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We simulate the excited states of the Lipkin model using the recently proposed Quantum Equation
of Motion (qEOM) method. The qEOM generalizes the EOM on classical computers and gives access

to collective excitations based on quasi-boson operators Ô†n(α) of increasing configuration complexity
α. We show, in particular, that the accuracy strongly depends on the fermion to qubit encoding.
Standard encoding leads to large errors, but the use of symmetries and the Gray code reduces the
quantum resources and improves significantly the results on current noisy quantum devices. With
this encoding scheme, we use IBM quantum machines to compute the energy spectrum for a system
of N = 2, 3 and 4 particles, and compare the accuracy against the exact solution. We found that
the results of the approach with α = 2, an analog of the second random phase approximation
(SRPA), are, in principle, more accurate than with α = 1, which corresponds to the random phase
approximation (RPA), but the SRPA is more amenable to noise for large coupling strengths. Thus,
the proposed scheme shows potential for achieving higher spectroscopic accuracy by implementations
with higher configuration complexity, if a proper error mitigation method is applied.
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I. INTRODUCTION

The advent of the digital revolution has brought about
a diverse hierarchy of numerical methods for the quan-
tum many-body problem including the mean field the-
ory (MFT) and density functional theory (DFT) [1, 2],
quantum Monte Carlo (QMC) algorithms [3, 4], machine
learning methods [5], and others [6, 7]. Whilst these
methods have significantly advanced our capabilities to
find approximate solutions to the quantum many-body
problem, they are all fundamentally limited by the use
of classical computers that cannot efficiently simulate
quantum physics [8]. Simulating many-body dynamics
on quantum computers, which has been proposed over
forty years ago to overcome the impediment faced by
simulations on classical computers [9], has gained recent
attention due to improvements in experimental quan-
tum information processing. Furthermore, simulating
nuclear physics on a quantum computer is an emerging
area of research addressing both static and dynamic nu-
clear properties [10]. Examples of the former approach,
which are based on the Variational Quantum Eigensolver
(VQE), include computing the binding energy of light nu-
clei [11, 12] and simulation of lattice models [13]. Exam-
ples of the latter approach include a quantum algorithm
for the linear response theory [14], the time-evolution
of a nuclear many-body system [15–17], and simulation
of non-Abelian gauge theories with optical lattices [18].
Other efforts in the field address efficient state prepara-
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tion schemes [17, 19] and analysis of nuclear structure
using entanglement [20].

Modern nuclear experiments provide high-resolution
data in the keV range [21], while for theoretical calcu-
lations [22] it is still challenging to reproduce excitation
spectra of medium-mass and heavy nuclei with the accu-
racy of ≈ 100 keV (which is ≈ 10% of the atomic nuclear
energy scale). Although many approximation techniques
that go beyond the MFT and Random Phase Approxima-
tion (RPA) have been developed in the last few decades,
we still do not have a unified method that achieves spec-
troscopic accuracy for such nuclear systems. Meanwhile,
very accurate nuclear structure input is needed by the
applications at the frontiers of nuclear research, such as
the astrophysical simulations of kilonova [23] and su-
pernova [24] as well as the searches beyond the stan-
dard model in the nuclear domain [25, 26]. We note
from quantum chemistry calculations on classical com-
puters, that chemical accuracy (i.e, the errors less than 1
kcal/mol=0.043 eV which are ≈ 1% of the probed energy
scale) can be achieved using the canonical coupled cluster
(CC) expansion truncated at the second order in the elec-
tronic excitation operator and including an approximate
treatment of the triple excitations CCSD(T), where S
stands for single, D for double, and (T) for non-iterative
triple [27, 28]. This indicates that three-particle-three-
hole (3p3h := α = 3) configuration complexity is suffi-
cient for accurate quantum chemistry calculations, which
can be, alternatively to CC, performed within the lin-
ear response theory or the equation of motion technique.
However, nuclear calculations with the same (α = 3) con-
figuration complexity do not always lead to spectroscopi-
cally accurate results [22, 29–35], because the interaction
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between nucleons in nuclei is (i) much stronger and (ii)
only known with limited accuracy.

The most general equation of motion (EOM) frame-
work for the quantum N -body problem requires N cou-
pled EOMs or, equivalently, the excitation operators of
complexity α = N for the exact solution, while the
most advanced classical computation of medium-mass
and heavy nuclei (N ≈ 100) hardly reaches the com-
plexity of α = 3. Although the associated accuracy is
quite good compared to the accuracy of RPA and many
of the gross and even fine features of the nuclear spec-
tra can be captured quite reasonably, in many cases this
accuracy is insufficient. Furthermore, there is no firm
criterion for the complexity needed for various nuclear
spectral calculations. Therefore, one of the goals for this
work is to investigate how the configuration complexity
of the many-body states within the EOM framework cor-
relates with the accuracy of the resulting spectra when
simulated on a quantum computer. Since direct large-α
calculations are still prohibitive for classical computing,
it is highly desirable to develop (as an alternative) an
efficient quantum algorithm which can be implemented
on available Noisy Intermediate-Scale Quantum (NISQ)
[36] computers to guide future nuclear structure calcula-
tions with configuration complexity α > 3.

In this work, we eliminate the issue of unknown nuclear
forces by considering a model Hamiltonian with a tunable
two-body interaction. The exactly solvable Hamiltonians
represent an ideal playground for such studies as they of-
fer firm benchmarks of the accuracy of the approximate
methods. Inspired by quantum chemistry simulations on
NISQ computers, we use the recently proposed classical-
quantum algorithm, the Quantum Equation of Motion
(qEOM) [37], which is an extension of VQE for comput-
ing excitation energies. We simulate the excited states
and energies of the Lipkin-Meshkov-Glick (LMG) Hamil-
tonian [38] with configuration complexity α = 1 (analog
of RPA) and α = 2 (second RPA (SRPA)). We run the
qEOM algorithm on IBM quantum computers for LMG
systems with small number of particles N = 2, 3, and
4, and then compare our results with the exact solution,
classical Hartree-Fock and RPA solutions. Part of this
work builds upon the work done in Ref. [39], where
the authors introduced an encoding scheme for the Lip-
kin model and simulated its ground state energy on a
quantum computer for a system of N = 2 particles. We
propose a more efficient encoding scheme and simulate
both ground and excited state energies for systems of up
to N = 4 particles on a quantum computer.

The paper is organized as follows: Section II gives the
background of the Quantum Equation of Motion, the
LMG model, and previously used encoding schemes [39]
for the LMG Hamiltonian. In Section III we present our
new efficient encoding scheme which exploits symmetries
in the Hamiltonian and employs the Gray encoding to
minimize the required quantum resources. The simula-
tion results are shown in Sections IV, and the summary
and outlook are given in Section V.

II. BACKGROUND

A. Quantum Equation of Motion

First proposed by Rowe in 1968 [40], the Equation of
Motion (EOM) is a framework for computing excitation
properties of quantum many-body systems. Given the
many-body ground state |gs〉, we construct an excitation

operator Ô†n that generates all the excited states |n〉 from
the ground-state, such that

Ô†n |gs〉 = |n〉 and Ôn |gs〉 = 0. (1)

The EOM prescription for constructing Ô†n involves four
steps. First, estimate the ground state |gs〉 using a suit-
able approximation like the uncorrelated Hartree-Fock
(HF) or the correlated RPA ground state. Second, ex-

press Ô†n as a linear combination of basis excitation op-
erators with variable expansion coefficients given by

Ô†n =
∑
α

∑
µα

[
Xα
µα(n)K̂α

µα − Y αµα(n)
(
K̂α
µα

)†]
, (2)

where α is the degree of configuration complexity and µα
is the collective index associated with the single-particle
(sp) states. A commonly used basis for the excitation op-
erator is the fermionic particle creation and annihilation

operator, in which we can write K̂1
µ1

= a†iaj′ for α = 1

(RPA) and K̂2
µ2

= a†ia
†
jaj′ai′ for α = 2 (second RPA).

Note that the indices without (with) the prime repre-
sent the particle (hole) states. Third, use Eq. (1) and
the Schrödinger’s equation to get the excitation energy
above the ground state (En0 = En − E0) [41] given by

En0 =
〈
[
Ôn,

[
Ĥ, Ô†n

]]
〉

〈
[
Ôn, Ô

†
n

]
〉

, (3)

where 〈.〉 is a shorthand notation for 〈gs| . |gs〉. Fourth,
take the variation δ(En0) = 0 in the parameter space
spanned by the coefficients of Eq. (2) which leads [37] to
the generalized eigenvalue equation (GEE)(

A B
B∗ A∗

)(
Xn

Y n

)
= En0

(
C D
−D∗ −C∗

)(
Xn

Y n

)
, (4)

where the matrices A,B, C, and D are given by

Aµανβ = 〈
[(
K̂α
µα

)†
,
[
Ĥ, K̂β

νβ

]]
〉 , (5)

Bµανβ = −〈
[(
K̂α
µα

)†
,

[
Ĥ,
(
K̂β
νβ

)†]]
〉 , (6)

Cµανβ = 〈
[(
K̂α
µα

)†
, K̂β

νβ

]
〉 , (7)

Dµανβ = −〈
[(
K̂α
µα

)†
,
(
K̂β
νβ

)†]
〉 . (8)
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As an example, we evaluate the matrices C and D for
excitation configurations with α = 1. First, note that in
the particle-hole (ph) representation, the fermionic anti-
commutation relations are given by

{âµ, â†ν} =

{
0 if µν = ph or hp

δµν if µν = pp or hh

{âµ, âν} = {â†µ, â†ν} = 0

. (9)

The excitation operator in the RPA can be then explicitly
written as

Ô†n =
∑
ij′

[
X

(1)
ij′ (n)a†iaj′ − Y

(1)
ij′ (n)a†j′ai

]
. (10)

Using Eq. (9) we first evaluate the simpler matrix D to
get

Dmi′kj′ = −〈
[
â†i′ âm, â

†
j′ âk

]
〉

= −〈
(
â†i′ âmâ

†
j′ âk − â†j′ âkâ†i′ âm

)
〉

= −〈
(
â†i′ â

†
j′ âkâm − â†i′ â†j′ âkâm

)
〉

= 0.

(11)

A similar calculation can be done for the matrix C and
its commutator yields[

â†i′ âm, â
†
kâj′

]
= â†i′ âmâ

†
kâj′ − â

†
kâj′ â

†
i′ âm

= â†i′
(
δmk − â†kâm

)
âj′ − â†k

(
δi′j′ − â†i′ âj′

)
âm

= δmkâ
†
i′ âj′ − δi′j′ â†kâm,

hence can be written as

Cmi′kj′ = 〈
[
â†i′ âm, â

†
kâj′

]
〉

= 〈
(
δmkâ

†
i′ âj′ − δi′j′ â†kâm

)
〉 .

(12)

The evaluation of matrices A and B is more elaborate
and it requires a definition of the Hamiltonian; hence we
give the details in Appendix B.

The EOM method is nowadays applied routinely in nu-
clear physics using excitation operators at the lowest level
of complexity. This leads to the so called RPA frame-
work. The RPA, neglecting the coupling to complex in-
ternal degrees of freedom, cannot describe collective ex-
citations at a sufficient resolution. An accurate descrip-
tion of collective excitation requires us to consider col-
lective operators that includes higher order multi-body
effects. The simplest straightforward extension of the
RPA is the second RPA (SRPA) [42–44]. However, even
at the second order, the application of the generalized
EOM is computationally demanding on a classical com-
puter due to the increase of the Hilbert space. Thus, the
Quantum Equation of Motion (qEOM) seeks to reduce
some of the computational burden from a classic com-
puter, which can be performed efficiently on a quantum
computer. This is achieved by:

1. Computation of the ground state |gs〉 using the
Variational Quantum Eigensolver (VQE) [45].
This is a hybrid classical-quantum algorithm that
a) uses a parameterized quantum circuit to repre-
sent the wavefunction |ψ(θ)〉, b) uses a quantum
computer to efficiently approximate the expecta-
tion value E = 〈ψ(θ)|Ĥ|ψ(θ)〉, and c) uses a clas-
sical computer to optimize the set of θ parameters
to minimize the cost function E. These steps are
done recursively between the quantum computer
and classical computer until convergence.

2. Once the approximate ground state is obtained us-
ing the VQE, we then use it to efficiently compute
the commutator expectation values of the matrices
A,B, C, and D on a quantum computer.

3. Finally, we solve the GEE given by Eq. (4) on a
classical computer. Note that for relatively large
nuclear systems (N � 1) and high configuration
complexity (α � 1), solving the GEE could be-
come as difficult as finding the direct diagonaliza-
tion of the many-body Hamiltonian. A possible
way around this hurdle is discussed in Section V.

More details on the qEOM are given in Refs [37, 46].
The traditional approach to solve Eq. (4) in the RPA
framework is to approximate the correlated many-body
ground state |gs〉 by employing the Quasi-Boson Approx-
imation (QBA), such that the expectation value of an

operator Q̂ is computed with respect to the uncorrelated
HF ground state as

〈Q̂〉 = 〈RPA|Q̂|RPA〉 ≈ 〈HF |Q̂|HF 〉 . (13)

However, in the qEOM approach, the correlated RPA
ground state is approximated by a parameterized quan-
tum circuit that minimizes the Hamiltonian. VQE is the
minimization procedure of this circuit which produces a
correlated ground state, such that

〈Q̂〉 = 〈RPA|Q̂|RPA〉 ≈ 〈V QE|Q̂|V QE〉 . (14)

The same is valid for SRPA and higher-order extensions.
In principle, the ground state computed using VQE is
more accurate than that obtained from the QBA, be-
cause it includes correlations beyond the HF approxima-
tion. Therefore, we expect the results for the ground
state from VQE to be more accurate than the classical
HF and (S)RPA solutions, at least for systems with a
small number of particles.

B. Lipkin-Meshkov-Glick Model

In 1964 Lipkin, Meshkov, and Glick (LMG) proposed
a toy model to serve as a test-bed for approximation
techniques for solving the quantum many-body prob-
lem [38, 47, 48]. A similar Hamiltonian was used by Fal-
lieros in his Ph.D. dissertation in 1959 [49]. According to
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LMG, the goal is to have a model that is simple enough
to have an exact solution for some cases but also includes
non-trivial many-body interactions. The model has since
been used as one of the standard benchmarks for many-
body methods in nuclear, condensed matter, and particle
physics. Some of the many-body methods tested on this
model include the mean-field theory, the random phase
approximation [50], and the Bardeen-Cooper-Schrieffer
theory [51, 52].

The LMG model describes a system of N interacting
fermions constrained on two levels with energies E =
±ε/2. Each energy level is N -fold degenerate and the
particles interact via a monopole-monopole force. In the
quasi-spin formulation, the Hamiltonian is given by

Ĥ = εĴz −
V

2

(
Ĵ2

+ + Ĵ2
−

)
− W

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
, (15)

where the operators Ĵz and Ĵ± satisfy the angular mo-
mentum commutation relations. The interaction term
associated with V scatters two particles from the same
level up or down, and similarly W simultaneously scat-
ters one particle up and another down or vice versa from
different energy levels. The symmetries of this model
can be exploited to significantly reduce the size of the
relevant Hilbert space. To get a sense of the extent this
Hilbert space may be reduced, we compare Eq. (15) with
a general many-body Hamiltonian with up to two-body
interaction terms given by

Ĥ =
∑
ij

tij â
†
i âj +

1

4

∑
mnij

v̄mnij â
†
mâ
†
nâj âi. (16)

The full Fock space has dimension 2N × 2N . On a classi-
cal computer, the reduced space with Ω particles has the
dimension CΩ

N × CΩ
N . One can further reduce the com-

plexity by noting that the problem is invariant under the
exchange of particles within the set of two levels. This
is the essence of the I encoding scheme described in Sec.
(II C 2). By setting W = 0 in Eq. (15), we further real-
ize another symmetry, namely that the interaction term
only couples states that differ by spin M ± 2, hence we
can block-diagonalize the Hamiltonian. This leads to the
efficient J encoding scheme described in Sec. (III). In the
following, we consider Ω = N , then the problem reduces
to the diagonalization of smaller matrices of dimensions
(2J + 1)× (2J + 1), where J = 1

2N . Therefore, the LMG
model has an O(N) complexity which is manageable for
classical computers. This is what is needed for a test-
bed to benchmark the accuracy of quantum algorithms.
However, we must bear in mind that we seek for quan-
tum algorithms that are in principle scalable to be able
to solve the general many-body problem with Hamiltoni-
ans like Eq. (16) having arbitrary forms of interactions.
It is still unclear whether the qEOM at its current form
satisfies this desideratum.

To get the exact analytical solution of the LMG model
for small N values, we consider the eigenstates |J,M〉 of

the operators Ĵz and Ĵ2 = 1
2{Ĵ+, Ĵ−} + Ĵ2

z as a basis.

The quantum numbers are J = j1 + j2 + . . .+ jN , which
is the total spin, and its projection M in the z-direction.
The Schrödinger’s equation

Ĥ |ψ〉 = E |ψ〉 (17)

can be solved with LMG Hamiltonian given in Eq. (15)
using the basis where

|ψ〉 =

J∑
M=−J

CM |J,M〉 . (18)

Multiplying Eq. (17) by 〈J,M ′| leads to∑
M

CM 〈J,M ′| Ĥ |J,M〉 = CM ′EJM ′ , (19)

and the non-zero matrix elements of 〈J,M ′| Ĥ |J,M〉 are
given by

〈J,M | Ĥ |J,M〉 = εM −W
[
J(J + 1)−M2

]
, (20)

〈J,M | Ĥ |J,M ± 2〉 = 〈J,M ± 2| Ĥ |J,M〉

= −1

2
V × F±.

(21)

The factors F± in Eq. (21) read:

F± = {[J(J + 1)−M(M ± 1)]

× [J(J + 1)− (M ± 1)(M ± 2)]} 1
2 .

(22)

For a system of N = 2 particles, the maximum J =
1
2N = 1 and M = {−1, 0, 1}. The Hamiltonian has the
dimension D = 3 and is given by [53]

Ĥ(2) =

ε−W 0 −V
0 −2W 0
−V 0 −(ε+W )

 . (23)

This matrix can be diagonalized to get the energy eigen-
values and associated eigenvectors to be

E(2), |J,M〉 =


+
√
ε2 + V 2 −W, |1, 1〉

−2W, |1, 0〉
−
√
ε2 + V 2 −W, |1,−1〉

,

(24)
which corresponds to both particles in the upper level,
one in upper and one in lower level, and both in lower
level, respectively. The exact analytical solution for sys-
tems with N > 2 particles is given in Refs. [38, 53]. Some
extensions of the LMG model have been proposed, such
as the Agassi model [54, 55] and the generalized Lipkin
model [56].

For comparison, we compute the Hartree-Fock solution
of the LMG ground state energy given by [53, 57]

EHF = −N
2

{
ε for ṽ < 1
ε2+(N−1)2V 2

2(N−1)V for ṽ > 1

}
, (25)
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where ṽ = V (N − 1)/ε is the effective interaction
strength. Similarly, the RPA solution for the LMG
ground state energy is given by [53, 57]

ERPA = EHF +
ω −A

2
, (26)

where ω =
√
A2 − |B|2, and A and B read:

A =

{
ε for ṽ < 1
3(N−1)2V 2

2(N−1)V−ε2 for ṽ > 1
, (27)

B =

{
−(N − 1)V for ṽ < 1

− (N−1)2V 2

2(N−1)V+ε2 for ṽ > 1
. (28)

We note that the HF and RPA solutions have a discon-
tinuity at ṽ = 1, hence this value sets the boundary be-
tween the weak and strong coupling regions.

C. Encoding schemes

There are multiple ways we can encode the LMG model
on a circuit-based digital quantum computer. In this
section we will describe two methods associated with dif-
ferent bases and symmetries used to reduce the relevant
Hilbert space.

1. Occupation number basis

Since the LMG model describes a two energy level sys-
tem with N -fold degeneracy, we express the states of the
system in terms of occupations numbers in Fock space.
Thus, the Hamiltonian given by Eq. (15) can be written
in terms of the creation and annihilation operators by
applying the following mappings

Ĵz =
1

2

N∑
p=1

(
â†p,+âp,+ − â†p,−âp,−

)
, (29)

Ĵ+ =

N∑
p=1

â†p,+âp,− and Ĵ− =
(
Ĵ+

)†
, (30)

where the summation label p represents the set of quan-
tum numbers defining a single-particle state in each en-
ergy level. Using Eq. (29) we can explicitly write the
one-body term as

Ĥ0 = εĴz =
ε

2

∑
φ=±1

N∑
p=1

φâ†p,φâp,φ, (31)

where φ = ±1 labels the upper and lower energy levels.
We then seek to combine indices p and φ into one index.

The binary values {−1,+1} for φ can be replaced by
{0, 1}, and the range of values for p can be shifted to
[0, N − 1]. Substituting these changes of the indices into
Eq. (31), we obtain

Ĥ0 =
ε

2

1∑
φ=0

N−1∑
p=0

(−1)φâ†p,φâp,φ. (32)

It is easy to see that p and φ can now be combined into
one index with values [0, 2N − 1]. For clarity, we sepa-
rate the summation over the hole (s′) states with values
[0, N − 1] and particle (s) states with values [N, 2N − 1].
Therefore, we can rewrite Eq. (32) as

Ĥ0 =
ε

2

(
N−1∑
s′=0

â†s′ âs′ −
2N−1∑
s=N

â†sâs

)
(33)

To map the two-body terms of the Hamiltonian in Eq.
(15) we use Eq. (30) to evaluate the products of quasispin
operators as follows:

Ĵ2
+ =

∑
p1,p2

â†p1,+â
†
p2,+âp2,−âp1,−

Ĵ+Ĵ− =
∑
p1,p2

â†p1,+â
†
p2,−âp2,+âp1,−.

(34)

Hence, we can write the V -scattering term as

Ĥv = −V
2

(
Ĵ2

+ + Ĵ2
−

)
= −V

2

∑
q,r

∑
q′,r′

(
â†qâ
†
râr′ âq′ + â†q′ â

†
r′ ârâq

)
∆q,q′

r,r′ ,

(35)

and the W -scattering one as

Ĥw = −W
2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
= −W

2

∑
q,r

∑
q′,r′

(
â†qâ
†
r′ ârâq′ + â†q′ â

†
râr′ âq

)
∆q,q′

r,r′ ,

(36)

where the constraint ∆q,q′

r,r′ = δq+N,q′δr+N,r′ is added to
keep the symmetry of the LMG model. The new final
Hamiltonian is the sum of all the terms given above

ĤF = Ĥ0 + Ĥv + Ĥw, (37)

where the subscript F emphasizes that it is defined in
the Fock-space. To encode this Hamiltonian on a quan-
tum computer, we can use the Jordan-Wigner transfor-
mation [58, 59] to convert the fermionic operators into
qubit operators such that

ĤF

(
â†, â

)
→ ĤQ

(
σ±, σi

)
, (38)

where σi defines the Pauli matrices for i = {0, 1, 2, 3} →
{I, X, Y, Z} and σ± = X ± iY . The corresponding basis
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states for the two-level LMG model after this mapping
are given by

|ηN− . . . η1−, ηN+ . . . η1+〉 −→ |q2N−1 . . . q0〉 , (39)

with η ∈ [0, 1], which represents an empty or occupied
fermionic state, and q ∈ [0, 1] represents a spin up or
down qubit state. One of the states of a system with
N = 2 particles can be explicitly written as

|1−1−, 0+0+〉 −→ |1100〉 , (40)

which corresponds to the uncorrelated ground state. In
this scheme, the Hamiltonian is encoded in the full Fock-
space that has a size of 22N . Thus, many states are not
used leading to a large dark sector (unused space). In the
ensuing subsections we discuss more efficient encoding
schemes that exploit symmetries of the LMG model.

2. Individual spin basis

Since the LMG Hamiltonian is invariant under the ex-
change of particles within the set of two levels, we can
exploit this symmetry to reduce the number of states by
a factor of two. This can be naturally seen by consider-
ing the basis of the individual spin |j1, j2, . . . , jN 〉 of the
particles, where j = ± 1

2 . This can be straightforwardly
mapped to qubit basis. For N = 2, the spin eigenstates
are mapped to qubits as follows

|↑↑〉 , |↑↓〉 , |↓↑〉 |↓↓〉 −→ |11〉 , |10〉 , |01〉 , |00〉 . (41)

To transform the Hamiltonian given by Eq. (15) into
linear products of Pauli matrices, we simply express it in
the individual spin basis by applying the following con-
version [39]

Ĵz =
1

2

∑
p

ĵ(p)
z ,

ĵ(p)
z = â†p,+âp,+ − â†p,−âp,− ,

(42)

for the non-interacting term and, similarly,

Ĵ+ =
∑
p

ĵ
(p)
+ and Ĵ− =

(
Ĵ+

)†
ĵ

(p)
+ = â†p,+âp,− and ĵ

(p)
− = â†p,−âp,+

, (43)

for the interacting terms. We substitute the operators
from Eqs. (42, 43) into the Hamiltonian given by Eq.
(15) to get

ĤI =
ε

2

∑
p

ĵ(p)
z −

V

2

∑
p 6=q

(
ĵ

(p)
+ ĵ

(q)
+ + ĵ

(q)
− ĵ

(p)
−

)
− W

2

∑
p 6=q

(
ĵ

(p)
+ ĵ

(q)
− + ĵ

(p)
− ĵ

(q)
+

) . (44)

Note that in this representation the Hamiltonian ĤI has
a Hilbert space size of 2N . From this point on-wards we
use the dimensionless Hamiltonian H̄ = Ĥ/ε with W = 0
and the interaction strength given by

v = V/ε. (45)

As an example, we consider a system of N = 2 particles
where the Hamiltonian can be explicitly written as

H̄
(2)
I =

1

2

(
ĵ(1)
z + ĵ(2)

z

)
− v

2

(
ĵ

(1)
+ ĵ

(2)
+ + ĵ

(2)
− ĵ

(1)
−

)
=

1

2
(Z1 + Z2)− v

2
(X1 ⊗X2 − Y1 ⊗ Y2) ,

(46)

where jz = Z and j± = (X ± iY ) /
√

2. The encoding
and Hamiltonian form of Eq. (46) corresponds to Eq.
(7) of Ref. [39]. For N = 3 the Hamiltonian is given
by [39]

H̄
(3)
I =

1

2
(Z1 + Z2 + Z3)

− v

2
(X1X2 +X1X3 +X2X3)

+
v

2
(Y1Y2 + Y1Y3 + Y2Y3) .

(47)

Therefore, a LMG system of N particles can be encoded
using N qubits in the individual spin basis which is much
better than the occupation number basis requiring 2N
qubits. It is worth mentioning that this reduction of the
number of required qubits by a factor of two follows from
the symmetry of the two-level LMG model and may be
different for a multi-level LMG model. We can further
improve the encoding of the LMG model on a quantum
computer by exploiting another symmetry of the LMG
Hamiltonian when W = 0. This leads to a more efficient
encoding scheme, described in the ensuing section.

III. EFFICIENT ENCODING SCHEME

We consider the coupled |J,M〉 basis used
in Sec. (II B), where J = N

2 and M ∈
[−J,−J + 1, . . . , 0, . . . J − 1, J ], thus, the full basis
is of size D = 2J + 1. We note that by setting W = 0 in
Eq. (15), another symmetry arises from the interaction
term which only couples states that differ by spin M ±2.
Hence, the Hamiltonian can be block-diagonalized,
which reduces the number of the ”relevant states” to at
most d = J + 1. These states can be mapped to qubits
as follows

|J,−J〉 ≡ |0〉 → |bin(0)〉 ,
|J,−J + 2〉 ≡ |1〉 → |bin(1)〉 ,

· · ·
|J, J − 2〉 ≡ |d− 2〉 → |bin(d− 2)〉 ,
|J, J〉 ≡ |d− 1〉 → |bin(d− 1)〉 ,

(48)

where |bin(k)〉 ≡ |q1, q2, . . . , qn〉, k =
∑n
i=1 qi2

n−i with
qi ∈ {0, 1}. This mapping method is sometimes called
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the Standard Binary (SB) encoding. For Hamiltonian
simulations on a quantum computer, a more efficient en-
coding than the SB is the Gray code (GC) [60, 61], which
effectively uses less gates and a lower circuit depth. The
Gray code is defined to be an ordering of binary values
where any two adjacent entries differ by only a single
bit [62]. For example, consider the eight states of three
binary bits, which can be ordered sequentially as

0→ |000〉 , 1→ |001〉 , 2→ |011〉 , 3→ |010〉 ,
4→ |110〉 , 5→ |111〉 , 6→ |101〉 , 7→ |100〉 , (49)

where the single bit that changes between adjacent states
is shown in bold. A set of Gray code with ν bits is ex-
pressed as

Gν = {g0, g1, . . . g2ν−1}, (50)

where each gi is a sequence of ν bits. Thus, with this
encoding we can write the Hamiltonian as

ĤJ =

d−1∑
k=0

ak |k〉 〈k|+
d−2∑
k=0

bk [|k〉 〈k + 1|+ |k + 1〉 〈k|] ,

(51)
with the coefficients

ak = ε [2k − J ] = εM, (52)

bk = −V
2
× F+(M = 2k − J), (53)

where the function F+ is defined in Eq. (22). We illus-
trate below how our encoding scheme works for N = 4
and then generalize to arbitrary N .

A. N=4

As an illustration, we first consider a system of N = 4
particles where J = 2, and for even values of M we get
three states, which can be encoded as

|2,−2〉 ≡ |0〉 → |00〉 ,
|2, 0〉 ≡ |1〉 → |01〉 ,
|2,+2〉 ≡ |2〉 → |11〉 .

(54)

The associated Hamiltonian is given by

H̄
(4)
Je = a0 |00〉 〈00|+ a1 |01〉 〈01|+ a2 |11〉 〈11|

+ b0 [|00〉 〈01|+ |01〉 〈00|]
+ b1 [|01〉 〈11|+ |11〉 〈01|] ,

(55)

where the subscript ”Je” represents the J-scheme with
”e” for even M values. We can a priori directly write the
matrix form of this Hamiltonian as

H̄
(4)
Je =

a0 b0 0 0
b0 a1 0 b1
0 0 0 0
0 b1 0 a2


GC

. (56)

For comparison the Hamiltonian in the SB basis is given
by

H̄
(4)
Je =

a0 b0 0 0
b0 a1 b1 0
0 b1 a2 0
0 0 0 0


SB

. (57)

Note that the unused state |10〉GC or |11〉SB is not cou-
pled to the others, thus giving a row and column of zeros
on Hamiltonian. This problem arises from the fact that
the set of available states on a quantum computer come
in powers of two whilst the number of states we wish to
encode can be any positive integer. For larger systems,
this may introduce spurious solutions.

We can transform the Hamiltonian of Eq. (55) in terms
of Pauli matrices by noting that the operators associated
with ak are given by

|00〉 〈00| = P
(0)
1 P

(0)
0 =

1

4
(I + Z0 + Z1 + Z1Z0) ,

|01〉 〈01| = P
(0)
1 P

(1)
0 =

1

4
(I− Z0 + Z1 − Z1Z0) ,

|11〉 〈11| = P
(1)
1 P

(1)
0 =

1

4
(I− Z0 − Z1 + Z1Z0) ,

(58)

where P
(0)
i = 1

2 (Ii + Zi) and P
(1)
i = 1

2 (Ii − Zi) are the

projection operators acting on the ith qubit. The opera-
tors associated with bk can be converted to

|00〉 〈01|+ |01〉 〈00| = P
(0)
1 X0 =

1

2
(X0 + Z1X0) ,

|01〉 〈11|+ |11〉 〈01| = X1P
(1)
0 =

1

2
(X1 −X1Z0) .

(59)

Note that the order of operations is important. For in-
stance, the gate Z0 should be interpreted as I1Z0 while
Z1 is Z1I0, otherwise we do not get the proper matrix
form when performing the tensor product. Substituting
Eqs. (58) and (59) into Eq. (55), we get

H̄
(4)
Je =

1

4
(a0 + a1 + a2) I +

1

4
(a0 − a1 − a2)Z0

+
1

4
(a0 + a1 − a2)Z1 +

1

4
(a0 − a1 + a2)Z1Z0

+
1

2
b0 (X0 + Z1X0) +

1

2
b1 (X1 −X1Z0) .

(60)

Using Eqs. (52) and (53), we find the Hamiltonian coef-
ficients to be

a0 = −2 , a1 = 0 , a2 = 2 ,

b0 = b1 = −v
√

6.
(61)
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Therefore, Eq. (60) can be written as

H̄
(4)
Je = − (Z0 + Z1)−

√
6

2
v (X0 +X1 + Z1X0 −X1Z0)

=


−2 −

√
6v 0 0

−
√

6v 0 0 −
√

6v
0 0 0 0

0 −
√

6v 0 −2

 .

(62)

By diagonalizing Eq. (62), we obtain the energy solutions

Ē(4) = {0, ±2
√

3v2 + 1}. Comparing with the exact an-
alytical solution of Ref. [53], where the energy spectrum
for N = 4 is given by

Ē(4) = {0, ±
√

9v2 + 1, ±2
√

3v2 + 1}, (63)

we note that we are missing two solutions. These remain-
ing solutions are found by considering the two states with
odd values of M , which can be mapped onto one qubit
as follows:

|2,−1〉 ≡ |0〉 , |2,+1〉 ≡ |1〉. (64)

The associated Hamiltonian for the odd values of M can
be constructed similarly to the even M , where a1 =
−a0 = 1 and b0 = −3v, to get

H̄
(4)
Jo = −Z − 3vX =

(
−1 −3v
−3v 1

)
, (65)

where the ”Jo” in the subscript stands for odd values
of M in the J-scheme. It is straightforward to see that
diagonalizing Eq. (65) gives us the two remaining energy

solutions Ē(4) = ±
√

9v2 + 1.
To construct the associated quantum circuit for the

system with N = 4, we look at its wave function which
can be split into two sets

|ψJ〉 =

{
|ψe〉 = c0e |2, 2〉+ c1e |2, 0〉+ c2e |2,−2〉 ,
|ψo〉 = c0o |2,−1〉+ c1o |2,+1〉 .

(66)
Using the Gray encoding, the wave function for even M
values is given by

|ψe(φ1, φ2)〉 = cosφ1 |00〉+ cosφ2 sinφ1 |01〉
+ sinφ2 sinφ1 |11〉 , (67)

which is represented by the quantum circuit shown in Fig.

1 where the gate Ry(φ) = exp
(
−iφ2Y

)
and φ ∈ [0, π2 ).

Similarly, the wave function for odd M values is given
by

|ψo(φ)〉 = cosφ |0〉+ sinφ |1〉 , (68)

which is represented by the quantum circuit shown in
Fig. 2.

|0i Ry(2�1)

|0i Ry(2�2)

Figure 1: N=4, J-scheme ansatz for even M values.

|0i Ry(2�)

Figure 2: N=4, J-scheme ansatz for odd M values.

1

FIG. 1: N=4, J-scheme ansatz for even M values.

|0i Ry(2�1)

|0i Ry(2�2)

Figure 1: N=4, J-scheme ansatz for even M values.

|0i Ry(2�)

Figure 2: N=4, J-scheme ansatz for odd M values.

1

FIG. 2: N=4, J-scheme ansatz for odd M values.

For comparison, we consider the ground state wave
function for the I-scheme [39], which is a superposition
of eight states given by

|ψI(θ)〉 = cos2 θ| ↓↓↓↓〉+ sin2 θ| ↑↑↑↑〉

− 1√
12

sin 2θ(| ↑↑↓↓〉+ | ↓↓↑↑〉+ | ↓↑↓↑〉

+ | ↓↑↑↓〉+ | ↑↓↓↑〉+ | ↑↓↑↓〉),

(69)

where θ ∈ [0, π2 ). The associated quantum circuit would
require four qubits and at least seven gates. Therefore,
our encoding scheme uses much less quantum resources
than the I-scheme, which becomes much more critical for
systems with large number of particles.

B. Arbitrary N

We note that for the case of N = 4 we essentially split
the Hamiltonian into two decoupled parts, which we diag-
onalize independently to obtain the complete spectrum.
This procedure can be generalized for the case of an ar-
bitrary N , where the Hamiltonian is split into a block
form as

H̄
(N)
J =

(
H̄A 0
0 H̄B

)
, (70)

with the block sizes dA = J + 1 and dB = J for the even
values of N , and dA = dB = 1

2 (N + 1) for the odd values
of N . We can now compare the size of Hilbert space
and the number of qubits required for each of the three
different encoding schemes:

F− scheme : dF = 22N → 2N qubits

I− scheme : dI = 2N → N qubits

J− scheme : dJ =

(
N

2
+ 1

)
→ qN qubits,

(71)

where qN in the last case is the first integer that satisfies

qN ≥ log 2

(
N

2
+ 1

)
. (72)

This implies, for instance, that the Lipkin model with
N = 100 particles can be solved with at most qN = 7
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qubits using our efficient J-scheme, while it would re-
quire 100 and 200 qubits for the I-scheme and F-scheme,
respectively.

IV. RESULTS

Using the qEOM, we simulate the LMG model for a
system with N = 2, 3, and 4 particles. We compare the
results of our efficient encoding (J-scheme) with the in-
dividual spin basis (I-scheme) given in Ref. [39]. The
results for each scheme are marked with the post-factor
labels J and I in the legends of the plots of the energy as
a function of the interaction strength. The Hamiltonians
and circuit ansätze used for N = 2, and 3 are given in
Appendix A. Depending on availability, we used the IBM
quantum devices: santiago, manila, and bogota which
all have 5 qubits and a quantum volume (defined in Ref.
[63]) of 32.

First, we use the VQE algorithm [45] to compute the
ground state and its energy for the LMG Hamiltonian.
The goal of VQE is to find the optimal set of angles {θ0}
that minimizes the energy given by

Ē(θ) = 〈ψ(θ)| Ĥ |ψ(θ)〉 , (73)

where Ē = E/ε. Usually the optimization of {θ} requires
a computation of derivatives of Ē(θ) which can be diffi-
cult for a large set of parameters. Here, since only a few
angles need to be optimized, a more direct approach is
used. For circuits with one angle, we do a line search by
computing Ē(θ) for various angles within the domain of
θ ∈ [0, π2 ) and then take the minimum energy. We can
visualize this method by computing the energy landscape
of Ē(θ) at various interaction strengths using both a sim-
ulator and a quantum computer. As shown in Fig. 3,
the results from the quantum computer are fairly close
to the simulator ones with errors of ∆θ ≤ 0.2 rad and
∆Ē ≤ 0.05 for the optimal angle and minimum energy,
respectively. These errors illustrate the degree of imper-
fection of current quantum devices. We follow a similar
method for circuits with two angles.

Algorithm 1: qEOM for Lipkin model

Data: N = 2, 3, 4
Result: En, |ψn〉

1 for v in vlist do

2 Ĥv ← construct LMG Hamiltonian at v ;

3 Ē′0, {θ′0} ← VQE(Ĥv, simulator, optimizer) ;
4 search ← search intervals [θ′0 − δ, θ′0 + δ] ;

5 Ē0, {θ0} ← VQE(Ĥv, device, search) ;
6 |ψ0〉 ← construct g.s. circuit U ({θ0}) ;

7 A,B, C,D ← expectation
(
|ψ0〉 , K̂(α), Ĥ

)
;

8 En, |ψn〉 ← solve GEE(A,B, C,D) ;

9 end

Second, we use the qEOM algorithm [37] to com-
pute the excited states and energy of the LMG Hamilto-
nian. We slightly modified some parts of the algorithm

-0.3 0.0 0.3
-1.0

-0.9

E
0 / 

 ε
 

0.6 0.8 1.0 1.2

-1.6

-1.5

-1.5

1.0 1.2 1.5
 θ  [rad]

-3.2

-3.1

-3.0

-2.9

E
0 / 

 ε
 

1.0 1.2 1.5 1.8
 θ  [rad]

-5.4

-5.2

-5.0

v = 0.0 v = 0.4

v = 1.0 v = 1.8

FIG. 3: Example of line search plot of the ground state
energy (Ē0 = E0/ε) as a function of the wave-function

parameter (θ). The scatter (red) ”x” points are
computed from the quantum device and the dashed
(black) line are from a state vector simulator for the

N = 4 J-scheme circuit shown in Fig. 2.

to suit our problem as shown in Algorithm 1. We set
vlist = [0, 2] which covers the weak and strong coupling
regimes. We use the Limited memory and bounded Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS-B) [64] opti-
mizer for running VQE on the simulator. The L-BFGS-B
is a quasi-Newton method that approximates the Hessian
matrix (second-order differentials) based on successive it-
erations and does not need to store the entire Hessian,
which reduces the computer memory required and allows
bounds to be set for the variable parameter values. The
results are given in the ensuing subsections.

A. Ground State Energy

We compute the ground state energy of the LMG
Hamiltonian as a function of the interaction strength in
both weak (v < 1) and strong (v ≥ 1) coupling regimes.
Note that we redefine the borderline between weak and
strong coupling. A comparison of the VQE solution using
IBM quantum computer is made with the exact analyti-
cal solution, the classical Hartree-Fock, and RPA solution
as shown in Figs. 4 - 6. We observe that the results de-
viate from each other in both weak and strong coupling
regimes. For all cases, the simulator results are almost
identical to the exact solutions, which means that all
computational errors can be attributed to noise in the
quantum device. No error mitigation method was per-
formed for this work as we were interested in comparing
the raw results to be able to investigate the effects of in-
creasing the model parameters {N, v, α} for both the I-
and J-schemes.

For N=2, the ground state energy as a function of the
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0 0.5 1 1.5 2
V /  ε 

-2

-1.5

-1
E

0 / 
 ε

 

Device-I
Simulator-I
Exact
Hartree-Fock
RPA
Device-J
Simulator-J

N = 2

FIG. 4: Ground state energy (Ē0 = E0/ε) as a function
of the interaction strength (v = V/ε) for a LMG system

of N = 2 particles.

interaction strength is shown in Fig. 4. In the weak
coupling regime, the VQE results for both the I- and
J-schemes are relatively close to the exact solution and
RPA solutions with average errors of about 2% and 1%
respectively (see Appendix C). In the strong coupling
regime, the results of the J-scheme are slightly more ac-
curate than those of the I-scheme, but both are relatively
close to the exact solution. In both regions, the VQE so-
lution from both schemes was significantly more accurate
than both HF and RPA. This was expected as the clas-
sical HF and RPA perform better for systems with large
number of particles.

0 0.5 1 1.5 2
V /  ε 

-4

-3

-2

-1

E
0 / 

 ε
 

Device-I
Simulator-I
Exact
Hartree-Fock
RPA
Device-J
Simulator-J

N = 3

FIG. 5: Ground state energy (Ē0 = E0/ε) as a function
of the interaction strength (v = V/ε) for a LMG system

of N = 3 particles.

For N=3, the ground state energy as a function of the

interaction strength is shown in Fig. 5. In the weak
coupling regime, the VQE solution for the J-scheme is
relatively close to the exact solution, whilst the I-scheme
solution slightly deviates from it. For some values of v,
namely v ≤ 0.6 for the RPA and v < 0.6 for HF, the
VQE solution for the I-scheme is less accurate than the
HF and RPA, but much better for v > 0.6. In the strong
coupling regime, in most cases the VQE solution for the
J-scheme is relatively close to the exact solution with
minor deviations on a few points. However, the I-scheme
results significantly deviate from the exact solution with
average errors of about 19% but still remains slightly
more accurate than both the HF and RPA solutions. For
all regions, the J-scheme is more accurate than the I-
scheme, HF, and RPA solutions. These results can be
understood by noting that, for this simulation, the J-
scheme only used one qubit and one single-qubit gate (see
Appendix A), that accumulates less errors on a quantum
computer than the I-scheme which required three qubits
and seven gates including three CNOT-gates.

0 0.5 1 1.5 2
V /  ε 

-7

-6

-5

-4

-3

-2

E
0 / 

 ε
 

Exact
Hartree-Fock
RPA
Device-J
Simulator-J

N = 4

FIG. 6: Ground state energy (Ē0 = E0/ε) as a function
of the interaction strength (v = V/ε) for a LMG system

of N = 4 particles.

For N=4, the ground state energy as a function of the
interaction strength is shown in Fig. 6. The circuit for
the I-scheme is relatively complex, thus its simulation
was omitted in this work. For both the weak and strong
coupling regimes, the VQE solution for the J-scheme is
relatively close to the exact solution with small devia-
tion in the strong coupling region. Also the J-scheme is
more accurate than both the HF and RPA solutions at
all values of the interaction strength.

We also observe that, for all particle numbers inves-
tigated in this work as shown in Figs. 4 - 6, the VQE
solution for the ground state energy for both encoding
schemes is generally more accurate than the classical HF
and RPA solutions. The VQE results generally have
larger errors in the strong coupling regime, which is con-
sistent with the findings of Ref [37]. Such errors can
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be combated by employing error mitigation methods and
using better quantum computers with high qubit quality.

B. Excited State Energies

As described in Sec. (II A), the next step after VQE
in the qEOM method is to compute the excited states
and their energies by solving Eq. (4). We computed the
energy spectrum of the LMG Hamiltonian as a function
of the interaction strength for N = 2, 3, and 4 particles.
The results of the qEOM runs on the IBM quantum com-
puter were compared with the exact analytical solutions
for both the I- and J-schemes.

0 0.5 1 1.5 2
V /  ε 

-4

-2

0

2

E
n / 

 ε
 

|0> VQE-J
|1> qEOM-J
|2> qEOM-J
|0> VQE-I
|1> qEOM-I
|2> qEOM-I

N = 2

FIG. 7: Energy spectrum (Ēn = En/ε) as a function of
the interaction strength (v = V/ε) for N = 2 particles.

For N=2, the energy spectrum as a function of the
interaction strength is shown in Fig. 7. In the weak cou-
pling regime, the qEOM solution for the excited state
energies, for both encoding schemes, are relatively close
to the exact solution. In the strong coupling regime, the
J-scheme is slightly more accurate than the I-scheme,
but they both deviate from the exact solution for a few
points. To compare the effect of the configuration com-
plexity (α) on the accuracy of the results, we consider
the energy (Ē1) of the first excited state as a function of
the interaction strength. In the I-scheme, we compute Ē1

using α = 1 (RPA-I) and α = 2 (SRPA-I), whereas in the
J-scheme we only use α = 1 (RPA-J) since one cannot
encode 2p2h configurations on one qubit. In the weak
coupling regime, the J-scheme RPA result is relatively
close to the exact solution. The I-scheme SRPA result is
slightly more accurate than its RPA solution, but they
are both less accurate than RPA in J-scheme. In the
strong coupling regime, as shown in Fig. 8 and Table
(III), the I-scheme SRPA is as accurate as the J-scheme
RPA, which are both more accurate than the I-scheme
RPA. The simulation results for Ē1 can be summarized
as follows:

Ē1 →
{

RPA-J > SRPA-I > RPA-I for v < 1,
SRPA-I ≈ RPA-J > RPA-I for v > 1.

(74)

This shows that increasing the configuration complex-
ity does improve the accuracy, as seen by the results for
SRPA-I being slightly better than RPA-I for all values
of the coupling strength. Although these results are not
conclusive at this size of the system, they are sufficient
to indicate that larger α leads to better accuracy. We
also note, from the results of RPA-J being better than
SRPA-I at small coupling strength, that a more efficient
encoding scheme can reduce the degree of α required to
achieve a certain accuracy.

0 0.5 1 1.5 2
V /  ε 

-0.4

-0.2

0

0.2

0.4

E
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 ε
 

RPA-device-I
SRPA-device-I
Exact
RPA-device-J

N = 2

FIG. 8: First excited state energy (Ē1 = E1/ε) as a
function of the interaction strength(v = V/ε) for N = 2
particles. We compare the computational accuracy with

configuration complexity α = 1 (RPA) for I and J
encoding schemes, and α = 2 (SRPA) for the I-scheme.

For N=3, the energy spectrum as a function of the
interaction strength is shown in Fig. 9. The results for
the I- and J-schemes are displayed in the left and in the
right panels, respectively. For the J-scheme plot, the
legend post-factor labels of ”A” and ”B” denote block
A and block B of the Hamiltonian, which are defined in
Appendix A. Using the symmetry of the LMG solutions
when W = 0, we construct the plot for the I-scheme as
follows: Ē0 (using VQE), Ē1 = −Ē2 , Ē2 (using qEOM-
SRPA), and Ē3 = −Ē0. Essentially, only Ē0 and Ē2

were computed, and Ē1 and Ē3 were found by reflecting
Ē0 and Ē2 about the line y = 0, respectively. For the
J-scheme plot, recall that the Hamiltonian is split into
two blocks, and each block uses one qubit (see Appendix
A) to compute Ē0, Ē1 (using VQE) and Ē2, Ē3 (using
qEOM-RPA). In the weak coupling regime, results of the
J-scheme are relatively close to the exact solution and
significantly more accurate than the ones of the I-scheme.
In the strong coupling regime, the J-scheme results are
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fairly close to the exact solution except for a few points
with slightly larger errors. The I-scheme has noticeably
larger errors with some points crossing the nearest energy
level.

In general, the results for the I-scheme are prone to
more errors on current NISQ computers than those of our
more efficient J-scheme because of the larger quantum re-
sources (qubits and gates) required by the I-scheme. An-
other drawback of the I-scheme is that its Hamiltonian
encoding introduces spurious energy solutions, that effec-
tively increases the configuration complexity required to
obtain the whole spectrum. This can be explicitly seen
by rewriting the Hamiltonian of Eq. (47) in the matrix
form as

H̄
(3)
I =

1

2



3 0 0 −2v 0 −2v −2v 0
0 1 0 0 0 0 0 −2v
0 0 1 0 0 0 0 −2v
−2v 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 −2v
−2v 0 0 0 0 1 0 0
−2v 0 0 0 0 0 −1 0

0 −2v −2v 0 0 −2v 0 −3


.

(75)
Diagonalizing Eq. (75), we get the energy solutions

Ē(3) = {±1

2
, ±
√

3v2 + 1− 1

2
,

1

2
±
√

3v2 + 1}, (76)

where both of the extra energy solutions {− 1
2 ,

1
2} have a

two-fold degeneracy. This problem arises from encoding
four active components of the ground state wave func-
tion onto three qubits which have eight possible states
(see Appendix A). Hence, the extra four non-active states
give the additional non-physical energy solutions. This
causes a hurdle for the qEOM as it will treat the ex-
tra non-active states as legitimate excited states, thus,
the excitation operator will require a higher configura-
tion complexity α > 3 to get the complete energy spec-
trum. Note that for N = 3, a comparison between con-
figuration complexity similarly to one shown in Fig. 8
for the I-scheme is not meaningful since the result of
qEOM with α = 1 gives the unphysical solution Ē1 = 1

2 .
Although the J-scheme does not have this problem of
spurious solutions for N = 3, we cannot make the com-
parison between configuration complexities at this scale
because only α = 1 (RPA) configuration is possible on
one qubit. It is worth mentioning again that non-active
states also appear in the J-encoding scheme, but they
are much fewer than for the I-scheme and do not always
add unphysical solutions.

For N=4, the energy spectrum as a function of the in-
teraction strength is shown in Fig. 10 where the legend
post-factor labels of ”A” and ”B” denote block A with
even M values, and block B with odd M values of the
Hamiltonian, as shown in Sec. (III A). Diagonalizing the
Hamiltonian in block A gives the energies Ē0, Ē2, and Ē4

computed using VQE, qEOM-RPA/SRPA, and qEOM-
SRPA, respectively. Similarly, for the block B we get the

energies Ē1 and Ē2 computed using VQE and qEOM-
RPA, respectively. First, we run the computation on a
state_vector simulator and find that for Ē2 from block
A Hamilitonian, the RPA solution significantly deviates
from the exact solution as the interaction strength in-
creases with average errors of about 10% in the strong
coupling region. In contrast, the SRPA solution stays
relatively close to the exact solution with average errors
of about 10−6% for all values of the coupling strength.
This demonstrates explicitly that, in the absence of noise,
an increase in configuration complexity α translates to
increased accuracy of quantum many-body simulations
within the EOM framework. This solidifies the interpre-
tation of simulation results for N = 2 when computing
Ē1 with RPA and SRPA, which is summarized in Eq.
(74). On a quantum device, the solutions for both Ē0

and Ē1 (computed using VQE) are fairly close to the ex-
act ones in all coupling regimes. The qEOM results for
the excited states Ē2, Ē3 and Ē4 are fairly close to the
exact ones in the weak coupling regime, but significantly
deviate at the strong coupling. The average errors of the
excited state energies found by qEOM in the strong cou-
pling regime are larger than we expected considering the
VQE errors of the ground states they are computed from.
This highlights the issue of a non-trivial error propaga-
tion in the qEOM algorithm, that is discussed in more
detail in the Appendix of Ref. [37].

V. SUMMARY AND OUTLOOK

We simulated the excited states of the Lipkin model
on a quantum computer using the Quantum Equation
of Motion, which is an extension of the Variational
Quantum Eigensolver. The goal was to find, within the
equation of motion framework, how the configuration
complexity (α) of the many-body states correlates with
the accuracy of the resulting spectra when simulated
on a quantum computer. To achieve this objective,
we first proposed a new efficient encoding scheme (the
J-scheme) of the Lipkin model that exploits symmetries
of the Hamiltonian and employs the Gray code to mini-
mize the quantum resources needed for the simulation.
Improving upon previously used encoding scheme [39]
(the I-scheme), our encoding scheme reduces the size of
the Hilbert space from scaling as O(2N ) to O(N2 + 1) for
a system of N particles. This translates into reducing
the number of qubits (qN ) from qN = N to the first
integer that satisfies qN ≥ log2

(
N
2 + 1

)
, and also makes

the circuit depth shallower. We considered systems with
N = 2, 3 and 4 particles, and run the simulations on IBM
quantum computers and a state_vector simulator.
We compared simulations using our J-scheme and the
I-scheme with configuration complexities α = 1 (RPA)
and α = 2 (SRPA), for both weak (v < 1) and strong
(v > 1) coupling regimes.

On the simulator, for systems with N = 2 and 3 par-
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FIG. 9: Energy spectrum (Ēn = En/ε) as a function of the interaction strength (v = V/ε) for N = 3 particles.
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FIG. 10: Energy spectrum (Ēn = En/ε) as a function of the interaction strength (v = V/ε) for N = 4 particles from
a state_vector simulator (left) and ibmq_quantum computer (right).

ticles, we found no significant difference between the re-
sults of both encoding schemes and the exact solution
in all coupling regimes with RPA and SRPA configura-
tion complexities. By computing the average errors of
the sampled points in each coupling regime, as shown in
Table (II), we found the average errors less than 10−5%
for the aforementioned cases. However, as we increased
the particle number to N = 4, we observed an emerging
difference between the RPA and SRPA solutions. Us-
ing the J-scheme, we saw that the RPA solution sig-
nificantly deviates from the exact solution with errors
that are more than five orders of magnitude larger than
those of the SRPA solution. In the absence of noise,
this clear difference between the RPA and SRPA solu-

tions demonstrates that the configuration complexity di-
rectly impacts the accuracy of quantum many-body sim-
ulations, and by working with model Hamiltonians we
can quantify how this scales with an increase in the in-
teraction strength. On a quantum computer, we found
that our J-scheme had significantly more accurate results
than the I-scheme, and the difference becomes accentu-
ated with an increase of any of the model parameters
{N, v, α}. For both encoding schemes, the simulations
accumulated more errors in the strong coupling regime
than in the weak coupling one, which is consistent with
our intuition that quantum states that strongly inter-
act should be more difficult to simulate than ones that
weakly interact. For some cases, the excited state energy
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solution in the strong coupling regime appeared some-
what chaotic, which reveals one of the drawbacks of the
qEOM. As discussed in the appendix of Ref. [37], it is
non-trivial to predict how the errors from the ground
state will propagate to the excited states in the presence
of noise.

Another drawback of the qEOM is that the matrix di-
mensions of the generalized eigenvalue equation (GEE),
given in Eq. (4), scales badly with the parameters (N,α).
For α = 2, we found that the matrix dimensions of the
GEE scales as O(N2), thus we expect a general scaling
(assuming no approximations made) of O(Nα) which is
hardly manageable by classical computers for large N . A
possible way to avoid the expensive diagonalization of a
large GEE can be, for instance, to perform calculations
on a spatial grid, introduce particle-vibration coupling
or to use some form of the Finite Amplitude Method
(FAM) [65–67]. The latter leads to a series of differen-
tial equations that can be efficiently solved by numerical
integration. Work in this area is currently in progress
[68].

In this work we have demonstrated, using an exactly
solvable quantum many-body model, that increasing the
configuration complexity within the EOM framework in-
creases the accuracy of our simulation. However, increas-
ing α also increases the dimension of the matrices of the
GEE to be solved on a classical computer. We also ob-
served that an increase of the interaction strength pro-
duces a decrease in the accuracy of the simulation. As
a way to combat these issues, we have proposed an ef-
ficient encoding scheme which i) minimizes the number
of quantum resources required, thus reducing the errors
in the strong coupling regime, ii) minimizes the configu-
ration complexity α required to obtain accurate spectra
for a given system, thus reducing the size of the GEE
matrices. An example for the latter point is the case of
N = 3, where our scheme only required α = 1 to ob-
tain the whole spectra instead of the theoretically exact
α = N = 3. We also found that, as we increased the
number of particles N , the accuracy of our simulations
on a quantum computer declined due to an increase in
the noise because an increase in N essentially increases
the effective coupling strength ṽ = (N − 1)v/ε. Further
work needs to be done to combat noise errors by em-
ploying error mitigation strategies, using better quality
qubits and eventually employing quantum error correc-
tion in the near future. Our scheme and observations
form a stepping stone towards developing quantum algo-
rithms to achieve nuclear spectroscopic accuracy.
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Appendix A: More on encoding schemes

In this section, we give more examples of our efficient
encoding scheme and associated ansatz circuit to simu-
late on a quantum computer.

1. N=2

Starting with Eq. (51), we consider a system with
N = 2 particles and two possible states |J,M〉 →
|1,−1〉 , |1,+1〉, so that the Hamiltonian is given by

H̄
(2)
J = a0 |0〉 〈0|+ a1 |1〉 〈1|+ b0 [|0〉 〈1|+ |1〉 〈0|] . (A1)

We note that for this case the Standard Binary (SB)
code and Gray code (GC) are identical. Applying the
projection operators as described in Ref. [61], we can
rewrite Eq. (A1) as

H̄
(2)
J = a0P

(0) + a1P
(1) + b0X

=
1

2
(a0 + a1) +

1

2
(a0 − a1)Z + b0X,

(A2)

where P (0) = 1
2 (I + Z) and P (1) = 1

2 (I− Z) denote the
projectors on the state |0〉 and |1〉, respectively. Using
Eqs. (52) and (53), we find

a0 = −a1 = −1 and b0 = −v , (A3)

so that the final Hamiltonian reads:

H̄
(2)
J = −Z − vX =

(
−1 −v
−v +1

)
, (A4)

with the energy eigenvalues Ē(2) = ±
√
v2 + 1. The third

solution with energy Ē(2) = 0 is found from the second
part of the full Hamiltonian containing the state |1, 0〉.

Using the encoding notation of Ref. [39], the ground
state wave function, in terms of the individual spin basis
(I-scheme), is a superposition of two states

|ψI(θ)〉 = sin θ |↑↑〉 − cos θ |↓↓〉
= cos θ̃ |00〉+ sin θ̃ |11〉 ,

(A5)

where θ̃ = θ − π
2 and θ ∈ [0, π2 ). The associated param-

eterized quantum circuit is shown in Fig. 11, where the

optimal θ̃0 that minimizes 〈ψI(θ̃)| H̄(2)
I |ψI(θ̃)〉 is found

using VQE.
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|0i Ry(2✓̃)

|0i

Figure 3: I-scheme ansatz for N=2

|0i Ry(2�)

Figure 4: J-scheme ansatz for N=2

2

FIG. 11: I-scheme ansatz for N=2

In our efficient J-scheme, the ground state wave func-
tion is given by

|ψJ(φ)〉 = cosφ |1,−1〉+ sinφ |1,+1〉
= cosφ |0〉+ sinφ |1〉 , (A6)

and the associated parameterized quantum circuit is
shown in Fig. 12, where φ ∈ [0, π2 ).

|0i Ry(2�1)

|0i Ry(2�2)

Figure 1: N=4, J-scheme ansatz for even M values.

|0i Ry(2�)

Figure 2: N=4, J-scheme ansatz for odd M values.

1

FIG. 12: J-scheme ansatz for N=2

Note that, although both ansätze for I- and J-schemes
have one parameter to optimize, the J-scheme is more
efficient, because it uses less qubits and has a lower circuit
depth than the I-scheme.

2. N=3

For N = 3, we have J = 3
2 , that corresponds to a total

multiplet of 4 states, which decomposes into 2 discon-
nected sub blocks denoted by A and B:

|3
2
,−3

2
〉 ≡ |0〉A |3

2
,+

1

2
〉 ≡ |1〉A

|3
2
,−1

2
〉 ≡ |0〉B |3

2
,+

3

2
〉 ≡ |1〉B .

(A7)

The Hamiltonian for both sets can be computed similarly
to Eq. (A1)

H̄
(3)
J =

a0

2
(I + Z) +

a1

2
(I− Z) + b0X

=

(
a0 b0
b0 a1

)
,

(A8)

where the coefficients are given by

A : a0 = −3

2
a1 = +

1

2
b0 = −v

√
3,

B : a0 = −1

2
a1 = +

3

2
b0 = −v

√
3.

(A9)

It is straightforward to verify that the combination of the
two Hamiltonians generates the full energy spectrum

Ē(3) =

{
ĒA = − 1

2 ±
√

3v2 + 1

ĒB = + 1
2 ±
√

3v2 + 1
. (A10)

In the J-scheme, the ground state wave function is a
superposition of four states [39] given by

|ψI(θ)〉 = cos θ |↓↓↓〉 − 1√
3

sin θ (|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉) ,
(A11)

where θ ∈ [0, π2 ). The associated parameterized quantum
circuit is shown in Fig. 13, where the auxiliary angles α
and β are defined to be

α ≡ 2 arccos

(
−
√

2

3
sin θ

)
,

β ≡ −π
4
− arctan

(
tan θ√

3

)
.

(A12)

Following the encoding notation of Ref. [39], we can
write Eq. (A11) as

|ψI(θ)〉 = cos θ |111〉 − 1√
3

sin θ (|001〉+ |010〉+ |100〉) .
(A13)

|0i Ry(↵)

|0i Ry(⇡/2� �) Ry(�)

|0i Ry(⇡)

Figure 5: I-scheme ansatz for N=3.

|0i Ry(2�)

Figure 6: J-scheme ansatz for N=3.

3

FIG. 13: I-scheme ansatz for N=3.

In the J-scheme, the wave function can be split into
two blocks

|ψJ(φ)〉 =

{
cosφA | 32 ,− 3

2 〉+ sinφA | 32 ,+ 1
2 〉

cosφB | 32 ,− 1
2 〉+ sinφB | 32 ,+ 3

2 〉
, (A14)

which can be solved independently for φA and φB using
the quantum circuit shown in Fig. 14, where φA = φB +
2πr for r ∈ Z. Comparing the resources to solve the LMG

|0i Ry(2�1)

|0i Ry(2�2)

Figure 1: N=4, J-scheme ansatz for even M values.

|0i Ry(2�)

Figure 2: N=4, J-scheme ansatz for odd M values.

1

FIG. 14: J-scheme ansatz for N=3.

model for N = 3, we note that the I-scheme uses three
qubits and seven gates, whereas the J-scheme requires
only one qubit and one gate.

Appendix B: qEOM matrices for α = 1

In this section we give the analytical expressions for
the GEE matrices which enter Eq. (4). In Sec. (II A),
we evaluated the matrices D and C for α = 1 to be
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Dmi′kj′ = −〈
[
â†i′ âm, â

†
j′ âk

]
〉 = 0, (B1)

Cmi′kj′ = 〈
[
â†i′ âm, â

†
kâj′

]
〉

= 〈
(
δmkâ

†
i′ âj′ − δi′j′ â†kâm

)
〉 .

(B2)

The evaluation of the remaining A and B matrices is
more elaborate. First, we define the Hamiltonian to be
used by setting w = 0 into Eq. (37) to get

ĤF =
ε

2

(
N−1∑
s′=0

â†s′ âs′ −
2N−1∑
s=N

â†sâs

)

− V

2

∑
q,r

∑
q′,r′

(
â†qâ
†
râr′ âq′ + â†q′ â

†
r′ ârâq

)
∆q,q′

r,r′ .

(B3)

Starting with the evaluation of matrix A given by

Ami′kj′ = 〈
[
â†i′ âm,

[
ĤF , â

†
kâj′

]]
〉 , (B4)

we first compute the commutator

[
Ĥ0, â

†
kâj′

]
=
ε

2

(∑
s

[
â†sâs, â

†
kâj′

]
−
∑
s′

[
â†s′ âs′ , â

†
kâj′

])
.

(B5)
The two commutators inside the sum can be evaluated
as [

â†sâs, â
†
kâj′

]
= â†sâsâ

†
kâj′ − â

†
kâj′ â

†
sâs

= â†s

(
δsk − â†kâs

)
âj′ + â†kâ

†
sâj′ âs = δskâ

†
sâj′ , (B6)[

â†s′ âs′ , â
†
kâj′

]
= â†s′ âs′ â

†
kâj′ − â

†
kâj′ â

†
s′ âs′

= â†s′ â
†
kâj′ âs′ − â

†
k

(
δs′j′ − â†s′ âj′

)
âs′

= −δs′j′ â†kâs′ . (B7)

Thus, the commutator of Eq. (B5) reads:

[
Ĥ0, â

†
kâj′

]
=
ε

2

(∑
s

δskâ
†
sâj′ −

∑
s′

(
−δs′j′ â†kâs′

))
= εâ†kâj′ . (B8)

To evaluate the commutator associated with Ĥv given by[
Ĥv, â

†
kâj′

]
= −v

2

∑
q,r

∑
q′,r′

[
â†qâ
†
râr′ âq′ + â†q′ â

†
r′ ârâq, â

†
kâj′

]
,

(B9)

where the constraint ∆q,q′

r,r′ will be inserted at the end of
the calculation, we can simplify the commutators in the

sum as follows:[
â†qâ
†
râr′ âq′ , â

†
kâj′

]
= â†qâ

†
râr′ âq′ â

†
kâj′ − â

†
kâj′ â

†
qâ
†
râr′ âq′

= â†kâ
†
qâ
†
râr′ âq′ âj′ − â†kâ†qâ†râr′ âq′ âj′ = 0. (B10)[

â†q′ â
†
r′ ârâq, â

†
kâj′

]
= â†q′ â

†
r′ ârâqâ

†
kâj′ − â

†
kâj′ â

†
q′ â
†
r′ ârâq

= â†q′ â
†
r′ (δkqâr − δkrâq) âj′ + â†k

(
δj′r′ â

†
q′ − δj′q′ â†r′

)
ârâq.

(B11)

For simplicity, we define

f̂1 = â†q′ â
†
r′ (δkqâr − δkrâq) âj′ , (B12)

f̂2 = â†k

(
δj′r′ â

†
q′ − δj′q′ â†r′

)
ârâq. (B13)

The double commutator of Eq. (B4) consists of the
two terms:[

â†i′ âm,
[
H̃, â†kâj′

]]
=
[
â†i′ âm,

[
Ĥ0, â

†
kâj′

]]
+
[
â†i′ âm,

[
Ĥv, â

†
kâj′

]]
.

(B14)

The first commutator reads:[
â†i′ âm,

[
Ĥ0, â

†
kâj′

]]
=
[
â†i′ âm, εâ

†
kâj′

]
= ε

(
δmkâ

†
i′ âj′ − δi′j′ â†kâm

)
,

(B15)

while the second one gives:[
â†i′ âm,

[
Ĥv, â

†
kâj′

]]
= −v

2

∑
q,r

∑
q′,r′

[
â†i′ âm, f̂1 + f̂2

]
.

(B16)
Furthermore, we have:[

â†i′ âm, f̂1

]
= −δi′j′ â†q′ â†r′ (δkqâr − δkrâq) âm (B17)

and[
â†i′ âm, f̂2

]
= δmkâ

†
i′

(
δj′r′ â

†
q′ − δj′q′ â†r′

)
ârâq. (B18)

Therefore, inserting all the pertinent terms into Eq. (B4)
we get

Ami′kj′ = 〈
[
â†i′ âm,

[
H̃, â†kâj′

]]
〉

= 〈ε
(
δmkâ

†
i′ âj′ − δi′j′ â†kâm

)
〉

+
v

2

∑
q,r

∑
q′,r′

〈
[
δi′j′ â

†
q′ â
†
r′ (δkqâr − δkrâq) âm

]
〉

− v

2

∑
q,r

∑
q′,r′

〈
[
δmkâ

†
i′

(
δj′r′ â

†
q′ − δj′q′ â†r′

)
ârâq

]
〉 ,

(B19)

where the sums are constrained by the condition
δq+N,q′δr+N,r′ . Similarly, we can evaluate the B matrix
defined as

Bmi′kj′ = −〈
[
â†i′ âm,

[
H̃, â†j′ âk

]]
〉 , (B20)
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by fist evaluating the commutator associated with Ĥ0 as[
Ĥ0, â

†
j′ âk

]
=
ε

2

(∑
s

[
â†sâs, â

†
j′ âk

]
−
∑
s′

[
â†s′ âs′ , â

†
j′ âk

])

=
ε

2

(∑
s

−δskâ†j′ âs −
∑
s′

δs′j′ â
†
s′ âk

)
= −εâ†j′ âk,

and the associated double commutator:[
â†i′ âm,

[
Ĥ0, â

†
j′ âk

]]
=
[
â†i′ âm,−εâ†j′ âk

]
= 0. (B21)

Thus, the matrix B only contains information about the
interaction term. The respective commutator reads:[
Ĥv, â

†
j′ âk

]
= −v

2

∑
q,r

∑
q′,r′

[
â†qâ
†
râr′ âq′ + â†q′ â

†
r′ ârâq, â

†
j′ âk

]
.

(B22)
Evaluating the first commutator in the sum leads to:[
â†qâ
†
râr′ âq′ , â

†
j′ âk

]
= â†qâ

†
râr′ âq′ â

†
j′ âk − â†j′ âkâ†qâ†râr′ âq′

= â†qâ
†
r (δj′q′ âr′ − δj′r′ âq′) âk + â†j′

(
δkrâ

†
q − δkqâ†r

)
âr′ âq′ .

(B23)

Again, for simplicity we define

ĝ1 = â†qâ
†
r (δj′q′ âr′ − δj′r′ âq′) âk (B24)

ĝ2 = â†j′
(
δkrâ

†
q − δkqâ†r

)
âr′ âq′ , (B25)

so that the second commutator gives[
â†q′ â

†
r′ ârâq, â

†
j′ âk

]
= â†q′ â

†
r′ ârâqâ

†
j′ âk − â†j′ âkâ†q′ â†r′ ârâq

= â†j′ â
†
q′ â
†
r′ ârâqâk − â†j′ âkâ†q′ â†r′ ârâq = 0,

(B26)

and the double commutator thus reads:[
â†i′ âm,

[
Ĥv, â

†
j′ âk

]]
= −v

2

∑
q,r

∑
q′,r′

[
â†i′ âm, ĝ1 + ĝ2

]
.

(B27)
The first and the second terms of Eq. (B27) become,
respectively,[

â†i′ âm, ĝ1

]
= â†i′ âmâ

†
qâ
†
r (âr′ − âq′) âk

−â†qâ†r (âr′ − âq′) âkâ†i′ âm
= â†i′

(
δmqâ

†
r − δmrâ†q

)
(âr′ − âq′) âk

+ (δi′q′ − δi′r′) â†qâ†râmâk,
(B28)

and the second term[
â†i′ âm, ĝ2

]
= â†i′ âmâ

†
j′

(
â†q − â†r

)
âr′ âq′

−â†j′
(
â†q − â†r

)
âr′ âq′ â

†
i′ âm

= (δmr − δmq) â†i′ â†j′ âr′ âq′
+â†j′

(
â†q − â†r

)
(δi′r′ âq′ − δi′q′ âr′) âm.

(B29)

Therefore, inserting all the pertinent terms into Eq.
(B20), we get

Bmi′kj′ = −〈
[
â†i′ âm,

[
H̃, â†j′ âk

]]
〉

=
v

2

∑
q,r

∑
q′,r′

{〈(δmr − δmq) â†i′ â†j′ âr′ âq′〉

+ 〈(δi′q′ − δi′r′) â†qâ†râmâk〉
+ 〈â†j′

(
δkrâ

†
q − δkqâ†r

)
(δi′r′ âq′ − δi′q′ âr′) âm〉

+ 〈â†i′
(
δmqâ

†
r − δmrâ†q

)
(δj′q′ âr′ − δj′r′ âq′) âk〉},

(B30)

where the summation constraint ∆q,q′

r,r′ is not explicitly
written for readability, but must be included in the terms
associated with the v-scattering for both A and B matri-
ces.

Appendix C: Error Analysis

In this section we give a pertinent analysis of the errors
of the quantum equation of motion algorithm for the Lip-
kin model when implemented on current noisy quantum
computers with calibration data given by Table I.

TABLE I: Range of average calibration data for the IBM
quantum machines used for the simulations in this work.

Parameter lower upper

Average T1(s) 93.3× 10−6 133× 10−6

Average T2(s) 56.4× 10−6 138× 10−6

Average CNOT Error 7.92× 10−3 3.29× 10−1

Average Readout Error 2.86× 10−6 3.21× 10−2

For analyzing the accuracy of our methods, we com-
pute the average percentage error of each coupling regime
given by

∆n ≡


∑p
i
m(i)
n −ε

(i)
0

ε
(i)
n −ε(i)0

for n > 0∑p
i
m

(i)
0

ε
(i)
0

for n = 0.
(C1)

Here (p − i) is half the number of data points, and m
(i)
n

and ε
(i)
n are the ith measured and exact energy points

for the nth energy level, respectively. For each coupling
regime, Tables II and III show a comparison of the errors
of VQE and qEOM implementations on the simulator
and quantum device, respectively.



18
T

A
B

L
E

II
:

S
u

m
m

ar
y

of
av

er
ag

e
p

er
ce

n
ta

g
e

er
ro

rs
fr

o
m

s
t
a
t
e
_
v
e
c
t
o
r

si
m

u
la

to
r.

S
im

u
la
to

r

J
-s

ch
em

e
I-

sc
h
em

e

W
ea

k
(v
<

1
)

S
tr

o
n
g

(v
>

1
)

W
ea

k
(v
<

1
)

S
tr

o
n
g

(v
>

1
)

V
Q

E
q
E

O
M

V
Q

E
q
E

O
M

V
Q

E
q
E

O
M

V
Q

E
q
E

O
M

R
P

A
S
R

P
A

R
P

A
S
R

P
A

R
P

A
S
R

P
A

R
P

A
S
R

P
A

N
=

2
E

0
1
.3

7
×

1
0
−
7

1
.7

9
×

1
0
−
7

1
.3

7
×

1
0
−
7

1
.7

9
×

1
0
−
7

E
1

3
.0

6
×

1
0
−
6

1
.3

7
×

1
0
−
5

4
.0

6
×

1
0
−
5

4
.0

6
×

1
0
−
5

2
.5

3
×

1
0
−
5

2
.5

3
×

1
0
−
5

E
2

3
.0

3
×

1
0
−
6

1
.3

7
×

1
0
−
5

2
.0

4
×

1
0
−
5

1
.2

7
×

1
0
−
5

N
=

3

E
0

1
.4

1
×

1
0
−
1
0

4
.4

2
×

1
0
−
1
3

5
.0

5
×

1
0
−
1
1

4
.1

9
×

1
0
−
1
1

E
1

4
.3

3
×

1
0
−
1
0

6
.4

7
×

1
0
−
1
2

4
.4

8
×

1
0
−
5

2
.8

0
×

1
0
−
4

E
2

1
.5

9
×

1
0
−
5

7
.2

8
×

1
0
−
6

4
.4

8
×

1
0
−
5

2
.8

0
×

1
0
−
4

E
3

3
.6

5
×

1
0
−
7

1
.8

2
×

1
0
−
5

5
.0

5
×

1
0
−
1
1

4
.1

9
×

1
0
−
1
1

N
=

4

E
0

1
.3

5
×

1
0
−
1
1

3
.9

5
×

1
0
−
1
3

E
1

1
.0

1
×

1
0
−
1
1

4
.8

8
×

1
0
−
1
4

E
2

2
.5

0
1
.3

0
×

1
0
−
5

1
.0

8
×

1
0
1

1
.0

0
×

1
0
−
5

E
3

1
.3

2
×

1
0
−
5

1
.7

9
×

1
0
−
6

E
4

2
.2

5
×

1
0
−
6

2
.4

2
×

1
0
−
6



19

TABLE III: Summary of average percentage errors from ibmq_quantum computers.

Quantum Device

J-scheme I-scheme

Weak (v < 1) Strong (v > 1) Weak (v < 1) Strong (v > 1)

VQE qEOM VQE qEOM VQE qEOM VQE qEOM

RPA SRPA RPA SRPA RPA SRPA RPA SRPA

N = 2
E0 1.17 2.52 2.38 6.16
E1 0.810 5.01 4.64 2.69 6.75 5.16
E2 0.582 4.23 1.50 5.16

N = 3

E0 0.623 2.86 16.4 18.7
E1 0.956 2.59 29.8 39.7
E2 5.86 9.00 29.8 39.7
E3 2.91 4.63 16.4 18.7

N = 4

E0 3.79 4.91
E1 4.05 1.70
E2 5.44 3.39 14.4 36.4
E3 3.14 10.9
E4 1.32 4.21
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[55] P. Pérez-Fernández, J.-M. Arias, J.-E. Garćıa-Ramos,
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