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Background: In quantum mechanics entanglement is the most striking phenomenon which has
no counterpart in classical systems. Although, different approaches have already been developed to
study correlations in the case of indistinguishable particles, the exploration of the so-called mode-
entanglement is still in its initial stage in nuclear physics.

Purpose: Study of mode-entanglement in the seniority model, derivation of analytic formulas
for the one-body reduced density matrix of states with seniority ν = 0, 1, 2, and ν = 3, and
also determination of the particle number dependence of the one-body reduced density matrix for
arbitrary seniority. In addition, comparison of the predictions of the seniority model with the results
of the shell model to gain insight into the structure and correlations of the ground and lowest yrast
states.

Methods: In the seniority model the analytic results are calculated using the quasi-spin formal-
ism. The numerical shell model calculations are carried out in the standard shell model framework
using an inert core. The applied realistic effective interactions are derived earlier using the G-matrix
formalism. The density matrix renormalization group method is also applied in order to directly
calculate the mode entropies.

Results: In the seniority model simple analytical expressions are given for the mode entropies.
The peculiar behavior of the half-filled shells and the seniority-zero states are revealed. Numerical
results are presented for the lightest stable calcium isotopes and for 94Ru nucleus.

Conclusions: For 94Ru, the seniority model accounts for the 0g9/2 mode entropies, but seniority
mixing is important for certain yrast states. Interaction induced quantum fluctuations decrease
the occupation of the 0f5/2, 1p3/2 and 1p1/2 shells, and amount in non-negligible mode entropies

on these shells, too, clearly outside the scope of the simple (0g9/2)4 seniority model. The 0f7/2
shell based seniority model is more accurate for the Ca isotopes, but seniority mixing is substantial
for some 44Ca yrast states, too. Mode and one-body entanglement entropies are useful tools to
investigate the structure of quantum correlations in nuclei.

I. INTRODUCTION

In recent decades, considerable effort has been devoted
to entanglement in many areas of physics. Besides inves-
tigations motivated by the application of entanglement
as a resource [1], more and more attention is devoted
to the structure and role of entanglement in many-body
problems [2–4]. While entanglement is an early concept
of quantum theory and has been the subject of intense in-
vestigations [5], in systems of indistinguishable particles,
such studies do not have a long history. In the latter
case, the definition of subsystems is a more subtle ques-
tion, since decomposition based on the tensor product
of Hilbert spaces does not lead to physically meaningful
subsystems. Different approaches are introduced to over-
come this problem: the mode-entanglement method [6–
13], the algebraic approach based on the correlation be-
tween observables [14–21], descriptions relying on quan-
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tum correlations of particles [22–25] and some concepts
generalized to quasi-particles [11, 26].

In this paper, we follow the formalism based on alge-
braic partitions of bounded operators generated by the
fermionic creation and annihilation operators, and we
apply the entanglement measure called mode entropy
[9, 11]. The mode entropy being, however, basis de-
pendent [9, 11], we also utilize the notion of basis inde-
pendent one-body entanglement entropy, introduced in
Refs. [11, 27, 28] to characterize entanglement.

Entanglement and correlations are somewhat related
concepts. Correlations play an unavoidable role in non-
perturbative many-body problems [29–32] and, – similar
to entanglement, – characterize the connections or inde-
pendence of certain quantities or subsystems. There is
therefore a natural demand to investigate concrete cor-
related quantum mechanical models from the viewpoint
of entanglement. This paper aims to contribute to this
line of investigations by the study of the seniority (SEN)
model [33] in nuclear physics, and by comparing its pre-
dictions for entanglement with detailed model calcula-
tions.
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Entanglement investigations are often performed in
atomic physics [34, 35], quantum chemistry [31], and
condensed matter physics [4] to date. Although inves-
tigations of the Lipkin-model [36, 37] and fermionic su-
perconducting systems [26] do have some relevance for
nuclear physics, exploration of this research area in the
context of nuclear physics is, however, still in its initial
stage. Some studies are carried out in the traditional nu-
clear shell model framework [38–44] and in an ab initio
no-core shell model [45].

In this paper, we study few nucleon states within the
SEN model. This investigation can be considered as an
extension of our previous study on the entanglement of
angular-momentum coupled two-nucleon states [44] to
relatively simple many-nucleon states. Mode entangle-
ment and two-orbital correlations in wave functions re-
stricted to seniority-zero electron pair states have also
been studied in Ref. [46] in a quantum chemistry context.
There, however, a general framework is used, without ex-
ploiting the conservation of total angular momentum, an
almost mandatory constraint in nuclear physics.

The physical motivation behind the SEN model is the
pairing phenomenon [33]. The SEN model can be con-
sidered as a first step to describe pairing correlations in
nuclei and the notion of collective pairs is generalized
in more sophisticated models such as the generalized se-
niority model (see, e.g., Refs. [47–49]). The SEN model
is a classification of good angular momentum states of a
single-j shell, with the seniority quantum number ν nat-
urally interpreted as the number of unpaired particles.

From a mathematical viewpoint, the SEN model is an
exactly solvable model describing n particles interact-
ing via seniority conserving interaction, and possessing
a dynamically broken SU(2) quasi-spin symmetry [50].
Even though realistic interactions with seniority mixing
do not possess this dynamical symmetry, the classifica-
tion of states based on seniority quantum numbers often
proves very useful for interpretation. Although the SEN
model and its generalization to multi-j shells appeared
early in nuclear physics, they provide a valid and quite ac-
curate description for many nuclei, and a seniority quan-
tum number-based classification is still quite often ap-
plied [51–55]. Therefore, proceeding along these lines,
we compute in this work mode entropies within the SEN
model, and compare its predictions with the results of
density matrix renormalization group (DMRG) [56] and
configuration interaction (CI) computations, performed
for the lightest stable calcium isotopes and for 94Ru.
Both belong to the family of semi-magic nuclei. In the
case of Ca, the proton shell is closed and relevant neu-
trons dominantly occupy the valence 0f7/2 shell, while in
94Ru the neutron shell is closed, and the relevant 0g9/2
(open) proton shell hosts four protons. Low-lying excited
states with even angular momentum can be interpreted
in both cases as seniority ν = 2 pair breaking states with
an admixture of seniority ν = 4 states.

It is important to mention that in the SEN model based
on the g9/2-shell there are two particular seniority ν = 4

states [57–61] with total angular momentum four and six,
which can be shown to be eigenstates of any two-body
interaction restricted to the g9/2-shell. These states play
an essential role in the explanation of the seniority iso-
merism and electromagnetic transitions [62–66] and, as
we shall see, they are also important from the perspective
of entanglement.

The paper is organized as follows. We review the con-
cept of mode-entanglement in Section II. The basic con-
cepts of the SEN model are presented in Section III.
States with seniority ν = 0, ν = 1, and ν = 2 are ana-
lyzed from the perspective of mode-entanglement in Sec-
tion IV. Section V discusses our analytical results, while
numerical results are presented in Section VI, where the
lightest stable calcium isotopes and 94Ru nucleus are in-
vestigated by means of the CI method and a nuclear
shell version of the DMRG method [41, 67], using re-
alistic effective interactions. Results obtained by the CI
and DMRG methods are compared with the predictions
of the SEN model. Finally, Section VII concludes and
summarizes the results.

II. MODE-ENTANGLEMENT

In this work, we apply the second quantized formal-
ism to determine mode-entanglement in a many-body
framework. The primary objects for a fermionic system
of d modes are the creation and destruction operators,

c†i and ci, i ∈ {1, 2, . . . , d}, satisfying canonical anti-
commutation relations. The single-particle (sp) states

c†i |0〉 span the single-particle Hilbert space of dimension
d, with |0〉 referring to the vacuum. Considering a bi-
partition of the d modes to subsets A and B, we get two
algebras, AA and AB , spanned by operators composed
from the sets A and B, respectively. A pure fermionic
state is separable with respect to this bipartition if and
only if it is of the form [18]

P({c†i∈A})Q({c†j∈B})|0〉, (1)

with P and Q denoting polynomials of the creation oper-
ators. In this work, we restrict ourself to the case, where
A refers to a single mode, k, while B contains all other
i 6= k modes, and the whole system is in a pure state, Ψ.

To characterize this type of bipartition, one introduces
the mode reduced density matrix,

ρk ≡
(
〈c†kck〉 0

0 1− 〈c†kck〉

)
, (2)

with 〈c†kck〉 = 〈Ψ|c†kck|Ψ〉. The entanglement measure of
this simple bipartition is the mode entropy,

Sk ≡ −Tr(ρk ln(ρk)) = h(〈c†kck〉), (3)

with the function h defined as

h(x) ≡ −x ln(x)− (1− x) ln(1− x) .
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The total correlation introduced as

Sc =

d∑
k=1

Sk (4)

yields then a global characterization of the entanglement
of the state Ψ [10], which depends, however, on the choice
of sp basis, {c}. A basis independent measure, the one-
body entanglement entropy is defined as [11, 27, 28]

S1B = min
{c}
Sc . (5)

By the measure S1B , all fermion states that can be
described by a single Slater determinant are classified
as non-entangled, while other pure states are entan-
gled [11, 22, 24].

The quantity S1B is closely related to the eigenvalues of
the one-body reduced density matrix (1B-RDM), defined
as [77]

ρi,j = 〈Ψ|c†jci|Ψ〉, (6)

and normalized as Tr ρ = n, where n is the parti-
cle number. The basis where Sc reaches its minimum
(i.e., Sc = S1B) corresponds to the so-called natu-
ral orbitals, and there the 1B-RDM is diagonal, ρ =
diag{n1, n2, . . . , nd} [11, 28]. There S1B reads

S1B =

d∑
i=1

h(ni), (7)

where the ni denote the occupation numbers of the nat-
ural orbitals.

III. SENIORITY MODEL: BASIC DEFINITIONS

In the SEN model [33], we assume that n identical nu-
cleons occupy a single j shell, corresponding to a shell
configuration jn. For the sp states, we use the notation
|a,m〉 = |nalajam〉. In the SEN model, nucleons reside
on a single multiplet, a. We can therefore suppress the
label a and use the compact notations, a†am → a†m and
aam → am for the corresponding creation and annihila-
tion operators.

The pair creation and annihilation operators, S±, de-
fined as

S+ =
∑
m>0

(−1)j−ma†ma
†
−m and S− = S †+ (8)

create/destroy a zero angular momentum pair of parti-
cles. Together with

S0 =
1

2

(∑
m

a†mam −
2j + 1

2

)
, (9)

the S± obey standard SU(2) angular momentum com-
mutation relations, and the operators Sx = (S+ +S−)/2,

Sy = (S+−S−)/2i, and Sz = S0 form components of the
so-called quasi-spin operator, S.

In the SEN model, a state of angular momentum J and
projection Jz = M is denoted by ΨJM (jnν η), where η
stands for an angular momentum multiplicity label. If
the state is multiplicity-free, the index η can (and will)
be suppressed. In the SEN model, we start from unpaired
ν-particle states, which do not contain paired particles,
S−ΨJM (jν ν η) = 0, and are quasi-spin eigenstates with
quasi-spin S = (j+ 1

2−ν)/2 and Sz = −S. The quantum
number ν defines the seniority of this and all descendent
states. From the properties of the quasi-spin operators it
follows that the n-particle state

ψJM (jn ν η) = Nn,ν S(n−ν)/2
+ ψJM (jν ν η) (10)

has the same quasi-spin as ψJM (jν ν η), but is an eigen-
state of Sz with eigenvalue −(j+ 1

2−n)/2. The prefactor
Nn,ν here just ensures proper normalization. Clearly, in-
stead of the quantum numbers n and ν, we can thus use
the values of the quasi-spin S and its third component Sz
as quantum numbers, and denote the state ΨJM (jnν η)
as ΨJMSSz (j η).

If all nucleons are paired, the n-particle seniority-zero
wave function reads

Ψ00(jn0) = Nn,0 S n/2+ |0〉. (11)

For an odd number of particles, there is only one un-
paired particle in the ground state, and the correspond-
ing seniority-one eigenfunction is

ΨjM (jn1) = Nn,1 S(n−1)/2
+ a+M |0〉. (12)

Seniority-two states have the form

ΨJM (jn2) = Nn,2 S(n−2)/2
+ (13)

1√
2

(∑
m

CJ,Mj,m, j,M−m a
†
ma
†
M−m

)
|0〉,

where J = 2j − 1, 2j − 3, . . . , 2. In the cases of ν = 0,
ν = 1 and ν = 2 the states are multiplicity free. The
form of higher seniority states is much more complicated,
and analytical forms are only known for ν = 3, 4 and
5 [68, 69].

IV. ONE-BODY REDUCED DENSITY MATRIX

To determine the 1B-RDM, we consider first a gen-
eral, model-independent state, ΨJM , with angular mo-
mentum, J , and Jz = M . The 1B-RDM is then given
by

ρa,a
′

m,m′(JM) = 〈ΨJM |a†a′m′aam|ΨJM 〉 . (14)

Conservation of the z component of the angular mo-
mentum implies that all m 6= m′ off-diagonal elements of

ρa,a
′

m,m′(JM) vanish. In the special case, J = 0, moreover,
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simple group theoretical arguments imply ja = ja′ for
non-zero matrix elements, and the non-zero elements of
the 1B-RDM are independent from m

ρa,a
′

m,m′(00) = δm′,mδja′ ,ja ρ̂
aa′(00) . (15)

This immediately implies that in any J = 0 state the
mode entropies do not depend on the magnetic quantum
number m of the sp modes, as also observed numerically
in Ref. [41] and proved in [44] for two-body problems.

To compute the matrix elements of the operators

a†a′m′aam for J 6= 0, we express these in terms of spher-
ical tensor operators. The operators a†am and ãam ≡
(−1)ja+maa,−m are both tensor operators of rank ja. We
can define a spherical tensor operator of rank K from the

operators a†a′m and ãam using the usual SU(2) addition
rules as[

a†a′ ⊗ ãa
]K
k

=
∑
m

CK, kja′ ,m, ja, k−m
a†a′,mãa,k−m ,

and express the 1B-RDM as

ρa,a
′

m,m′(JM) = δm′,m (−1)ja−m (16)∑
K

CK,0ja′ ,m, ja,−m〈ΨJM |
[
a†a′ ⊗ ãa

]K
0
|ΨJM 〉.

Clearly, for J = 0 only the K = 0 term remains, and the
expression simplifies to Eq. (15).

Our goal is to calculate the 1B-RDM,
ρm,m′(JM, jnν η), associated with the state ΨJM (jnν η)
within the SEN model. We shall do that using the quasi-
spin formalism [70], where we introduce a quasi-spin
tensor of rank 1

2 as

R
1
2
µ;m =

{
a†m if µ = 1/2 ,
−ãm if µ = −1/2 .

(17)

From these we define quasi-spin tensors of rank K = 0
and K = 1 as [70]

RKκ; m′,m =
∑
µ,µ′

CK,κ1
2 , µ

′,
1
2 , µ

R
1
2

µ′;m′R
1
2
µ;m . (18)

The nucleon number dependence of the matrix element

of the operator a†m′am can be determined by using the
identity

a†m′am =
(−1)j+m√

2

(
R0

0 ;m′,−m +R1
0 ;m′,−m

)
, (19)

and by applying the Wigner-Eckart theorem in the quasi-
spin space, yielding

〈ΨJMSSz (j η)|a†m′am|ΨJMSSz (j η)〉 = δm′,m
(−1)j+m√

2{
CS,SzS,Sz,0,0

〈ΨJMS(j η) -- R0
m,−m -- ΨJMS(j η)〉

+ CS,SzS,Sz,1,0
〈ΨJMS(j η) -- R1

m,−m -- ΨJMS(j η)〉
}
,

where -- indicates the reduced matrix element in quasi-
spin space. By using the explicit values of the Clebsch-
Gordan coefficients and the relations between S, Sz, n,
and ν, we obtain for n > ν

ρm,m′(JM, jnν η) = (20)

δm,m′
(−1)j+m√

2

[
〈ΨJM (jνν η)|R0

0; m,−m|ΨJM (jνν η)〉

+ 2(j−n)+1
2(j−ν)+1 〈ΨJM (jνν η)|R1

0; m,−m|ΨJM (jνν η)〉
]
.

This formula allows us to relate the 1B-RDM of a sys-
tem of n > ν particles to that of a system of ν particles,
both in states with seniority ν. Such a recurrence rela-
tion for matrix elements of operators is usual in the SEN
model [33].

We now proceed and give the analytical expression for
the 1B-RDM for wave functions with seniority ν = 0, 1,
and ν = 2. Details of the derivations are in Appendix A.
In the simplest case, ν = 0, the total angular momentum
vanishes, J = 0, and therefore ρm,m′ is proportional to
the unit matrix (see also Eq. (15)),

ρm,m′(00, jn0) = δm′,m
n

2j + 1
. (21)

For ν = 1, only the sp orbitals m = ±M behave dif-
ferently from the rest. In this case, the m = M orbital
is occupied, while m = −M is empty, and the remaining
n − 1 particles reside on the other 2j − 1 orbitals with
uniform probability,

ρm,m′(jM, jn1) = δm′,m


1 if m = M ,
0 if m = −M ,
n−1
2j−1 if |m| 6= |M | .

(22)

For seniority-two wave functions with n > 2, the 1B-RDM has the form

ρm,m′(JM, jn2) = δm′,m

{(
CJ,Mj,m,j,M−m

)2
−
(
CJ,Mj,−m,j,M+m

)2
+ 1

2

+ 2(j−n)+1
2j−3

[ (
CJ,Mj,m,j,M−m

)2
+
(
CJ,Mj,−m,j,M+m

)2
− 1

2

]}
, (23)
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where the total angular momentum is even and ranges
from J = 2 to J = 2j − 1. In the case of n = ν = 2 the
formula is given in (A5) and (A9).

The complicated analytical form of the 1B-RDM is
given in Appendix A for seniority-three states (see Eqs.
(A3), (A5) and (A15)) .

V. ANALYTICAL RESULTS

We now discuss the consequences of the previous re-
sults from the perspectives of the mode and one-body en-
tanglement entropies. Having constructed the 1B-RDM,
we obtain the mode entropies by Eq. (3) as

Sam(JM) = h
(
ρa,am,m(JM)

)
. (24)

A mode m of a multiplet a is therefore non-entangled if
and only if ρa,am,m(JM) = 0 or ρa,am,m(JM) = 1, i.e., if it is
completely empty (the mode is not in the wave function)
or completely occupied (each term of the CI expansion
contains the mode). From Eq. (16) it follows, that the
mode entropies of the state ΨJ M are related to those of
the state ΨJ −M as Sam(J −M) = Sa−m(J M).

For states with J = 0 and fixed total parity, the one
particle density matrix is diagonal in π, j, and m. There-
fore, Sc = S1B if all involved multiplets have different
parities or angular momenta.

States in the SEN model related by particle-hole
transformation have identical one-body entanglement en-
tropies. Particle-hole conjugation, is represented by a
linear unitary operator, Γ, having the properties [70]

Γ ΨJM (jnν η) = (−1)
n−ν

2 ΨJM (j2j+1−nν η), (25)

and

Γ†a†mΓ = −ãm , Γ†ãmΓ = a†m . (26)

From these relations one immediately obtains the re-
lation ρm̃,m̃(JM, j2j+1−nν η) = 1 − ρm,m(JM, jnν η),
with m̃ = −m referring to the time-reversed or-
bital. Since h(1 − x) = h(x), this immediately implies
S−m(JM, j2j+1−nν η) = Sm(JM, jnν η), and the rela-
tion

S1B(JM, j2j+1−nν η) = S1B(JM, jnν η) , (27)

where we introduced the notations Sm(JM, jnν η) and
S1B(JM, jnν η) for mode and one-body entanglement
entropies within the SEN model. Thus n-particle and
n-hole states have the same one-body entanglement en-
tropy.

For seniority ν = 0 wave functions the 1B-RDM is
diagonal (see Eq. (21)), and the mode entropy is mode
independent, Sm = h(n/(2j + 1)). The one-body entan-
glement entropy is therefore

S1B(00, jn0) = (2j + 1)h
(

n
2j+1

)
. (28)

For seniority-zero states the largest S1B therefore corre-
sponds to a half-filled shell, n = j + 1

2 .
One may ask, which state is having the largest one-

body entanglement entropy from all possible wave func-
tions of a configuration jn? It has been shown that the
total correlation has its minimum value in the natural
basis [11, 28], and the upper limit of the one-body entan-
glement entropy is reached when the 1B-RDM is propor-
tional to the unit matrix, ρmax

m,m′ = n
2j+1 δm′,m [44]. This

criterion is satisfied by seniority-zero wave functions as
well as by any J = 0 wave function, which are therefore
maximally entangled states with respect to one-body en-
tanglement.

Seniority ν = 1 states must contain a broken pair,
and are less entangled. Indeed, in the state ΨjM (jn1)
(j > 1/2), the modes with m = ±M are occupied or
empty with probability one (see Eq. (22)), and are there-
fore non-entangled. All other m 6= ±M modes, – hosting
the remaining (n − 1)/2 pairs of particles, – have mode
entropies h((n− 1)/(2j− 1)). We thus obtain the follow-
ing one-body entanglement entropy for seniority ν = 1
states,

S1B(jM, jn1) = (2j − 1) h
(
n−1
2j−1

)
. (29)

Thus for ν = 1, too, the largest one-body entanglement
entropy corresponds to a half-filled shell, just as for states
with ν = 0. Notice that S1B(jM, jn1) is independent of
M .

The one-body entanglement entropy for seniority ν = 2
states is more complicated, in general. An interesting
situation arises, however, if j+ 1

2 is an even number, M =

0, and we consider a half-filled shell, n = j+ 1
2 . Then each

mode is maximally entangled, Sm(J0, jj+1/2 2) = ln 2
since ρm,m(J 0, jj+1/2 2) = 1/2, and S1B(J 0, jj+1/2 2) =
(2j+1) ln 2. We thus conclude that maximally one-body
entangled states exist even with broken pairs, ν 6= 0 and
J 6= 0.

Typically, all modes are entangled to some degree in
seniority-two states. Non-entangled modes can be ob-
served, however, when the angular momentum has its
maximal value, J = 2j−1, and M = 2j−1 or M = 2j−2.
In the case M = 2j− 1, the modes m = j and m = j− 1
and their time-reversed pairs, m = −j and m = 1 − j,
are non-entangled, while for M = 2j − 2 the modes
m = j and m = j − 2 and their pairs, m = −j and
m = 2− j become non-entangled. These statements can
be directly verified for n > 2 by using the expression
(23), but a physical explanation can also be given. In
the two-particle wave function Ψ2j−1,2j−1(j2 2), e.g., the
states m = j and m = j− 1 are occupied, while all other

states are empty. Applying the operator S
(n−2)/2
+ on this

state leaves the states m = j and m = j − 1 occupied
and their time reversed pairs, m = −j and m = −(j− 1)
empty, since S+ can populate time reversed pairs {±m}
only simultaneously. As a consequence, the four modes
m ∈ {±j,±(j − 1)} have vanishing mode entropy [78].
This corollary is demonstrated later in Figs. 2 and 6 for
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the J = Jz = 6 state of 44Ca and for the J = Jz = 8
state of 94Ru. Similar arguments carry over to the modes
m ∈ {±j,±(j − 2)} in the state Ψ2j−1,2j−2(jn2).

VI. NUMERICAL RESULTS

The concept of seniority has proven useful for semi-
magic nuclei, where only one type of nucleon is active,
and the seniority (i.e., the quasi-spin S) turns out to
be conserved with good accuracy. The seniority scheme
of the 0f7/2 and 0g9/2 subshells, in particular, can be
successfully applied to calcium isotopes [33, 71] and N =
50 isotones [33], where the main prediction of the SEN
model, namely that excitation energies are approximately
independent of the particle number is fulfilled. As we now
show, entanglement measures detect delicate structures
in these correlated quantum states, which we can access
through CI and DMRG calculations, and compare with
the predictions of the SEN model. We always focus on
states with maximal Jz i.e. Jz = J .

Numerical computations were carried out using the
BIGSTICK code [72] and the nuclear shell module of
the Budapest DMRG code [73]. The BIGSTICK code
determines the reduced matrix elements

1√
2K + 1

〈ΨJ ||
[
c†a ⊗ c̃a′

]K ||ΨJ〉, (30)

from which we can construct the 1B-RDM and from those
the mode entropies using Eq. (16).

In the numerical calculations harmonic oscillator sp
basis is used. In our shell model calculations there is
an inert core and a few subshells above it and we do
not enforce any restrictions on the occupancy numbers of
the sp orbits, thus our model can be called as complete-
active-space method or full CI calculation for short.

The DMRG method provides solution on a cleverly se-
lected truncated Hilbert space based on Schmidt decom-
position, where the truncation on the Schmidt spectrum,
so-called bond dimension, determines the accuracy of the
calculation [41, 56]. In case if the full spectrum is used,
i.e., no truncation is applied, the DMRG leads to the ex-
act (full-CI) solution of the problem. In the correspond-
ing figures the untruncated DMRG data are shown which
is equivalent to the full CI solution. On the other hand,
the advantage of the DMRG in the considered cases is
that quantum information entropies can be easily calcu-
lated using the DMRG code since these quantities are
directly accessible in the DMRG formalism.

A. Calcium isotopes

Seniority can be viewed as a quantum number that
differentiates between states with the same total angular
momentum in the configuration jn. The simplest ex-
ample is the configuration (0f7/2)4, where there are two
J = 2 and two J = 4 states with different seniorities
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FIG. 1: Squared overlap of the CI and SEN model wave func-
tions, as a function of the total angular momentum for 42Ca,
44Ca, and 46Ca nuclei. Full CI calculations were performed
with the GXPF1 interaction. The ground states and the yrast
states are very well captured by ν = 0 seniority and ν = 2 se-
niority states, respectively, excepting the J = 4 state of 44Ca,
where a mixing with seniority ν = 4 excitations is apparent.

(ν = 2, 4). According to Ref. [74], the ground and J = 2
yrast states of the nuclei 42Ca, 44Ca, 46Ca are almost
pure (0f7/2)n configurations, and the occupations of the
other sp orbitals are negligible. In this subsection we
study the mode-entanglement properties of the lightest
stable calcium isotopes.

We first determined the occupations (subshells’ parti-
cle numbers)

∑
m〈ΨJJ |c†amcam|ΨJJ〉 of 44Ca for the yrast

states J = 0, 2, and 4 by using the interaction GXPF1
[75] within a full CI approach. For the orbitals 0f7/2,
1p3/2, 0f5/2, and 1p1/2 we obtain the ground state occu-
pation numbers (3.89, 0.06, 0.05, 0.01), while the occu-
pation numbers of the J = 2 and J = 4 states read (3.89,
0.08, 0.02, 0.006) and (3.89, 0.07, 0.04, 0.005), respec-
tively. Clearly, the four valence shell neutrons reside al-
most exclusively on the 0f7/2 shell, and occupy the other
three shells with very small probabilities. Interestingly,
the average occupation numbers take similar values for
the ground state and the J = 2 and J = 4 yrast states.

More detailed information can be gained regarding cor-
relations through the mode entropies of the sp orbitals or
from the overlap of the CI wave functions with the SEN
model states. Fig. 1 shows that all many-body eigen-
states are essentially ν = 0 or ν = 2 states, with the
sole exception of the J = 4 state of 44Ca. In the case
of 44Ca, it is known that there is strong seniority mixing
[33]. We can determine the amplitudes of the seniority
ν = 2 and ν = 4 components by maximizing the overlap
between the CI and the mixed seniority state. By mixing
seniority ν = 2 and ν = 4 states appropriately, we can
increase the square of the overlap with the J = 4 44Ca
state to 0.953.

The precise seniority content of the states and seniority
mixing can be further verified by investigating the mode
entropies, displayed in Fig. 2 for 44Ca. Clearly, com-
parison of the CI/DMRG and the SEN models’ mode
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FIG. 2: Mode entropies of the sp orbital 0f7/2 for 44Ca ground
and yrast states. The results of CI and DMRG calculations
performed with the GXPF1 interaction are compared with
predictions of the SEN model (ground state ν = 0, yrast
states ν = 2) .

entropies confirms that the ground and J = 2, 6 states of
44Ca are seniority-zero and seniority-two states, respec-
tively. As discussed in Section V, the mode entropies
are supposed to reach their maximal value ln 2 ≈ 0.6931
in the seniority-zero J = 0 state of a half-filled shell.
This prediction is indeed very well satisfied according
our full CI/DMRG calculations in the ground state of
44Ca. Mode entropies are, however, may be reduced by
pair breaking. In particular, in the J = 6 yrast state, the
pair-broken neutrons occupy the m = 7/2 and m = 5/2
states, and the mode entropy of the states m = ±7/2
and m = ±5/2 is indeed close to zero.

The CI/DMRG mode entropies of the J = 4 state of
44Ca can not be reproduced with a simple seniority ν = 2
state and, similar to the J = 4 state of 94Ru, discussed
later, a mixing of the ν = 2 and ν = 4 seniority states
is needed to reproduce the observed pattern of Sm. We
mention that no seniority ν = 4 states exist for 42Ca and
46Ca, where the CI/DMRG results agree well with the
SEN model predictions with ν = 0 and ν = 2 states only.

The SEN model predictions also agree well with the
CI/DMRG results for odd calcium nuclei. To demon-
strate this, let us consider the ground (ν = 1) and first
excited states (ν = 3) of 43Ca. Increasing the neutron
number from 22 to 23 modifies the ground state mode
entropies as the SEN model predicts (see Fig. 3). The
ground state of 43Ca has angular momentum J = 7/2.
According to Section V, in the M = 7/2 seniority ν = 1
state, only the modes m = −7/2 and m = 7/2 have
Sm = 0, while the occupation and entropy of the other
modes slightly increases. The mode entropies of the ex-
cited Jπ = (5/2)− state are also well captured by the
ν = 3 SEN model state. From Figs. 2 and 3 we thus
conclude that mode entropy can be used as a sensitive
tool to characterize the seniority structure of the ground
state and low lying excitations.

We close this subsection by presenting the total cor-
relations and the basis independent one-body entangle-
ment entropies for the ground and yrast states of 42Ca,
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43Ca ( J = 5/2 )

42Ca ( J = 0 )

43Ca ( J = 7/2 )

FIG. 3: Mode entropies of the sp orbital 0f7/2 in the J =

7/2 ground state of 43Ca, and in its J = 5/2 yrast state,
as determined by CI/DMRG calculations (red squares) and
predicted by the SEN model (black continuous lines). As a
reference, we also display the ground state entropies of 42Ca
(empty triangles).

44Ca, and 46Ca in Fig. 4. The one-body entanglement en-
tropy is obtained after diagonalizing the 1B-RDM, and
using the natural orbitals as a basis. The total correla-
tion computed using the original orbitals provides a very
good estimate for S1B, indicating that mixing with other
orbitals is rather small. This is only slightly lowered if we
use the basis of natural orbitals, where the total correla-
tion Sc coincides with S1B. If natural orbitals are used
for 42Ca, the J = Jz = 6 state is described by one Slater
determinant, and so S1B = 0.

For a given isotope, the ground state has the largest
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FIG. 4: Total correlations (dashed lines, empty symbols)
and one-body entanglement entropies (continuous lines, filled
symbols) as a function of total angular momentum for ground
and yrast states of the nuclei 42Ca, 44Ca, and 46Ca. Full
CI/DMRG calculations were carried out with the GXPF1 in-
teraction.
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one-body entanglement entropy. Excited states contain
broken Cooper-pairs, and are less and less entangled with
increasing J . This latter trend follows from the general
entanglement structure of spin states: two coupled spins
tend to be most entangled in the smallest, ‘antiferromag-
netic’ spin state, while they are completely unentangled
in the largest, ‘ferromagnetic’ spin state. In the J = 0
ground states, S1B and Sc agree with each other. Also,
for a fixed J , the one-body entanglement entropy is max-
imal for a half-filled shell , i.e. for 44Ca. This is predicted
by the SEN model for seniority-zero and one states. The
one-body entanglement entropies of 42Ca and 46Ca follow
very similar lines, but they are not identical, as particle-
hole symmetry would imply. This deviation from the
prediction of the SEN model signals again that particle-
hole symmetry – a characteristic property of the single
shell SEN model – is just approximate.

B. Entanglement in 94Ru nucleus

As a next example, we consider the nucleus 94Ru
among the N = 50 isotones. In case of N = 50 iso-
tones, coupling within the 0g9/2 proton subshell is ex-
pected to dominate, but contribution from nearby or-
bitals may also play a role. In a 0g9/2 shell-based SEN
model, the seniority quantum number is not enough to
uniquely distinguish between states with identical to-
tal angular momentum. In particular, seniority ν = 4
states with angular momenta and parity Jπ = 4+ and
6+ are not uniquely defined since they both span two-
dimensional subspaces [50]. As noticed in [57, 59], there
are special seniority ν = 4 states with quantum numbers
Jπ = 4+ and 6+, which are eigenvectors of both senior-
ity conserving and seniority mixing Hamiltonians, when
restricted to the 0g9/2 shell. These states are called solv-
able [63] or α states [62], and they do not mix directly
(i.e., in first order) with other seniority ν = 2 or seniority
ν = 4 states of the configuration (9/2)4.

In the CI/DMRG description, we used the
0f5/2, 1p3/2, 1p1/2, and 0g9/2 sp orbitals to span

the shell model’s active space, and a 56Ni nucleus as a
core. The mode entropies were computed for the ground
state, Jπ = 0+, and the yrast states Jπ = 2+, 4+, 6+,
and 8+. For the nucleon-nucleon interaction we used the
so-called jun45 force [76].

The CI wave functions contain sixteen protons,
whereas the single j = 9/2 shell SEN wave functions have
only four. To compare these two types of wave functions,
we extend the SEN model by simply building on the top
of closed 1p21/2, 1p43/2, and 0f65/2 shells as

Ψ̂JM (j4νη)|p21/2 p
4
3/2 f

6
5/2〉 , (31)

with the operator Ψ̂JM (j4νη) creating a four-particle
SEN state ΨJM (j4νη) within the 0g9/2 shell. We re-
fer to seniority states of this form as CI-SEN states or

-9 -7 -5 -3 -1 1 3 5 7 9
2 m

0.2

0.4

0.6

Sm

SEN

CI

1p3/2

0g9/2
1p1/2

 0f5/2

FIG. 5: Ground state mode entropies of 94Ru sp orbitals ob-
tained by CI/DMRG (symbols, dashed lines), compared with
the SEN model prediction (black continuous line).

‘seniority-like’ shell model configurations in the follow-
ing. Clearly, the mode entropies associated with the filled
1p3/2, 1p1/2, and 0f5/2 shells vanish, while the mode en-
tropies of the 0g9/2 orbitals in a CI-SEN state are iden-
tical to those of the corresponding four-particle j = 9/2
SEN state.

To quantify the seniority content of a CI wave function,
we calculate the square of the modulus of the overlap of
the CI wave function and a given CI-SEN state, i.e., the
overlap probabilities. Results are listed in Table I. For
Jπ = 4+ and Jπ = 6+, Table I includes square of the
modulus of the overlaps with the aforementioned solv-
able or α states and with the β states. The ΨJM (j44β)
states are four-particle seniority-four states with J = 4, 6
such that they are orthogonal to the corresponding solv-
able states. In all cases, seniority-four states are slightly
mixed in, and the optimal overlap is reached with a state

|Ψmixed〉 =
∑
ν,η

vνη Ψ̂JM (j4νη) |p21/2 p
4
3/2 f

6
5/2〉 . (32)

In most cases, similar to the Ca isotopes, the seniority
ν = 0 and ν = 2 states dominate, and the contribution

Jπ model P

0+ Ψ00(j40) 0.517
Ψ00(j44) 2.1× 10−4

2+ Ψ22(j42) 0.633
Ψ22(j44) 9.4× 10−5

4+

Ψ44(j42) 0.416
Ψ44(j44α) 0.277
Ψ44(j44β) 5.5× 10−4

mix 0.692

6+
Ψ66(j42) 0.646

Ψ66(j44α) 2.2× 10−4

Ψ66(j44β) 6.1× 10−4

8+ Ψ88(j42) 0.657
Ψ88(j44) 4.0× 10−5

TABLE I: Square of the modulus of the overlap of dif-
ferent CI-SEN states with the CI wave functions (P =
|〈ΨCI |ΨCI−SEN 〉|2).
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of seniority ν = 4 states is negligible. An exception is
the state with Jπ = 4+, where the contribution of the
seniority-four α state is significant. Since the overlap
with the β state turns out to be very small, mixing cal-
culations for states of the form (32), presented in Table I,
have been restricted to the solvable (α) state only.

In the 4+ state, the interaction generates strong senior-
ity mixing, and the square of the modulus of the overlap
of the CI wave function and the seniority mixed CI-SEN
state is maximal when the square of the amplitudes are
|v2|2 = 0.593, |v4,α|2 = 0.407. This observation agrees
with the results of Ref. [62], where it was shown that
these properties of the wave function calculated by the
jun45 interaction can explain the observed E2 transition
probabilities of 94Ru.

We emphasize that the mixing of the states
Ψ̂JM (j42)|0〉 and Ψ̂JM (j44α)|0〉 is not possible if interac-
tions are strictly restricted to the j = 9/2 shell. Interac-
tions can, however, mix the seniority-two and seniority-
four components due to the presence of other shells [62].

As we have seen, the CI wave functions are reasonably
well described in terms of mixed CI-SEN states. Subshell
particle number fluctuations on the 1p3/2, 1p1/2, and
0f5/2 subshells are, however, non-negligible, and these
subshells are thus not completely filled. This is clearly
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FIG. 6: Mode entropies of the sp orbital 0g 9
2

in the yrast

excited states of 94Ru, constructed using full CI and DMRG
(red squares), and compared with seniority ν = 2 states of
the SEN model (black continuous lines).

shown by the ground state mode entropies, displayed in
Fig. 5. Since the ground state has quantum numbers
Jπ = 0+, mode entropies are independent of the mag-
netic quantum number m in this case within any shell.
The CI/DMRG mode entropies in the 0g9/2 shell are al-
most identical to those of the CI-SEN model. The slightly
increased value of the CI result is due to proton excita-
tions to the 0g9/2 shell from the lower ones. However,
the mode entropies of the 1p3/2, 1p1/2, and 0f5/2 sub-
shells are relatively large in the CI/DMRG calculations,
implying that these subshells have considerable subshell
proton-number fluctuations, induced by nucleon-nucleon
interactions. Indeed, the mode entropies are directly re-
lated to the occupation probabilities of these modes, nu-
merically computed as Pm,9/2 = 0.5096, Pm,3/2 = 0.8884,
Pm,5/2 = 0.9749, and Pm,1/2 = 0.7502.

Mode entropies of the yrast states are shown in Fig. 6,
and compared with the predictions of the SEN model us-
ing seniority ν = 2 states only (no seniority mixing). We
display only mode entropies for the sp orbital 0g9/2. The
two models give similar patterns for the mode entropies,
and the quantitative agreement is also satisfactory ex-
cept for the 4+ state, where the non-mixing SEN model
has a somewhat larger deviation with respect to CI and
DMRG computations.

As shown in Fig. 7, neither the seniority-two state, nor
the seniority-four solvable state can explain the shape
of the mode entropies of the CI and DMRG computa-
tions. One must use the seniority mixed CI-SEN wave
function to obtain a better agreement, and indeed, the
squares of the optimal mixing amplitudes |v2|2 = 0.723,
|v4,α|2 = 0.277 produce a quite satisfactory agreement.
The remaining relatively small discrepancies between the
two calculations can be attributed to the fact that the full
CI/DMRG wave states contain, of course, excitations and
configurations beyond the CI-SEN components.

VII. SUMMARY

In this work, we analyzed the entanglement structure
of the open shells of certain semi-magic nuclei, and com-
pared the observed structures with the predictions of a
single-j shell SEN model.

We first derived analytical expressions for the one-body
reduced density matrix within the SEN model for states
with seniority-zero, one, two, and three. We determined
the particle number dependence of the one-body reduced
density matrix for arbitrary seniority, and we have shown
that, within the jn configuration space, wave functions of
angular momentum J = 0 have maximal one-body entan-
glement entropy, irrespective of the seniority. Breaking
Cooper-pairs, and aligning the angular momenta of the
pair-broken nuclei generally reduces the one-body entan-
glement entropy, and the one-body entanglement entropy
is found to decrease with increasing J for a given nucleus.

The SEN model predicts peculiar properties for half-
filled shells, also manifest in entanglement measures. For
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FIG. 7: Mode entropies of the 94Ru sp orbital 0g9/2, calcu-

lated for the yrast state Jπ = 4+ using full CI/DMRG com-
putations, and compared with the 0g9/2 shell SEN model.
Mixing with the so-called α seniority-four state accounts for
the observed structures, and is needed to yield satisfactory
agreement.

seniority-zero and seniority-one states, the one-body en-
tanglement entropy is maximal for a half-filled shell,
n = (2j + 1)/2. Also, in the SEN model, the entropy
displays particle-hole symmetry: n-particle and n-hole
(2j+1−n)-particle states are predicted to have identical
one-body entanglement entropies.

We carried out numerical calculations by full CI and
DMRG methods for 42Ca, 43Ca, 44Ca, and 46Ca isotopes
and for 94Ru, and compared the numerical results with
the predictions of the corresponding (0f7/2) and (0g9/2)
shell SEN models. Mode entropies show an overall good
agreement for the ground and yrast states with a few
exceptions, where clear signatures of seniority mixing are
observed.

We first verified the predictions of the SEN model for
Ca isotopes. For all even isotopes (42Ca, 44Ca, and 46Ca),
the one-body entanglement is maximal in the J = 0
ground state, takes a value very close to the one pre-
dicted by the SEN model, and decreases with increas-
ing J . As predicted by the SEN model, for ν = 0, 1,
one-body entanglement is maximal for a half-filled shell
(44Ca), and an approximate particle-hole symmetry is
observed between the 42Ca and 46Ca isotopes. The
breaking of particle-hole symmetry can be attributed
to the subshells’ neutron-number fluctuations; subshells
have fractional occupations and, correspondingly, exhibit
non-negligible mode entropies.

The full CI/DMRG wave functions of the ground and
yrast states have large overlaps with seniority (0f7/2)4

configurations, with the dominant components having se-
niority ν = 0 (for J = 0+) and ν = 2 (for J = 2 and

J = 6). In case of the J = 4 yrast state of 44Ca, how-
ever, strong mixing is observed with the ν = 2 and ν = 4
states. This mixing turns out to be essential to explain
the fine structures of mode-entanglement.

For 94Ru, the full CI wave functions of the ground
and yrast states are found to have large overlaps with
‘seniority-like’ (0g9/2)4 configurations. The dominant

components have also seniority ν = 0 (for Jπ = 0+)
or ν = 2 (for Jπ = 2+, Jπ = 6+, and Jπ = 8+). How-
ever, seniority mixing pattern is also observed in 94Ru.
Similarly to 44Ca, the 4+ yrast state of 94Ru displays
strong seniority mixing with the so-called solvable senior-
ity ν = 4 state (or α state). The 1p1/2, 1p3/2, and 0f5/2
proton shells exhibit sizable mode entropies, and display
corresponding fractional occupations. Our findings are in
line with earlier observations [62] that mixing with the
solvable seniority ν = 4 state may be significant due to
the presence of other configurations, and is essential to
explain the B(E2) transition probabilities of 94Ru.

Mode and one-body entanglement entropies are thus
extremely useful tools to investigate the structure of
quantum correlations in nuclei. Here we restricted our
discussions to simple semi-magic nuclei, where the SEN
model provides an appropriate analytical framework and
reference point. Extending our approach to study quan-
tum fluctuations and quantum correlations in generic,
open shell nuclei represents exciting perspectives for fu-
ture research.
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Appendix A: Matrix elements of the 1B-RDM in
the seniority model

Here we calculate analytically the matrix elements of
the quasi-spin tensor operators R0

0;m′,−m and R1
0;m′,−m,

used in the reduction formula (20) for states with ν =
0, 1, 2, and ν = 3.
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Equation (20) shows that we have to calculate matrix elements of the following operators:

R0
0;m′,−m =

1√
2

[
(−1)j+m

′
(
δm′,m − a†−ma−m′

)
− (−1)j−ma†m′am

]
(A1)

and

R1
0;m′,−m = − 1√

2

[
(−1)j−ma†m′am + (−1)j+m

′
(
δm′,m − a†−ma−m′

)]
. (A2)

In order to simplify the calculations, we rewrite first the
general expression (20) with the help of (A1) and (A2)
in the form

ρm,m′(JM, jnνη) = 1
2δm,m′

[
1−Aν,η−m,−m +Aν,ηm,m

+ 2(j−n)+1
2(j−ν)+1

(
Aν,ηm,m +Aν,η−m,−m − 1

)]
, (A3)

where n > ν and

Aν,ηm,m = 〈ΨJM (jννη)|a†mam|ΨJM (jννη)〉. (A4)

For n = ν we can write

ρm,m′(JM, jννη) = δm,m′A
ν,η
m,m. (A5)

For seniority-zero states we need 〈0|a†mam|0〉 and so

A0
m,m = 0. (A6)

When the seniority is one, the wave function in (A4) is

ΨjM (j11) = a†jM |0〉 and we have

A1
m,m = δm,M . (A7)

The normalised two-body wave function with total angu-
lar momentum J and projection M is

ΨJM (j22) =
1√
2

∑
m

CJ,Mj,m,j,M−ma
†
ma
†
M−m|0〉, (A8)

where J = 2, 4, . . . , 2j − 1. Substituting (A8) into (A4)
we get

A2
m,m = 2

(
CJ,Mj,m,j,M−m

)2
. (A9)

If we use Eqs. (A6), (A7), and (A9) in (A3) and in
(A5), we can recover the results in (21), (22), and (23).

The general form [22] of a pure three-particle state is

Ψ =
∑
ijk

wijkc
†
i c
†
jc
†
k|0〉, (A10)

where the coefficients wijk are fully antisymmetric. Using
the antisymmetric property of the coefficients wijk and
the anticommutation relations of the fermionic operators,
we can get the following expression

〈Ψ|c†xcy|Ψ〉 = 18
∑
jk

w∗xjkwyjk. (A11)

A seniority-three state can be turned into the form
[68, 69]

ΨJM (j33J2) = 1
N

([
a† ⊗

[
a† ⊗ a†

]J2]J
M
|0〉

+A3

[[
a† ⊗ a†

]0 ⊗ a†]J
M
|0〉
)
, (A12)

where J2 is even and positive and

N =

[
2 + 4(2J2 + 1)

{
j j J2
j J J2

}
− 8δj,J(2J2 + 1)

(2j + 1)(2j − 1)

] 1
2

,

(A13)

A3 =
2
√

2J2 + 1

2j − 1
δj,J . (A14)

Now we apply the general expression (A11) and after a
lengthy but straightforward calculation get

A3,J2
m,m =

2

N 2

{∑
a

(
CJ,Mj,M−m−a,J2,m+aC

J2,m+a
j,m,j,a + CJ,Mj,m,J2,M−mC

J2,M−m
j,a,j,M−m−a + CJ,Mj,a,J2,M−aC

J2,M−a
j,M−m−a,j,m

)2

+
2A3√
2j + 1

[
2(−1)j−m

(
CJ,Mj,M,J2,0

CJ2,0j,m,j,−m + CJ,Mj,m,J2,M−mC
J2,M−m
j,−m,j,M + CJ,Mj,−m,J2,M+mC

J2,M+m
j,M,j,m

)
+ δm,M

∑
a

(−1)j−a
(
CJ,Mj,−a,J2,m+aC

J2,m+a
j,m,j,a + CJ,Mj,m,J2,0C

J2,0
j,a,j,−a + CJ,Mj,a,J2,m−aC

J2,m−a
j,−a,j,m

)]
+

A2
3

2j + 1

[
2 + (2j − 3)δm,M − 2δm,−M

]}
. (A15)
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Phys. G: Nucl. Part. Phys. 48, 025107 (2021).

[45] C. Robin, M. J. Savage and M. Pillet, Phys. Rev. C 103,
034325 (2021).

[46] K. Boguslawski, P. Tecmer and Ö. Legeza, Phys. Rev. B
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