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Methods for obtaining fusion cross section formula are discussed, especially for those that take

on an empirical form. A new expression starting with o(E) = & f;o (f;:; B(E")dE”)dE' has

been explored. Here, B(FE) is a reasonable, assumed function of the barrier height distribution,

2
d (Uf ). The resulting analytic cross section formula reproduces very well the excitation functions

for many light and heavy fusion systems across wide energy ranges, when the B(FE) is assumed to
be a multi-Gaussian function. This study offers an improved determination of the fusion barrier

height distribution over other numerical techniques.

PACS numbers: 25.70.Jj, 97.10.Cv, 97.10.Tk

I. INTRODUCTION

Heavy-ion fusion reactions, arguably the most com-
plex process in the interaction between two atomic nuclei,
have been investigated extensively for sixty years. More
than one thousand excitation functions have already been
measured and collected in the literature [I]. Some recent
articles have reviewed these studies in detail [2H7].

The study of the interplay between the reaction dy-
namics and nuclear structure, the synthesis of very heavy
elements and the extension of the nuclear chart towards
neutron-rich side and neutron-deficient side of 3 stability,
constitute various struggling efforts. However, attempts
to obtain fusion cross-section formulas remain central to
theoretical studies from the beginning until the present
day.

The excitation function, o(FE), is most commonly de-
picted either in linear or logarithmic scales. However, be-
cause of the steepness of the excitation function at near-
or sub-barrier energies, it is difficult to recognize possible
structures as well as deviations from theoretical curves,
especially in logarithmic plots. In order to alleviate this
problem, one often uses other representations of o(F) in
the comparison of measurements and theoretical calcula-
tions, e.g., as reviewed in Ref. [7]. A particular repre-
sentation may emphasize the behavior of the excitation
function in some part of the energy range and specific
structure local to this energy range. In principle, any
theoretical calculation, which can reproduce the exper-
imental excitation function must also reproduce all the
other representations as well.

In this article, two related issues are presented. First,
the two commonly used methods developed to obtain fu-
sion cross section formulas are summarized. We then
explore a third, new method, the reciprocal of a fusion
representation, from which a fusion cross section formula
has been obtained. This new formula reproduces a large
number of excitation functions for light and heavy fusion
systems across wide energy region exceptionally well.

Second, because this fusion cross section formula and

the corresponding barrier height distribution B(E) =
2

d d(gf ) are all analytic, the ‘ambiguity’ problem in pre-
vious studies of barrier height distributions has been
avoided, and thus, accurate barrier-height spectra can

be obtained.

II. DIFFERENT METHODS FOR CALCULATING
FUSION CROSS SECTIONS

II.1 Fundamental method

Starting from the equation of the two colliding nuclei,
assuming the interaction between them, combining the
nuclear structure input, etc., one derives a fusion cross
section formula, o(FE). The classical, strong absorption
model [§],

o(E) =7TR*(1 — B/E), for E > B,
=0, for E< B, (1)

and the Wong formula [9] ,

ow(E) = R;Zwln [1 + exp(QﬁEh;V)] (2)

are well known examples. Here, R and V are the bar-
rier radius and barrier height, and w in Eq. is the
frequency of the inverted harmonic potential.

The above method is the fundamental one for obtain-
ing the fusion cross sections, since it is based on the
essential physics ingredients, although some approxima-
tions are often involved. Coupled Channels (CC) calcu-
lations and many other theoretical approaches by using
Schrédinger or other equations, belong to this category
also, although they result in numerical calculations and
not analytic formulas (see Refs. [10} 1] and [2H7]).



I1.2 Modifications from previous cross section
formula

Stelson developed another method to calculate the fu-
sion excitation function. He was the first to introduce
the expression

o(E) = /U(E, B)D(B)dB (3)

to fit the experimental fusion excitation function [12].
Here, o(E, B) is a known (previously obtained) excitation
function with a single barrier with a height B. Impor-
tantly, he assumed that there are more than one barrier
with different heights during the collision of the two nu-
clei, and introduced the distribution of barrier heights
D(B). The function, D(B), contains adjustable parame-
ters which are determined in the fitting process compar-
ing with the experimental data. In general, the o(F, B)
in Eq. can be either an analytic function or even a
known data-set of an experimental excitation function or
calculation results.

Rowley et al. [13] found that the experimental barrier
height distribution D(E) can be extracted from a pre-
cise experiment of the fusion excitation function via the
second derivative:

1 &(o(E)E)

D(E) = 2~ ip2

, with /D(E)dE =1 (4)
After that, many studies have concentrated on obtaining
the barrier height distribution and the understanding of
the corresponding reaction dynamics by comparing the
experimental barrier distributions in Eq. with the
results of CC calculations. At that time, the double-
differentiation process is used to obtain the barrier dis-
tribution both for experiments and calculations.

In Refs. [I4, [15], Siwek-Wilczyriska et al. applied Stel-
son’s idea mentioned above to calculate the fusion cross
sections. They started from an expression based on the
black-body approximation [8] and assumed that the bar-
rier height distribution, D,(B), is a Gaussian function:

E

o(E)E = WRQ/ (E — B)Dy(B)dB, (5)

Eo

Dy(B) = =ean[~(Z0) ] ©

The resulting analytic cross section formula is

w
V2T

with Z = (E — V)/v/2W, where, V and W are the cen-
troid and the standard deviation of the Gaussian func-
tion.

o(E)E =R [ﬁZ erfc(—2) + exp(—ZZ)}, (7)

This formula given by Eq. was developed in their
studies exploring the production of super-heavy elements,
and the comparisons of this formula with the experimen-
tal data were mostly in the cross section range of about
0.1-1000 mb. This method has not been widely used and
referenced in the literature.

At around the same time, the heavy-ion fusion hin-
drance phenomenon at extreme sub-barrier energies was
discovered [I6HI8|, which is concerned with fusion dy-
namics at low cross section, typically less than 0.1 mb.
Just recently, Jiang et al. [19], found that the fusion for-
mula of Siwek-Wilczyniska et al., Eq. , can reproduce
the fusion hindrance behavior very well, including the
S-factor maximum. In Ref. [I9], a table was included,
which analyzed 29 fusion systems whose excitation func-
tion has been measured down to lower than 0.01 mb. See
footnote [1].

There are many ways to modify fusion cross-section
formulas by making modifications to known formulas.
Two recent examples, Refs. [22] and [23], made mod-
ifications to the Wong formula [9] and achieved much
better results than the original.

I1.3 A reciprocal of a fusion representation

In this paper we demonstrate that there is a third kind
of method to obtain the fusion cross section formula,
namely, by using a reciprocal of a fusion representation.
This method has been used implicitly before, but has
never been illustrated as a method in the literature.

It is well known that a straight forward signature of the
heavy-ion fusion hindrance behavior is the appearance of
a maximum on the astrophysical S(FE) factor at the low
energies [I7, [I8]. This is a significant structure seen in
S(FE) but not in o(E). At the same time, in another
representation, the logarithmic derivative,

d[in(cE)]

L(E) = — 7" (8)
the slope of L(FE) as a function of E gets steeper and
steeper with decreasing energy. In Refs. [24] 25], empir-
ical recipes to describe the behavior of L(E) at low en-
ergies and to extrapolate the excitation function to even
lower energy have been formulated, via a two parameter
expression:

By

L(E) = Ay + W

9)

[1] The hindrance phenomenon has been explained first by Misicu
and Esbensen [20] by considering the saturation properties of nu-
clear matter, and later by Ichikawa et al. [21], among others, with
various models. In this paper we do not discuss the theoretical
explanation of the fusion excitation function.



Qo is either 0 or the fusion ) value depending on whether
the fusion @ value is either positive or negative, respec-
tively. Parameters Ag and By are obtained from least-
squares fits to the experimental L(E) data at low en-
ergies. From Eq. @D, the corresponding cross section
formula was derived in Refs. [24] and [25]:

B
o(E) = Jsfexp<Ao(E —E) —

) o

E; is the energy at the S-factor maximum, determined
from parameters Ay and By with a equation:

™

Lcs(Es) = (11)

Here, L.s(F) is the constant S-faction function [I7], n
is the Sommerfeld parameter, Z; Zoe?/(hv), and v is the
relative velocity of the two heavy ions.

It is important to note that Eq. was obtained with
the reciprocal of the representation L(E) = %,
namely:

1 E
o(E) = eap / (Leew(EN)aE],  (12)
0
without any approximation. Here, the L(

E) in Eq.
is written as Lies:(F) and taken as Eq.

In fact, any reasonable analytic function Lyest(E) with
adjustable parameters, not necessary the Eq. @, can
be applied in Eq. , and leads to a cross section for-
mula. By comparing the calculated results with the ex-
perimental fusion excitation function and using the least-
squares fitting technique, the optimum parameters in the
Liest(E) can be determined. For example, one may as-
sume an Lies (E) other than Eq. @, which can describe
not only the o(F) at low energies but also at the high
energy range. It is outside the scope of the present article
and will be studied in the future.

Now we explore a new heavy-ion fusion cross section
expression. By applying the reciprocal on another fusion
representation:

d*(oE)
dE?
with /Dtest(E)dE = 1, (13)

Btcst(E) = = WR(z)Dtcst(E)a

one obtains a new cross section formula:

E E" 12 "
d (UE ) 1" /
——~dE" |dE
s (/E d(E") )

E !
— 7R2 / ( Dtest(E”)dE”) dE'. (14)
Eo M Eo

o(E)E =

Here, Ry is a normalization constant for the function
Diest(F). The lower integration limits in Eq. are
FEy = —Q or 0, depending on whether the fusion @ value
is negative or positive, respectively.

Any reasonable analytic function Dy.s(E) with ad-
justable parameters can be used in Eq. (14). By com-
paring the results with the experimental fusion excitation
function using least-squares fitting techniques, the opti-
mum parameters for the assumed Dyes (E) function will
be determined.

When Rowley et al., derived Eq. , approximations
are introduced: the classical expression of fusion cross
section for a barrier of radius R was used, together with
the assumption that the radius R is independent on the
the barrier height B(E). While Eq. is similar to
Eq. , it is defined without any approximations, and is
thus an exact formula. All approximations are contained
in the assumption of function Bies(E). It should be
mentioned that the upper limit of Eq. (13)) should not be
infinity, but a finite number. In the study of low energy
nuclear physics, one always restricts the discussion within
a certain energy range, since other degrees of freedom
may appear outside the energy limit. In practice, the
values of Di.si(E) at an energy near the high energy
limit are often negligible.

After testing a variety of barrier distributions we found
that a sum of L Gaussian (LG) distributions yields an
excellent result:

71=3. sl -Car) )
= V2W;

(15)
Where, V;, W; and w; are the centroids, the standard de-
viations, and the weights of the ¢ —th Gaussian functions,
respectively, with a condition Y w; = 1. L is the number
of Gaussians used in the Dyes(F) function. With this
assumption, the cross sections are given by an analytic
function (see also Ref. [19]):

L
Dtest (E) = Z
=1

Z;) + exp(=Z7)|,

ol —7TR sz

with Z; = (E — V;)/V2W,.

It should be mentioned that Eq. is just the same as
Eq. with L = 1. In an earlier publication (Ref. [19])
where Eq. was discussed, only the Refs. [I4] [15]
were referenced, and the reciprocal method was not men-
tioned. This was just for simplicity and since the results
of 1G (L = 1) reproduces the excitation functions already
quite well.

[fZ erfc(—
(16)

The superior performance of this new cross section for-
mula, Eq. , will be described in detail in the next sec-
tion. Here we want to point out the reciprocal method



can be applied to other representations, e.g.:
d(cE)
dE
with /Ttest(E)dE =1, (17)

thst (E) = == WR(Q)thst (E)a

and one can obtain another new cross section formula:

E
d(cE")
o(E)E = dE’
( ) Eo dE/
E
=7R2 / Trest (E)dE'. (18)
Eo

Here, R( again, is a normalization constant for function
Tiest(E). The lower integration limits in Eq. are ei-
ther Ey = —Q or 0, depending on whether the fusion @
value is negative or positive, respectively. The Tj.s(E)
can also be any reasonable function with adjustable pa-
rameters. It is well known that Ti.s (E) is related to the
transmission coeflicient (see Refs. [3], [7] and [26]).

Eq. and Eq. are equivalent under the condi-

tion:

_ thest (E)

Btest(E) dE

. (19)
But one may start either from an assumed Bies:(FE) or
from an assumed Ti.s:(E) to develop a cross section for-
mula. Because of the different ‘structures’ emphasized
in the different representations, the two independent ap-
proaches serve as a starting point for different studies.

III. IMPROVED STUDY OF BARRIER HEIGHT
DISTRIBUTION

By inspection of the B(FE) (for short, from now on we
use B(F) instead of Byt (F)) for a large number of sys-
tems, we found that there are, fundamentally, two classes
of barrier distributions that reproduce very well the two
classes of fusion excitation functions, respectively: (1) a
3G multi-peak structure and (2) a 4G multi-peak struc-
ture.

The results of a 3G description for the fusion barrier
of 9 systems are summarized in the top part of Table
I. 160 + 208p}, [27], 328 + $9Y [28], 4°Ca + 40Ca [29],
40Ca + 97Zr [30], °8Ni + SONi [31], 4°Ca + 4Pt [32].
160 + 44Gm [33], *¥Ca + *¥Ca [34], and *°Ca + 99%r
[35]. Two examples with a 4G description of the fusion
barrier are summarized in the top part of Table II for
systems 1°Ca +1920s [32] and 'O + '5*Sm [33]. Since
these 11 systems were all measured after Rowley’s pa-
per [I3], barrier distributions extracted from the double-
differentiation recipe are available in the literature.

In Tables I and II the x3 value of different L Gaussian
fits (either L = 1 —3 or L = 1 — 4) are included for

comparison. Here, x3 (LQG) is defined as

N
1
Xg = NZ((UZ - Ueg;pfi)/Ao'ewpfi)Qa (20)
i=1

0; and 0¢gp—; are calculated and experimental cross sec-
tions, Aceyp are the experimental uncertainties, and N
is the number of experimental data points [43]. The ex-
perimental uncertainties of the cross sections used in the
fitting procedure were taken from the original papers.
Since these uncertainties are treated differently in the
various experiments, the absolute values of x3 for the
different systems are not critical. As can be seen from
Tables I and II, for most systems there is a large im-
provement of x3 in going from a 1G to a 2G description,
while the improvement in going from 2G to 3G, or 3G
to 4G is smaller, but the B(FE) spectrum changes a lot.
The reason for that will be discussed later. Test calcu-
lations have been performed where a single cross section
was changed by £20%. The barrier distribution from the
3G (or 4G) fit was practically unchanged, but a substan-
tial change of the barrier distributions obtained from the
double-differentiation recipe was observed nearby these
energies.

These two classes of structure will be discussed in de-
tail separately below.

I11.1 3G description

The barrier distributions B(E) for two systems: 4°Ca
+ 194pt 1604 1448m, are shown in Figs. and respec-
tively. The open circles in the Figs. [[]and [2]show the bar-
rier distributions obtained with the double-differentiation
recipe. Each B(E) symbol is calculated from three cross
sections (three-point method), which are separated in en-
ergy by AE. The different colors (red and black) of sym-
bols are obtained with different AFE. As discussed in
Ref. [B], larger values of AE are often used in the lit-
erature for the double-differentiation recipe, in order to
reduce the uncertainty of results. This, however, leads
to a damping of the structure in the barrier distribution
as can be seen from a comparison of the black (AE ~
1 or 2 MeV) and red (AE ~ 2 or 4MeV) symbols in
Figs. ] or [l respectively. The solid-black line in these
figures are the results of a 3G description using least-
squares fits to the measured excitation functions with
Eq. which is obtained with small energy steps (< 0.1
MeV) and denoted as ‘analytic’. In order to demonstrate
the step-size dependence behavior (ambiguity problem)
we have applied the differentiation recipe to the 3G fit
curve also. In Fig. |1} the magenta and green long-dashed
curves are results determined by applying the double-
differentiation recipe on the black curve, with AE = 4
or 2 MeV, respectively. The magenta line in Fig. |1f re-
produces the red circle results (determined by applying



TABLE I: Results of least-squares 3G fits, wiR2, Vi and W; (i =1 - 3) for 16 fusion excitation functions. N are the number of
data points of the excitation functions used in the fit.

system data range |N X%(?)G) X§(2G) X%(IG) R |wxnR2 W Wi |waR? Vs Wa |wsR? Vi W3

mb-mb fm | fm®> MeV MeV| fm? MeV MeV| fm®> MeV MeV |Ref.
1604+29%P} |0.000016-1133|38| 10.8  12.0  98.0 [10.8] 13.7 71.78 .983|94.3 74.06 1.66|8.80 78.09 .112 |[27|
3284 89y .06-468  |23| 431 605 12.6 |10.0/ 39.8 75.44 1.22|53.0 78.39 1.69|8.00 82.68 .129 |[28]
0Ca4*°Ca| .02-531  [21] 1.35  1.43  4.48 |9.97|36.4 52.58 .344|58.1 53.27 1.40|4.98 56.70 .240 |[29)
0Ca4%7Zr | 0.0027-474 |62 1.00 1.09 540 |9.72| 63.8 92.84 2.46|19.3 96.41 1.06 [11.25 98.74 .170 | [30]
8Ni+%Ni | 0.04-365 |33 2.97 3.23  23.3 |8.62|6.98 93.34 .737|58.7 98.49 2.44|8.66 104.11 .391 | [31]
0Ca+'Pt| 0.061-398 [31]| 11.0  37.5  41.9 |10.4|40.09 168.09 3.62| 42.9 172.27 .862 | 26.0 182.48 .536 |[32]
0418m | 0.15-876  [27| 3.19  3.30  21.8 [10.6]44.9 59.57 1.11|48.7 60.70 1.41|19.5 64.49 .240 |[33|
BCat*8Ca| 0.00058-506 [27| 3.49  4.75  6.60 |10.5| 72,5 50.90 .909|21.5 51.93 1.51|15.6 55.66 .149 |[34]
00a427r | 0.84-407 |40 240 2,52 533 |10.1|61.1 9544 1.32|16.9 96.02 .526|24.0 98.68 .409 |[35]
HBet+2Bi| 10.8-889 |15 1.31  1.34  1.52 |11.6| 54.2 36.80 1.51|28.0 39.22 .519|52.9 43.69 .304 |[36]
0Ca4+328n|  3.6-541 15| 975 985  1.28 [10.9] 52.0 113.28 4.11|38.2 115.56 .962 | 28.9 116.87 1.88 |[37|
S8Ni4"8Ni | 0.049-226 [17| 486  .501  4.16 |10.5| 11.4 94.62 .790| 61.0 99.47 1.98|37.8 108.05 1.37 |[38]
2C439Si | 0.0027-815 22| 480 726 .934 |8.68|22.0 12.82 .482|22.8 12.82 .895|30.5 15.96 0.283|[39]
2Mg+39Si | 0.0080-332 [20] .256  .256 499 |8.52| 23.4 23.44 .723|46.6 24.60 1.28|2.57 27.48 .089 |[40]
0Ar4128n| 0.0085-478 |15 .604 613  3.33 [9.53| 26.1 101.93 1.75| 55.8 105.92 2.14|9.06 108.10 1.43 | [41]
S4Ni+24Sn| 0.0008-126 |12| .076  .147  .814 [10.1]30.4 152.03 2.07 | 46.2 158.42 .598 | 26.3 165.97 .577 | [42]

TABLE IT: Results of least-squares 3G and 4G fits, respectively, w; R?, V; and W; (i = 1—3 or 4) for 3 fusion excitation functions.
N are the number of data points of the excitation functions used in the fit. The systems are °0O+!%*Sm, *°Ca+'%20s and
40Ar4+154Sm, the data range, data points N, and references are 0.18-33, 37, [33], 0.074-1052,45, [32] and 0.0016-407, 15, [41],

respectively.
system UG IXE(BA) [ X3 (2G) |x3(1G)| R |wiR?® Vi Wi |weR? Vo  Wa |w3R?® Vi Wi [wuR? Vi Wy
fm | fm? MeV MeV| fm? MeV MeV| fm? MeV MeV| fm? MeV MeV
160 41%4Sm 2,94 | 296 | 13.0 |10.4|14.1 55.13 1.42|40.9 5892 2.10|53.5 60.38 1.83
2.54 10.4| 13.1 54.80 1.28|57.8 5856 1.53|29.7 61.02 .481|7.18 63.40 .200
10Ca+1920s 14.8 | 15.3 | 16.7 [10.5| 53.5 164.79 4.42|33.7 168.15 5.21| 23.7 171.33 4.54
13.8 10.5] 49.5 164.33 4.15| 30.6 166.89 4.93|21.0 170.01 .482|9.59 176.40 .443
A0Ar41%48m 388 | 144 | 19.5 |11.7]3.35 114.57 2.17|39.8 122.01 3.33|92.9 131.37 3.19
.387 11.7] 3.40 114.59 2.18 | 40.0 122.02 3.32| 86.2 131.03 2.95| 6.36 136.12 .364
double-differentiation (DD) recipe to the experimental dence.

cross sections with AE ~ 4 MeV) very well for all three
peaks. The black circles, derived with AE ~ 2 MeV,
show a large scatter including some negative points; how-
ever, the green curve reproduces the average behavior
very well.

For the 4°Ca + 194Pt system, the value of x2 from
1G to 2G and 3G improves from 41.9 to 37.5 and 11.0,
successively. In this case, the 3rd (¢ = 3) peak in the
3G description nearly, but not exactly, agrees with the
results obtained from any of the double-differentiation
recipes (AE = 2 or 4 MeV). This is because the fit was
made to the measured fusion cross sections and not to the
points obtained from the double-differentiation recipe,
which have the disadvantage of step-size (AFE) depen-

There are two kinds of systems in Table I. For the sys-
tems given in the upper six rows, a 2G description does
not reproduce the narrow peak at high energy. One must
use 3G description to give a detail B(E) spectrum. While
for three of the systems in the middle part of the Table
I, the 2G description already gives the narrow high en-
ergy peak, and the low energy peak splits into two bumps
in the 3G description. It follows that for these cases, a
2G description is already a rather good description. Ob-
viously this behavior relates with the ratios of strength
between the three components.

One may ask, for system 60 + 144Sm or 40Ca, + 194Pt,
while a 3G fit is good, what happens for a 4G fit. In
principle, a fit by using a formula with more adjustable
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FIG. 1: B(E) spectrum for the system *°Ca 4 *°*Pt. Curves
are obtained by using a 3G description for all or subsets of
the measured cross sections.
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FIG. 2: B(E) spectrum for the system 60 4 **Sm. Curves
are obtained by using a 3G description for all or subsets of
the measured cross sections.

parameters often leads to a smaller x3 value. But there
is another x? value that should be considered, which in-
cludes the idea of degrees of freedom:

9 N

_ 2
= N—MXO' (21)

X
Here, N is the number of fusion data points used in the fit
as indicated above, and M is the number of parameters
used in the formula. For 1G to 5G, M are 3, 6, 9, 12,
and 15, respectively. In principle, while the L increases,
a smaller x2 in the least squares fit is obtained. But, it
is a meaningful improvement only if a smaller x? value is
obtained at the same time. In Table III, values of x? and
X2 for systems, 160 + 44Sm, 40Ca + 194Pt, 160 + 154Sm,
and 4°Ca + '920s are compared. For the 60 + 144Sm
and “°Ca + '94Pt systems, x? increases substantially for
4G (M=12), thus offering no acceptable improvement.
Thus, for °°Ca + 194Pt, 3G is undoubtedly the best.
For 160 + '%4Sm, 2G and 3G are similar and both are
acceptable (for 3G, x? = 4.8, only little worse than in
2G, 4.3).

For system 0 + 144Sm comparison with previous
analyses may be discussed. The CC calculations give a
result with a x3 value of 36.5 [33]. Recently Hagino [44]
developed a new method for obtaining the barrier dis-
tribution by assuming that the excitation function is a
sum of several components, each described by the Wong
formula. For system 0 + !44Sm, Hagino’s result gives
a x2 value of 15.1. Obviously the x2 value 3.2 obtained
from a 3G description is better than these previous re-
sults. See footnote [2].

IT1.2 4G description

The prime examples for a 4G barrier description are
the 10 + 154Sm and %°Ca + '92Pt systems, both of
which involve highly deformed nuclei. These are shown
in Figs. [3] and [d] respectively.

As mentioned above for systems 160 + 144Sm and 4°Ca
+ 194Pt, the x2 values increase substantially when chang-
ing the barrier description 3G to the 4G. On the contrary,
for systems 60 + '%4Sm and “°Ca + 192Pt, the x? values
improve when changing the barrier description from 3G
to 4G, but get significantly poorer when changing from
4G to 5G. In these two cases, 4G is the best description.

The meanings of symbols and lines in Figs. [3] and
are the same as in Figs. [[]and 2] with the only difference
being that 4G descriptions are added in Figs. [3] and [4
From these two figures, it is clear that one arrives at the
same conclusion as above. That is, a much better descrip-
tion of the barrier height distribution is achieved using
the present method when compared with previous results
using the double-differentiation recipe. The present re-
sult yields a clear spectrum, which is not the case with
the previous methods. Further, it displays patterns and
features that are ‘hidden’ in the previous attempts using
different AFE.

Both systems 160 + 1°4Sm and %°Ca + 2Pt are highly
deformed, and their B(FE) spectra are rather different for
those discussed in subsection III.1. It should be noted,
in these cases, the peak at high energy has been revealed
only with a 4G description. This high energy peak in
B(FE) has been observed in the previous analyses with the
double-differentiation recipe but is very step-size depen-
dent. For system 60 + 1#Sm, CC calculations (green)
and analyses using five components of the Wong formula
conducted by Hagino (magenta), are compared with the
4G results (black) in Fig. The high energy peak was
not expected from the CC calculations and appeared as
a weak tail in Hagino’s analysis. The x2 values for CC

[2] We do not want to discuss the many papers detailing the different
ways of getting a better B(E) spectrum. We refer the reader to
e.g. a recent paper by G. Scamp [45].



TABLE III: Comparison of the x2 and x? values in the LG
fitting for fusion systems '°0 + '1Sm, 1°Ca + '9Pt, °0 +
1549m and °Ca + '920s.

system |LG, M| x3 | x? system |LG, M| x2 | x*
0Ca+191Pt| 1G, 3 |41.9(46.4(| *°O+'*4Sm | 1G, 3 |21.8]24.5
N=31 2G, 6 |37.5]46.5|| N=27 2G, 6 | 3.3 (4.3
3G, 9 [11.0]15.5 3G, 9 (32|48
16041545m | 1G, 3 |13.0(14.1||*°Ca+1°20s| 1G, 3 |16.7]17.9
N=37 |2G,6 |3.0|3.5 N=45 2G, 6 |15.3]17.7
3G,9 (29139 3G, 9 [14.8]18.5
4G, 12|25 | 3.7 4G, 12[13.8/18.2
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FIG. 3: B(E) spectrum for the system 0 + '%*Sm. Curves
are obtained by using a 4G description for all or subsets of
the measured cross sections.

calculations [33], Hagino’s new analysis [44] and the 4G
description are 13.2, 88.9 and 2.54, respectively. Clearly,
the present 4G description is the best.

II1.3 Width of the high energy peak of B(F)

The FWHM of the high-energy peak obtained in the
above two subsections is often about a fraction of MeV,
which is narrower than the peak-width obtained in all
previous studies with the double-differentiation recipe.
The reason for this has been shown: the energy-step-size
used in previous studies is often rather large, thus the
peak size is damped if it is a narrow one. It follows that
no narrow peak can be well recognized when a smaller
energy step, AF, is taken, as it would yield huge uncer-
tainties when determined with small energy steps.

In the early days of nuclear reaction studies the heavy-
ion fusion excitation functions were explained by the
black-body (strong absorption) model, as given in Eq.
(1)). The values of the radius, R, and barrier, V, are ob-
tained from the slope and the intersection with the ab-
scissa in a linear plot of o,(E)E vs. E with Eq. |1} which
only gives a good description of fusion excitation func-
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FIG. 4: B(E) spectrum for the system “°Ca + '?20s. Curves
are obtained by using a 4G description for all or subsets of
the measured cross sections.
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FIG. 5: B(E) spectrum for the system °0 4 '**Sm. Curves
are obtained by using a 4G description, CC and Hagino’s
analysis by using 5 components of the Wong formula.

tions for cross sections larger than ~ 100 mb. This for-
mula is based on classical mechanics, neglecting the wave
properties of the incident beam [§]. Thus, it should be
applied at the energy range above the Coulomb barrier.
Rowley obtained the corresponding barrier distribution
of Eq. [1} which is a § function [I3]:

1 d*(on(E)E)

s 152 =0(E-V).

(22)

The physics picture behind the fusion enhancement at
energies around and lower than the Coulomb barrier was
first introduced by Dasso et al., [10] and is popularly
referenced in the literature. With a qualitative consid-
eration, he showed that the sub-barrier fusion enhance-
ment, which is not reproduced by Eq. [} can be approxi-
mately understood by a splitting of the Coulomb barrier
into two barriers due to channel couplings. These two
components are located at energies below and above the
original Coulomb barrier, respectively.



In the paper where Rowley established the idea to ob-
tain the barrier distribution B(F) with the double deriva-
tive d?(cE)/dE?, he estimated the barrier width due to
the quantum mechanical penetration from Wong formula,
to be about 0.56fw [13], where fw is the curvature at
the top of the potential barrier in the Wong formula [9].
This result led Rowley et al., to infer another point; that
one can obtain the experimental B(FE) by the double-
differentiation recipe with a larger energy-step-size with-
out loss information. Especially because in practice, due
to the large uncertainty introduced in the numerical cal-
culations in the double-differentiation recipe, one can
only use a large energy step to get a well-defined (not
too randomly distributed) B(FE) at higher energies with
the double-differentiation recipe. This guess that ‘with
larger energy-step-size without loss information’, has not
been proved.

The estimation of 0.56Aw is for a one-peak barrier dis-
tribution which includes the quantum mechanical pene-
tration effect. For a multi-peak B(E), influences of the
quantum penetration effect on the various components
may be different. At peaks whose energy is higher than
the Coulomb energy, the quantum mechanical effect is
weaker and the strong absorption effect will most likely
be dominant.

Naively, Dasso’s theory (Ref. [I0]) covers the energy
region originally described with the black-body model.
In reality, it is not so simple. The two (or three) broader
peaks in 3G (or 4G) descriptions obtained in subsection
IIT.1 and III.2 are at lower energies. That is what has
been described qualitatively by the two components in
B(E) in Dasso’s theory. It might be noted, in that paper,
Dasso et al. focused their study around and lower than
the barrier, the cross section range discussed is less than
150 mb.

The narrow peak appears at an energy above the bar-
rier, where the fusion cross sections are above 100 mb
and the fusion excitation functions are nearly a straight
line in a o F vs. E plot. The location of this narrow peak
is always at an energy several MeV higher than the value
of ‘V’ determined from the Eq. , the classical, black
body model. The two components description in Dasso’s
theory, devoted to explain fusion enhancement, did not
emphasize well fusion for all energy regions. At higher
energies (above the Coulomb barrier), rather pure strong
absorption behavior takes effect, which may be described
with the black-body model approximately. Of course,
quantum mechanical penetration effects are present also,
that leads to a narrow, but not a delta, peak. This is
only a preliminary, tentative discussion: we leave it as
an open question, which needs to be studied further.

As is pointed out by Bierman et al., [32], the energy
separation of the two low-energy components is on av-
erage, proportional to the charge product Z;Z,. This
energy separation is smaller (~ 1 MeV) for the system
of 150 + '4Sm and therefore easily identified. In this

case, the 2G is already good enough as detailed above,
see Table III. For cases with deformed target nuclei, not
two but three or more peaks have to be included in the
Dasso’s consideration.

It is important to mention that, in order to give de-
tailed comparisons of the CC calculations and the 3G
or 4G description, and to get the understanding of the
narrower component in B(E), the theoretical CC calcu-
lations have to be improved in many cases, in order that
the double-differentiation of o ' can be taken numerically
with an energy-step of less than 0.1 MeV.

I11.4 Another advantage for the LG description

The data discussed in the previous sections have all
been measured in small energy steps, which, as men-
tioned earlier, is a requirement for applying the double-
differentiation recipe. In this section we will describe an-
other important advantage of the new method for the
analysis of systems which have not been measured in
small energy steps. For a comparison we have chosen
the systems 60 + #4Sm and 4°Ca + 96Zr, for which 27
and 62 data points are available, respectively. Fig. @(a)
shows the results of a 3G description, using all, every
other, or every 3rd data point for the '0+44Sm excita-
tion function. Similar results for the system °Ca+%6Zr
excitation function, using all or every 6th data point are
shown in Fig. |§|(b) For both cases, the data at the
highest and lowest energy points are always included.

As is to be expected, with the LG description method,
results from where fewer data points are used are rather
similar with the one with all data points. Here the wide
range of the measurement is important. The ability to
determine a fusion barrier distribution with only 10 or
12 data points for systems 60 4 144Sm or 4°Ca + %67Zr,
respectively, is a clear advantage of this method for reac-
tions with radioactive beams which are usually measured
only with large energy steps. The present method can
also be applied to fusion studies in lighter systems.

Results from seven and one experiments, which are
not measured with small energy steps, are listed in the
third part of Table I and the second part of Table II,
respectively. These include two systems from radioactive
beam experiments: 'Be + 209Bi [36] and *°Ca + 132Sn
[37]. The excitation function and the barrier distribution
obtained from a 3G least-squares fit for the system !Be
+ 209Bi are shown in Fig. Obviously, in this case,
results of B(FE) obtained with the double-differentiation
recipe are not practical to study the reaction dynamics.
However, three components can still be obtained in the
analysis with a 3G description. It is interesting to note
that the barrier distribution for "'Be + 2%Bi (Fig. [7)
resembles the one from the system 60 + 298Pb, which
also involves a closed n-shell nucleus.

It should be mentioned, that the hindrance phe-
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FIG. 7: Spectra for the system 'Be + 2°°Bi [36]: excitation
function (b) and barrier distribution (a). The solid curves are
obtained from least-squares fits to the measured cross sec-
tions using a 3G description. Dashed curves are the three
corresponding components.

nomenon is well reproduced with a multi-Gaussian fit (as
also discussed in Ref. [19]). For fusion of 'Be + 2%9Bi,
an S-factor maximum is predicted at around 30 MeV
from the 3G fit, nearby the prediction from systematic
studies of hindrance phenomenon [I7, [46].

IV. SUMMARY

After a general discussion about the method to obtain
the formula of fusion cross sections, a new method, the
reciprocal of a fusion representation, has been illustrated
to extract fusion cross section formula and the fusion bar-
rier distribution in heavy ion reactions, namely, based
on a double-integration of a parameteriged barrier dis-
tribution D(E): o(E)E = wR* [1 ( I D(B)dB)dE’.
It has been found that either a three-Gaussian (3G) or
a four-Gaussian (4G) description of D(E) provides an
analytic formula of the fusion excitation function which
can reproduce the experimental excitation functions for a
large number of systems extremely well across a cross sec-
tion range covering 8 orders of magnitude. This method
can also be applied to fusion reactions involving lighter
heavy-ions and to measurements which have been taken
only in larger energy steps, that is important for the
study of fusion reactions induced by radioactive projec-
tiles.

The fusion barrier distribution obtained with this
method is much improved over that from previous studies
by using the double-differentiation recipe, which suffers
from the ambiguity problem due to the energy-step-size
dependence and large uncertainties of the determined re-
sults.

It has found that there is a narrow barrier peak at en-
ergies higher than the Coulomb barrier for most fusion
systems, which, in the past, has not been seen or recog-
nized. The physical meaning and interpretation of this
peak, related to the strong absorption property of the nu-
clear reaction at higher energies, is an interesting issue,
claimed to be studied further.

The improved B(E) spectrum will be beneficial for
studies of the reaction dynamics. Its capability to de-
scribe the fusion hindrance phenomenon opens new pos-
sibilities for studies at low bombarding energies.
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