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A Symplectic Effective Field Theory that unveils the observed emergence of symplectic symmetry
in atomic nuclei is advanced. Specifically, starting from a simple extension of the harmonic-oscillator
Lagrangian, an effective field theory applied against symplectic basis states is shown to yield a
Hamiltonian system with one fitted parameter. The scale of the system can be determined self
consistently as the ratio of the average volume of a nucleus assumed to be spherical to its volume
as determined by the average number of oscillator quanta, which is stretched by the fact that the
plane-wave solution satisfies the equations of motion at every order without the need for perturbative
corrections. As an application of the theory, results for 20Ne, 22Ne and 22Mg are presented that yield
energy spectra, B(E2) values, and matter radii in good agreement with experimentally measured
results.

I. INTRODUCTION

Symmetries play a pivotal role in our understanding
of interactions that dominate nuclear structure. Their
importance extends from quantum field theories such as
the SU(3) color group used to proffer an understanding
of the quark and gluon dynamics in individual nucleons,
to effective field theories and the breaking of chiral sym-
metry which imposes a critical constraint that generates
and controls the dynamics of nuclei in the low-energy
regime that can be used to establish a connection with
QCD [1–6].

Similarly, Effective Field Theories (EFT) have proven
to be useful in gaining model-independent approaches
in various other analyses [7–12]. The main founda-
tion of any EFT is its ability to exploit a separation
of scales between two phenomena, those of interest like
low-energy collective nuclear excitations such as rotations
and vibrations, and others that focus on the higher en-
ergy aspects of the interaction. Notable nuclear collec-
tive models[13, 14] have been identified as leading-order
Hamiltonians of an EFT approach.

Significant progress achieved in the past decade using
continuum Schwinger function methods (CSM) paves a
way to observe how an effective strong interaction rele-
vant for low-energy nuclear physics emerges from quark
and gluon interactions in the strong QCD regime, char-
acterized by a coupling αs/π ' 1 [15–18]. Furthermore,
the CSM results have been rigorously checked in compar-
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isons with a broad array of different experimental results
on meson and baryon structure [16, 19–22].

The importance of symmetries is not limited to EFT
analyses. For example, it is well-known that SU(3) is
the symmetry group of the spherical harmonic oscilla-
tor that underpins the many-particle microscopic nuclear
shell model [23] patterned in large part after the atomic
case that treats the nucleus as a closed core system of
interacting single particles in valence shells with resid-
ual interactions. The latter successfully describes single-
particle separation energies and binding energies at shell
closures called magic numbers; however, it fails to de-
scribe effects due to the collective motion of the core
such as the emergence of rotational bands in heavy nuclei
that can be described phenomenologically by the Bohr-
Mottelson collective model [13], and the fact that the
first excited state of the doubly closed shell nucleus of
16O is part of a strongly deformed rotational band that
leads to an experimentally observed non-zero quadrupole
moment for its ground state.

The SU(3) model advanced by Elliott [24] was the first
group-theoretical model that captured rotational collec-
tivity in a shell-model framework. One can find its roots
in the Nilsson model [25], which is simply a deformed
version of the single-particle shell model. This unveiling
of the microscopic origin of collectivity within a nuclear
shell-model framework through an algebraic model and
the fact that most nuclei are deformed, along with the
coexistence of low-lying states in a single nucleus with
different quadrupole moments [26], paved the way to the
development of the Sp(3,R) Symplectic Model [27, 28].

The Sp(3,R) model is a multi-shell extension of the
SU(3) model that allows one to organize the spatial parts
of many-particle nuclear configurations into a collection
of Pauli-allowed shapes. This is a logical first-step of a
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far more robust theory for grouping many-nucleon con-
figurations into cluster-like shell-model configurations on
the lowest rung of what is now known to be an alge-
braically defined pyramid of deformed eigensolutions cou-
pled through enhanced B(E2) linkages. Multiple phe-
nomenological and schematic interactions that employ
the symplectic symmetry group have been found to give
energy spectra, B(E2) quadrupole transitions and radii
that are in remarkable agreement with experimental data
across the nuclear chart from the lightest systems like
16O [29] and 12C [30] through to intermediate-mass nu-
clei spanning from 20Ne [31, 32] and 24Mg [33–35], up to
strongly deformed nuclei of the rare-earth and actinide
regions like 166Er [36] and even 238U[37].

While such applications of the symplectic model re-
produce observed collective patterns in nuclei, they typi-
cally rely on schematic or phenomenological interactions.
However, recent results from the ab initio Symmetry-
adapted No-Core Shell Model (SA-NCSM) [38–41], that
employs realistic chiral effective field theory interactions
strongly suggest that the symplectic symmetry is a nat-
ural symmetry for nuclei and that its origins should be
investigated starting from first principles; that is, from
a symplectic effective field theory. Below we show the
construction of a symplectic effective field theory, one
which when applied to symplectic basis states yields a
polynomial of quantum mechanical Hamiltonians for nu-
clear structure applications. As an application of the
theory, results for the 20Ne, 22Ne and 22Mg isotopes are
presented.

II. SYMPLECTIC EFFECTIVE FIELD THEORY

In this section we present a step-by-step method
for building the symplectic effective field theory refer-
enced above. The main concept is to formulate a self-
interacting real scalar effective field theory that repre-
sents the excitations of a system of A interacting nu-
cleons. The degrees of freedom of the system are the
real scalar fields that represent harmonic oscillator ex-
citations. At leading order, the fields are plane waves
that satisfy the equations of motion. For every next-to-
leading order, the fields can be taken to be plane waves
without the need for perturbative corrections if one im-
poses a specific requirement on the coupling coefficient of
the theory. That requirement, together with the scalar
field constraint, set the overall scale of the theory, which
can be stated simply in terms of the ratio of the aver-
age spherical volume of a nucleus in its ground state to
its average volume determined in terms of the number
of harmonic oscillator excitations it hosts that allows the
system to stretch in ways that are consistent with the
pervasive plane-wave constraint.

The construction of this EFT is done through the fol-
lowing steps: In the first subsection (A) we introduce
the harmonic oscillator Lagrangian, extend it to n-th or-
der, and present the corresponding solutions. In the sec-

ond subsection (B) we review features of the symplectic
Sp(3,R) group, its generators, and the nomenclature we
will use in defining actions of these generators on states
within an irreducible representation (irrep) of the sym-
plectic group, especially on the irrep’s lowest-weight state
from which all others can be built. In subsection (C) we
move to the more familiar Hamiltonian rendering of the
dynamics, the details of which – being quite expansive
– are relegated to an appendix. In subsection (D), the
physical features associated with the diagonal elements of
the Hamiltonian are examined; while in subsection (E),
we do the same for the various off-diagonal elements re-
sulting into a quantum mechanical Hamiltonian applica-
ble for nuclear systems.

Throughout this paper we will use the Einstein nota-
tion for repeated indices and natural units in derivations
(~ = c = 1), the following four vector notation for our co-
variant position vector xµ(t, r) and xµ(t,−r) for its con-
travariant component, kµ(E,k) for the momentum four
vector and ∂µ( ∂∂t ,

∂
∂r ) for the derivative. For overall sim-

plicity, we will use L and H for the regular Lagrangian
and Hamiltonian, and L,H for their density-dependent
equivalents, respectively.

A. The Harmonic Oscillator (HO) Lagrangian and
its n-th order extension

The simplest Lagrangian density one can write for a
real scalar field ϕ is

L =
1

2
∂µϕ∂

µϕ, (1)

which is the Lagrangian density of a harmonic oscillator
(HO) for massless excitations (bosons). The classical,
still not quantized, fields that satisfy the equations of
motion of this Lagrangian are given by the plane-wave
solution.

ϕ(r, t) =
1

(2π)3/2

∫ +∞

−∞
ψ(k, E)eik

µxµdEdk. (2)

The integration is over four variables, the three momenta
(k, a spatial vector) and the energy (E, a scalar). The
construction of the effective field theory is accomplished
by taking the Lagrangian in Eq. (1) and extending it nat-
urally to its n-th order and adding a mass term at every
order,

L(n) =
αn

2n+1(n+ 1)!

(
∂µϕ∂

µϕ− nm2ϕ2
)n+1

. (3)

The total Lagrangian density is L =
∑
n L(n), where for

the n = 0 term we recover Eq. (1). We have added a
term nm2ϕ2, often called “the mass” term, at every or-
der. This is added to capture all possible combinations
of interaction terms that could result from lowest powers
of ϕ and ∂µϕ∂

µϕ. Including ϕ only shifts the equations
of motion by a constant, therefore the lowest possible
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power is ϕ2. In this formulation α is the coupling coeffi-
cient of the theory. Since the dimension of a Lagrangian
density always has to be [L] = 4, it follows logically that
[α] = −4 and as well that this is a non-renormalizable
EFT. The main advantage of this systematic construc-
tion of the Lagrangian density given by Eq. (3) is that it
is unique in the sense that the plane wave solution given
by Eq. (2) satisfies the equations of motion at every n-th
order without the need to consider perturbative correc-

tions if one imposes a specific condition on α ∼ 1/N
3/2
av ,

where Nav =
√
NfNi is the geometric average of the

total number of excitations (bosons) between the initial
|Ni〉 and final |Nf 〉 Fock states that the interaction is
acting on, as shown in Appendix (A). At n = 0 the ex-
citations (bosons) are massless with energy |Ek| = |k|
and for any arbitrary n > 0 a mass-like term is intro-
duced through the self interaction that turns out to be
the main driver of a Q · Q quadrupole-quadrupole type
interaction. This, alongside the imposed condition on α,
allows us to include all terms up to an arbitrary n-th
order.

The EFT has to be suitable for describing nuclei, and
therefore it is necessary to use discretized fields instead
of Eq. (2), through localized plane waves within cubic
elements of volume V with periodic boundary conditions.
This condition requires that the plane waves have the
following discrete form:

ϕ(r, t) =
1√
V

(∑
k

b+k√
|2Ek|

eιk
µxµ +

b−k√
|2Ek|

e−ιk
µxµ
)
,

(4)

where b+k creates an excitation (boson) and bk destroys an
excitation (boson), respectively, with energy |Ek| = |k|
by acting on a |Nk〉 state, where Nk is the number of
excitations (bosons) with momentum k.

Now that we have identified the required fields and
operators, we need for them to describe excitations of a
system of A nucleons, which means the fields must enter
pair-wise (quadratically, to preserve the parity of each
single-nucleon wave function), and therefore for a nucleus
with A nucleons the Lagrangian density given in Eq. (3)
has to be generalized to

L(n) =
αn

2n+1(n+ 1)!

(
∂µϕp∂

µϕp − nm2ϕ2
p

)n+1
, (5)

which is the Lagrangian density of an A-component real
scalar field and is O(A−1) symmetric [(A−1) to remove
the center-of-mass contribution]. It has been established
that the symplectic Sp(3,R) group is a complementary
dual of the O(A− 1) symmetry group [32]. This implies
that the Lagrangian itself is part symplectic, meaning
that the resulting quantum mechanical Hamiltonian from
it, after making specific couplings, preserves symplectic
symmetry and doesn’t mix configurations belonging to
different symplectic irreps. As for the p subscript, it
denotes the sum over all nucleons in the system

B. The Sp(3,R) algebra and Symplectic basis

The symplectic symmetry is the natural extension of
the SU(3) symmetry and is realized by its 21 many-body
generators in their Cartesian form. Since we are con-
structing a 4-dimensional EFT it is appropriate to repre-
sent the symplectic generators in the interaction picture
(Heisenberg representation) where the operators explic-
itly depend on time. This is done through

b±(t) = b±e±ιΩt. (6)

Using this definition we get the following

Aij =
1

2
b+ipb

+
jpe

2ιΩt,

Bij =
1

2
b−ipb

−
jpe
−2ιΩt, (7)

Cij =
1

2
(b+ipb

−
jp + b−jpb

+
ip),

where the i, j subscripts denote the spatial directions
and the repeated index p implies a sum over the num-
ber of nucleons in the system being described. The ob-
jects 2Qij = Cij + Cji are the generators of the Elliott
SU(3) group that act within a major harmonic oscillator
shell, whereas the symplectic raising Aij operator and its
conjugate Bij lowering operator connect states differing
in energy by 2Ω, twice the harmonic oscillator energy.
The interaction picture clearly states that the symplec-
tic operators A and B are the ones responsible for the
dynamics (they depend on time) in nuclei that can be
interpreted as vibrations in space and time. Whereas the
C operators (independent of time) are responsible for the
static deformed configurations in nuclei that can rotate
freely. This was perhaps implicitly evident from the fact
that the Sp(3,R) symmetry (A and B) is the dynam-
ical extension of the SU(3) symmetry (C), but now it
is explicitly evident through their representation in the
interaction picture.

To further understand the significance of these oper-
ators it is useful to define the following set of operators
which are more suitable for a physical interpretation of
the symplectic operators

Qij = Qij +Aij +Bij ,

Kij = Qij −Aij −Bij , (8)

Lij = −i(Cij − Cji),
Sij = 2ι(Aij −Bji),

where Qij is the quadrupole tensor and is responsible for
deformation, Kij is the the many-body kinetic tensor, Lij
is the angular momentum tensor responsible for rotations
and Sij is the vorticity tensor responsible for the flow of
deformation.

Symplectic basis states are constructed by acting with
the symplectic raising operator A on the so-called band-
head of the symplectic irrep |σ〉 which, is unique and is
defined as B |σ〉 = 0 to be a lowest weight state. The
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band-head |σ〉 is mathematically similar to how the vac-
uum behaves b |0〉 = 0. However, unlike vacuum, |σ〉 can
contain physical particles; namely, nucleons.

The complete labeling of a sympletic basis state that
is constructed from its |σ〉 bandhead irrep is |σnρωκLM〉
where σ ≡ Nσ(λσµσ) labels the bandhead, n ≡
Nn(λnµn) labels the excited state that, coupled to the
bandhead, yields the final configuration labeled by ω ≡
Nω(λωµω) with ρmultiplicity, L angular momentum with
κ multiplicity and its M projection. Nω = Nσ + Nn
is the total number of bosons (oscillator quanta), λa =
(Na)z − (Na)x and µa = (Na)x − (Na)y are the SU(3)
quantum numbers, where a = σ, ω, n. They denote the
intrinsic deformation of the state since they count the
difference in the number of oscillator quanta in the z and
x, and x and y directions respectively. These states are
ideal for describing collective features of nuclei and for
serving as basis states for the EFT. Similar to the Fock
state notation |Nk〉, symplectic basis states also describe
bosons numbered by Nω making them a suitable basis
state to which an application of our EFT interaction
yields a quantum mechanical Hamiltonian that can be
utilized for carrying out nuclear structure studies.

C. SpEFT Hamiltonian

The n-th order Hamiltonian density, derived in Ap-
pendix (B) is

H(n) =
αn

2n+1(n+ 1)!

(
ϕ̇2
p1 − ϕ

′
p1 · ϕ

′
p1 − nm

2ϕ2
p1

)n
×
(
(2n+ 1)ϕ̇2

p2 + ϕ′p2 · ϕ
′
p2 + nm2ϕ2

p2

)
, (9)

where ϕ̇ ≡ ∂ϕ
∂t and ϕ′ ≡ ∂ϕ

∂r . The total Hamiltonian den-
sity at the n-th order is a sum over all possible n+1 com-
binations of the n+ 1-th term in the second parenthesis
in Eq. (9) with respect to the n terms in the first paran-
thesis, therefore it is Hermitian (see Appendix (B) for
proof). However, for purposes of calculating matrix ele-
ments it is sufficient to only consider Eq. (9) and then add
all the possible other combinatorial terms as described.

The coupled fields in Eq. (9) are

ϕ2
p =

1

V

∑
k,q

1√
|2Ek||2Eq|

×

(
b+pke

ιkµxµ + b−pke
−ιkµxµ

)(
b+pqe

ιqµxµ + b−pqe
−ιqµxµ

)
,

ϕ̇2
p =

1

V

∑
k,q

ιEk√
|2Ek|

ιEq√
|2Eq|

×

(
b+pke

ιkµxµ − b−pke
−ιkµxµ

)(
b+pqe

ιqµxµ − b−pqe−ιq
µxµ
)
,

ϕ′p · ϕ′p =
1

V

∑
k,q

(−ιk)√
|2Ek|

(−ιq)√
|2Eq|

×

(
b+pke

ιkµxµ − b−pke
−ιkµxµ

)(
b+pqe

ιqµxµ − b−pqe−ιq
µxµ
)
.

(10)

For convenience, from here on we will drop the index p
denoting the sum over particle numbers from the fields
since they don’t affect any of the follow-on derivations
and can be recovered as may be required at any time. As
evident from the formulas above the creation and anni-
hilation operators enter into the Hamiltonian density in
pairs of b+b+, b−b−, b+b− and b−b+. This allows us to
describe them through the symplectic operators defined
in Eqs. (7). This definition further enables us to transi-
tion from |Nk〉 to |σ〉 where Nω will be equivalent to a
state with number of bosons Nk created(destroyed) by
b+k (b−k ) with momentum k. Knowing this we can rewrite
the fields in Eqs. (10) as follows:

ϕ2 =
1

V

∑
k,q

1√
|2Ek||2Eq|

×

(
Z+
k Z

+
q + Z−k Z

−
q + Z+

k Z
−
q + Z−k Z

+
q

)
,

ϕ̇2 =
1

V

∑
k,q

ιEk√
|2Ek|

ιEq√
|2Eq|

×

(
Z+
k Z

+
q + Z−k Z

−
q − Z+

k Z
−
q − Z−k Z

+
q

)
,

ϕ′ · ϕ′ =
1

V

∑
k,q

(−ιk)√
|2Ek|

(−ιq)√
|2Eq|

×

(
Z+
k Z

+
q + Z−k Z

−
q − Z+

k Z
−
q − Z−k Z

+
q

)
, (11)

where, for further convenience we use the notation Z±k =

b±k e
±ikµxµ . And finally, with these further simplifying

definitions in play, the Hamiltonian density in Eq. (9) can
be rewritten as follows:

H(n) =
1

2n+1(n+ 1)!

αn

V n+1

∑
k1k2...kn+1

∑
q1q2...qn+1

(12)

Z1Z2......ZnΞn+1

2n+1
√
Ek1Ek2 .....Ekn+1Eq1Eq2 .....Eqn+1

,

where we further use the following notation:

Zn =

(
(−EknEqn + kn · qn − nm2)(Z+

kn
Z+
qn

+ Z−knZ
−
qn

)

−(−EknEqn + kn · qn + nm2)(Z+
kn
Z−qn + Z−knZ

+
qn

)

)
.

(13)

Ξn+1 =

(
(−(2n+ 1)Ekn+1Eqn+1 − kn+1 · qn+1 + nm2)×

(Z+
kn+1

Z+
qn+1

+ Z−kn+1
Z−qn+1

)

−(−(2n+ 1)Ekn+1
Eqn+1

− kn+1 · qn+1 − nm2)×

(Z+
kn+1

Z−qn+1
+ Z−kn+1

Z+
qn+1

)

)
. (14)

With all of this in place, we finally come to an expres-
sion for the Hamiltonian density, H, that enters into the
integral for H that we consider next.
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D. Diagonal coupling and Monopole Hamiltonian

The Hamiltonian is

H =

∫ +L

−L
HdV. (15)

Substituting H into the integration we notice that for
every order n we have n+ 1 pairs of Z+Z+, Z+Z− and
their conjugates multiplied with each other inside the
integration. To demonstrate this, let us consider a term
like Z+Z+ for example for the simplest case n = 0 which

gives a term like∫ +L

−L
b+k (t)b+q (t)ei(k+q)·rdV, (16)

where we absorbed the time component of the exponent
into the operators. This integral is zero because of the
periodic boundary condition on k and q unless k+q = 0.
To generalize for n+1 pairs, each term Z+Z+ and Z−Z−

has to have k + q = 0, and each term Z+Z− and Z−Z+

has to have k− q = 0. We call this “diagonal coupling”
because for each pair in the integral we couple k to q for
example k1 to q1, k2 to q2 and kn to qn, etc. The result
of this simple coupling is that each Z term in Eq. (12)
doesn’t interact with other similar terms, meaning the
sums don’t mix with each other inside the integral, which
leads to the Hamiltonian presented in Eq. (17), below.
(See Appendix (C) for this derivation,)

H(n) =
1

2n+1(n+ 1)!

∑
k1k2...kn+1

1

2n+1Ek1Ek2 .....Ekn+1

αn

V n
×

(
(−2E2

k1 − 2(2n− 1)E2
k1)(b+k1

b+−k1
e2iEk1 t + b−k1

b−−k1
e−2iEk1 t)

)
×

.....×
(

(−2E2
kn − 2(2n− 1)E2

kn)(b+knb
+
−kne

2iEk1 t + b−knb
−
−kne

−2iEk1 t)

)
×(

− 2E2
kn+1

(b+kn+1
b+−kn+1

e2iEkn+1
t + b−kn+1

b−−kn+1
e−2iEkn+1

t) + (2n+ 2)E2
kn+1

(b+kn+1
b−kn+1

+ b−kn+1
b+kn+1

)

)
. (17)

Comparing the terms in the Hamiltonian to the symplec-
tic operators defined in Eq. (7) it is straightforward to see
that this Hamiltonian is symplectic in nature because, for
example, b−k1

b−−k1
is simply b−i b

−
i which is the symplectic

lowering operator Bii after we recover the sum over par-
ticle number p. This implies that symplectic symmetry
emerges naturally from the EFT Lagrangian in Eq. (3)
whose sole construction was done naturally by extend-
ing the harmonic oscillator Lagrangian out to its n-th
order. This implies that symplectic symmetry is an ex-
tension of the SU(3) symmetry of the harmonic oscilla-
tor which algebraically was known and well understood
through nuclear physics applications but here, as seen
through these developments, symplectic symmetry in nu-
clear physics has its origin at a more fundamental level
than previously considered; specifically, it derives from
and is underpinned by a logical EFT formulation.

In this effective field theory for determining the struc-
ture of atomic nuclei the nucleons in a nucleus are rep-
resented through the total energy quanta (bosons) they
bring forward, which in turn can be created and de-
stroyed at all possible energy values. This can be en-
visioned as having an infinite quantum mechanical har-
monic oscillator systems, each with Ek wherein the nucle-

ons are contained. Such excitations are constrained to a
very narrow range of possible energy values. Studies done
with mean field models and also realistic interactions all
support such a claim, as do calculations using the NC-
SpM [32] and SA-NCSM [41]. Specifically, in the latter
cases, one typically finds that utilizing a single symplectic
irrep suffices to recover nearly 70%-80% of the probabil-
ity distribution, and more specifically, accounts for nearly
90%-100% of observables, such as energy spectra, B(E2)
values and radii.

Given the fact that in all such cases the excitation
quanta include only a single energy mode; ~Ω = 41A−1/3

MeV, the application of the Hamiltonian on a single sym-
plectic state further reduces it to only one term, where
from each sum over k survives; namely, the term where
Ek = ~Ω which reduces Eq. (17) to

H
(n>1)
d = (−n)n(2~Ω)n+1 α

n

V n
(Aii +Bii)

n×(
(n+ 1)Cjj − (Ajj +Bjj)

)
. (18)

This is a quantum mechanical Hamiltonian that is the
natural extension to the harmonic oscillator Hamiltonian
for n ≥ 1. It represents a one-body interaction extended
to an arbitrary n-th order. This results from the diago-
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nal coupling discussed above and hence the d subscript,
and is solely responsible for generating monopole excita-
tions in nuclei that do not contribute to the dynamics
since they are just powers of Aii +Bii. They destroy the
leading order harmonic oscillator at every n ≥ 1 which is
unphysical and hence they have to be removed from the
final Hamiltonian. What is responsible for dynamics are
vibrations in space and time due to the quadrupole exci-
tations in nuclei that result from off-diagonal couplings
in the Hamiltonian in Eq. (12). The only term from the
diagonal coupling that contributes to the Hamiltonian is
the harmonic oscillator which, is H(0) = ~ΩCii.

E. Off-Diagonal coupling the Quadrupole
Hamiltonian

In this section, we consider two pairs of Z’s, Z+Z+,
for example inside the integral resulting from multiplying
two Z in Eq. (12), namely,

∫ +L

−L
b+k1

(t)b+q1
(t)b+k2

(t)b+q2
(t)ei(k1+q1+k2+q2)·rdV. (19)

For n = 1, which as we discussed before, this will be zero
unless k1 + q1 + k2 + q2 = 0. We managed this before
by picking k1 + q1 = 0 and k2 + q2 = 0, etc., which re-
sulted to the diagonal coupling. However there are many
possibilities to make k1 + q1 + k2 + q2 = 0. What is
particularly interesting is if we choose k1 + q2 = 0 and
k2 + q1 = 0. This results in a pair of Ak1−k2

Ak2−k1

which creates a boson pair with momentum k1 and −k2,
respectively, and creates another pair with momentum
k2 and −k1, respectively, such that the total momen-
tum of both pairs is conserved. If we pick k1 = −k2

this will result to the diagonal coupling Hamiltonian in
Eq. (18) derived in the previous section. However we
can pick |k1| = |k2| such that k1 ⊥ k2. This reduces
Ak1−k2

Ak2−k1
to AijAji which creates two boson pairs

in the i-th and j-th direction such that i 6= j. The
same argument applies to other terms like Z+Z+Z−Z−,
Z+Z+Z+Z−, Z+Z+Z+Z−, Z−Z−Z+Z− etc.

The expression for the off-diagonal Hamiltonian de-
pends on n. If n is odd then we have n+ 1 even pairs of
Z± that all could be coupled to each other resulting in
(n−1)/2 identical pairs and one unique pair. If n is even
then we have n + 1 odd pairs, from which we can form
either n/2 identical pairs, and a unique pair or (n− 2)/2
identical pairs and two unique pairs. This results in three
off-diagonal Hamiltonians, one for odd n and two for even
n for n > 0, since for n = 0 only diagonal coupling is pos-
sible. The resulting expressions will contain terms like
AijAji, CijCji, BijCji etc., which can be represented in
terms of Qij and Kij resulting into the following three
two-body Hamiltonian expansions, see Appendix (D) for
this derivation. The expansion resulting from the off-

diagonal coupling in Eq. (12) at every n = odd is

H
(n=odd)
od =

(~Ω)n+1

2n+1

αn

V n
×(

g2
nQijQji +KijKji − gn{Qij ,Kji}

)(n−1)/2×(
− g2

nQijQji + (2n+ 1)KijKji − ngn{Qij ,Kji}
)
. (20)

In the above equation, gn denotes the strength of the
quadrupole operator and is tied to the mass parameter
introduced in Eq. (3) (see Appendix (A) for derivation).
The expansion resulting from the off-diagonal coupling
in Eq. (12) at every n = even is

H
(n=even)
od =

(~Ω)n+1

2n+1

αn

V n
×(

g2
nQijQji +KijKji − gn{Qij ,Kji}

)n/2×(
(n+ 1)Cll − (Ajj +Bjj)

)
. (21)

This is one of the expansions resulting from the off-
diagonal coupling in Eq. (12) at every n = even and the
other one is removed since every term is proportional to
Aii +Bii, see Appendix (D) for additional details.

III. ANALYSIS AND RESULTS

Incorporating all the above considerations, the final
quantum mechanical Hamiltonian is as follows:

H = ~ΩCii +
∑
n=1

H
(n=odd)
od +

∑
n=2

H
(n=even)
od . (22)

Each n-th term in this Hamiltonian is a (n + 1)-body
interaction. Therefore this Hamiltonian, as formulated
below, includes all possible interaction terms up to in-
finity, but excludes terms resulting from triple, quadru-
ple or even higher off-diagonal couplings that are nat-
urally associated with new power series of 3-body and
4-body character, for example terms like QijQjfQfi and
QijQjfQflQli, respectively. These terms lie outside the
scope of the present paper as here we have chosen to limit
the theory to at most two off-diagonal coupling terms,
and the resulting interactions and their respective pow-
ers.

In this section we will outline in subsection (A) how
the parameters of the theory are chosen, how the effec-
tive parameters of the Hamiltonian tie to the parameters
introduced in the Lagrangian density, and finally discuss
their physical implications. In subsection (B) the dy-
namical effects of the interaction and time average of the
Hamiltonian will be derived. Finally in subsection (C) we
will present some result for applications of this Hamilto-
nian to 20Ne, 22Ne and 22Mg.

A. Parameters of the EFT

The resulting Hamiltonian for this EFT [Eq.(22)] is
effectively a two parameter theory; the parameters be-
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ing α
V ~Ω and gn. The parameter α

V ~Ω = VA
b3N3

av
estab-

lishes a clear seperation of scales. It is simply the ratio of
the average spherical nuclear volume VA = 4

3πR
3, where

R = 1.2A1/3 is the average radius of the ground state,
over the volume corresponding to the harmonic oscillator

excitations V = b3N
3/2
av , where b is the oscillator length,

along with the plane-wave condition, α ∼ 1/N
3/2
av that

allows further stretching of V .
If VA

b3N3
av

<< 1 the average volume of the nucleus is

less than a volume determined by adding up the total
number of its excitation quanta, when a plane wave solu-
tion is valid therefore preserving the harmonic oscillator
structure. But if VA

b3N3
av
∼ 1, signaling that the volume

determined by adding up the number of oscillator excita-
tions in play is approaching the average volume, a plane
wave solution becomes untenable with higher order cor-
rections becoming ever more relevant, ending in a com-
plete breakdown when the Q ·Q interactions destroys the
HO structure. In short, as more nucleons are added to
the system their corresponding boson excitations have to
also increase appropriately such that they can be repre-
sented by plane waves as indicated by the VA

b3N3
av

measure.

This further emphasizes the fact that this scale is valid
as long as a shell structure description is appropriate for
the systems being studied.

The second parameter of the theory is gn which is the
strength of the quadrupole operator because only the
quadrupole terms in Eq. (22) carry this parameter as a
multiplier. The value of this parameter determines the
strength with which the quadrupole tensor enters into
any analysis relative to that of the kinetic tensor. In
particular, it should be clear that if gn = 0 one gets a
power series in KijKji. It is therefore important that the
value chosen for gn > 1 for ∀n is required to balance the
interaction between QijQji, KijKji and QijKji.

The parameter gn is expressed in terms of the mass-
like parameter introduced in Eq. (A12) to represent the
strength of the interaction. It results from off-diagonal
couplings that depend on n which has a simple physical
interpretation,

gn =
2n− 1

n
g. (23)

The consequences of this is that the energy of the bosons
contributing to the formation of a given final symplectic
configuration, starting from an initial one, increases uni-
formly as more pairs are considered. This simple picture
suggests that if g1 = g and g∞ = 2g then as n→∞ the
weight of QijQji will scale as

lim
n→∞

(~Ω)n+1

2n+1

αn

V n
gn+1
n = 0. (24)

Although this means there will be a new parameter gn at
every order of the Hamiltonian, they are all determined
once g is fixed, and therefore the theory is effectively a
two parameter theory; namely, VA

b3N3
av

and g. In applica-

tions of the theory, unlike VA
b3N3

av
, g can be fitted to known

observables.

B. Time Average of the Hamiltonian

The Hamiltonian in Eq. (22) depends on time implic-
itly. This dependence comes through the symplectic op-
erators defined in Eqs. (7) and since they enter in pairs,
for example, in the two-body interaction terms they will
have the following time factors e±4ιΩt for AijAji and
BijBji, e

±2ιΩt for AijCji and BijCji, unity for AijBji
and CijCji (“+ for As and “−” for Bs). It is evident that
the time independent terms, like AijBji and CijCji are
responsible for rotations. As for the dynamical terms,
like AijAji and BijBji, they are responsible for vibra-
tions in nuclei.

The time dependence has to be integrated out. This is
done by averaging the Hamiltonian over the time period
that the nucleons interact with each other.

H =
1

T

∫ T

0

H(t)dt, (25)

where H(t) is the Hamiltonian given in Eq. (22) with its
time dependence written explicitly. T is the upper time
limit in which the strong interaction propagates and it is

of order T = 2R
c = 2×10−15

3×108 ∼ 10−23s. This allows us to
evaluate the integral in the limit of T → 0 which implies
that the self interacting fields in our EFT interact almost
simultaneously

H = lim
T→0

1

T

∫ T

0

H(t)dt. (26)

The time-independent terms come out of this integral
unchanged. As for the time-dependent ones, let us show
an explicit example like e4ιΩt which will be to the power
of n+1

2 for n = odd and to power of n
2 for n = even. For

the odd ones we have

lim
T→0

1

T

∫ T

0

e2(n+1)ιΩtdt = lim
T→0

e2(n+1)ιΩT − 1

2(n+ 1)ιΩT
= 1. (27)

This proves that the time-dependent terms also come out
unchanged except they drop their exponential time fac-
tors. The same proof applies to the even expansion terms
as well. So finally, the Hamiltonian in Eq. (22) could be
applied to any nucleus as though it is independent of
time.

C. 20Ne, 22Ne and 22Mg

The ground state rotational bands for 20Ne, 22Ne and
22Mg all display a structure that is close to that of a rigid
rotor, which makes them good tests of our EFT to see if
the theory can reproduce this rotational behavior. More-
over, the KijKji and QijKji in Eq. (22) should introduce
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TABLE I. SpEFT matter rms radii rm (fm) of the ground
states compared to their experimental counterparts for the
nuclei under consideration [44, 45].

Nucleus SpEFT Expt.
20Ne 2.80 2.87(3)
22Ne 2.84 —–
22Mg 2.84 2.89(6)

irrotational-like departures from the simple L(L+1) rule
for the spectrum of a rigid rotor, which can as well be seen
in the 20Ne, 22Ne, and 22Mg set, making these ideal can-
didates for probing a range of rotational features within
the context of our EFT theory.

Specifically, we carried out SpEFT calculations in the
Nmax = 12 model space, which was required for gain-
ing good convergence of the observed B(E2) transitions,
by adjusting only one parameter; g = 14 for 20Ne and
g = 14.7 for 22Ne and 22Mg. For these nuclei, the
Nmax = 12 model space is down-selected to only one
spin-0 leading symplectic irrep; namely 48.5(8, 0) for
20Ne, 55.5(8, 2) for 22Ne and 22Mg. These selections also
proved sufficient to simultaneously reproduce reasonably
well-converged values for the observed energy spectra and
nuclear radii. And most importantly, the results very
clearly demonstrate that the SpEFT is able to do this
without the need for introducing effective charges which
is confirmed pictorially in Fig. (1,2,3), and by a compar-
ison of the rms radii given in Table (I) that are as well in
very good agreement with observations, all with only a
single fitting parameter, g. The selection of the leading
irrep and all subsequent calculations of energy spectra,
BE(2) transitions and radii are discussed in detail in Ap-
pendix (E).

In Table (II) we further give the maximum and mini-
mum values of the scale parameter, VA

b3N3
av

, for these nu-

clei. All the presented results are calculated by including
terms up to n ≤ 4 in the Hamiltonian, which, as stressed
above, was necessary for gaining good convergence of the
theory to known observables. Additionally, we note that
for the case of 20Ne, terms with 4 < n ≤ 6 contribute
∼ −0.004 MeV to the ground state energy and ∼ −0.004
W.u. to the 2+ → 0+ B(E2) transition. And beyond
these data-focused measures, it is interesting to note that
these calculations were all carried out on a laptop, tak-
ing from about 10 minutes for the 20Ne case and up to
approximately 2 hours for the 22Ne and 22Mg cases, a
feature which serves to stress that as complex as the un-
derpinning algebraic structure may seem to be (Section
II together with the associated Appendices), its applica-
tions are computationally quite simple, even to the point
of rendering the formalism suitable for more pedagogical
uses.

FIG. 1. The energy spectrum and B(E2) values of the
48.5(8, 0) symplectic irrep for 20Ne using the SpEFT in a
Nmax = 12 model space (EFT) compared to experimental
data (Expt.) [42]. B(E2) values are in W.u.

FIG. 2. SpEFT energy spectrum and B(E2) values of the
55.5(8, 2) symplectic irrep for 22Ne in a Nmax = 12 model
space compared to experimental data (Expt.) [43]. B(E2)
values are in W.u.

FIG. 3. SpEFT energy spectrum and B(E2) values of the
55.5(8, 2) symplectic irrep for 22Mg in a Nmax = 12 model
space compared to experimental data (Expt.) [43]. B(E2)
values are in W.u.
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TABLE II. The maximum and minimum value of the scale of
SpEFT, VA

b3N3
av

when Nav = Nσ, Nav = Nσ + Nmax accord-

ingly.

Nucleus The maximum scale The minimum scale
20Ne 2.79 × 10−4 1.44 × 10−4

22Ne 1.95 × 10−4 1.08 × 10−4

22Mg 1.95 × 10−4 1.08 × 10−4

IV. CONCLUSIONS

In this paper we outlined a step-by-step process for
how symplectic symmetry emerges from a simple self-
interacting scalar field theory extended to n-th order.
We then went on to identify the scale of this interac-
tion and imposed the necessary conditions that justify
treating the scalar fields as plane waves. Furthermore,
the application of the fields onto a single symplectic ir-
rep generated a quantum mechanical Hamiltonian. It is
composed of a harmonic oscillator at leading order and
a dominant quadrupole-quadrupole interaction at next-
to-leading, and higher orders. These results explain why,
from an EFT perspective, phenomenological models us-
ing a simple harmonic oscillator with quadrupole type in-
teractions have been successful in capturing the relevant
physics in nuclei. Their origin lies in a simple scalar-field
theory framework. Moreover, for the first time, we iden-
tified the dynamical operators of the symplectic algebra,
and showed how they explicitly behave under vibrations
in time.

The resulting SpEFT Hamiltonian is a complex, yet
simple interaction to study nuclear observables. It can
produce energy spectra, enhanced electromagnetic tran-
sitions, and rms matter radii without the need for effec-
tive charges. Moreover, it does this with only a single
fitted parameter g. The main advantage of this theory
lies in its simplicity to explain how deformation arises
and drives nuclear dynamics. This key feature allows the
SpEFT to take advantage of the underlying symmetry,
and therefore doesn’t require access to large-scale com-
putational resources. This was successfully demonstrated
by its application to 20Ne, 22Ne, 22Mg and its ability to
produce results that are in very reasonable agreement
with experiment on just a laptop.

ACKNOWLEDGMENTS

Work supported by: DK & JPD – Louisiana State
University (College of Science, Department of Physics
& Astronomy) as well as the Southeastern Universities
Research Association (SURA, a U.S. based Non-profit
Organization); VIM – In part by the U.S. Department of
Energy (SURA operates the Thomas Jefferson National
Accelerator Facility for the U.S.; Department of Energy
under Contract No. DE-AC05-06OR23177); and CDR
– National Natural Science Foundation of China (Grant

No. 12135007).

Appendix A: Plane Wave Solution

Let us find the condition on α for which the plane wave
solution given by Eq. (2) satisfies the equations of motion
for the Lagrangian density in Eq. (5). At a specific n
order we will have

∂µ
∂L(n)

∂ϕπ,µ
=
∂L(n)

∂ϕπ
. (A1)

Calculating each derivative for the π-th field yields

∂L(n)

∂ϕπ
= αn

n+ 1

2n(n+ 1)!

(
∂µϕp∂

µϕp−nm2ϕ2
p

)n
(−nm2ϕπ),

(A2)

∂L(n)

∂ϕπ,µ
= αn

n+ 1

2n(n+ 1)!

(
∂νϕp∂

νϕp − nm2ϕ2
p

)n
∂µϕπ,

(A3)

∂µ
∂L(n)

∂ϕπ,µ
= αn

n+ 1

2n(n+ 1)!

(
∂ηϕp∂

ηϕp − nm2ϕ2
p

)n
∂µ∂µϕπ

+αn
n(n+ 1)

2n(n+ 1)!

(
∂ηϕp∂

ηϕp − nm2ϕ2
p

)n−1×(
2∂ν∂

νϕπ∂
µϕp∂µϕp − 2nm2ϕp∂

µϕp∂µϕπ
)
. (A4)

Now summing over all possible n we get the equation of
motion

∞∑
n=0

αn
n+ 1

2n(n+ 1)!

(
∂ηϕp∂

ηϕp − nm2ϕ2 − p
)n×

(∂µ∂µϕπ + nm2ϕπ)

+αn
n(n+ 1)

2n(n+ 1)!

(
∂ηϕp∂

ηϕp − nm2ϕ2
p

)n−1×(
2∂ν∂

νϕπ∂
µϕp∂µϕp − 2nm2ϕp∂

µϕp∂µϕπ
)

= 0. (A5)

Since the total Lagrangian density is L =
∑
n L(n) there

is a sum over n. For n = 0 we will have ∂µ∂µϕπ = 0
which is the Klein-Gordon equation for massless bosons
and the plane wave solution given in Eq. (2) satisfies it
with E2 = k2 therefore the first n = 0 term disappears.
As for n > 0, by plugging ∂µ∂µϕπ = 0 into Eq. (A5) and
since αn n+1

2n(n+1)!

(
∂ηϕp∂

ηϕp − nm2ϕ2
p

)
6= 0 otherwise the

Lagrangian density would be zero so we can take it out
of the equation. For ∀n > 0 term we must have

αn
(

(∂ηϕp∂
ηϕp − nm2ϕ2

p)(nm
2ϕπ)

−n(2nm2ϕp∂
µϕp∂µϕπ)

)
= 0. (A6)

The above equation is not zero because the plain wave
solution doesn’t satisfy it. However, if we pick the magni-
tude of α correctly for the leading order (n = 1) then the
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above equation can be made to be much less than one,
and close to zero. Since ϕp ∼ (b+p + b−p ) then the aver-

age maximum magnitude of 〈Nf |ϕ2
p |Ni〉 ∼ Nav where

Nav =
√
NfNi is the geometric average of the total

number of excitations (bosons) between the initial and
final Fock states. Since the above equation of motion is
proportional to ϕπϕ

2
p and the minimum upper limit of

〈f |ϕ2
pϕπ |i〉 ∼ Nav

√
Nav then for n = 1 we roughly have

α(Nav
√
Nav) ∼ 0. (A7)

Therefore, we have the following estimate for the magni-
tude of α

α ∼ 1

Nav
√
Nav

. (A8)

Establishing this magnitude also allows us to estimate the
magnitude of m2. To do this we need the field derivatives
for which we have

∂µϕ =
1

(2π)3/2

∫ +∞

−∞
ιkµψ(k, E)eιk

νxνdEdk,

∂µϕ∂
µϕ = − 1

(2π)3

∫ +∞

−∞

∫ +∞

−∞
k1µk

µ
2ψ(k1, E)ψ(k2, E)×

eι(k
ν
1+kν2 )xνdE1dk1dE2dk2. (A9)

Using these and plugging them into Eq. (A6) we get the
following parametric equation (keeping in mind that for
purposes of applying this to nuclei we would only keep
one specific value of Ek = ~Ω and hence the integrals
drop out):

∞∑
n=1

(
− |k1||k2|+ k1 · k2 − nm2

)
nm2

+2n2m2
(
|k1||k2| − k1 · k2

)
= 0. (A10)

Which gives the following formula for the mass parameter

m2 =
2n− 1

n

(
|k1||k2| − k1 · k2

)
. (A11)

Therefore this choice of the parameter guarantees that
the plane wave satisfies the equation of motion for a spe-
cific energy value |k1| = |k2| =

√
g
n~Ω. This choice

further reduces the formula to the following three cases

nm2 =


gn~Ω2, if k1⊥k2

2~Ω2, if k1 is anti-parallel to k2

0. if k1 is parallel to k2

(A12)

In the above equation where gn = 2n−1
n g was introduced

only for the k1⊥k2 case since it is an effective description
to the weight of the resulting interaction from such cou-
pling between the fields, where g captures its strength.
Given that α is determined by Eq. (A8), g is the only
parameter that will be fitted from one nuclear system to
the other.

Appendix B: Hamiltonian derivation and
Hermiticity

The Hamiltonian at any n order is given by the Leg-
endre transformation

H(n) = ϕ̇
∂L(n)

∂ϕ̇
− L(n) (B1)

Using the Eq. (A3) and plugging µ = 0 we get the follow-
ing

∂L(n)

∂ϕ̇
= αn

n+ 1

2n+1(n+ 1)!

(
∂νϕ∂

νϕ− nm2ϕ2
)n

2ϕ̇. (B2)

Plugging it back in the Hamiltonian formula we get

H(n) = αn
2(n+ 1)

2n+1(n+ 1)!

(
∂νϕ∂

νϕ− nm2ϕ2
)n
ϕ̇2 − αn

2n+1(n+ 1)!

(
∂µϕ∂

µϕ− nm2ϕ2
)n+1

, (B3)

combining the terms we get

H(n) =
αn

2n+1(n+ 1)!

(
∂νϕ∂

νϕ− nm2ϕ2
)n×(

(2n+ 1)ϕ̇2 + ϕ′ · ϕ′ + nm2ϕ2
)
. (B4)

The Hamiltonian in Eq. (B4) is not Hermitian but the
Hamiltonian in Eq. (B1) is by definition Hermitian. This

is due the fact when we calculated the term ∂L(n)

∂ϕ̇

we neglected all possible other combinations of ϕ̇ with(
∂νϕ∂

νϕ− nm2ϕ2
)
. In reality this term should be
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∂L(n)

∂ϕ̇
= αn

2(n+ 1)

2n+1(n+ 1)!

(
ϕ̇
(
∂νϕ∂

νϕ− nm2ϕ2
)n

+
(
∂νϕ∂

νϕ− nm2ϕ2
)
ϕ̇
(
∂νϕ∂

νϕ− nm2ϕ2
)n−1

+
(
∂νϕ∂

νϕ− nm2ϕ2
)2
ϕ̇
(
∂νϕ∂

νϕ− nm2ϕ2
)n−2

+ ..........+
(
∂νϕ∂

νϕ− nm2ϕ2
)n
ϕ̇

)
. (B5)

As evident from Eq. (B5) there are n + 1 terms which are different combinations of ϕ̇ with
(
∂νϕ∂

νϕ−nm2ϕ2
)
.

This results into the following Hamiltonian

H(n) =
αn

2n+1(n+ 1)!

((
(2n+ 1)ϕ̇2 + ϕ′ · ϕ′ + nm2ϕ2

)(
∂νϕ∂

νϕ− nm2ϕ2
)n

+
(
∂νϕ∂

νϕ− nm2ϕ2
)(

(2n+ 1)ϕ̇2 + ϕ′ · ϕ′ + nm2ϕ2
)(
∂νϕ∂

νϕ− nm2ϕ2
)n−1

+
(
∂νϕ∂

νϕ− nm2ϕ2
)(

(2n+ 1)ϕ̇2 + ϕ′ · ϕ′ + nm2ϕ2
)(
∂νϕ∂

νϕ− nm2ϕ2
)n−2

+......+
(
∂νϕ∂

νϕ− nm2ϕ2
)n(

(2n+ 1)ϕ̇2 + ϕ′ · ϕ′ + nm2ϕ2
))
. (B6)

The above Hamiltonian is Hermitian. Since the formula
for the Hamiltonian is very long we refrained from writ-
ing down all the terms and limited ourselves to only the
n + 1-th term because it is easier for purposes of de-
riving a quantum mechanical Hamiltonian applicable for
describing nuclear phenomena. Note that we also re-
frained from writing down all possible n! combinations
of
(
∂νϕ∂

νϕ− nm2ϕ2
)

with itself since they are all iden-
tical for matrix element calculations hence the normal-
ization factor of (n + 1)!. n! for identical combinations

of
(
∂νϕ∂

νϕ−nm2ϕ2
)

combined with n+1 combinations

with the
(
(2n+ 1)ϕ̇2 + ϕ′ · ϕ′ + nm2ϕ2

)
term as we saw

above.

Appendix C: Diagonal coupling calculation

As discussed in section 3, we will pick k = −q for
Z+Z+ and Z−Z− and pick k = q for Z+Z− and Z−Z+

so they will survive the integration over the volume which
results to

H(n) =
1

2n+1(n+ 1)!

∑
k1k2...kn+1

1

2n+1Ek1Ek2 .....Ekn+1

αn

V n
×

(
(−E2

k1 − k2
1 − nm2)(b+k1

b+−k1
e2ιEk1 t + b−k1

b−−k1
e−2ιEk1 t)− (−E2

k1 + k2
1 + nm2)(b+k1

b−k1
+ b−k1

b+k1
)

)
×(

(−E2
k2 − k2

2 − nm2)(b+k2
b+−k2

e2ιEk2 t + b−k2
b−−k2

e−2ιEk2 t)− (−E2
k2 + k2

2 + nm2)(b+k2
b−k2

+ b−k2
b+k2

)

)
×

.......................................................×(
(−E2

kn − k2
n − nm2)(b+knb

+
−kne

2ιEkn t + b−knb
−
−kne

−2ιEkn t)− (−E2
kn + k2

n + nm2)(b+knb
−
kn

+ b−knb
+
kn

)

)
×(

(−(2n+ 1)E2
kn+1

+ k2
n+1 + nm2)(b+kn+1

b+−kn+1
e2ιEkn+1

t + b−kn+1
b−−kn+1

e−2ιEkn+1
t)

−(−(2n+ 1)E2
kn+1

− k2
n+1 − nm2)(b+kn+1

b−kn+1
+ b−kn+1

b+kn+1
)

)
. (C1)

But E2
k1

= k2
1. As for m2 we have m2 = 2n−1

n (2E2
k) for k = −q and m2 = 0 for k = q by definition which further
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reduces Eq. (C1) to

H(n) =
1

2n+1(n+ 1)!

∑
k1k2...kn+1

1

2n+1Ek1Ek2 .....Ekn+1

αn

V n
×

(
(−2E2

k1 − 2(2n− 1)E2
k1)(b+k1

b+−k1
e2ιEk1 t + b−k1

b−−k1
e−2ιEk1 t)

)
×

.....×
(

(−2E2
kn − 2(2n− 1)E2

kn)(b+knb
+
−kne

2ιEk1 t + b−knb
−
−kne

−2ιEk1 t)

)
×(

− 2E2
kn+1

(b+kn+1
b+−kn+1

e2ιEkn+1
t + b−kn+1

b−−kn+1
e−2ιEkn+1

t) + (2n+ 2)E2
kn+1

(b+kn+1
b−kn+1

+ b−kn+1
b+kn+1

)

)
. (C2)

Its application on a single symplectic state further re-
duces this Hamiltonian. Only one term from each sum
over k will survive namely the term where Ek = ~Ω which
gives us

H(n) =
(−1)n

2n+1(n+ 1)!

1

2n+1(~Ω)n+1

αn

V n
×(

4n~Ω2(b+k1
b+−k1

e2ιΩt + b−k1
b−−k1

e−2ιΩt)

)
×(

4n~Ω2(b+k2
b+−k2

e2ιΩt + b−k2
b−−k2

e−2ιΩt)

)
×

.....×
(

4n~Ω2(b+knb
+
−kne

2iιΩt + b−knb
−
−kne

−2ιΩt)

)
×(

− 2~Ω2(b+kn+1
b+−kn+1

e2ιΩt + b−kn+1
b−−kn+1

e−2ιΩt)

+(2n+ 2)~Ω2(b+kn+1
b−kn+1

+ b−kn+1
b+kn+1

)

)
. (C3)

Now using the definitions in Eqs. (7) and recovering the
particle numbers we get

H(n) =
(−n)n

2n+1(n+ 1)!

4n+1(~Ω)2(n+1)

2n+1(~Ω)n+1

αn

V n
(2Aii + 2Bii)

n×(
− 2(Ajj +Bjj) + (2n+ 2)Cjj

)
. (C4)

Carrying out the necessary reductions we will finally get

H(n) = (−n)n(2~Ω)n+1 α
n

V n
(Aii +Bii)

n×(
− (Ajj +Bjj) + (n+ 1)Cjj

)
. (C5)

Note that we accounted for all possible combinations of
the terms in respect to exchanging places with each other
therefore the factorial term in front reduces to unity as
discussed earlier in Appendix B.

Appendix D: Off-diagonal coupling calculation

The off-diagonal coupling will result to the following
possible couplings for ∀n presented in Table (III), of all

possible terms in pairs to survive the integration over
volume of the Hamiltonian density in Eq. (12). To avoid

TABLE III. All possible couplings in pairs of two Z operators.
There are 16 possible terms. Only 8 are shown since the other
8 are conjugates and have identical couplings

Z+
kn
Z+

qn
Z+

kn+1
Z+

qn+1
kn = −qn+1,kn+1 = −qn

Z+
kn
Z+

qn
Z−kn+1

Z−qn+1
kn = qn+1,kn+1 = qn

Z+
kn
Z+

qn
Z+

kn+1
Z−qn+1

kn = qn+1,kn+1 = −qn
Z+

kn
Z+

qn
Z−kn+1

Z+
qn+1

kn = −qn+1,kn+1 = qn
Z+

kn
Z−qnZ

+
kn+1

Z−qn+1
kn = qn+1,kn+1 = qn

Z+
kn
Z−qnZ

−
kn+1

Z+
qn+1

kn = −qn+1,kn+1 = −qn
Z−knZ

+
qn
Z−kn+1

Z+
qn+1

kn = qn+1,kn+1 = qn

diagonal terms like Aii Bii and Cii resulted from kn =
kn+1 for ∀n we pick |kn| = |kn+1| such that kn ⊥ kn+1

for ∀n. This results into terms like AijAji for example.
As discussed for any two Z terms in Eq. (12) we have

4(E2 + nm2)2(AijAji +BijBji +AijBji +BijAji)

−4(E4 − n2m4)(AijQji +BijQji +QijBji +QijAji)
+4(E2 − nm2)2QijQji. (D1)

Expressing the symplectic operators in Eq. (D1) in terms
of the quadrupole and kinetic tensors we get

(E2 + nm2)2(QijQji +KijKji −QijKji −KijQji)

−(E4 − n2m4)(2QijQji − 2KijKji)

+(E2 − nm2)2(QijQji +KijKji +QijKji +KijQji) =

4n2m4QijQji + 4E4KijKji − 4nm2E2(QijKji +KijQji).
(D2)
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As for the unique term resulting from coupling the Zn-th
term to Ξn+1-th term in Eq. (12) we have

4((2n+ 1)E4 − n2m4 + 2n2m2E2)

×(AijAji +BijBji +AijBji +BijAji)

+4(−(2n+ 1)E4 − n2m4 − 2(n+ 1)nm2E2)

×(AijQji +BijQji)
+4(−(2n+ 1)E4 − n2m4 + 2(n+ 1)nm2E2)

×(QijBji +QijAji)
+4((2n+ 1)E4 − n2m4 − 2n2m2E2)QijQji. (D3)

Expressing the symplectic operators in Eq. (D3) in terms
of the quadrupole and kinetic tensors we get

((2n+ 1)E4 − n2m4 + 2n2m2E2)

×(QijQji +KijKji −QijKji −KijQji)

+(−(2n+ 1)E4 − n2m4 − 2(n+ 1)nm2E2)

×(QijQji −KijKji +QijKji −KijQji)

+(−(2n+ 1)E4 − n2m4 + 2(n+ 1)nm2E2)

×(QijQji −KijKji −QijKji +KijQji)

+((2n+ 1)E4 − n2m4 − 2n2m2E2)

×(QijQji +KijKji +QijKji +KijQji). (D4)

Finally combining them gives

−4n2m4QijQji + 4(2n+ 1)E4KijKji

−4n2m2E2(QijKji +KijQji)

−4(n+ 1)nm2E2(QijKji −KijQji). (D5)

Note that the last term in Eq. (D5) is not Hermitian.
However as we explained in Appendix B there will be a
Hermitian conjugate term resulting from other possible
perturbations. For every possible term where we have
(QijKji − KijQji) we will get its conjugate from other
perturbations resulting to−(QijKji−KijQji) which can-
cel each other. Keeping this in mind we get the following
for the Hamiltonian for an arbitrary odd n where E = ~Ω

H
(n=odd)
od =

(n+ 1)!

2n+1(n+ 1)!

~Ω2(n+1)

(2~Ω)n+1

αn

V n
×(

4g2
nQijQji + 4KijKji − 4gn{Qij ,Kji}

)(n−1)/2×(
− 4g2

nQijQji + 4(2n+ 1)KijKji − 4ngn{Qij ,Kji}
)
,

(D6)

where {Qij ,Kji} is the anti-commutator and gn =
nm2/~Ω2. Canceling the coefficients we get

H
(n=odd)
od =

(~Ω)n+1

2n+1

αn

V n
×(

g2
nQijQji +KijKji − gn{Qij ,Kji}

)(n−1)/2×(
− g2

nQijQji + (2n+ 1)KijKji − ngn{Qij ,Kji}
)
.

(D7)

For n > 0 and n = even we have two options as dis-
cussed. The first option is to couple all identical terms
off-diagonally and couple the n + 1-th term diagonally
which results to

H
(n=even)
od =

(~Ω)n+1

2n+1

αn

V n
×(

g2
nQijQji +KijKji − gn{Qij ,Kji}

)n/2×(
(n+ 1)Cll − (All +Bll)

)
. (D8)

The other possibility is having one of the identical terms
coupled diagonally and the rest off-diagonally which gives
terms proportional to (All +Bll) and therefore we won’t
consider them either since they also change the size at
every order.

Appendix E: Leading irrep, BE(2) values and radii

A step-by-step procedure for determining the leading
bandhead irrep, |σ〉 = Nσ(λσ, µσ), for a nucleus consist-
ing of A (nucleons) = Az (protons) + An (neutrons),
follows. (A proton-neutron coupling scheme is used to
circumvent antisymmetrization questions.)

First, determine Nσ, which is an additive number that
counts the total number of oscillator quanta in play.
It can be determined by placing the identical fermions
(protons or neutrons) into the lowest possible harmonic
oscillator shells. Each shell can accommodate up to
2(N + 1)(N + 2) nucleons where N is the major oscil-
lator shell number. To illustrate this for the 20Ne case,
place 2 protons in the N = 0, 6 in N = 1 and 2 in
N = 2, shells, respectively. And since in this case An
= Az, the same distribution applies for neutrons, other-
wise one would have to repeat this simple exercise for the
neutrons and add it to the proton number, etc.

Finally, taking everything into account, the total Nσ
can be calculated using the following formula:

Nσ =
3

2
(A− 1) +

∑
N

ηNN, (E1)

which for the 20Ne case yields Nσ = 48.5, where ηN in
this expression is the number of nucleons in each N oscil-
lator shell, and the 3

2 (A−1) factor is included to account
for the vacuum energy of the A nucleons with one sub-
tracted fromA to accommodate the removal of a spurious
center of mass contribution to Nσ.

Second, find all possible (λσ, µσ) sets at the bandhead
level, for which Nσ = 48.5 [46]. This can done by calcu-
lating all possible configurations that the 4 nucleons (2
protons and 2 neutrons for the 20Ne case) can have in
the N = 2 shell such that Nz ≥ Nx ≥ Ny, as shown in
Table (IV). The other nucleons in the lower shells do not
contribute as they form closed shells with (λ, µ) = (0, 0)
so they do not alter the final (λ, µσ) values due to the nu-
cleons in the valence shell; specifically, the direct product
of (λ, µ) = (0, 0) with any other (λ, µ) is simply (λ, µ),
even though the closed-shell levels add to the Nσ count.
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TABLE IV. All distinct symplectic irreps at the bandhead
level, with Nσ = 48.5 for 20Ne.

(Nz, Nx, Ny) (λσ, µσ)
(8,0,0) (8,0)
(7,1,0) (6,1)
(6,2,0) (4,2)
(6,1,1) (5,0)
(5,3,0) (2,3)
(5,2,1) (3,1)
(4,4,0) (0,4)
(4,3,1) (1,2)
(4,2,2) (2,0)
(3,3,2) (0,1)

Third, the leading irrep is the state that has the largest
expectation value of the quadrupole-quadrupole interac-
tion, which is proportional to the SU(3) Casimir invariant

〈σ|QijQji |σ〉 ∼ λ2
σ + µ2

σ + λσµσ + 3λσ + 3µσ. (E2)

It is clear from the above equation, that (λσ, µσ) = (8, 0)
has the largest Casimir invariant and therefore it is the
leading irrep for 20Ne.

To quantify matters more precisely, we note that all
symplectic preserving operators can be recast in terms
of their respective SU(3) spherical tensor form(s) for
which analytic results are known. Specifically, the tensor
equivalent of 6QijQji after removing the contribution of

monopole excitations is Q2 ·Q2 , where

Q2M =
√

3(A
(2,0)
2M +B

(0,2)
2M + C

(1,1)
2M ). (E3)

And generally, as can be deduced from Eq. (7), any of the
symplectic generators, or powers thereof, can be recast
in terms of their SU(3) equivalent tensor characteriza-
tions; specifically, for the generators of the symplectic

algebra we have A
(2,0)
L0M0

and the conjugate lowering op-

erators B
(2,0)
L0M0

along with C
(1,1)
L0M0

, where L0 = 0 and 2
for the monopole and quadrupole excitatons of A and B
types, and L0 = 0, 1 and 2 for the monopole (HO), vec-
tor (angular momentum) and quadrupole excitatons of
the C type, etc.

The matrix element of A
(2,0)
L0M0

between initial and

final states, 〈σnfρfωfκfLfMf |A(2,0)
L0M0

|σniρiωiκiLiMi〉,
or more simply as 〈f |A(2,0)

L0M0
|i〉, is given by

〈f |A(2,0)
L0M0

|i〉 = C
LfMf

LiMi,L0M0
〈σnfρfωf | |A(2,0)| |σniρiωi〉〈

(λωi , µωi)κiLi, (2, 0)L0

∣∣(λωf , µωf )κfLf
〉
, (E4)

where
〈
(λωi , µωi)κiLi, (2, 0)L0

∣∣(λωf , µωf )κfLf
〉

is a
SU(3)⊃SO(3) Clebsch-Gordon coefficient [47, 48],

C
LfMf

LiMi,L0M0
is the SO(3)⊃SO(2) Clebsch-Gordon coef-

ficient, and

〈σnfρfωf | |A(2,0)| |σniρiωi〉 = (−1)λωf+µωf−λωi−µωiU
(
(λσ, µσ)(λni , µni)(λωf , µωf )(2, 0); (λωi , µωi)ρi(λnf , µnf )ρf

)
×√

F (σnfωf )− F (σniωi) 〈nf | |A| |ni〉 , (E5)

is the matrix element of A(2,0) reduced with respect to
SU(3) [49, 50]. In this expressions U denotes an SU(3)
Racah coefficient [47, 48] and the second pair of bars in

〈nf | |A| |ni〉 reflects that this is a double reduction with
respect to SU(3) as well as SO(3), not to be confused
with absolute value. More specifically,

〈nf | |A| |ni〉 =

√
(nz + 4)(nz − nx + 2)(nz − ny + 3)

2(nz − nx + 3)(nz − ny + 4)
δnzi+2,nzδnxi ,nxf δnyi ,nyf +√

(nx + 3)(nz − nx)(nz − ny + 2)

2(nz − nx − 1)(nx − ny + 3)
δnzi ,nzδnxi+2,nxf

δnyi ,nyf +√
(ny + 2)(nx − ny)(nz − ny + 1)

2(nz − ny)(nx − ny − 1)
δnzi ,nzδnxi ,nxf δnyi+2,nyf

. (E6)

The F (σnfωf ) function in Eq. (E5) is given by

F (σnω) =
1

4

(
2(ω2

z + ω2
x + ω2

y)− (n2
z + n2

x + n2
y)

+4ωz − 4ωy − 6nz − 4nx − 2ny

)
.

As for B
(0,2)
L0M0

, it is simply

B
(0,2)
L0M0

= (−1)L0−M0(A
(2,0)
L0−M0

)+. (E7)
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Similarly to 〈f |A(2,0)
L0M0

|i〉, the matrix elements of

〈f |C(1,1)
L0M0

|i〉 are given by

〈f |C(1,1)
L0M0

|i〉 = C
LfMf

LiMi,L0M0
〈σnfρfωf | |C(1,1)| |σniρiωi〉〈

(λωi , µωi)κiLi, (1, 1)L0

∣∣(λωf , µωf )κfLf
〉
,

where in this case the reduced matrix elements of C,
〈σnfρfωf | |C(1,1)| |σniρiωi〉 [51], are given by

〈σnfρfωf | |C(1,1)| |σniρiωi〉 = (−1)ψδnfniδωfωiδρfρiδρf0×
2√
3

√
λ2
ω + µ2

ω + λωµω + 3λω + 3µω. (E8)

The phase in the above equation is (−1)ψ = 1 if µ = 0
and (−1)ψ = −1 if µ 6= 0.

The Hamiltonian must then be diagonalized in a model
space that extends the theory from Nσ up to some Nmax

quanta beyond the valance shell to gain converged re-
sults. For 20Ne we included up to Nmax = 12 configura-
tions beyond the leading bandhead irrep. The calculated
energy spectra are relative to the ground state, which is
the smallest eigenvalue resulting from the diagonalization
that has angular momentum L = 0. The identification
of the correct rotational levels of the L = 0 ground-state
band involves grouping 2+, 4+ and 6+ to the ground-
state 0+ in the following way:

1) If either λσ = 0 or µσ = 0 then the states 2+, 4+

and 6+ with the lowest corresponding eigenvalues form
the first rotational band. This is the case for 20Ne as well
as for all nuclei that have been studied so far that have
a prolate or oblate leading bandhead irrep.

2) If both λσ 6= 0 and µσ 6= 0 then the states 2+, 4+

and 6+ with the largest corresponding BE(2) transitions
to the next lower state, starting from 2+ → 0+ and then
4+ → 2+, etc., form the first rotational band. This is the
case for 22Ne, 22Mg and all nuclei that have been studied
so far that have a triaxial leading bandhead irrep.

The BE(2) transitions from an initial ψi eigenstate to
the final ψf eigenstate that are the eigenvectors of the
Hamiltonian in Eq. (22) with angular momentum Li and
Lf , respectively, can be calculated using the following
formula

BE(Li→Lf )(2) = Wu
2Lf + 1

2Li + 1
(〈ψf |Q2 |ψi〉)2, (E9)

where Wu is the Weisskopf unit and is given by

Wu =
5

16π
(
Az

A
)2 b4

0.0594A4/3
. (E10)

And finally, the rms matter radius can be calculated
using the formula

rms =
b√
A

√
〈ψ0+ |Aii +Bii + Cii |ψ0+〉, (E11)

where Aii +Bii are expressed as

Aii +Bii =

√
3

2
(A

(2,0)
00 +B

(0,2)
00 ), (E12)

and their matrix elements could be calculated using
Eq. (E4).
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