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The detailed investigation of microscopic mechanisms leading to the formation of bubble structures
in the nuclei has been performed in the framework of covariant density functional theory. The main
emphasis of this study is on the role of single-particle degrees of freedom and Coulomb interaction.
In general, the formation of bubbles lowers the Coulomb energy. However, in nuclei this trend
is counteracted by the quantum nature of the single-particle states: only specific single-particle
states with specific density profiles can be occupied with increasing proton and neutron numbers.
A significant role of central classically forbidden region at the bottom of the wine bottle potentials
in the formation of nuclear bubbles (via primarily the reduction of the densities of the s states at
r = 0) has been revealed for the first time. Their formation also depends on the availability of
low-1 single-particle states for occupation since single-particle densities represent the basic building
blocks of total densities. Nucleonic potentials disfavor the occupation of such states in hyperheavy
nuclei and this contributes to the formation of bubbles in such nuclei. Existing bubble indicators
are strongly affected by single-particle properties and thus they cannot be reliable measures of bulk
properties (such as the Coulomb interaction). Additivity rule for densities has been proposed for
the first time. It was shown that the differences in the densities of bubble and flat density nuclei
follow this rule in the A &~ 40 mass region and in superheavy nuclei with comparable accuracy. This
strongly suggests the same mechanism of the formation of central depression in bubble nuclei of
these two mass regions. Nuclear saturation mechanisms and self-consistency effects also affect the
formation of bubble structures. The detailed analysis of different aspects of bubble physics strongly
suggests that the formation of bubble structures in superheavy nuclei is dominated by single-particle
effects. The role of the Coulomb interaction increases in hyperheavy nuclei but even for such systems

we do not find strong arguments that the formation of bubble structures is dominated by it.

I. INTRODUCTION

The basic approximation which appears in many nu-
clear models is that the nuclear density is constant in
subsurface region. The simplest example is the Fermi
function which is frequently used for the description of
the density of the nuclei in phenomenological models (see,
for example, Sec. 2 of Ref. [1]). However, theoretical in-
vestigations reveal that there is a density depletion in the
central region in a number of the nuclei. Such nuclei are
typically called as bubble nuclei.

The physics of bubble nuclei has first been studied by
Wilson in 1946 [2] and the number of investigations of
such nuclei in different theoretical frameworks have been
carried out later. The energies of spherical bubble nuclei
have been studied using liquid drop model in Ref. [3].
The investigation of bubble structures in 3¢ Ar and 20°Hg
has been performed in non-relativistic Hartree-Fock ap-
proach in Ref. [4, 5]. Additional nuclei (such as 58Se,
68Ge, 100Gn, 138Ce) and the details of bubble formation
mechanism have been studied using the same formalism
in Ref. [6]. The detailed investigation of spherical bub-
ble nuclei in the liquid drop and spherical shell models
has been performed in Ref. [7]. However, this approach
is too simplistic since it assumes zero density inside the
bubble. The shell structure of spherical nuclear bubbles
has been investigated in simple phenomenological shell
model potentials allowing partial filling of the bubble in
Ref. [8, 9].

More sophisticated and realistic models which take

self-consistency effects into account have been used in
the detailed studies of bubble nuclei starting from 1990’s.
The bubble structure in 34Si and the density profiles of
neighboring nuclei have been extensively studied in the
non-relativistic and relativistic density functional theo-
ries (DFTs) [10-12], ab initio approaches [13] and beyond
mean field approaches [11, 12, 14, 15]. The possibility of
the existence of deformed bubbles in light nuclei has been
investigated within the relativistic mean field (RMF) ap-
proach in Ref. [16] and the ?*Ne, 32Si and 3?Ar nuclei
are found to be the best candidates. Bubble structures
in very neutron-rich %8 Ar nucleus have been investigated
in Ref. [17] and in 220 in Refs. [10, 18]. The impact
of tensor force on the formation of bubble structures in
light nuclei Z = 20 or N = 20 nuclei has been investi-
gated in Ref. [19]. The bubble structures in superheavy
nuclei have been studied in non-relativistic and relativis-
tic DFTs in Refs. [20-23]. A systematic survey of bub-
ble structures in spherical nuclei with N(Z)=8, 20, 28,
40, 50, 82 and N=126 has been performed in the RMF
framework in Ref. [24]. These approaches have also been
used in the studies of bubble structures in hyperheavy
(Z > 126) nuclei (see Refs. [21, 25-27]). It is necessary
to mention that the investigations of bubble structures in
hyperheavy nuclei performed under restriction to spheri-
cal symmetry [8, 21, 25] ignore two facts [26-28], namely,
(1) that the toroidal shapes are energetically more fa-
vored in such nuclei, and (2) that the most of such nuclei
cannot be stabilized because of the absence of the local
minimum in total energy at spherical shape.



These investigations significantly advanced our under-
standing of the mechanisms of the formation of the bub-
ble structures in nuclei. They also found the counter-
acting mechanisms: pairing correlations [11, 14|, be-
yond mean field effects [12, 14, 15, 29] and deforma-
tion [16, 22, 30] soften fluctuations in the densities (as
a function of radial coordinate in spherical nuclei) and
somewhat reduce the bubble structures in the nuclei.
In addition, some dependence of the predictions for the
depletion in the central density on the model and em-
ployed functional has been found (see, for example, Refs.
[13, 14, 22, 24]).

The most of predicted bubble structures are located in
exotic nuclei which either have not been measured so far
or which are produced in very small amounts with very
short lifetimes. So far, only in 34Si the formation of pro-
ton bubble has been indirectly confirmed in experiment
[31]. Direct measurements of charge density distributions
via electron scattering on unstable nuclei with sufficient
luminosity are not possible today. However, such experi-
ments can be feasible in light bubble nuclei in near future
at the FRIB, FAIR and RIKEN facilities.

However, not in all respects of the physics of bubble
nuclei the consensus has been reached. For example, the
analysis of bubble structures in 34Si, ®*Ca and N = 82,
126 and 184 isotopic chains based on the correlation anal-
ysis performed in Ref. [23] suggests that the central de-
pression in medium-mass nuclei is very sensitive to shell
effects, whereas for superheavy nuclei it is firmly driven
by the electrostatic repulsion. The later result is in con-
tradiction with the conclusions of Ref. [22] which clearly
illustrated that the formation of central depression in
the density distribution is driven by the filling of spe-
cific spherical subshells and shell structure of superheavy
nuclei. It also contradicts the observation that spherical
superheavy nuclei with Z = 126 have either no or sig-
nificantly smaller depletion of the density in the central
region as compared with the Z = 120 isotopes (see Fig.
2 in Ref. [22]).

The main goal of the present paper is to perform a de-
tailed microscopic analysis of the mechanisms which lead
to the formation of central depression in nucleonic den-
sities of atomic nuclei. To achieve that the pairs of light
and superheavy nuclei with and without central depres-
sion in the densities will be compared. The detailed com-
parison of the single-particle and Coulomb interaction
contributions into the proton and neutron densities of
the nuclei in these pairs allows to discriminate their role
in the formation of central depression in nucleonic den-
sities. This analysis will be further collaborated by the
analysis of hyperheavy nuclei which possess pronounced
bubble structure.

The paper is organized as follows. A brief outline of
the theory and the selection of the nuclei under study is
given is Sec. II. The role of the Coulomb interaction in
the formation of bubble structure of superheavy nuclei is
discussed in Sec. III. Sec. IV is dedicated to the discus-
sion of the role of the single-particle degrees of freedom

in the formation of central depression in the density dis-
tributions. The mechanisms of the formation of the wine
bottle potentials are analyzed in Sec. V. The additiv-
ity rule for the densities of the pairs of the nuclei with
and without central depression is considered in Sec. VI.
Other general observations obtained in the present study
are discussed in Sec. VII. Sec. VIII critically analyzes ex-
isting bubble indicators and their physical content. The
factors affecting the availability of the low-l states for
occupation are analyzed in Sec. IX. Potential impact
of deformation on the balance of the single-particle and
Coulomb interaction contributions to the bubble struc-
tures is discussed in Sec. X. Finally, Sec. XI summarizes
the results of our paper.
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FIG. 1. The proton and neutron densities as a function of
radial coordinate r for indicated spherical nuclei. Light, su-
perheavy and hyperheavy nuclei are shown in the top, middle
and bottom rows, respectively. The results of the calculations
without pairing are shown by blue solid and red dashed lines
for neutrons and protons, respectively. Note that the pairing
collapses in all nuclei with exception of the *?°126 nucleus.
The RHB results for this nucleus are shown by green solid
(neutrons) and dashed (protons) lines in panel (f).

II. THEORETICAL METHOD AND THE
SELECTION OF THE NUCLEI

Theoretical calculations have been performed within
the framework of covariant density functional theory
(CDFT) [32] employing the modified version of the com-
puter code restricted to spherical symmetry used in Ref.
[22]. The pairing correlations are neglected in the cal-
culations in order to better understand the underlying
physical mechanisms. In reality, the pairing collapses in
all nuclei considered in the present paper with the excep-
tion of the 319126 one (see Fig. 1 and further comments
on this nucleus below) in relativistic Hartree-Bogoliubov
(RHB) calculations with separable pairing interaction of
two types (one from Ref. [33] and another one [isospin



dependent] from Ref. [34]).

TABLE I. Rms radii of proton and neutron matter distribu-
tions in the nuclei under study. The radii in the *Si/*%S and
292120 /310126 pairs of nuclei are shown in bold.

Nuclei|Proton 7,5 [fm]|Neutron 7, [fm]
1S3 3.046 3.304
363 3.171 3.297
208pp 5.450 5.738
292190 6.223 6.386
310196 6.302 6.519
166156 7.352 7775
592186 8.048 8.569

Since the details of the CDFT framework are widely
available (see, for example, Ref. [32]), we focus on the
physical quantities of the interest. The proton (i = =)
and neutron (¢ = v) nucleonic potentials are defined as
follows:

Ve =V + S+ Voou, (1)
V=V +5S, (2)

where scalar potential is given by
S(r) = goo(r), 3)
meson defined part of the vector potential is written as
V(r) = guwo(r) + gpT3po(r), (4)

and

Veoul(r) = eAo(r) (5)

is the Coulomb potential. Note that for the sake of dis-
cussion we split vector potential (see, for example, Eq.
(9) in Ref. [32]) into meson defined and Coulomb parts.
In addition, we consider only time-like components of
vector mesons since only even-even nuclei are studied in
the present paper.

The calculations are performed with the NL3* covari-
ant energy density functional (CEDF) [35]. This func-
tional has a lot of similarities with the NL3 one used
earlier in the study of bubble structures in superheavy
nuclei (see Ref. [22]) but provides improved description of
the masses and charge radii on the global scale (see Refs.
[33, 36]). It was verified that main conclusions obtained
in the present paper do not depend on the selection of
the functional.

In the present study the pair of light nuclei 34Si/36S
and the pair of superheavy nuclei 2°2120/219126 nuclei
are considered. The first nucleus in these pairs (3Si
and 292120) is characterized by substantial central de-
pression, while such depression is either absent or almost
suppressed in the second nucleus of the pair (see Fig. 1
and Refs. [10, 11, 21, 22, 25]). Moreover, this feature
exists in different theoretical frameworks. The detailed
comparison of the single-particle and Coulomb interac-
tion contributions into the differences of the proton and

neutron densities of the nuclei in above mentioned pairs
allows to discriminate their contribution into the forma-
tion of central depression in nucleonic densities. Note
that significant central depression in the density distribu-
tion of the 292120 nucleus and flat density in the 319126
nucleus have been found both in relativistic and non-
relativistic DFTs (see Refs. [20-22]). The fact that rms
radii of proton/neutron matter distribution of the nuclei
in these pairs are very similar (see Table I) also simpli-
fies the analysis of the additivity of the single-particle
densities (see Sec. VI). Note that in the 3*Si, 36S and
292120 nuclei the spherical minimum is the lowest one
corresponding to the ground state in the RHB calcula-
tions (see Refs. [33, 37, 38]). In contrast, the same calcu-
lations bring oblate ground state for the 319126 nucleus
(see Ref. [38]). However, the spherical solution in this
nucleus is considered here in order to have a benchmark
theoretical solution with near flat density distribution in
the region of superheavy nuclei.

The 2°%Pb nucleus is also analyzed for the sake of com-
parison with superheavy nuclei. In addition, hyperheavy
466156 and 592186 nuclei are investigated in detail in or-
der to get a better understanding of the factors affecting
the profiles of density distributions with increasing pro-
ton number Z. These nuclei are located in the centers of
the islands of potentially relatively stable spherical hy-
perheavy nuclei (see Refs. [26-28]). Note, however, that
they correspond to highly excited local spherical minima
and the lowest in energy solutions in axial RHB calcula-
tions have toroidal shapes.

III. SUPERHEAVY BUBBLE NUCLEI AND
THE ROLE OF COULOMB INTERACTION
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FIG. 2. Proton and neutron density distributions of indicated
nuclei.

Proton and neutron density distributions of doubly
magic 2°8Pb nucleus and superheavy 272120 and 3'°126
nuclei are shown in Fig. 2. The 292120 nucleus shows
very pronounced depression in central densities.



In contrast, such depression is absent in the 2°®Pb and
310126 nuclei. Thus, the increase of proton number on
going from 292120 to 39126 nucleus does not trigger the
enhancement of the central depression as it would be
expected in the case when central depression is firmly
defined by electrostatic repulsion (as suggested by Ref.
23)).
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FIG. 3. The numbers of the particles in spherical shells be-
tween Tmin = J fm t0 Timee = j+ 1 fm (j = 0,1,...7) of
the sphere with R = 8.0 fm with uniform density p. They
are shown inside the bins. The total number of particles is
120. Dashed lines show resulting density distributions after
creation of central depression (see text for more detail).

When considering central depression in medium mass
to superheavy nuclei, one should keep in mind that they
are created by the transfer of relatively small number of
particles from the central region to near surface region.
As a consequence, the bubble should not be considered
as a bulk property [5]. The density plots as a function of
radial coordinate tend to overemphasize the importance
of central region since they ignore the fact that the num-
ber of particles dn in spherical shell of thickness dr is
given by 4mr2p(r)dr. To illustrate that we simplify the
case of the proton subsystem of the 292120 nucleus [see
Fig. 2(a)] to the sphere of radius R = 8.0 fm and uniform
density distribution p. Then the number of particles n
in spherical shell with inner radius r,,;, and outer radius
Tmaz 1S given by

n= 47rp/ r2dr. (6)
The distribution of particles over spherical shells is shown
in Fig. 3. There are only 0.23 particles in the inner sphere
of radius 1.0 fm and 1.64 and 4.45 particles in the first and
second spherical shells with outer radii 2.00 and 3.00 fm,
respectively. Based on Fig. 2(a) one can assume that cen-
tral depression with average density pge, = 0.041 fm=3
is formed up to radius r = 3.0 fm (see green dashed
line in Fig. 3). To create such central depression one
should move 0.061 particles from inner sphere, 0.44 par-
ticles from first inner shell, and 1.19 particles from second

inner shell into outer shells located between 3.0 and 8.0
fm. If these particles are redistributed uniformly among
outer shells this would lead only to a marginal increase
of densities (see blue dashed line in Fig. 3).
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FIG. 4. Coulomb potentials of indicated nuclei as a function of
radial coordinate r. Panels (a) and (b) show absolute (Veour)
and normalized (Voow /Z) (to the proton number Z) Coulomb
potentials.

The Coulomb potentials Vi, (r) are shown as a func-
tion of radial coordinate for the nuclei under study in
Fig. 4. Their absolute values and evolution with radial
coordinate r are very similar for the 292120 and 3'°126
nuclei (see Fig. 4(a). This similarity becomes even more
pronounced when normalized values Vo (r)/Z of the
Coulomb potential per number of protons are compared
in Fig. 4(b). These results strongly suggest that the for-
mation of the bubble structure in the 292120 nucleus is
not driven predominantly by the electrostatic repulsion
since such bubble structure is absent in the 3!°126 nu-
cleus for which Vg is larger. Note that the situation
in this pair of the nuclei is very similar to the one seen in
the pair of the nuclei 34Si and 3°S (see Fig. 4) in which
the formation of the proton bubble in 34Si is attributed
solely to the single-particle effects (see Ref. [23]).

It is also interesting to compare normalized values
Veoul(r)/Z of the Coulomb potential per number of pro-
tons for all nuclei under study (see Fig. 4(b)). At low
radial coordinate Vioui(r)/Z has highest value in light
nuclei and then it gradually decreases with increasing
proton number. This correlates with the evolution of
the proton density with proton number (see Fig. 1).
Note that in all nuclei the asymptotic behavior of the
Veou(r)/Z is the same at r > 10 fm.

The Coulomb potential alone in all these systems fa-
vors the arrangement of the protons into bubble like
structures since Veoou (1 = 0) — Voour (Tsurf) > 0, where
rsurf is the radial coordinate at which the density is
maximal in near surface region. Veou(r) — Vooul (Tsurf)
is equal approximately to 0.78, 1.3, 5.7, 6.8 and 7.8
MeV in the 34Si, 36S, 208Pb, 292120 and 31126 nu-
clei, respectively (see Fig. 4). However, even in su-



perheavy nuclei these contributions to the building of
the wine bottle proton potential are smaller than those
coming from nuclear interactions. For example, in the
wine bottle potential of the 292120 nucleus the difference
Ve(r = 0) = Vi(reurs) = 21 MeV [see Fig. 5(a)] and
Veoul(r = 0) = Voou (Tsurp) =~ 6.8 MeV accounts for less
than one third of this value.

Although the role of the Coulomb potential in the
formation of wine bottle potential increases in hyper-
heavy nuclei, even in those systems it does not be-
come dominant. Indeed, in the 92186 nucleus V,(r =
1.7fm) — Vp(r = 8.03fm) = 13.79 MeV and Veou(r =
1.7fm) — Voo (r = 8.03fm) = 6.55 MeV. Similar sit-
uation exist in the 466156 nucleus in which Vi (r =
1.81fm) — Vi (r = 6.84fm) = 11.22 MeV and Vo (r =
1.81fm) — Voo (r = 6.84 fm) = 5.37 MeV. The values of
the proton (V;) and Coulomb (Vo) potentials in these
differences are defined at radial coordinates correspond-
ing to minimum and maximum points of the wine bottle
part of the proton potentials shown in Figs. 10(a) and
(b) below.

IV. THE ROLE OF SINGLE-PARTICLE
DEGREES OF FREEDOM

In order to obtain better microscopic understanding
of the origin of the bubble nuclei and the role of the
single-particle structure in their formation we carry out
a detailed investigation of the single-particle properties
in the pair of superheavy nuclei 292120 and 319126 and in
the pair of the N = 20 isotones 34Si and 3°8S.

We start from the analysis of the first pair. The nucle-
onic potentials of these nuclei and their occupied states
are shown in Fig. 5. The nucleonic potentials of the
310126 nucleus are similar to those of 2“8Pb (compare
Fig. 3(c),(d) in Ref. [22] with Fig. 5(b) and (d) in the
present paper): they have flat bottom potentials. In con-
trast, the nucleonic potentials of the 292120 nucleus are
wine bottle shaped and this is especially pronounced for
the proton subsystem (see Figs. 5(a) and (c)).

Total nucleonic density po(r) in a given subsystem
(proton or neutron) is built from the contributions of
individual particles as follow

pron(r) = 3 (24; + Do (). (7)

?

Here we consider only the nuclei in which full spherical
subshells (indicated by subscript i) are occupied. Thus,
the sum runs over spherical subshells ¢ with multiplicity
(2j; + 1) and p;”(r) is the density of the single-particle
state belonging to the ¢-th subshell with the normaliza-
tion

/pfp(r)d?’r =1.0. (8)

The calculated neutron single-particle densities of the
208pY, 292120 and 319126 nuclei are shown in Fig. 6. For

the | > 1 subshells, proton single-particle densities are
very similar to the neutron ones. Thus, they are not
shown. The single-particle densities for the neutron and
proton s states are shown in greater detail in Fig. 7.

The following general features emerge from the analy-
sis of these densities. First, the density at the center is
built almost entirely by the s states because centrifugal
interaction does not allow the buildup of the density at
r = 0 for the [ > 1 states (see discussion in Sec. 6 of Ref.
[1]). In the relativistic framework, there is some contri-
bution to the density at » = 0 coming from the p states
which is especially pronounced for the 3p;,2 and 3ps/o
states [see Figs. 6(g) and (m)]. It originates from the
fact that small components of the Dirac spinor have op-
posite parity to the large component. As a consequence,
the p state have the part of small component in the s
state which builds the density at » = 0. Note that in
non-relativistic framework this mechanism is absent and
the density at » = 0 is built solely by the s states (see
Ref. [1]).

Second, the single-particle densities of the [ > 1 states
in the 292120 and 3'°126 nuclei are very similar: this is
a consequence of similar rms radii in respective subsys-
tems of these nuclei (see Table I). The densities of the
single-particle states in the 28 Pb nucleus have similar ra-
dial dependences as those in superheavy nuclei but they
are somewhat compressed in radial direction because of
smaller rms radii (see Table I).

Third, the peaks of the single-particle density of the
states with principal quantum number n = 1 move to
higher radial coordinate r with increasing [. The analysis
of the n = 2 and n = 3 states is complicated by the
presence of two and three peaks in density distribution,
respectively. However, these densities also move to higher
radial coordinate with increasing .

Fourth, for the majority of the states located substan-
tially above the bottom of nucleonic potential the den-
sities of the spin-orbit partner orbitals are very similar
[compare, for example, the 2gy/, and 2g7/, states in Fig.
6(t) and (x)]. The densities of the j = [ + 1/2 states
of the spin-orbit doublets are only slightly compressed
in radial coordinate as compared with the ones of their
j =1—1/2 partners since these states are located deeper
in the nucleonic potential due to spin-orbit interaction.

A specific feature of the bubble nuclei is the forma-
tion of wine bottle shaped potentials (see Ref. [22] and
Figs. 5 and 8). The transition from the 31°126 nucleus,
characterized by the flat bottom potentials, to the 292120
one, characterized by wine bottle potentials, is done by
removing the protons from the 3p;,, and 3p3/, spheri-
cal subshells and the neutrons from the 3ds /2, 3d3/2 and
4s1 /o spherical subshells (see Fig. 2 in Ref. [22] and Fig.
5). These orbitals built the density in central and near-
central regions of the nuclei and their removal leads to the
depletion of central density and, as a consequence, to the
formation of wine bottle proton and neutron potentials.
In a similar fashion, the removal of two neutrons from
the 25,5 subshell in 363 leads to the formation of wine
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FIG. 5. Nucleonic potentials and occupied single-particle states of the ground state configurations in the 292120172 and 21°126154
nuclei. The Fermi level E; in the calculations without pairing coincides with the last occupied state: it is shown by pink arrow.

bottle neutron potential in 3Si [compare Figs. 8(c) and
(d)] and flattening of proton potential in 34Si [compare
Figs. 8(a) and (b)].

However, the impact of wine bottle nucleonic poten-
tials on the single-particle states and on their densities
has not been studied so far. The analysis of Figs. 5(a)
and (c) reveals that for some single-particle states lo-

cated near the bottom of potential there is a classically
forbidden region at radial coordinate r < 3.0 fm. These
are proton 1sy /2, 1p3/2, 1p1/2, 1ds /2 and 1ds 5 states [see
Fig. 5 (a)] and neutron 1sy /3, 1ps/2 and 1p; /, states [see
Fig. 5 (c)]. The presence of this classically forbidden re-
gion leads to a substantial reduction of the densities of
the proton and neutron 1s; /5 states in the 292190 nucleus
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FIG. 6. Single-particle neutron density distributions p;”(r) of the states in the occupied spherical subshells of indicated nuclei.

for radial coordinate r = 0 and near it as compared with
the ones in the 2°®Pb and 319126 nuclei, which are charac-
terized by near flat bottom potential [see Figs. 7(a) and
(e)]. In addition, the profiles of the density distributions
of the 1s;/, states in the 292120 nucleus as a function
of radial coordinate change drastically: the peak of the
density is localized at r ~ 4.0 fm in the 292120 nucleus
while in the 298Pb and 31°126 nuclei it is located at 7 = 0
fm [see Figs. 7(a) and (e)].

Classically forbidden regions for the proton and neu-
tron 1p3 /o and 1p; /o states are located for radial coordi-
nate r which is smaller than approximately 2.0 fm (see
Figs. 5(a) and (c)). However, its impact on the densi-
ties of these states is small since in the 292120 and 31126
nuclei the peak of their density distributions is located
at r &= 4.0 fm and the difference between their densi-
ties in these two nuclei is small [see Figs. 6(e) and (k)].
The impact of classically forbidden regions of the proton
potential on the densities of the proton 1ds,, and 1ds/o
orbitals is even smaller. This is because the peak of their
density distributions [at r &~ 5.0 fm, see Figs. 6(n) and
(h)] is located far away from the boundary of the classi-
cally forbidden region [at r =~ 1.0 fm, see Fig. 5(a)].

In addition, wine bottle potential affects the density
distributions of other states which are located above its
bottom and this effect is especially pronounced for the [ =

0 s states. For example, it has substantial impact on the
densities of the proton and neutron 2s; /, states which for
r < 1.0 fm are substantially smaller in the 292120 nucleus
than those in the 2°®Pb and 319126 nuclei [see Figs. 7(b)
and (f)]. Note that the total density of the nucleus at
r = 0 fm is built almost entirely by the s states. As
a consequence, the differences in the proton and neutron
densities at r = 0 seen in the pairs of nuclei 2°®Pb /292120
and 292120/31°126 are predominantly due to the impact
of the change of the occupation of the s states and the
impact of wine bottle nucleonic potentials of the 292120
nucleus on the density distributions of these states. A
similar impact is also seen in the 36S/34Si pair of the
nuclei for which the removal of two protons from the
251/ states in 363 leads to the formation of wine bottle
neutron potential in 4Si (see Fig. 8). The consequence of
this process is a substantial decrease of the single-particle
densities of the neutron 1s; /5 and 2s, /, states in the 34Gi
nucleus at low radial coordinate r as compared with those
in 368 [see Figs. 9(a) and (b)]. Note that this reduction is
almost absent in proton subsystem since proton potential
of 34Si has flat bottom [see Fig. 8(b)]. Note that spherical
hyperheavy 466156 and 92186 nuclei are characterized
by wine bottle nucleonic potentials (see Fig. 10 below)
and the densities of low-lying states are affected by their
presence in a similar way to that discussed above for the
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FIG. 7. The same as in Fig. 6 but only for the neutron (top
panels) and proton (bottom panels) s states. Note that the
range on the vertical axis is increased as compared with Fig.
6.

V. THE MECHANISMS OF THE FORMATION
OF THE WINE BOTTLE POTENTIALS

In order to better understand the mechanisms of the
formation of wine bottle potentials we consider the evo-
lution of nucleonic potentials and densities along the iso-
topic and isotonic chains in Fig. 11. We start from 2°¥Pb
and then sequentially occupy spherical subshells in the
order shown in Table II. In this way, the densities and
potentials are built first along Zy;,, = 82 (first column in
Fig. 11), then along Ny;; = 172 (second column in Fig.
11) and Zf;; = 120 (third column in Fig. 11) and finally
along Ny, = 184 (fourth column in Fig. 11). Note that
not necessary the occupation of spherical subshells in the
order shown in Table II leads to the ground states in the
nuclei of interest. However, this is acceptable since we
are interested in the understanding of the mechanisms
leading to the formation of the wine bottle potentials
and their dependence on the occupation of specific single-
particle states and this is easier to achieve by considering

the occupation of full spherical subshells. Note that ob-
tained solutions in 20°Pb, 292120 and 3'°126 nuclei cor-
respond to the ground states.

1():'|'|'|'|'|'|'|':'|'|'|'|'|'|'|'
of d

1

-10E

20E

Proton single-particle energy e. [MeV]

Neutron single-particle energy e, [MeV]

FIG. 8. The same as in Fig. 5 but for the *°S and 3*Si nuclei.

Let us start from the 2“8Pb nucleus and to see how
the densities and potentials are affected by the addition
of neutrons and protons. The neutron potential of this
nucleus is flat bottom one [see Fig. 11(i)]. However, pro-
ton potential shows some development of wine bottom
features but the difference between the (V + S) values
at ¥ = 0 and » = 4.2 fm is only around 6 MeV (see
Fig. 11(e)). Although some fluctuations induced by the
single-particle effects exist, the proton and neutron den-
sities of this nucleus in the subsurface region are close to
flat ones [see Fig. 11(a) and (m)]. Note that when con-
sidering the addition of particle(s) one should take into
account the structure of their single-particle density dis-
tributions shown in Fig. 6 and the location of the maxima
(peaks) of their density distributions in radial coordinate
(Tpeak(s)) (see Table II). The single-particle density is
typically localized within r — 2.0 fm < 7,car(s) < 7+ 2.0
fm region around the peak.
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FIG. 9. Single-particle proton and neutron density distribu-
tions of the occupied states in the 3Si and 3¢S nuclei as a
function of radial coordinate 7.

The Pb (Z = 82) isotopic chain will be considered
first. The surface region of these nuclei are located at
r > 5.5 fm [see Fig. 11(m)]. Thus, the occupation of
the v1iy1/9 subshell, leading to the N = 138 isotope,
builds the neutron density mostly in the near surface and
surface regions. As a consequence, the neutron density
profile is similar for the N = 126 and N = 138 isotopes in
the subsurface region [see Fig. 11(m)]. The occupation
of the v2gg/, subshell, leading to the N = 148 isotope
builds the density in the subsurface region around r =
4.4 (due to the first peak of the single-particle density
distribution) and in the surface region (due to the second
peak of the single-particle density at rpeqr(s) =~ 8.0 fm).
As a consequence, the neutron density of the N = 148
isotope is larger than those of the N = 126 and N = 138
isotopes at 7 ~ 4.4 fm but smaller! (and similar in radial
profile) for r < 3 fm [see Fig. 11(m)]. The occupation

I The density in the central (r < 2 fm) region of the nucleus typ-
ically decreases with increasing proton or neutron number if no
new sj /o state(s) is(are) occupied [see Figs. 11(a), (m), (b), (n),
and (c)]. This is due to the stretching out the radial profile of the
density distribution of the single-particle states with increasing
proton and neutron number (see Fig. 6).

of the v1j;5/2 subshell, leading to the N = 164 isotope,
contributes density mostly in the surface region since the
peak of its single-particle density is located at rpeqr(s) =
6.8 fm (see Table IT). As a result, in the subsurface region
the density profiles as a function of radial coordinate are
very similar for the N = 148 and N = 168 isotopes [see
Fig. 11(m)]. The effect of the occupation of the v2g7/s
subshell is very similar to that of the v2gg/, subshell
discussed above [see Fig. 11(m)].

The final result of the sequence of these occupations
of the spherical subshells is the formation of the bubble
structure in the neutron density of the N = 172 iso-
tope [see Fig. 11(m)]. It is created by the combination
of two factors, namely, (i) the buildup of the densities at
r &~ 4.4 fm due to the first peaks of the single-particle
densities of the v2gg/o and v2g7/5 subshells and (ii) the
reduction of the neutron densities in the central region
(in particular, at r = 0) due to a general stretching out
of the nucleus with increasing neutron number. The lat-
ter effect is even more pronounced in proton subsystem
[compare Figs. 11(a) and (m)]. Note, however, that in
the subsurface region the radial profile of the proton den-
sities remains more or less the same but its magnitude
decreases drastically with increasing neutron number [see
Figs. 11(a)].

The consequences of these density changes for the nu-
cleonic potentials are somewhat counterintuitive. The
neutron potentials of the Pb isotopes remain close to the
flat bottom ones [see Fig. 11(i)] despite the formation
of the neutron bubble structures in the N = 164 and
N =172 isotopes [see Fig. 11(m)]. In contrast, the wine
bottom features become enhanced in the proton poten-
tials of the N = 164 and, especially, N = 172 isotopes
as compared with those of the N = 126 isotope [see Fig.
11(e)].

Similar features are also seen in the N = 172 isotopic
chain. The occupation of the mlhg,, and 7liy3/ spher-
ical subshells builds density near r ~ 6 fm and leads to
the formation of pronounced proton bubble structures in
the Z = 96 and, especially, Z = 106 isotones [see Ta-
ble IT and Fig. 11(b)]. The subsequent occupation of
the 72f7/ and 72f5/5 subshells leads to an additional
buildup of the densities near r = 3.8 fm in the Z = 120
isotone but this process still preserves the proton bub-
ble structure [see Fig. 11(b)]. These modifications of the
proton densities feed back into proton potentials the wine
bottom features of which become more enhanced in the
Z = 106 and Z = 120 isotones as compared with the
Z = 82 one [see Fig. 11(f)]. Because of the isovector
force, which tries to keep the neutron and proton density
profiles alike, neutron bubble structures are also some-
what enhanced in the Z = 106 and Z = 120 isotones
as compared with the Z = 82 one [see Fig. 11(n)]. This
feeds back into the neutron potentials of these isotones
which contrary to the Z = 82 and Z = 96 ones develop
wine bottom features [see Fig. 11(n)].

The next step is along the Z = 120 line. The occu-
pation of the v3ds/, and v3ds/, subshells leading to the
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FIG. 10. The same as in Fig. 5 but for spherical hyperheavy nuclei. For simplicity, only single-particle states within approxi-

mately 25 MeV from the bottom of potential are shown.

N = 182 isotope builds density near r ~ 2.5 fm making
neutron density flat in the 2.5 fm < r < 6.5 fm region [see
Fig. 11(0)]. However, the neutron bubble still survives.
Only the occupation of the v4s; /5 subshell, leading to the
N = 184 isotope, eliminates this bubble [see Fig. 11(n)].
Note that proton bubble structures survive in these nuclei
but they become less pronounced [see Fig. 11(c)]. These

neutron density changes somewhat reduce wine bottom
features of the neutron potential but do not eliminate
them completely [see Fig. 11(k)]. The situation is more
drastic for the proton potential in which the occupation
of the neutron 1s;/, subshell significantly reduces wine
bottom features of the potential [see Fig. 11(g)].



Let us consider the latter case of the transition from
N = 182 to N = 184 in detail. This is definitely fully
self-consistent process in which the drastic increase of
the neutron density at and near r = 0 induced by the
occupation of the v4s;/, state [see Fig. 11(o)] leads to
a moderate increase of the proton densities at and near
r = 0 due to isovector nature of nuclear force [see Fig.
11(c)]. This in turn requires the increase of the single-
particle densities of the occupied proton 1sy 5, 251 /2, and
3512 states [which is seen in detailed analysis] that can
be achieved only by the transition from wine bottom to
near flat bottom proton potential [see Fig. 11(g)].

Finally, the transition from the Z = 120 to Z = 126
isotone along the N = 184 line is carried out by occu-
pying the m3ps,o and 73p; /o subshells. This leads to
the flattening of the proton density in the subsurface re-
gion [see Fig. 11(d)] because the major peak of single-
particle density of these proton subshells is located at
Tpeak(s) = 1.8 fm [see Table II and Figs. 6(g) and (m)].
Similar effect is seen in the neutron densities because of
the isovector character of nuclear force [see Fig. 11(p)].
However, the impact of this process on the features of the
proton potential is rather small [see Fig. 11(h)]. In con-
trast, it completely removes wine bottom features from
the neutron potential which becomes flat bottom one [see
Fig. 11(1)].

The cases discussed above reveal that the forma-
tion/suppression of the bubble structure in the densities
of one subsystem (let us call it as A) of the nucleus leads
to a significant enhancement of wine bottle (flat bottom)
features of the potential in another subsystem (let us call
it as B)2. Note that the potentials of the subsystem A are
only moderately affected by this process. Similar features
have been seen earlier in the analysis of the ground state
and excited configurations of the 292120 nucleus (see the
discussion of Fig. 3 in Ref. [22]). The following explana-
tion is in place. Let us consider the case of the formation
of the bubble structure in the densities of the subsystem
A. Tt proceeds by the occupation of the states in the vicin-
ity of the Fermi level and it has only minor impact on the
nucleonic potential of this subsystem. The isovector in-
teraction tries to keep proton and neutron densities alike.
For a fixed number of the particles in the subsystem B,
the formation of the bubble structure in its densities can
be achieved only by a significant enhancement of wine
bottom features of its potential.

VI. ADDITIVITY RULE FOR DENSITIES

The addition or removal of particle(s) to the nucle-
onic configuration modifies the total physical observables.
But it also creates the polarization effects on the physical
properties (both in time-even and time-odd channels) of

2 If A=proton then B=neutron and vise versa.
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TABLE II. The occupation of neutron/proton single-particle
subshells in Fig. 11 for fixed proton (neutron) particle num-
bers Zfix(Nyiz) on going from the nucleus with N;n(Z;n) to
the nucleus with Nyin(Zfin). The sequence of the states is
defined by the general trends of the evolution of the single-
particles structure with proton and neutron numbers (see Fig.
1 in Ref. [36] for 2°®Pb and Fig. 5 in the present paper for su-
perheavy nuclei). The approximate positions of the peaks of
the single-particle density of these states are shown in the last
column. They are taken from Fig. 6. Note that the number
of peaks is equal to the principal quantum number n. The
states of the spin-orbit doublets emerging from the low-I sub-
shells (such as the (v3ds/2, ¥3d3/2) states) are characterized
by relatively small energy splitting (see Fig. 5), very similar
single-particle densities (see Fig. 6) and relatively moderate
number of particles which can occupy them. Thus, for sim-
plicity, such states are occupied together in Fig. 11.

Nin(Zin) orbital Nfin(Zfin)| peak(s) [fm]
1 2 3 4
Ztin = 82
126 vliyi 138 6.2
138 V249 /2 148 4.4 and 8
148 V1j15/2 164 6.8
164 v2g7/2 172 4.3 and 8
Nyip =172
82 7T1h9/2 92 5.7
92 mliig)o 106 6.5
106 |72fr/0 + 72f52| 120 3.8 and 7.4
Ztin = 120
172 v3ds /o +v3dz/2 182 2.5, 5.8 and 8.5
182 v4s1/2 184 0
Nyiw = 184

120 [7r3p3/2 + 7r3p1/2[ 126 [1.8, 5.0, and 8.0

initial configuration. The comparison of relative proper-
ties of two configurations can shed important light both
on the impact of the added/removed particle(s) in spe-
cific orbital(s) on physical observable of interest and on
the related polarization effects. In this context the ad-
ditivity rule of physical observables plays an extremely
important role since it allows to verify whether the inde-
pendent particle motion is realized in finite nuclei [39, 40].
This rule states that physical observable O in the con-
figuration B can be approximated as a sum of physical
observable O4 in reference configuration A and single-
particle contributions o; of the states by which the con-
figurations A and B differ

O(B) = O(A) + Z 0; (9)

The additivity rule was successfully tested for the effec-
tive alignments and relative quadrupole moments of the
superdeformed rotational bands in unpaired regime (see
Refs. [39, 41-43]). This justifies the use of an extreme
single-particle model in an unpaired regime typical of
high angular momentum. Note that the basic idea be-
hind the additivity rule for one-body operators is rooted
in the independent particle model [39-41].
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FIG. 13. The same as in Fig. 12 but for the light nuclei.
Black line shows self-consistent proton densities of >*Si. Red
dashed line displays proton densities of this nucleus obtained
by means of the additivity rule from the self-consistent den-
sities of the 3°S nucleus.

The additivity rule for densities is used here in order
to verify whether the formation of the bubbles in the
nuclei is predominantly due to single-particle degrees of
freedom. This additivity rule is given as

pEr) = pir) =Ygy alr) (10)

Here, reference nucleus A (either 310126 or 36S) is charac-
terized by flat bottom potentials while that in compared
nucleus B (either 292120 or 31Si) by wine bottle poten-
tial(s). Single-particle density contributions p%, ,(r) of
the single-particle states by which nuclei A and B differ
are defined in the reference nucleus A.

The application of additivity rule is demonstrated in
Figs. 12 and 13. One can see that starting from proton
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and neutron self-consistent densities p;l,(r) and respec-
tive single-particle densities p%, 4 (r) in the #0126 nu-
cleus, the additivity rule reasonably well predicts proton
and neutron densities in the 292120 nucleus (see Fig. 12).
The same is true for proton densities in the pair of the
nuclei 34Si and 36S. Note that the level of the deviation
of the densities obtained via additivity rule from self-
consistent ones in similar in both pairs of nuclei. This
is due to the similarity of the relative change in total
particle numbers between nuclei B and A in both pairs
(5.9% in the 34Si/36S pair and 6.2% in the 292120/310126
pair). Note that above discussed relative change in total
particle number is comparable with the upper limit used
in the analysis of additivity rule for relative quadrupole
moments and effective alignments in Refs. [39, 42, 43].

These results strongly point to the same mechanism of
the formation of central depression of density distribution
which is related to the single-particle degrees of freedom.
In addition, in contrast to the results of Ref. [23] they
suggest that electrostatic repulsion does not play a dom-
inant role in the formation of bubble superheavy nuclei.

Note that the addition or removal of particle(s) to the
nucleonic configuration modifies via the polarization ef-
fects the total and single-particle radii (see Refs. [36, 44]).
For example, subsequent addition of neutrons leads to
an increase of total charge radii [36, 44, 45] and pro-
ton single-particle radii [46] in the Pb isotopic chain.
These polarization effects are minimized in the consid-
ered pairs of the nuclei. This is because the rms radii
of proton/neutron matter distributions are very similar
in compared nuclei (see Table I). It is reasonable to ex-
pect that with the increase of the difference of these radii
in the pairs of nuclei under comparison the accuracy of
the additivity principle for the single-particle densities
will somewhat decrease. This is because the polarization
effects will lead to a larger difference of the rms radii
of proton and neutron singe-particle states in compared
nuclei.

VII. GENERAL OBSERVATIONS

In order to better understand the origin of the cen-
tral depressions in density distributions let us consider
the contributions of different groups of the single-particle
states with given orbital angular momentum [ to the to-
tal neutron and proton densities. They are shown in Fig.
14 for selected set of spherical nuclei across the nuclear
chart. These nuclei include a very light 34Si nucleus, dou-
bly magic 2°8Pb nucleus, superheavy 292120 and 3'°126
nuclei and hyperheavy 456156 and 592186 nuclei (located
in the centers of potential islands of stability of spherical
hyperheavy nuclei (see Refs. [26, 27]). The analysis of
this figure leads to several important conclusions.

First, let us consider the average density p?"¢ in the
respective i-th subsystem for radial coordinate below the
one at which the surface density reaches its maximum

value. Neutron average density p"¢ is located near sat-
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uration density p5%* ~ 0.08 fm=3 for all these nuclei.
Although there is some trend of the decrease of this den-
sity with increasing proton number Z, it is significantly
less pronounced than the one for proton average den-
sities p%”¢. The neutron average density tries to satu-
rate at p5 ~ 0.08 fm~> and this forces proton subsys-
tem to expand and follow the radial pattern of neutron
density distribution. Because of the imbalance between
proton and neutron numbers this can be achieved only
by reducing overall proton density down to pS* = 0.06
fm~3 in the 2°%Pb, 292120 and >'°126 nuclei and down
to p5¢ a~ 0.04 fm~3 in very neutron-rich hyperheavy
466156 and °°2186 nuclei. Similar features are seen in

the nuclei of the isotopic chains with Z = 82,106, 120
and 126 (see Fig. 2 in Ref. [22]) and in global survey
of Ref. [24]: neutron average densities stay close to the
P59t 2 0.08 fm~2 while average proton densities decrease
with increasing neutron number. These observations (in
particular, the saturation of neutron density p%’¢ near
P35t ~ 0.08 fm~3) suggest that overall behavior of nu-
clear system is predominantly defined by nuclear forces
and not by the Coulomb interaction.

Second, the proton and neutron densities in the center
of the nucleus, in its central and surface regions depend
sensitively on the availability for occupation of the single-
particle states with respective radial properties. The den-



sities at » = 0 are built almost entirely by the s states.
However, with increasing particle numbers additional s
states are not always available (see, for example, Fig. 5
in the present paper and Figs. 5 and 8 in Ref. [26]).
The most striking example is the proton subsystem in
which only six s states are available for occupation in
the ground states of the nuclei with Z > 82 (see Figs.
14(e), (), (j), (k), and (1)). Indeed, the transition from
the 2°8Pb nucleus to 592186 one (which is equivalent to an
addition of 104 protons to the 2°*Pb nucleus) does not
provide any additional s state. As a consequence, the
density at r = 0 falls down from 0.07 fm~2 in the 2°®Pb
nucleus to 0.02 fm =2 in the 592186 nucleus [compare Figs.
14(e) and (1)]. The same features are also seen in neutron
subsystem: the transition from the 2°8Pb nucleus to the
292120 one [both of them have six occupied s states, see
Figs. 14(b) and (c)] and from the 319126 nucleus to 466156
one [both of them have eight occupied s states, see Figs.
14(g) and (h)] do not bring additional occupation of the
s states which results in the reduction of the density at
r=0.
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FIG. 15. Single-particle densities p;” of the s states occupied
in the bubble nuclei ranging from linght 3*Si up to hyperheavy
nuclei.

This significant reduction of the density at the center
of super- and hyperheavy nuclei is also facilitated by two
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factors which affect the magnitude of the single-particle
density of the s states at » = 0. The first factor is the
presence of classically forbidden regions in the nucleonic
potentials which leads to a decrease of the density of the
1512 and 2s; /5 states at r = 0 [see Figs. 15(a), (b), (d),
and (e)]. This decrease is especially drastic in the 292120,
466156 and 592186 nuclei and for the 1s1 o states. For ex-
ample, the density at the center of the proton subsystem
of the 22186 nucleus is built only by the 3512 and 2sy /9
states and the contribution of the 1s;/, state is almost
zero. Note that the 77% of the total proton density at
r = 0 is built by only two 3s;/, protons. Another fac-
tor is the stretching out the radial profile of the density
distribution of a given single-particle state with increas-
ing proton number or mass of the nucleus (see Fig. 15).
It leads to the decrease of the density of the s states at
r = 0 because of the normalization condition of Eq. (8).

Third, the densities in the central 0 < r < 2 fm regions
of proton and neutron subsystems are built by the occu-
pation of the s, p and d states in all nuclei under study
(see Fig. 14). Again the availability of such states for
occupation plays a critical role. For example, the num-
ber of occupied proton s, p and d states is 6, 18 and 20,
respectively, in the 292120, 310126, 456156 and ®°2186 nu-
clei [see Figs. 14(f), (j), (k) and (1)]. As a consequence,
the process of the increase of the radius of the nucleus
with increasing Z (see Table I) leads to a reduction of
the proton density in the central region with increasing
Z. A similar example is seen in the neutron subsystem
of the 2°%Pb and 22120 nuclei in which the number of
occupied s, p and d states is exactly the same (6, 18 and
20, respectively) [see Figs. 14(b) and (c)]. Again the in-
crease of mass number triggers the reduction of neutron
density in the central region.

Fourth, the densities at higher radial coordinate r and
in the surface and near-surface regions are built predom-
inantly by the groups of medium and high-/ orbitals, re-
spectively (see Figs. 6 and 14). However, the attribution
of the orbitals to these two groups depends on the nu-
cleus and in many cases it is not unique. This is because
the contribution of the groups of the orbitals with spe-
cific orbital angular momentum [ to the nucleonic density
stretches over considerable range of radial coordinate (see
Fig. 14). In addition, the groups of the states with fixed
[ are built from a number of the subshells with different
principal quantum numbers n which differ significantly
in the nodal structure of density distribution (the num-
ber of the peaks of single-particle density is equal to n)
and in the localization of density in radial coordinate (see
Fig. 6).

The nucleonic density profiles in these regions depend
also on the availability of specific groups of the orbitals
for occupation. To illustrate that let us compare the pro-
ton densities of the 466156 and 592186 nuclei [see Figs.
14(k) and (1)]. The number of the s, p, d and f states
building the density in the r < 3.0 fm region is the same
in both nuclei. However, the transition from the 466156
nucleus to the 592186 one leads to the increase of mass



number which triggers the increase of the size of nucleus
(see Table I) and as a consequence the lowering of the
density in the 7 < 3.0 fm region of the **2186 nucleus as
compared with the 466156 one. This transition is also as-
sociated with the addition of eight g, eight ¢ and fourteen
j protons to the proton subsystem of the 466156 nucleus:
these orbitals build density mostly in near-surface and
surface regions of the ®*2186 nucleus [see Fig. 14(1)]. How-
ever, the maximum density at the surface of the latter nu-
cleus is smaller than that in the former one because of the
increase of the size of proton subsystem [compare Figs.
14(k) and (1)]. As a consequence of these self-consistent
processes, the proton depletion factor Fj. (see definition
in Eq. (11) below) of the *2186 nucleus is significantly
larger than that of the 66156 one (see Table III). Inter-
estingly enough the neutron depletion factor F,, shows
opposite trend (see Table IIT) and this is predominantly
due to occupation of two additional s neutrons leading to
an increase of the density at = 0 in the 592186 nucleus
as compared with the 466156 one [see Figs. 14(k) and (1)].

VIII. BUBBLE INDICATORS AND THEIR

PHYSICAL CONTENT

TABLE III. Depletion factor F; for proton and neutron sub-
systems obtained in the calculations for indicated nuclei.

Nuclei| Fr (%) |F, (%)

3G | 34.8 0

363 0 0

OCa 0 0
208py, 0 8.2

292190| 27.7 | 34.0
310196| 16.7 0

466156| 36.3 | 204
592186| 53.8 | 16.0

Two measures of the central depression in nucleonic
densities are used in the literature. The first one called
as depletion factor F' is defined by [10, 47]

F = Pmax — Pc (11)
Pmaz

where p. and ppq. represent the central (r = 0) and
maximum densities, respectively. This is the simplest
measure and numerical values of F' for the nuclei of in-
terest are shown in Table III. More complicated measure
of central depression has been introduced in Ref. [23] and
it is defined as

ﬁt,c — Pt,av — Pt,c (12)
pt,av

where t = (m,v), pc is the density at the center of respec-
tive subsystem and p; 4, = Ni/(4/37R3) is the average
density of the nucleus assuming a constant density up to
diffraction radius Ry [48]. The authors of Ref. [23] use
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this radius instead of rms radius since it is not affected
by surface thickness.

TABLE IV. Depletion factors F; for proton and neutron sub-
systems obtained in the calculations for indicated N = Z
nuclei.

Nuclei| Fr (%) |F, (%)
56N 0 0

100gy | 24.31 | 21.84
164pp | 0 0

240190| 26.12 | 20.88
2521926| 15.91 | 17.39
312156| 34.45 | 28.23
372186 | 58.25 | 51.36

Both indicators are strongly affected by the single-
particle degrees of freedom. For example, p. in both
definitions is determined almost entirely by the s states
and their availability for occupation across the nuclear
chart. Second ingredient entering into Eqgs. (11) and (12)
is also not free from single-particle degrees of freedom.
Let us first consider depletion factor F. In the cases
when the density in center is larger than the one at the
surface [see Figs. 1(a), (b), (c) and (f)] then pmaz = pe
and F' = 0 (see Table III). In other cases, ppmq, is de-
fined by the single-particle states which build maximum
density in the region near the surface [see Figs. 1(a), (d),
(e), (f), (g) and (h), Fig. 14 and discussion of the second
part of Sec. VII]. p; 4y used in Eq. (12) also depends
on the underlying single-particle structure and availabil-
ity of the single-particle states for occupation despite the
fact that it averages densities up to diffraction radius Ry.
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FIG. 16. Proton and neutron densities of selected N = Z
nuclei.

These facts strongly suggest that both indicators can-
not be reliable measures of bulk properties (such as those
related to the Coulomb interaction). This is especially



true because in wine bottle nucleonic potentials the den-
sities of the s states, their magnitudes at » = 0 and
their radial profiles, are affected strongly by classically
forbidden regions of the potentials (see Secs. IV and VII).
Thus, the conclusions of Ref. [23] that the central depres-
sion in superheavy nuclei is firmly driven by the electro-
static repulsion should be treated with extreme caution
since they are based on the bubble indicator of Eq. (12).

201 SN
O 3

Nucleonic V+S potential [MeV]

80T
0246 81012
Radius r [fm]
FIG. 17. Proton (solid lines) and neutron (dashed lines) nu-
cleonic potentials in indicated N = Z nuclei. Horizontal solid

and dashed lines show proton and neutron Fermi levels, re-
spectively.

In nuclei the protons feel combined nuclear and
Coulomb potentials which lead to proton single-particle
states with specific density distributions over radial co-
ordinate. In addition, there is a nuclear interaction be-
tween protons and neutrons which further complicates
the situation. As a consequence, there is no straightfor-
ward procedure of the separation of nuclear and Coulomb
interaction effects on the central depression in density
distributions. On the other hand, in the light of the con-
clusions of Ref. [23] it is important to estimate possible
magnitude of the Coulomb interaction effects on these de-
pressions. From out point of view, the only possible way
to get that is by comparing proton and neutron depres-
sions in symmetric N = Z nuclei with the same nucleonic
configurations in proton and neutron subsystems.

Proton and neutron densities of selected set of the nu-
clei are shown in Fig. 16. Most of these nuclei belong to
isotopic chains discussed above, but we also added %°Ni
and 19°Sn3. One can see in Fig. 16 that in a given nu-
cleus the proton densities closely follow the radial profiles

3 The majority of these nuclei are proton unbound (see Fig. 17)
and there is no local minimum at spherical shape in deforma-
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of the neutron densities but with somewhat reduced ab-
solute magnitudes. This is due to the fact that Coulomb
interaction (by means of electrostatic repulsion) some-
what increases the radius of the proton density as com-
pared with the neutron one. This corresponds to transfer
of protons from sub-surface region into surface one.

The resulting depletion factors F; are shown in Ta-
ble IV. One can see that on average they are larger
in the proton subsystem as compared with the neutron
one by only approximately 20%. This suggests that the
Coulomb interaction plays only a secondary role in the
formation of the depletions in the central density dis-
tribution. It is interesting that the depletion factors
are similar in the medium mass '°°Sn and superheavy
240120 nuclei. This again supports the notion that single-
particle degrees of freedom are dominant in creation of
the bubbles and Coulomb interaction plays only a sec-
ondary role.

IX. THE FACTORS AFFECTING THE
AVAILABILITY OF THE LOW-[ STATES FOR
OCCUPATION

The densities of the occupied single-particle states rep-
resent the basic building blocks of the total densities. To
build a flat density distribution one should have a bal-
anced combination of the occupied states which build the
density in the center of the nuclei and in their middle and
surface parts. However, the question of whether such a
balanced combination of single-particle states is available
for occupation in super- and hyperheavy nuclei has not
even been raised so far in the literature.
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FIG. 18. Proton (solid lines) and neutron (dashed lines) den-
sities of indicated nuclei.

tion energy curves of hyperheavy nuclei. The lowest in energy
solutions of the hyperheavy 312156 and 372186 nuclei in the axial
RHB calculations correspond to toroidal shapes. Thus, spherical
solutions in these two hyperheavy nuclei are used here as theo-
retical benchmarks for the investigation of the impact of single-
particle degrees of freedom and Coulomb interaction on the for-
mation/suppression of the bubble structures in hyperheavy nu-
clei.



A specific feature of a realistic nuclear potential is the
fact that within a shell with a given principal quantum
number N the states with highest possible orbital angular
momentum [ are the lowest in energy while those with
lowest [ (such as the s states in even-N shells and the p
states in odd-N shells) are typically located at the highest
or near highest energies in the shell (see, for example, Fig.
6.3 in Ref. [1]). Thus, with the filling of a specific N shell
the density is first built at the surface, then in the middle
part of the nucleus and only then in the central region
and at r = 0.

The detailed analysis of the occupation of different
groups of the (IV,1) states in the 592186 nucleus reveals
that only high-l subshells are occupied in the high-N
shells (see Table V). Let us consider proton subsystem.
All N = 5 states are occupied in it (see Table V). How-
ever, only [ = 6 and [ = 4 states are occupied in the
N = 6 shell and only [ = 7 states in the N = 7 shell*
(see Table V). This imbalance between the occupation
of the high-l and low-l subshells is definitely responsible
for a preferential buildup of the density in the surface
region and as a consequence of the formation of pro-
nounced bubble in this nucleus [see Fig. 18(b)]. This
feature becomes even more pronounced for symmetric
N = Z 372186 nucleus which has the same nucleonic con-
figurations in proton and neutron subsystems [see Fig.
18(b)].

Let us consider how the neutron system of the *92186
nucleus is built from the one in the 372186 nucleus. The
former nucleus has 220 extra neutrons which according
to the Table V are placed into the s states (4 neutrons),
p states (6 neutrons), d states (20 neutrons) and the rest
into higher [ states. The presence of these low-I states
allows to increase the density in the central region and
to build significantly flatter neutron density distribution
(compare dashed red curves for the 372186 and ®°?186 nu-
clei in Fig. 18(b)]). Detailed analysis reveals that similar
features are also active in the Z = 156 isotopes (see Fig.
18(a)]).

These two examples clearly indicate that although the
effects of the Coulomb interaction are increased in hyper-
heavy nuclei as compared with lighter ones they alone
cannot explain the density profiles seen in Fig. 18. It
turns out that the unavailability of the low-I states for
occupation plays an extremely important role in the for-
mation of the bubble structures in such nuclei.

It is important to evaluate which factors affect the
availability of the low-I single-particle states for occu-
pation. Since earlier studies it became clear that the
bubble can have a profound impact on relative energies
of the low- and high-/ states. For example, it was shown
in Ref. [7] (see discussion of Figs. 30 and 31 in this paper)

4 Similar pattern of the occupation is seen in the neutron subsys-
tem in which the last fully occupied shell has N = 8. Only l =9
and [ = 7 subshells are occupied in the N = 9 shell and only
I = 10 subshell in the N = 10 shell (see Table V).
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within schematic shell model approach that low-{ (high-1)
states rise in energy (go down in energy) with increasing
inner bubble radius R;. However, this approach is un-
realistic since it assumes zero density inside the bubble
for » < Ry. Such a scenario is not realized in the nuclei
under study and thus the effect of the bubble is sub-
stantially overestimated in Ref. [7]. Similar effect (see
Fig. 8 in Ref. [8]) is seen also in the calculations of Ref.
[8] in a phenomenological shell approach which allows
partial filling of the hole. Non-relativistic Hartree-Fock
calculations of the 2°°Hg nucleus show that for realistic
shapes of the bubble the effect is significantly smaller:
only the s states rise in energy by a few MeV with in-
creasing of the bubble size while the energies of other
states remains almost constant (see Fig. 4 in Ref. [5]).
The Hartree-Fock-Bogoliubov calculations with the D1S
force also show that the energies of low-I states (high-l)
states rapidly rise (gradually decrease) in energy with the
increase of the size of the bubble (see Figs. 18 and 19 in
Ref. [21]).

All these results suggest that in some situations the
presence of the bubble in the density can lead to unavail-
ability of the low-[ states for occupation at given particle
number as compared with the case of flat density distri-
bution in the subsurface region of nucleus. One should
keep in mind that constraining bubble potential F(r) is
usually added to hamiltonian H in order to evaluate the
evolution of single-particle levels with bubble size/shape
by minimization of H + AF(r) (see, for example, Refs.
[5, 21]). Here X is bubble parameter. Unfortunately, the
same shape of the bubble is assumed for proton and neu-
tron subsystems in the calculations of Refs. [5, 7, 8, 21]
and this contradicts to calculated total densities seen in
Figs. 1, 2 and 18. Note that the bubbles are different in
proton and neutron subsystems even in the N = Z nuclei
(see Fig. 16). In addition, the results of the calculations
depend on the assumption about the form on F(r).

Thus, the results of the calculations discussed above
should be taken with some grain of salt and alternative
methods of the analysis of the impact of the bubble on
the single-particle structure should be considered. The
comparison of the single-particle spectra in the pair of the
nuclei with and without bubble structures provide such
an alternative. The best example of such a comparison is
provided by the pair of the 292120 and 31126 nuclei (see
Fig. 19) since these two nuclei have very similar rms radii
of proton and neutron matter distributions (see Table I).

The sequence of the proton states from the vicinity of
the Fermi level up to the top of the Coulomb potential
in the flat density nucleus 310126 is 2152, 3p3/2, 3p1/2,
12'11/2, 1j15/27 299/27 297/27 3d5/27 3d3/27 451/2, 13'13/2’
1k‘17/2, 2}111/27 2h9/2 and 3f7/2 (see Flg 19(b)) Almost
the same sequence with a pair of exceptions discussed
below are seen in the proton subsystem of the bubble
nucleus 292120 (see Fig. 19(a)). The energies of the [ > 2
proton states are typically located within 1 MeV in both
nuclei. So the bubble does not produce a significant im-
pact on their energies. On the contrary, it has a more
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TABLE V. The single-particle states of given principal quantum number N and orbital angular momentum [ in the hyperheavy
592186 nucleus. This nucleus has 186 protons and 406 neutrons. The particle numbers are given in the format npos/Poce/Moce.
Npos (in bold) is total number of the states with given values of N, in spherical harmonic oscillator potential. pocc and noce
display the number of the occupied states with given values of N, in the proton and neutron subsystems of the 92186 nucleus,

respectively.

NN| 0 1 2 3 4 6 7 8 9 10
0 [2/2/2 2/2/2 2/2/2 2/0/2 2/0/2 2/0/0
1 6/6/6 6/6/6 6/6/6 6/0/6 6/0/0
2 10/10/10 10/10/10 10/0/10 10/0/10 10/0/0
3 14/14/14 14/14/14 14/0/14 14/0/0
4 18/18/18 18/18/18 18/0/18 18/0/0
5 22/22/22 22/0/22 22/0/0
6 26/26/26 26/0/26 26/0/0
7 30/30/30 30/0/16
8 34/0/34 34/0/0
9 38/0/38
10 42/0/22

Total|2/2/2|6/6/6(12/12/12]20/20/20|30/30/30/[42/42/42|56/44/56|72/30/72{90/0/90|110/0/54|132/0/22

pronounced impact on the energies of the low-I s and p
states: it moves them from below their high-l neighbours
(Li11/2 and 1j;3/9, respectively) in flat density *'°126 nu-
cleus to above them in bubble nucleus 292120 [compare
Figs. 19(a) and (b)]. It is interesting that the effect of the
bubble is less pronounced in the neutron subsystem: the
sequence of the states is the same in both nuclei [com-
pare Figs. 19(c) and (d)]. This is due to the fact that
wine bottle potential is less pronounced in the neutron
subsystem of the 272120 nucleus than in the proton one
[compare Figs. 5(a) and (c)]. In contrast, the bubble is
more pronounced in neutron densities (see Fig. 2). Thus,
one can conclude that these are the modifications in the
potentials (and not in densities) which govern the behav-
ior of the single-particle states.

Although the presence of the bubble somewhat in-
creases the energies of the s and p states in the proton
subsystem and affects the availability of these states for
occupation as a function of proton number, this effect in
superheavy nuclei is not that drastic. It will only shift in
proton number the position in the (Z, N) plane at which
bubble structures are either enhanced or suppressed.

Such kind of comparison as the one discussed above
for the 292120/310126 pair of superheavy nuclei is not
feasible for hyperheavy nuclei. This is because it is im-
possible to find a pair of hyperheavy nuclei with and
without bubble structures located close enough in nu-
clear chart so that their sizes are comparable. However,
it is still interesting to see how the formation or suppres-
sion of the bubble structures affects the single-particle
structure. For that we compare single-particle structures
of the N = Z 372186 and °°2186 nuclei. Both nuclei have
the same proton configuration. However, the latter nu-
cleus is created from the former one by the addition of
the 220 neutrons including four s neutrons, six p neu-
trons and twenty d neutrons (compare Figs. 14(i) and
(1) and see Fig. 20) which leads to a substantial/some
suppression of the bubble structure in neutron/proton

subsystems (see Fig. 18(b) and compare Tables IV and
III).

Neutron single-particle energies of these two nuclei are
compared in Fig. 20. The sequence of the states is basi-
cally the same in both nuclei with the exception of the
fact that the order of the states is inverted in the spin-
orbit doublets built on the low-l orbitals. The neutron
spectra are more compressed in the 592186 nucleus as
compared with the 372186 one: this is due to larger radii
of the neutron density and potential in the former nu-
cleus. In the proton subsystem, there are some changes
in the sequence of the single-particle states in two nu-
clei under study. It is caused by a substantial reduction
of the spin-orbit splitting of the high-j orbitals (such as
1i13/2 and 1i11/2 or 1j15/2 and 1j13/2, see Flg 21) on
transition from N = 186 to N = 406 Z = 186 isotope.
Similar effect is also seen in the neutron subsystem but
it does not affect the sequence of the states in two nuclei
under study (see Fig. 20).

These figures also illustrate the relative rarity of the
s states in hyperheavy nuclei. For example, the neutron
3512, 45172 and 5s;/ states in the 592186 nucleus are
located at the energies ~ —28.5 MeV, ~ —14 MeV and
~ 2.5 MeV, respectively (see the right column of Fig. 20).
Thus, starting from the system with occupied 3s; /o state
one should add 108 neutrons to occupy the 4s;,, state
and starting from the system with occupied 4s; /5 state
one should add 142 neutrons to occupy the 5s /5 state.
This rough estimate is obtained under the assumption
that the occupation of the states does not change the
sequence of the states shown in the right column of Fig.
20. Similar estimates could be obtained from the analysis
of the proton single-particle states shown in the right
column of Fig. 21.

This analysis suggests that similar to superheavy nu-
clei, the availability (as a function of particle number)
of the low-{ (in particular, the s states) states for occu-
pation is not that drastically affected by the transition
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FIG. 19. The same as in Fig. 5 but for the single-proton states located between the Fermi level and the top of the Coulomb
barrier and for the neutron single-particle states located below continuum threshold. The energy range on vertical axis is the

same in all panels.

from flat to bubble density distributions in hyperheavy
992186 and 272186 nuclei. It will only somewhat shift in
proton and neutron numbers the position in the (Z, N)
plane at which bubble structures are either enhanced or
suppressed.

It is well known that the spin-orbit interaction is mod-

ified in bubble nuclei (see Refs. [6, 8, 9, 11, 21]). The
spin-orbit potential in the CDFT is given by [32]
m
Meff
where m is the mass of nucleon and m.ysy is its effective
mass. This potential in the case of spherical symmetry

Vis = (V-5), (13)



produces a spin-orbit term of the following form [32]

1 10 =
Vso= 2 (T&Ws(r)> l-5. (14)
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FIG. 20. Neutron single-particle states in indicated nuclei.
Red and green horizontal lines correspond to occupied and
unoccupied states, respectively. Solid and dashed black lines
are used to connect/indicate the states of positive and nega-
tive parities, respectively.

As a consequence, the spin-orbit splitting of the (I &+
1/2) states in the spin-orbit doublet with orbital angular
momentum [ depends on the derivative of the difference
of vector and scalar potentials (V' —S). These differences
for the nuclei under study are shown in Fig. 22. They
range from ~ 1000 MeV in the center of the 3¢S nucleus to
~ 450 MeV in the center of the °°2186 nucleus. However,
for most of the nuclei the (V —S) values are in the vicinity
of 600 — 700 MeV in the subsurface.

In the nuclei with flat density distributions such as
208ph and 319126, the (V — S) potential is almost flat in
the subsurface region. Thus, this part of the nucleus con-
tributes only marginally to the spin-orbit splittings which
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FIG. 21. The same as in Fig. 20 but for the proton single-
particle states. Note that in order to make a comparison
easier the states of the 32186 nucleus are shifted down by 19
MeV. Only the states below the top of the Coulomb barrier
are shown in both nuclei.

are almost entirely defined by the decrease of the (V —.5)
potential in the surface region. In contrast, in the bubble
nuclei the (V' — S) potential increases with increasing r
in the subsurface region. Thus, this region contributes
to the spin-orbit splittings but with the sign opposite to
the one produced in the surface region where the (V —.5)
potential decreases with increasing r. This mechanism is
responsible for the modifications of the spin-orbit split-
tings such as the reduction and/or inversion of spin-orbit
splittings of the low-I spin-orbit doublets in the bubble
nuclei discussed above.



X. POTENTIAL IMPACT OF DEFORMATION
ON THE BALANCE OF THE SINGLE-PARTICLE
AND COULOMB INTERACTION
CONTRIBUTIONS TO THE BUBBLE
STRUCTURES

—
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FIG. 22. Proton and neutron (V —S) potentials for the nuclei
under study.

It is an interesting question on how the balance of
the contributions of the single-particle degrees of free-
dom and Coulomb interaction to the formation of bub-
ble structures changes on the transition from spherical to
deformed nuclei.

The emergence of the deformation has two important
consequences for the single-particle structure. First, the
deformation leads to a more even distribution of the de-
formed single-particle states emerging from the high-j
and low-j spherical subshells as compared with the one
of the single-particle states at spherical shape (see, for
example, the Nilsson diagrams in Figs. 3 and 4 of Ref.
[49] and in Figs. 1-3 of Ref. [50]). Second, the wave
functions of deformed single-particle states contain the
contributions from different spherical j-subshells and the
mixture of such contributions increases with increasing
deformation. Both these factors effectively reduce the
contribution of the single-particle states into the forma-
tion of the bubble structures. Thus, in a given nucleus
the density profile of a deformed solution is flatter than
that of a spherical one (see Fig. 5 in Ref. [22] and Fig.
10 in Ref. [30]).

In contrast, the transition from spherical to deformed
shapes has a relatively small impact on the Coulomb po-
tential. This is illustrated here by the examples of the
254No and 276Cn nuclei the bubble structures in the pro-
ton and neutron densities of which have been studied ear-
lier (see discussion of Fig. 5 in Ref. [22]). The Coulomb
potential in axially deformed nuclei depends on z and
r. Here z is the distance from the center of the nu-

22

cleus along the symmetry axis and r; is the distance in
radial direction. For simplicity, the Coulomb potential
Vgiil in these deformed nuclei is considered as a func-
tion of the distances along (r; = 0) and perpendicular
(z = 0) the symmetry axis (see Fig. 23). For compari-
son, the Coulomb potential V2" (x) of spherical solu-
tion is also presented in this figure. One can see that
Vgiil(z =uxz,ry =0) > Vgﬁfjl(z = 0,7, = z) and the
splitting between these two branches increases with de-
formation but it is rather modest. Note that the average
of these two branches is very close to Véf)zler (z).

As discussed in Sec. III, the impact of the Coulomb
potential on the formation of wine bottle potential and
bubble structures is defined by the difference Vo (z =
0)—Veoui (€ sury), where gy, ¢ is the coordinate in a given
direction at which the density is maximal in near sur-
face region (the point at which the surface region starts).
Red and blue arrows in Fig. 23 indicate the distances
Zsury from the center of the nucleus in the direction
along and perpendicular the symmetry axis, respectively.
Zsyury Of the spherical solution is located approximately
at the middle point between these two arrows. There
are some differences in the values of Vioow and xgyrp of
deformed and spherical solutions. Despite that the im-
pact of the Coulomb interaction on the formation of the
bubble structure in deformed nuclei integrated over the
volume of the nucleus is expected to be close to that of
spherical solution. This is because two factors, namely,
(i) Vgiil(z =z,r; =0) ~ Vg;{l(z =0,r] = 1)~
Véggg;(x) for JZP? 3 fm and (i) V&S (2 = 2,7 = 0) >
Veri(x) > Vil (2 =0,rL =) for & < Tgurf.

These observations have two consequences. First,
with increasing deformation the relative impact of the
Coulomb interaction on the formation of the bubble
structures in deformed nuclei increases since the one due
single-particle degrees of freedom decreases. Second, the
bubble structures in superheavy deformed nuclei are rel-
atively small (see Fig. 5 in Ref. [22], Figs. 6, 7 and 10 in
Ref. [30] and Fig. 2 in Ref. [23]): this is especially true
for the nuclei located far away from double shell closures.
In many cases, they are smaller that those in deformed
light nuclei (see Ref. [16]). Let us ignore the impact of
the single-particle degrees of freedom and attribute the
effect of the bubble creation entirely to the Coulomb in-
teraction. Then the fact that the bubble structures are
either absent or relatively small in deformed superheavy
nuclei allows to conclude that the effect of the Coulomb
interaction on the formation of the bubble structures in
such nuclei is rather modest. This conclusion is expected
to be valid also for spherical superheavy nuclei since the
impact of the Coulomb interaction on the formation of
the bubble structures only weakly depend on the defor-
mation.
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FIG. 23. Coulomb potentials in deformed ground state and
excited spherical solution of the 2**No and 27°Cn nuclei ob-
tained in the RHB calculations. They are shown as a function
of radial coordinate for spherical shape (solid black line) and
as a function of distance along (red dod-dashed line) and per-
pendicular (blue dashed line) the symmetry axis for deformed
shape. Equilibrium deformations of deformed states are in-
dicated. The density profiles of these nuclei (not shown) are
very similar to those displayed in Fig. 5 of Ref. [22]. Note
that the results of the calculations without pairing are very
close to those shown in the figure.

XI. CONCLUSIONS

The detailed investigation of microscopic mechanisms
leading to the formation of bubble structures in the nu-
clei with main emphasis on the role of the single-particle
degrees of freedom and Coulomb interaction has been
performed in the framework of covariant density func-
tional theory. Many of existing publications such as Refs.
[21, 23] emphasize dominant role of the Coulomb inter-
action in the creation of the bubble structures in super-
and hyperheavy nuclei. However, our detailed analysis
paints much more complicated picture in which single-
particle degrees of freedom play a significant role which
overshadows the role of the Coulomb interaction in su-
perheavy nuclei. The main results can be summarized as
follows:

e There is a central classically forbidden region at
the bottom of the wine bottle potentials the size
of which depends on the nucleus. The presence of
this region leads to a substantial reduction of the
densities of the 1s; /o states and somewhat smaller
reduction in the densities of the 2s; /o states for ra-
dial coordinate r = 0 and near it as compared with
the case of flat bottom potential. The densities of
the [ =1 and | = 2 states located at the bottom of
the wine bottle potential can also be pushed away
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from r = 0. This represents a new never discussed
before microscopic mechanism of the creation of
bubble structures in nuclei. It is responsible for
a significant reduction of the nucleonic densities at
r = 0 in hyperheavy nuclei.

Microscopic mechanisms of the formation of the
wine bottle nucleonic potentials have been investi-
gated in detail. It was shown that the formation of
the bubble structure in the densities of the subsys-
tem A (proton or neutron) of the nucleus leads to a
significant enhancement of wine bottle features of
the potential in other subsystem B (neutron or pro-
ton). The microscopic origin of this feature lies in
the isovector character of nuclear interaction which
tries to keep proton and neutron densities alike.
The formation of bubble structure in the densities
of the subsystem A with increasing particle num-
ber proceeds by the occupation of the states in the
vicinity of the Fermi level and it has only minor im-
pact on radial profile of the bottom of the nucleonic
potential in this subsystem. For a fixed number of
the particles in the subsystem B, the formation of
the bubble structure in its densities, driven by the
formation of the bubble structures in the subsystem
A, can be achieved only by a significant enhance-
ment of wine bottle features of its potential.

The bubbles in nucleonic total densities also depend
on the availability of low-{ single-particle states for
occupation since their densities represent the basic
building blocks of total densities. However, such
states (in particular, the s states) appear less fre-
quently as compared with medium and high [ states
with increasing principal quantum number N. This
is a typical feature of realistic nucleonic potential:
within a shell with a given principal quantum num-
ber N the states with highest possible orbital an-
gular momentum [ are the lowest in energy while
those with lowest [ (such as the s states in even-INV
shells and the p states in odd-N shells) are typi-
cally located at the highest or near highest ener-
gies in the shell. Thus, with filling of a specific N
shell the density is first built at the surface, then
in the middle part of the nucleus and only then
in the central region and at » = 0. The balanced
distribution of the occupation of low, medium and
high-I states is required for building flat density
distribution. However, this balance is substantially
broken in hyperheavy nuclei and the density is built
predominantly in near surface region by the high-/
states.

Existing bubble indicators [see Egs. (11) and (12)]
are strongly affected by single-particle properties.
In particular, the central density p. is defined al-
most entirely by occupied s states. Thus, they can-
not be reliable measures of bulk properties (such as
a Coulomb interaction). This is especially true for



the nuclei characterized by wine bottle nucleonic
potentials since the densities of the lowest s states
at r = 0 are strongly affected by classically forbid-
den regions of the potentials.

e An additivity rule for the densities has been pro-
posed for the first time. It was verified on the pairs
of the 31Si/36S and 292120/319126 nuclei: the first
nucleus in the pair has bubble structure while sec-
ond one is characterized by flat density distribu-
tions. The additivity rule works with comparable
accuracy in both pairs of the nuclei. This strongly
suggests the same mechanism of the formation of
the central depression in lighter nucleus of the pair
which is related to emptying of specific low-[ singe-
particle orbitals.

e The global evolution of the densities is governed
also by saturation mechanisms. The analysis of the
densities shown in the present paper and in Refs.
[22, 24] clearly reveals that average neutron densi-
ties p2¥¢ in subsurface region of the nuclei try to
stabilize near saturation density psq¢ ~ 0.08 fm—3.
In contrast, average proton densities p%’¢ in sub-
surface region can be significantly below this value
especially in neutron-rich nuclei. This strongly
suggests that Coulomb interaction effects are sec-
ondary to nuclear interaction ones in absolute ma-
jority of the nuclei.

o Self-consistency effects are characterized by a very
complex nature of the impact of the nuclear den-
sities on the nucleonic potentials. For example,
the removal of two protons from 3°S leads to a
creation of bubble structure in proton densities of
34Gi. However, it has a substantially larger im-
pact on neutron potential of 34Si (which becomes
wine bottle one) than on the proton one (which be-
comes flat bottom one). Similar effects have been
seen before in Ref. [22]: particle-hole excitations
in neutron subsystem led to substantial changes in
neutron densities but this process results in larger
changes in the proton potential as compared with
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the neutron one.

One can see in some publications the statements that
the Coulomb interaction is at the origin of the system-
atic deviations from a uniform charge distributions since
the system can lower its (positive) electrostatic energy
by forming bubble structures (see, for example, Refs.
[21, 23]). In extreme, the lowest Coulomb energy would
be reached if all the protons were located in a thin layer
at the nuclear surface. However, in nuclei this trend is
counteracted by the quantum nature of the single-particle
states: only specific single-particle states with specific
density profiles can be occupied with increasing proton
and neutron numbers. In addition, there is a nuclear
interaction between protons and neutrons which further
complicates the situation. The pattern of the saturation
of neutron density at pse; ~ 0.08 fm~ counteracts the
frequent argument that the neutron density follows to a
certain extent the trend produced by the protons as a
result of the strongly attractive neutron—proton interac-
tion. As a consequence, the formation of bubble struc-
tures depends on the competition of several factors and
there is no simple indicator which would clearly allow
to separate nuclear and Coulomb interaction effects on
the central depression in density distributions. However,
our detailed analysis of different aspects of bubble physics
strongly suggests that the formation of bubble structures
in superheavy nuclei is dominated by single-particle ef-
fects. This is in contrast to the conclusions of Ref. [23]
that the central depression in superheavy nuclei is firmly
driven by the electrostatic repulsion. The role of the
Coulomb interaction increases in hyperheavy nuclei but
even for such systems we do not find strong arguments
that the formation of bubble structures is dominated by
the Coulomb interaction.
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