution in the
momentum distribution operator corresponding to the
RG resolution scale of the soft potential. In the follow-
ing, we transform the initial operators of soft potentials
to approximately match the results of the hard potentials

using the SRG.
We can use SRG transformations to establish an ap-

proximate connection between two potentials of different
RG resolution scales. To illustrate this, we show the
deuteron momentum distributions of the SMS N4LO po-
tential at two different regulator cutoffs in Fig. 4. We in-
clude snapshots of the deuteron momentum distribution
from the SRG-evolved “hard” potential (550 MeV cut-
off). Around λ = 4−4.5 fm−1 the SRG-evolved deuteron
momentum distribution begins to overlap the 450 MeV
distribution indicating a rough connection between the
two potentials. We find matching scales λ ∼ 3.5−5 fm−1

in comparing other potentials.
We can make similar comparisons in matching interac-

tions by considering Weinberg eigenvalues [44]. These
eigenvalues reflect the perturbativeness of a potential
and have been analyzed in several RG and EFT stud-
ies [25, 45–48]. Consider the Born series for the T matrix
at energy E given a Hamiltonian H = H0 + V ,

T (E) = V + V
1

E −H0
V + · · · . (11)

Solving for the eigenvalues ην(E) and eigenvectors |Γν〉
of the operator (E −H0)−1V ,

1

E −H0
V |Γν〉 = ην(E) |Γν〉 , (12)

and applying T (E) on the eigenvectors gives a power se-
ries in terms of the Weinberg eigenvalues ην(E),

T (E) |Γν〉 = (1 + ην(E) + η2ν(E) + · · · )V |Γν〉 . (13)

Non-perturbative behavior at energy E is signaled by at
least one eigenvalue |ην(E)| > 1 [44]. For negative ener-
gies, purely attractive potentials give positive Weinberg
eigenvalues and vice versa for purely repulsive potentials.
We refer to positive (negative) eigenvalues with E ≤ 0 as
attractive (repulsive); for E > 0 the eigenvalues become
complex.

TABLE I. Largest repulsive Weinberg eigenvalues at zero en-
ergy for AV18 and SMS N4LO 550 MeV evolved to several
SRG resolution scales λ. The corresponding eigenvalue for
the unevolved SMS N4LO 450 MeV potential is −0.70.

λ [fm−1] AV18 550 MeV

∞ −3.06 −1.22

12 −2.94 −1.27

6 −1.81 −1.10

5.5 −1.61 −1.05

5 −1.40 −0.98

4.5 −1.19 −0.88

4 −0.98 −0.78

3.5 −0.79 −0.66

3 −0.62 −0.54
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In comparing interactions, we evolve the harder of the
two potentials, compute the Weinberg eigenvalues at zero
energy using Eq. (12) in momentum space, and do the
same for several SRG-evolved versions of the same po-
tential. Then we compute the corresponding Weinberg
eigenvalues of the softer potential and compare to the
largest repulsive eigenvalues to determine the matching
scale. We document our results for the Weinberg eigen-
values in Table I. This analysis gives roughly the same
matching scales as found with comparing deuteron mo-
mentum distributions.

FIG. 5. Deuteron wave functions of AV18 (black) and SMS
N4LO 550 MeV (red) in coordinate space. Additionally, we
show deuteron wave functions of SMS N4LO 550 MeV but
inverse-SRG transformed with AV18 at several λm values.
The solid lines correspond to the S states, and the dashed
lines correspond to the D states.

In the following, we extract the Levinger constant
matching two potentials of different RG resolution scales.
We use a scale denoted λm associated with the matching
scale from the previous analysis to apply inverse-SRG
transformations of the harder potential onto the softer
of the two potentials. Figure 5 compares deuteron wave
functions of AV18 and SMS N4LO 550 MeV, including
several inverse-SRG evolved snapshots of the SMS wave
function. These are inverse-SRG transformations from
the AV18 interaction; hence, the deuteron wave func-
tion gains a stronger short-range modification as λm de-
creases. At r = 0 the inverse-evolved deuteron wave func-
tion matches AV18 for λm in between 5 and 4.5 fm−1, in
agreement with the scale found from analyzing Weinberg
eigenvalues.

Taking the inverse-SRG-evolved, soft Hamiltonian as
the initial Hamiltonian, then evolving that Hamiltonian
down to λ = 1.35 fm−1 in calculating the momentum
distribution, is equivalent to applying transformations of
the hard potential on the initial operator

Ôλm = Ûλm
ÔÛ†λm

. (14)

FIG. 6. Average Levinger constant for several nuclei compar-
ing the SMS N4LO 550 MeV (black) and 450 MeV (red) poten-
tials. Results are also shown for the SMS N4LO 450 MeV po-
tential with an additional two-body operator due to inverse-
SRG transformations from SMS N4LO 550 MeV at several
values of λm.

FIG. 7. Same as Fig. 6 but comparing SMS N4LO 550 MeV
to AV18.

Here Ô is the initial operator to be used with the hard po-

tential, Ûλm
corresponds to transformations of the hard

potential (λm ≈ 4.5 fm−1), and Ôλm
is the initial opera-

tor to be used with the soft potential. Consequently, the
soft potentials start with an additional two-body contri-
bution in the operator, whereas hard potentials (such as
AV18) start with solely the momentum projection opera-
tor (8). Figure 6 compares the two SMS N4LO potentials
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showing results for several λm values. We see that the
Levinger constants computed from the 450 MeV poten-
tial are raised to match the values from the 550 MeV
potential around λm = 4− 4.5 fm−1, consistent with the
deuteron and Weinberg eigenvalue comparisons. These
results confirm that an additional two-body operator is
necessary in calculating consistent values of L for poten-
tials of a low RG resolution.

In Fig. 7 we make the same comparison as in Fig. 6
but for AV18 and SMS N4LO 550 MeV. Here we see
that λm ≈ 4.5 fm−1 gives the matching scale between
the two potentials. Note, this method only serves as an
approximate tool in matching interactions, but in gen-
eral there will be additional differences in comparing in-
teractions due to scheme dependence (regulator differ-
ences, coordinate- or momentum-space formulations, and
so on.)

IV. SUMMARY AND OUTLOOK

We have shown how the Levinger constant can be
quantitatively calculated at low RG resolution with sim-
ple approximations. This analysis relied on our previous
work in using LDA estimates to calculate evolved mo-
mentum distributions. The observed scale (and scheme)
dependence of the extracted Levinger constants reflects
in part insufficient matching of the reaction operator, ei-
ther to experiment or a more accurate [high resolution]
theoretical description. Additional two-body contribu-
tions induced by inverse-SRG transformations on the ini-
tial operator restores approximate scale independence.

This strategy demonstrates a more general concept:
NN interactions can be “smoothly” connected by RG
transformations. The matching can be done by com-
paring deuteron wave functions or Weinberg eigenvalues,
with consistent results for the matching scale. It may
be adequate to incorporate only a contact interaction in-
stead of applying inverse-SRG transformations to match
the initial operator to its associated interaction. We leave
this point as a follow-up for future work.

The path to more precise determinations is clear. In
particular, there are several classes of corrections that
need to be examined going forward:

• Incorporating improved many-body physics to test
the limits of LDAs and enable uncertainty quan-
tification. The LDA approximation here is imple-
mented as the leading-term in a density matrix ex-
pansion [49]. Including next-to-leading terms is the
next step.

• Solving the many-body problem with SRG-evolved
operators at different λ values allows for an in-
direct method in estimating three-body contribu-
tions. Residual λ dependence indicates the size
of neglected contributions from induced three-body
and higher-body terms [50, 51]. However, computa-
tional restrictions may limit this approach to light
nuclei.

• Understanding the impact of long-range correla-
tions and isolating from short-range correlations.

• Better understanding and exploiting the SRG res-
olution (λ) dependence (e.g., optimal value of λ
given our approximations).

To better quantify the impact of common approximations
we will directly calculate photo-absorption cross sections,
following the low RG resolution calculation of deuteron
electrodisintegration [23, 24].

A natural follow-up to the present work is a general ex-
amination of level depletion in the RG framework. The
results here and in Ref. [1] have explicitly established
how processes with particular types of high-energy final
states are directly accounted for at low RG resolution by
the evolution of basic reaction operators. The converse
task is to quantitatively understand at low RG resolution
the physics associated at high resolution with depletion
of single-particle states [52, 53], given that these states
are largely occupied in the mean-field picture at low res-
olution. Here the role of mid-to-long-range correlations
are particularly important to understand. This task will
involve extending the low RG resolution framework to
knockout reactions with electron or nucleon probes. In
either case optical potentials play an important role in
modeling these processes, and consequently, we must un-
derstand how optical potentials change under RG evolu-
tion, which will build on Ref. [54].
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