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We develop an extension of eigenvector continuation (EC) that makes it possible to extrapolate
simulations of quantum systems in finite periodic boxes across large ranges of box sizes. The formal
justification for this approach, which we call finite-volume eigenvector continuation (FVEC), is
provided by matching periodic functions at different box sizes. As concrete FVEC implementation
we use a discrete variable representation based on plane-wave states and present several applications
calculated within this framework.

I. INTRODUCTION

Simulations of quantum systems in finite volume (FV),
such as a cubic box with periodic boundary conditions,
can be used to obtain information about that same sys-
tem in infinite volume. In a series of highly influen-
tial papers [1–3], Lüscher has shown that the real-world
(infinite-volume) properties of the system are encoded
in how its (discrete) energy levels change as the size of
the volume is varied. Bound-state relations connect the
finite-volume energy correction to the asymptotic prop-
erties of wavefunctions, leading to an exponential vol-
ume dependence [1, 4–6], while information about elas-
tic scattering can be obtained from discrete energy lev-
els with power-law dependence on the box size. Reso-
nances, i.e., short-lived, unstable states, are manifest in
the volume-dependent spectrum as avoided crossings of
energy levels [7–9]. While early studies of finite-volume
relations considered on two-body applications, work in
recent years has focused largely on deriving rigorous FV
quantization conditions for three-body systems [10–22],
following early studies of the triton and Efimov trimers
in finite volume [23–26]. Related work has derived the
volume dependence for bound states comprised of an ar-
bitrary number of particles [6], and it has been demon-
strated that genuine few-body resonances can be identi-
fied from FV calculations [27], thus providing a discovery
tool for such exotic states.

Eigenvector continuation (EC), first introduced in
Ref. [28], is a powerful (yet strikingly simple in practice)
method to address otherwise unfeasible physics problems.
Given a Hamiltonian with parametric dependence H(c),
EC enables robust extrapolations to a given target point
c∗ from “training data” far away from that point by
exploiting information contained in eigenvectors. The
essence of the system is “learned” through the construc-
tion of a highly effective (non-orthogonal) basis, leading
to a variational calculation of the states of interest with
rapid convergence [29]. Recent work [30, 31] has shown
that EC as a particular reduced-basis (RB) method falls
within a larger class of model-order reduction (MOR)
techniques. In practice, EC boils down to constructing
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Hamiltonian and norm matrices (denoted as H(c∗) and
N , respectively) and solving the generalized eigenvalue
problem H(c∗)|ψ〉 = λN |ψ〉.

Since its inception, various interesting applications and
extensions of EC have been identified in short time.
Early applications focusing on bound states include the
construction of highly efficient emulators for uncertainty
quantification [32–34] and robust extrapolations of per-
turbation theory [35–37]. More recently the approach has
been extended to construct emulators for scattering sys-
tems [38–40] and to studies of nuclear reactions [41, 42].

We introduce here a novel extension of EC that goes
beyond simple parametric dependencies of the Hamilto-
nian. Specifically, we develop EC as a tool for performing
volume extrapolations at greatly reduced numerical cost.
Since this extension is applicable in connection with any
numerical method that provides access to wavefunctions
in periodic finite geometries, it immediately yields sev-
eral interesting applications, among which we highlight
in particular FV studies of few-body resonances [27, 43].
Identifying such unstable states as avoided crossing of
FV energy levels requires the calculation of spectra over a
range of volumes, and in particular in very large boxes to
reach for example the low-energy regime of few-neutron
systems, which are of great current interest in nuclear
experiments [44, 45] and nuclear theory (see for exam-
ple Refs. [43, 46–48]). The technique introduced in this
paper provides a way to greatly extend the reach of FV
resonance studies. Moreover, few-body approaches used
to extrapolate Lattice QCD results to infinite volume via
matching to an effective field theory description, recently
discussed in Ref. [49], can benefit from EC based volume
extrapolation.

II. FINITE-VOLUME EIGENVECTOR
CONTINUATION

By “finite-volume eigenvector continuation (FVEC)”
we refer to the application of EC to extrapolate prop-
erties of quantum states calculated in a set of periodic
boxes with sizes {Li}, i = 1, ··N to a target volume L∗.
This should be distinguished from using standard EC
at a fixed single volume L to extrapolate a parametric
dependence of the Hamiltonian. Specifically, we want
to consider states |ψLi〉 at volume Li (or sets of states
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{|ψ(j)
Li
〉, j = 1, ··Ni}) and perform EC using Hamiltonian

and norm matrices

Hij = 〈ψLi
|HL∗ |ψLj

〉 , (1a)

Nij = 〈ψLi
|ψLj
〉 . (1b)

However, at face value the above definitions appear prob-
lematic because the dependence on L does not simply
stem from the Hamiltonian; it is inherent in the definition
of the Hilbert space. Two states |ψLi

〉 and |ψLj
〉 are ac-

tually vectors in different Hilbert spaces for i 6= j, and it
is not immediately clear how the matrix elements written
down naively in Eqs. (1) can be well-defined quantities.
To resolve this issue, we develop the notion of a vector
space that accommodates states with arbitrary periodic-
ities and show how it relates to FVEC calculations.

A. Periodic matching

Let HL be the space of periodic functions f : R → C
with f(x+L) = f(x) for some fixed but arbitrary L > 0.
Consider the union

H =
⋃
{L>0}

HL . (2)

We proceed to show that this concept can be used to de-
fine overlaps and matrix elements of periodic states with
different periods. We restrict the discussion to the special
case of a 1D two-body system (described by a single rela-
tive coordinate x), and merely note that everything gen-
eralizes to a larger number of spatial dimensions and/or
particles in a straightforward manner.

a. Addition. Clearly H is not a vector space if one
defines the sum of f, g ∈ H in the usual pointwise man-
ner (because the sum of two periodic functions is not in
general periodic). However, for given L,L′ > 0 one can
map f ∈ HL to HL′ by means of a dilatation:

(DL,L′f)(x) =

√
L

L′
f

(
L

L′
x

)
. (3)

With this, we can define an addition operation for f ∈
HL and g ∈ HL′ as follows:

(f
max
+ g)(x) = (DL,L′f)(x) + g(x) (4)

for L′ > L, and adjusting g instead in the opposite case.
The result is a periodic function in HL′ ⊂ H, and since

multiplication by a scalar is trivially defined, (H,
max
+ ) is

a vector space.
b. Inner products. An inner product on H can be

defined similarly. Let f, g ∈ H and without loss of gen-
erality assume L ≤ L′ for the periods of f and g, respec-
tively. Then

〈f, g〉max = 〈DL,L′f, g〉HL′ =

∫ L′/2

−L′/2
(DL,L′f)(x)

∗
g(x) dx

(5)

defines an inner product on (H,
max
+ ). Indeed, consider

for example adding h ∈ HL′′ with L′′ ≥ L′ to the second
operand:

〈f, g
max
+ h〉max = 〈f,DL′,L′′g + h〉max

= 〈DL,L′′f,DL′,L′′g + h〉HL′′

= 〈DL,L′′f,DL′,L′′g〉HL′′ + 〈DL,L′′f, h〉HL′′

= 〈f, g〉max + 〈f, h〉max ,

(6)

where we set x′ = (L′/L′′)x to find

〈DL,L′′f,DL′,L′′g〉HL′′

=

∫ L′′/2

−L′′/2

√
L

L′′
f

(
L

L′′
x

)∗√
L′

L′′
g

(
L′

L′′
x

)
dx

=

∫ L′/2

−L′/2

√
L

L′
f

(
L

L′
x′
)∗
g(x′) dx′ = 〈f, g〉max .

(7)

They key step above was using the property DL,L′′f =
DL,L′DL′,L′′f of dilatations (which actually form a mul-
tiplicative group). Other combinations of operands and
periods work similarly, and again including scalar factors
is trivial.
c. Matrix elements. Finally, consider a (linear) op-

erator O on HL. While initially this is only given as a
mapping HL → HL, we can define its action on a func-
tion f ∈ HL′ by inserting an appropriate dilatation:

Of ≡ ODL′,Lf ∈ HL . (8)

Together with the inner product (5) this provides a defi-
nition of operator matrix elements between different HL,
HL′ .

B. Truncated periodic bases

Consider now truncated bases SL,N and SL′,N for HL

and HL′ , respectively, with N a positive integer. Specif-

ically, let SL,N = {φ(L)
j : j = 1, ··N} with

φ
(L)
j (x) =

1√
L

exp

(
i
2πj

L
x

)
(9)

be a set of plane waves. Then DL,L′ is a bijection be-
tween SL,N and SL′,N , and because for each j we have

DL,L′φ
(L)
j = φ

(L′)
j . Therefore, if ψ and ψ′ are functions

expanded upon SL,N and SL′,N , respectively, taking the
inner product of their coefficient vectors in RN is the
same as considering the inner product on H as defined in
Eq. (5). Note that while this inner product has been de-
fined by matching functions to the maximum period, we
could equally well have chosen to match to the smaller
period. In practice the concrete choice does not mat-
ter because both lead to identical inner products on RN .
Overall we have arrived at a justification for writing down
Eqs. (1) as well a straightforward prescription for imple-
menting FVEC numerically.
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a. Discrete Variable Representation. While concep-
tually straightforward, the plane-wave basis (9) is in gen-
eral not an efficient approach to study few-body systems.
It can however be used as starting point for the con-
struction of a so-called “Discrete Variable Representation
(DVR)”. Originally suggested as alternative to harmonic-
oscillator based calculations in nuclear physics [50], re-
cent work has established this plane-wave DVR as a pow-
erful numerical framework for studying few-body reso-
nances in FV [27, 43, 51]. Its construction starts with the
states φj(x) defined in Eq. (9), with j = −N/2, ··N/2−1
for even N > 2, and where as before x denotes the rela-
tive coordinate for a two-body (n = 2) system in d = 1
dimensions. Any periodic solution of the 1D Schrödinger
equation can be expanded in terms of the φj(x), yield-
ing a discrete Fourier transform (DFT). Given a set of
equidistant points xk ∈ [−L/2, L/2) and weights wk =
L/N (independent of k), DVR states are constructed
as [52]

ψk(x) =

N/2−1∑
i=−N/2

U∗kiφi(x) , (10)

with Uki =
√
wkφi(xk) defining a unitary matrix. Calcu-

lations in a periodic box can then be carried out through
an expansion in terms of the ψk(x) instead of the φj(x).
Importantly, since the transformation between plane-
wave states and DVR states is unitary, the above con-
siderations that justify FVEC carry over to DVR calcu-
lations.

Local potentials are represented in the DVR by basis
diagonal matrices [27, 51]. Separable potentials have a
more complicated representation, but can also be imple-
mented efficiently [43]. Another advantage of the DVR is
that despite being effectively defined on a lattice of points
it yields a continuum dispersion relation E = p2/(2µ),
where p and µ are the center-of-mass momentum and the
reduced mass of the system, respectively. This is achieved
by a non-diagonal matrix representation for the kinetic
energy K, which is however known analytically [27, 51].
For d > 1 or n > 2 the DVR representation of K be-
comes a sparse matrix that can be calculated very effi-
ciently based only on the 1D two-body matrix elements.
The DVR construction in this case starts from product
states of (n− 1)× d plane waves.

As discussed in Refs. [27, 51] it is straightforward (and
numerically very efficient) to construct out of these basic
states subspaces with proper bosonic or fermionic (in-
cluding spin degrees of freedom) symmetry properties,
and optionally with definite parity. Moreover, the break-
ing of spherical symmetry in infinite volume down to the
cubic symmetry subgroup O in FV can be accounted for
by introducing appropriate projectors [53], represented as
sparse matrices in the DVR basis [27]. These projectors
select a specific cubic irreducible representation Γ out of
the set {A1, A2, E, T1, T2} (with dimensionalities 1, 1, 2,
3, and 3, respectively). Angular-momentum multiplets
are reducible with respect to O, so each angular momen-

tum state in infinite volume in general contributes to sev-
eral Γ. Low-lying A1 states are to a good approximation
dominated by infinite-volume S-wave states, whereas P-
wave contribute predominantly to T1 multiplets. In prac-
tice it suffices to perform cubic-projected calculations at
selected volumes in order to assign quantum numbers.

III. APPLICATIONS

A. Simple two-body system

As a first test we consider a simple two-body system (in
three dimensions) interacting via a Gaussian potential

V (r) = V0 exp

(
−
( r
R

)2)
. (11)

For this calculation we use natural units with ~ = c = 1
and also set the particle mass m = 1. As (arbitrary) spe-
cific choice we set R = 2 and V0 = −4.0, which produces
a spectrum with two bound S-wave states in infinite vol-
ume, one of which is very loosely bound. In finite volume
both bound states are found in the A+

1 representation,
where the superscript indicates positive parity. The FV
spectrum including the lowest states is shown in Fig. 1.
For the FVEC calculation we chose to include training
data at four different volumes, L = 6, 7, 8, 9, including
four states at each training volume so that the total num-
ber of training data is 4 × 4 = 16. This covers the two
A+

1 bound states as well as the lowest lying scattering
states, falling in the two-fold degenerate E+ represen-
tation. The DVR calculation was performed using an
N = 32 model space for all data points. Extrapolation
based on this training set work very well, as shown in
Fig. 1 up to L = 20, with merely about 4% deviation be-
tween FVEC and exact calculation for the ground state
at L = 20.

6 8 10 12 14 16 18 20
L

−1.5

−1.0

−0.5

0.0

0.5

E

exact

FVEC

training

A+
1 E+

Figure 1. Positive-parity energy spectrum of two particles in
finite volume as a function of the box size L for a Gaussian
potential (11) with R = 2 and V0 = −4.0 in natural units (see
text). Solid lines show the three lowest energy levels calcu-
lated in a DVR basis with N = 32. Dashed lines indicated
FVEC results obtained based on training data from four dif-
ferent box sizes (solid circles).
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Figure 2. Positive-parity finite-volume energy spectrum of
three bosons interacting via the potential (12). Solid lines
show the exact states calculated in a DVR bases with N ≤ 28,
whereas dashed lines indicate FVEC results obtained based
on training data at five different box sizes (solid circles). The
FVEC calculation has been performed using 8×5 = 40 train-
ing states, which includes the A+

1 ground state not shown in
the plot. See text for details.

B. Three-boson resonance

As another application we consider three identical
spin-0 bosons with mass m = 939.0 MeV (mimicking
neutrons) interacting via the two-body potential

V (r) = V0 exp

(
−
( r

R0

)2)
+V1 exp

(
−
(r − a
R1

)2)
, (12)

with V0 = −55 MeV, V1 = 1.5 MeV, R0 =
√

5 fm,
R1 = 10 fm, and a = 5 fm. This potential produces
a resonance state with energy ER = −5.31 MeV and half
width 0.12 MeV [54] (shaded band in Fig. 2).

In Figure 2 we show an FVEC calculation for this
system, using training data at five different box sizes
L = 21, 22, 23, 24, 25 fm with N = 28. For each train-
ing volume eight states have been included, covering four
A+

1 states (including the deeply bound ground state not
shown in the figure), one E+ state, and one T+

2 state
(for which only part of cubic multiplet was included be-
cause the training calculations did not all yield the full
triplet). In total, 8 × 5 = 40 training states have been
included. The FVEC calculation provides an excellent
reproduction of the exact energy levels, with noticeable
deviations only for excited states at box sizes far away
from the training regime. In particular, FVEC perfectly
captures the avoided crossing between the lowest two A+

1

states in Fig. 2, indicating the three-boson resonance that
Ref. [27] extracted at ER = −5.32(1) MeV from the FV
spectrum, in good agreement with Ref. [54].

C. Three neutrons

Finally, we consider a system of three neutrons (n) in
pionless effective field theory at leading order. Specifi-

18 20 22 24 26 28 30 32
L (fm)

1
2
3
4
5
6
7
8
9

E
(M

eV
)

exact

FVEC

training

T−1 T−2

Figure 3. Negative-parity Sz = 1/2 finite-volume energy spec-
trum of three neutrons interacting via a separable contact po-
tential fit to reproduce the neutron-neutron scattering length
ann = −18.9 fm. Solid lines show the exact states calculated
in a DVR bases with N ≤ 22, whereas dashed lines indicate
FVEC results obtained based on N = 22 training data at
three different box sizes (solid circles). The first and third lev-
els shown in the plots are T−1 states with total spin S = 1/2.
The second level is a (non-interacting) S = 3/2 T−1 state,
wheres the fourth level is a T−2 with S = 1/2. A total number
of 3 × 8 = 24 training data was used to generate this plot,
covering a subset of states from the four three-dimensional
multiplets (see text for details).

cally, we use a separable momentum-space contact inter-
action

V (q, q′) = C g(q)g(q′) , (13)

where g(q) = exp(−q2n/Λ2n) is a super-Gaussian regu-
lator. A projector ensures that the potential acts only
on spin-singlet neutron pairs with vanishing angular mo-
mentum (FV analog of the 1S0 channel). This system
has recently been studied in Ref. [43] (which also dis-
cusses the use of separable interactions with the plane-
wave DVR), and as in that work we set n = 2 and fix
the momentum cutoff Λ = 250 MeV. The low-energy
constant C is fixed to reproduce the nn scattering length
ann = −18.9 fm.

Figure 3 shows results using training data from N = 22
DVR calculations at L = 19, 20, 21 fm. The DVR basis
B has been restricted to include only states with spin
projection Sz = 1/2, which covers total spin S = 1/2
and S = 3/2. Its dimension dimB = 28, 344, 960 is quite
sizable, and even larger bases are needed to converge the
calculation in boxes with L ≥ 32 fm [43]. Compared to
the previous examples, this application is more involved
because (a) the inclusion of spin increases the DVR basis
size at fixed N and (b) the low-lying fermion spectrum is
comprised of negative-parity T1 and T2 states, each com-
ing as three-fold degenerate multiplets (with dominant
correspondence to P-wave and D-wave states in infinite
volume, respectively). For the training calculations used
to generate Fig. 3, the iterative diagonalization did not
resolve all these degeneracies, finding between one and
three states of each multiplet, not uniform across the dif-
ferent training volumes. In spite of these imperfections,
FVEC still performs remarkably well after preprocessing
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Figure 4. FVEC calculation with uncertainty estimate for two particles interacting via a Gaussian potential with range R = 2
and depth V0 = −4.0 (in natural units). A pool of 16 training data sets with 6 ≤ L ≤ 9 (indicated as dark shaded bands)
has been used to estimate the FVEC uncertainty by considering all combinations of NEC = 4 (left panel) and NEC = 5 (right
panel) out of the overall pool. The range of all these individual calculations is shown as shaded bands.

the set of training vectors with a modified Gram-Schmidt
orthogonalization. This step is well known to be useful
for EC calculations in order to avoid numerical problems
stemming from singular and/or ill-conditioned norm ma-
trices. Therefore, this example demonstrates the robust-
ness of the FVEC method.

IV. UNCERTAINTY ESTIMATION

The accuracy of an FVEC calculation depends on the
choice of training data, both on the range it is chosen
from and on the number of training points used to con-
struct the EC subspace. This dependence can be used
to estimate the inherent uncertainty in an FVEC predic-
tion, which we illustrate in Fig. 4 for the same two-body
system with attractive Gaussian interaction considered in
Sec. III A. Instead of using a single fixed set of training
points, we calculate (using N = 32 for the DVR calcu-
lation) a training pool of 16 box sizes located uniformly
within the interval 6 ≤ L ≤ 9. To generate the left
panel in Fig. 4, we then pick all possible combinations of
NEC = 4 training points out of this pool and perform an
FVEC calculation for each of these combinations. The
range of results from these calculations (performed for
each target volume) is shown as shaded bands in Fig. 4.
To generate the right panel in the figure the procedure
was repeated choosing all combinations of NEC = 5 train-
ing points out of the pool of 16.

Accuracy and precision of the extrapolation evidently
increase with higher NEC as expected. The band for the
ground state almost overlaps at large L with the exact
result for NEC = 5, whereas the other levels are already
well converged with NEC = 4 (so much so that the shaded
bands for the excited states are barely visible in the fig-
ure). We note that due to the variational nature of EC
calculations the bands always lie above the exact energy
levels. This is a particular feature of energy observables,
while no such constraint holds in general for matrix ele-
ments of other operators [32].

V. DISCUSSION AND OUTLOOK

The examples considered above demonstrate that
FVEC is able to perform well for a variety of different sce-
narios, including bound and unbound states and bosonic
as well as fermionic systems. In particular, we find the
performance of FVEC roughly independent of the dimen-
sion of the model space, considering that all applications
above use comparable numbers of training data. Based
on this one should expect to FVEC to work equally well
at even large scales.

Eigenvector continuation has built a reputation of
yielding substantial speed-ups over exact calculations, to
an extend that it can render possible otherwise unfea-
sible analyses [33]. FVEC does not disappoint in this
regard: for example, an exact calculation at a single box
size shown in Fig. 2 requires roughly 1100 matrix-vector
multiplications to find the low-energy spectrum of the
N = 28 DVR Hamiltonian using PARPACK [55]. The
FVEC calculation with 40 training data points on the
other hand requires only 40 such matrix-vector products
(plus negligible numerical cost from vector-vector prod-
ucts and solving the EC eigenvalue problem). Since the
cost of constructing the DVR Hamiltonian for each tar-
get box size is also comparatively negligible, FVEC pro-
vides a speed-up factor of roughly 28 for a single L in
this particular scenario), and even more for a calculation
spanning multiple L such as shown in Fig. 2.

While the focus in the examples we presented has been
on using FVEC for extrapolation, there is no requirement
to choose training data from a narrow set of volumes.
Sampling instead on both ends of the regime of interest
to perform an interpolation can further improve the ac-
curacy of FVEC at fixed cost. Uncertainty estimation as
discussed in Sec. IV works the same way for this scenario.

Our work provides a perspective for further extensions
of EC to scenarios where the parametric dependence is
in the model space rather than just the Hamiltonian. In
particular, it would be interesting to develop a version
of EC to extrapolate the frequency parameter ~ω in cal-
culations employing truncated harmonic-oscillator (HO)
bases, which play an important role in nuclear physics.
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Such a scheme could for example leverage existing IR and
UV extrapolation schemes [56–60].
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