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Background: Shape deformations and charge radii, basic properties of atomic nuclei, are influenced by both the
global features of the nuclear force and the nucleonic shell structure. As functions of proton and neutron number,
both quantities show regular patterns and, for nuclei away from magic numbers, they change very smoothly from
nucleus to nucleus.

Purpose: In this paper, we explain how the local shell effects are impacting the statistical correlations between
quadrupole deformations and charge radii in well-deformed even-even Er, Yb, and Hf isotopes. This implies, in
turn, that sudden changes in correlations can be useful indicators of underlying shell effects.

Methods: Our theoretical analysis is performed in the framework of self-consistent mean-field theory using
quantified energy density functionals and density-dependent pairing forces. The statistical analysis is carried out
by means of the linear least-square regression.

Results: The local variations of nuclear quadrupole deformations and charge radii, explained in terms of oc-
cupations individual deformed Hartree-Fock orbits, make and imprint on statistical correlations of computed
observables. While the calculated deformations or charge radii are, in some cases, correlated with those of their
even-even neighbors, the correlations seem to deteriorate rapidly with particle number.

Conclusions: The statistical correlations between nuclear deformations and charge radii of different nuclei are
affected by the underlying shell structure. Even for well deformed and superfluid nuclei for which these observables
change smoothly, the correlation range is rather short. This result suggests that the frequently made assumption
of reduced statistical errors for the differences between smoothly-varying observables cannot be generally justified.

I. INTRODUCTION

The global behavior of nuclear radii and quadrupole
deformations is impacted by the macroscopic properties
of nuclear liquid drop such as incompressibility or surface
tension. The local behavior, on the other hand, is deter-
mined by the microscopic quantal effects such as the nu-
cleonic shell structure, nucleonic pairing, and zero-point
correlations due to the particle-vibrational coupling.

The origin of nuclear deformations can be traced back
to the nuclear Jahn-Teller effect [1–3], i.e., the spon-
taneous symmetry breaking of the internal density (or
mean-field) due to the coupling of degenerate nucleonic
states with collective surface vibrations of the nucleus.
The systematic behavior of nuclear quadrupole deforma-
tions can be explained through the geometrical proper-
ties, or shell topology, of valence proton and neutron or-
bitals [1, 4]. According to the Hartree-Fock (HF) analysis
[5, 6], the main contribution to the quadrupole defor-
mation energy comes from the effective neutron-proton
quadrupole interaction that maximizes around the mid-
dle of proton and neutron shells. This results in simple
patterns [7, 8] of quadrupole deformations which can be
well systematized in terms of the promiscuity factor [9]
that depends on the distance of Z and N to the closest
magic proton and neutron number. Atop this general
behavior, local fluctuations in quadrupole deformations
may occur due to occupations of individual deformed
Nilsson single-particle (s.p.) orbits close to the Fermi
level. Depending on their s.p. quadrupole moments,
these orbits can increase or decrease total quadrupole

deformations by polarizing the system.

Similar considerations pertain to nuclear charge radii,
which are the monopole moments of the nuclear charge
density that is dominated by the proton density. Here,
the occupations of states with large oscillator quantum
numbers dominate the general pattern. The charge radii
are also impacted by nuclear deformations in the second
order.

The purpose of this Paper is to analyse the local trends
of quadrupole deformations and charge radii in terms of
statistical correlations between predicted observables in
neighboring nuclei. The motivation behind the use of sta-
tistical correlation approach can be explained as follows.
If the occupations of s.p.levels change smoothly with par-
ticle number, and the character of s.p.levels around the
Fermi level is similar, one would expect to see large sta-
tistical correlations between deformations and radii in
close-lying isotopes and isotones. On the other hand, if
the intrinsic structure changes rapidly due to, e.g., cross-
ings of s.p. levels with very different quantum numbers,
the statistical correlations are expected to be reduced.
The isotopic and isotonic trend of statistical correlations
can thus be a useful guide in several respects. It in-
dicates changes in shell structure important for model
understanding and development. And the information
about the typical range of statistical correlation between
nuclear observables is important for modeling emulators
based on machine learning [10, 11] and assessing statis-
tical errors on differences of observables, e.g., energy dif-
ferences or differential radii.

This Paper is organized as follows. Section II describes
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theoretical models used and the statistical correlation
analysis. The results obtained in this study are pre-
sented in Sec. III. Finally, the conclusions are presented
in Sec. IV.

II. THEORETICAL MODELS

Our analysis has been carried out within the self-
consistent nuclear energy density functional method [12].
In our applications, we employ the energy density func-
tionals (EDFs) SV-min [13] and Fy(∆r,BCS) [14]. Both
have been optimized to large experimental calibration
datasets of nuclear ground state data by means of the
standard linear regression technique, which provides in-
formation on uncertainties and statistical correlations be-
tween observables.

In SV-min calculations, we employed the standard [14]
density-dependent pairing force of mixed type [15]. The
generalized pairing functional in the Fy(∆r,BCS) model
additionally depends on the gradient of nucleonic den-
sity [16]. In both variants, pairing is treated in the BCS
approximation. We do that because the nuclei of inter-
est are well bound; hence, the HF+BCS approach is ex-
pected to offer a reasonable description of pairing and
high accuracy when computing statistical covariances.
Thus we employ Fy(∆r,BCS) as a BCS-analogue of the
original Fy(∆r,HFB) tuned to exactly the same calibra-
tion dataset, particularly the differential charge radii.

Our statistical correlation analysis is based on linear
least square regression [13, 17] using the covariance ma-
trices obtained in the course of EDF calibration. The
correlation between quantities x and y can be quantified
in terms of the bivariate correlation coefficient

Rx,y =
cov(x, y)

σxσy
, (1)

where σx and σy are variances of x and y, respectively.
The square R2 is the coefficient of determination (CoD)
[18]. It contains information on how well one quantity is
determined by another one, within a given model. For
our earlier applications of CoD to nuclear observables, see
Refs. [19–23]. Values of CoD range from 0 to 1, where
0 implies that, for a given model, the quantities x and
y are uncorrelated, whilst 1 denotes that one quantity
determines the other completely.

The correlation coefficient (1) is useful when estimat-
ing the variance of a difference x− y:

σ2
x−y = σ2

x + σ2
y − 2Rx,yσxσy. (2)

In particular, if the observables x and y are very well cor-
related (Rx,y ≈ 1), the variance of a difference becomes
σx−y ≈ |σx − σy|, i.e., it can be very small if σx ≈ σy.

0.28

0.30

0.32

0.34

0.36

Neutron number
98 100 102 104 106

0.28

0.30

0.32

0.34

0.36

Q
ua

dr
up

ol
e 

de
fo

rm
at

io
n 
β 2

SV-min

Fy(Δr,BCS)

(a)
(b)

Yb

Yb

Yb

Yb

Er

Er

ErEr

Hf

Hf

Hf

Hf

FIG. 1. Proton quadrupole ground-state deformations β2 for
even-even Er, Yb, and Hf isotopes with 98 ≤ N ≤ 106 calcu-
lated with (a) SV-min and (b) Fy(∆r,BCS) EDFs compared
to empirical values [24] (dashed lines). Statistical model un-
certainties and experimental errors are marked.

III. RESULTS

The scope of this Paper is to study the structure of sta-
tistical correlations between ground-state deformations
and between charge radii in the even-even Er, Yb, and
Hf isotopes with 98 ≤ N ≤ 106. These nuclei lie in the
center of the deformed rare-earth region [24].

The dimensionless quadrupole deformations can be de-
duced from the calculated proton quadrupole moments

β2 = 4π
〈r2Y20〉
3ZR2

, R = 1.2A1/3 fm . (3)

This quantity is directly related to the geometrical shape
and thus simplifies comparisons across different nuclei.
The average value of the spherical radius R was taken the
same as in Ref. [24]. Figure 1 shows the calculated values
of β2 for SV-min and Fy(∆r,BCS) and compares them
to empirical quadrupole deformations extracted from the
experimental transition probabilities for the lowest 2+

states [24]. All isotopes shown in Fig. 1 are very well
deformed. Considering the scale of Fig. 1, the agreement
between experiment and theory is very reasonable, espe-
cially for Fy(∆r,BCS). This is not so surprising because,
as discussed in the introduction, nuclear deformation
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properties are dominated by shell topology: all reason-
able nuclear models, including macroscopic-microscopic
approaches as well as various flavors of nuclear density
functional method, are bound to reproduce the deforma-
tions of well deformed nuclei. On the other hand, appre-
ciable model differences are expected for transitional iso-
topes for which the concept of a rigid nuclear deformation
is questionable. At the second glance, we see quantita-
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FIG. 2. Charge radii for even-even Er, Yb, and Hf isotopes
with 98 ≤ N ≤ 106 calculated with (a) SV-min and (b)
Fy(∆r,BCS) EDFs compared to empirical values [25] (dashed
lines). Statistical model uncertainties and experimental errors
are marked.

tive differences between the two models. The values of β2
predicted by SV-min are 5%-10% larger and the trend for
the Hf isotopes differs visibly. Although the deformation
is dominated by shell structure, the final details emerge
from an interplay of Coulomb pressure, surface energy,
shell effects, and pairing, which all depend on the actual
model. We also note that both models tend to predict
deformations that are slightly larger than the empirical
values. But this minor mismatch is unimportant for our
present study which aims at exploring the isotopic and
isotonic trends of β2 and the statistical correlations of
β2 between the isotopes. Coulomb pressure and surface
energy change only smoothly with Z and N and this
should lead to strong inter-correlations. However, shell
structure and pairing can fluctuate, as can already be
seen from local variations of β2 in Fig. 1.

The charge radii Rch of the discussed Er, Yb, and Hf
isotopes are displayed in Fig. 2. The radii gradually in-
crease with Z and N , as expected. The fluctuations atop
this smooth behavior are seen in the differential radii
and their ratios [26]. The charge radii obtained in SV-
min are systematically larger than those of Fy(∆r,BCS).
This, together with the results for the quadrupole mo-
ments shown in Fig. 1 suggests that the proton densities
predicted by SV-min are slightly more radially extended.
As in the case of quadrupole deformations, local varia-
tions of Rch with N and Z are present.
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FIG. 3. The CoD R2
β2(Z,N),β2(Z′,N′) between the quadrupole

deformation of the nucleus indicated and β2 of other Er, Yb,
and Hf isotopes with 98 ≤ N ≤ 106 calculated with (left)
SV-min and (right) Fy(∆r,BCS) EDFs.

Figure 3 shows a plot of statistical correlations in terms
of CoDs between the deformation β2 in 178Hf (upper pan-
els), 172Yb (middle panels), and 166Er (lower panels) and
β2 values of all other isotopes considered. Interestingly,
the quadrupole deformations of 172Yb (N = 102) and
166Er (N = 98) are well correlated with those of neigh-
boring nuclei, in accordance with expectations. It is only
when the neutron number approaches N = 106 that
the correlation deteriorates. The situation is different
for 178Hf — the heaviest nucleus considered. Here, the
CoD values are small, even with the nearest neighbors.
The inter-nuclei correlations of charge radii are shown
in Fig. 4. It is seen that the values of Rch are inter-
correlated better than quadrupole deformations. But,
similar as in the β2 case, there are regions of surprisingly
low CoDs. Particularly low correlations are predicted for
176Hf in SV-min and 170Hf in Fy(∆r,BCS) for both β2
and Rch.

While the general trend is similar for both models, the
quantities predicted by SV-min are systematically better
correlated than those obtained with Fy(∆r,BCS). The
significant variations of CoDs seen in Figs. 3 and 4 are
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FIG. 4. Similar as in Fig. 3 but for the charge radii.

indicative of shell effects. To confirm that, we must look
at the deformed shell structure in this region of nuclei.

Figure 5 shows the single particle (s.p.) energies of
172Yb as functions of β2 (Nilsson diagram), generated by
quadrupole-constrained HF calculations. The s.p. levels
are labeled by means of the asymptotic Nilsson quantum
numbers [NoscnzΛ]Ωπ of the stretched harmonic oscilla-
tor. The s.p. diagram of Fig. 5 is fairly robust, i.e., it is
valid for the deformed Yb region and it weakly depends
on the model used (cf. Ref. [27] for the modified har-
monic oscillator and Woods-Saxon s.p. diagrams in this
region or Ref. [28] for Gogny-model calculations).

The proton shell structure in the deformed Yb re-
gion is defined by the pronounced deformed subshell
closure at Z = 70. At lower deformations, this gap
is closed by the upsloping (oblate-driving) extruder or-
bitals [404]7/2+ and [402]5/2+. At larger deformations,
β2 > 0.33, the downsloping (prolate-driving) [541]1/2−

intruder level becomes occupied at Z = 72. Below the
Z = 70 gap, there appear two close-lying Nilsson levels:
oblate-driving [411]1/2+ and prolate-driving [532]7/2−,
which close another deformed gap at Z = 66. These lev-
els cross at β2 ≈ 0.30 for Fy(∆r,BCS) and β2 ≈ 0.39 for
SV-min.

The neutron shell structure is characterized by the de-
formed gap at N = 104. This gap is closed from the
above by the oblate-driving [514]7/2− and the unique-
parity [624]9/2+ levels, which cross at β2 ≈ 0.35. From
the below, the N = 104 gap is bounded by the prolate-
driving unique-parity [633]7/2+ level and the oblate-
driving [512]5/2− level, which cross at β2 ≈ 0.32 for
SV-min and β2 ≈ 0.28 for Fy(∆r,BCS).

The deformed shell structure is defined by the occu-
pations of s.p. orbits shown in Fig. 5. In the presence
of nucleonic pairing, the s.p. occupations change grad-

ually with particle number leading to smooth variations
of nuclear observables. If pairing is weak, the transi-
tions between intrinsic HF configurations are sharp and
the underlying picture becomes diabatic. Consequently,
large pairing is expected to increase correlations between
observables belonging to different nuclei. Figure 6 dis-
plays proton and neutron pairing energies of the nuclei
considered. The large deformed gap at Z = 70 gives
rise to very weak proton pairing in the Yb isotopes. The
variations of neutron pairing are appreciable; they reach
a minimum at the deformed neutron closure N = 104.

The systematic trend of β2 in Fig. 1 can be traced back
to the s.p. diagram of Fig. 5. The quadrupole deforma-
tions of Er and Yb isotopes are close as the quadrupole
polarization effects of [411]1/2+ and [523]7/2− proton
levels compensate. The reduction of β2 in the Hf iso-
topes in Fy(∆r,BCS) and for N > 100 in Fy(∆r,BCS)
can be attributed to the occupations of the oblate-driving
[404]7/2+ and [402]5/2+ proton levels. The large value
of β2 in 172Hf predicted in SV-min is due to the fill-
ing of the π[541]1/2− level. Finally, a reduction of β2
when approaching N = 106 reflects the filling of oblate-
driving [512]5/2− and [514]7/2− neutron levels. When it
comes to the charge radii, the local increase ofRch around
N = 100, 102 can be associated with the occupation of
the neutron intruder level [633]7/2+.

Having established the consistency of trends in β2 and
Rch with the deformed shell-structure, let us see whether
the details of the Nilsson plot will be reflected in the cor-
relation systematics of Figs. 3 and 4. Microscopically, the
energies and wave functions extruder and intruder Nils-
son states (including the unique-parity states) impact-
ing the configuration changes of the deformed Er, Yb,
and Hf isotopes are strongly influenced by the surface
and spin-orbit terms of the EDFs [16, 29]. Consequently,
these parts of the EDFs are expected to impact statisti-
cal correlations between computed surface deformations
and charge radii.

Let us begin discussion from the CoD pattern of β2.
As seen in Figs. 3(a) and 3(d), β2 in 178Hf is poorly corre-
lated with quadrupole deformations of other nuclei. This
nucleus is predicted to have a reduced value of β2 ≈ 0.3
compared to other systems. At this deformation, the
occupation of the [404]7/2+ and [402]5/2+ extruder or-
bits is 1.2-1.3 , while these orbits are practically empty
in the Yb and Er isotopes, as well as in 170,172,174Hf in
SV-min in which the intruder level [541]1/2− becomes
occupied at β2 > 0.34. Moreover, the neutron structure
of 178Hf involves the occupation of the [514]7/2− and
[624]9/2+ orbitals, which are empty in lighter isotopes
with N < 104. All these configuration changes involve
deformation-driving orbitals and result in reduced CoD
values.

Moving on to Figs. 3(b) and 3(e), the quadrupole de-
formation of 172Yb is correlated fairly well with the β2
values of lighter systems. This nucleus is calculated to
have β2 ≈ 0.34. The decrease of correlations at N = 106
can be associated with the filling of the neutron [624]9/2+
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intruder level. The situation shown in Figs. 3(c) and
3(f) for 166Er is reminiscent of that for 172Yb: the de-
crease of β2-correlations is seen for N = 106 (neutron
[624]9/2+/[514]7/2− occupation) and Z = 72 (proton
[541]1/2− or [404]7/2+/[402]5/2+ occupation).

The pattern of inter-nuclear Rch-correlations shown in
Fig. 4 differs from that of β2 correlations as the charge
radii are expected to primarily depend on the radial prop-
erties of occupied states, hence Nosc. Those are Nosc = 5
proton levels [523]7/2− and [541]1/2− and Nosc = 6 neu-
tron levels [642]5/2+, [633]7/2+, and [624]9/2+.

IV. CONCLUSIONS

In this Paper, we investigated inter-correlations be-
tween observables in neighboring nuclei which exhibit
smooth trends as a function of proton or neutron num-

ber. To this end, we selected 15 well deformed even-even
Er, Yb, and Hf isotopes in the middle of the well de-
formed rare earth region. The spherical shell structure
in these nuclei is much fragmented by deformation effects,
and the single-particle occupations are smoothed out by
nucleonic pairing. The calculated quadrupole moments
and charge radii vary gradually with Z and N , which
would intuitively suggest strong inter-correlations. To
check this hypothesis, we carried out statistical correla-
tion analysis based on covariance matrices obtained in
the least-square optimization. As measure for correla-
tions, we use the coefficient of determination which is
the square of the normalized covariance between two ob-
servables.

The calculated CoD diagrams show patterns that are
surprisingly localized as compared to the smooth trends
of observables. These local variations of CoDs reflect
the underlying deformed shell structure and changes of



6

-8

-6

-4

-2
(a)

-8

-6

-4

-2

(b)

Pa
iri

ng
 e

ne
rg

y 
(M

eV
)

SV-min

Fy(Δr,BCS)

Neutron number
98 100 102 104 106

protons
neutrons

Yb

Yb

Yb

Yb

Er

Er

Er

Er

Hf

Hf

Hf

Hf

FIG. 6. Proton (solid lines) and neutron (dashed lines) pairing
energies (expectation values of the pairing EDF) for even-even
Er, Yb, and Hf isotopes with 98 ≤ N ≤ 106 calculated with
(a) SV-min and (b) Fy(∆r,BCS) EDFs.

single-particle configurations due to crossings of s.p. lev-
els, especially high-Nosc intruder and oblate-driving ex-
truder levels. In fact, the correlation range is fairly short.
In some extreme cases, e.g., quadrupole deformation of
178Hf in Fy(∆r,BCS), the observables are hardly corre-
lated with the values in neighboring nuclei. This finding
is consistent with the results for separation energies using
Bayesian machine learning [10, 11]. Our results suggest
that the frequently made assumption of strong correla-
tions between smoothly-varying observables, which must
result in reduced statistical errors of their differences,
cannot always be justified. The recommended way to
compute statistical uncertainties on theoretical predic-
tions and their differences, however smooth they are,
remains the standard way, namely by means of covari-
ances (or posterior distribution functions) obtained in the
course of least-squares or Bayesian calibration, see, e.g.,
Refs. [13, 30].

Acknowledgements.—This material is based upon work
supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics under award numbers
DE-SC0013365 and by the National Science Foundation
CSSI program under award number 2004601 (BAND col-
laboration). We also thank the RRZE computing center
of the Friedrich-Alexander university Erlangen/Nürnberg
for supplying resources for that work.

[1] P.-G. Reinhard and E. Otten, “Transition to deformed
shapes as a nuclear Jahn-Teller effect,” Nucl. Phys. A
420, 173 (1984).

[2] W. Nazarewicz, “Nuclear deformations as a spontaneous
symmetry breaking,” Int. J. Mod. Phys. E 02, 51–69
(1993).

[3] W. Nazarewicz, “Microscopic origin of nuclear deforma-
tions,” Nucl. Phys. A 574, 27–49 (1994).

[4] G. Bertsch, “Remark on Y4 moments,” Phys. Lett. B 26,
130–131 (1968).

[5] J. Dobaczewski, W. Nazarewicz, J. Skalski, and
T. Werner, “Nuclear deformation: A proton-neutron ef-
fect?” Phys. Rev. Lett. 60, 2254–2257 (1988).

[6] T. Werner, J. Dobaczewski, M. Guidry, W. Nazarewicz,
and J. Sheikh, “Microscopic aspects of nuclear deforma-
tion,” Nucl. Phys. A 578, 1 – 30 (1994).
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