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We present the equation of state of infinite neutron matter as obtained from highly-realistic Hamil-
tonians that include nucleon-nucleon and three-nucleon coordinate-space potentials. We benchmark
three independent many-body methods: Brueckner–Bethe–Goldstone (BBG), Fermi hypernetted
chain/single-operator chain (FHNC/SOC), and auxiliary-field diffusion Monte Carlo (AFDMC). We
find them to provide similar equations of state when the Argonne v18 and the Argonne v′6 nucleon-
nucleon potentials are used in combination with the Urbana IX three-body force. Only at densities
larger than about 1.5 the nuclear saturation density (ρ0 = 0.16 fm−3) the FHNC/SOC energies are
appreciably lower than the other two approaches. The AFDMC calculations carried out with all of
the Norfolk potentials fitted to reproduce the experimental trinucleon ground-state energies and nd
doublet scattering length yield unphysically bound neutron matter, associated with the formation
of neutron droplets. Including tritium β-decay in the fitting procedure, as in the second family of
Norfolk potentials, mitigates but does not completely resolve this problem. An excellent agreement
between the BBG and AFDMC results is found for the subset of Norfolk interactions that do not
make neutron-matter collapse, while the FHNC/SOC equations of state are moderately softer.

I. INTRODUCTION

Connecting properties of atomic nuclei to the equa-
tion of state (EOS) of infinite nucleonic matter within
a microscopic perspective, in which nuclear systems are
described in terms of nucleon-nucleon (NN) and three-
nucleon (3N) forces, as well as consistent electroweak
currents, is a long-standing challenge for nuclear physics.
Addressing it has become extremely timely as neutron
stars, which contain the universe’s most dense nuclear
materials, can now be probed in whole new ways from
gravitational waves to satellite X-ray telescopes, provid-
ing an opportunity to test the high-density and low tem-
perature regime of matter that is not currently accessible
by terrestrial experiments [1, 2]. Indeed, the first obser-
vation of gravitational waves, GW170817, from a binary
neutron star merger [3], in conjunction with its electro-
magnetic counterpart [4], has ushered in a new era in
our quest to address some of the most fundamental ques-
tions driving nuclear physics today. The gravitational
wave signal emitted during binary neutron star inspirals
is strongly influenced by the tidal deformability of the
participating stars, which is in turn largely determined
by the nuclear matter EOS [5]. Using GW170817 data,
the LIGO-Virgo Collaboration has been able to constrain
the value of the adimensional tidal deformability Λ1.4, for
a neutron star with a mass M = 1.4M�, to be in the
range [6] Λ1.4 = 190+390

−120. This implies small stellar radii
in the range R1.4 = 11.9± 1.4 km which points to a soft
EOS at densities of about 2-3 times the nuclear matter

saturation density ρ0 = 0.16 fm−3.

Additional observational constraints on the nuclear
EOS comes from measured neutron star masses. Particu-
larly three neutron stars with masses close to M = 2M�
have been reliably established over the last decade. In-
deed, pulsar-timing observations of the millisecond pulsar
J0740+6620 have yielded the most massive neutron star
yet observed: M = 2.14+0.10

−0.09M� [7]. The existence of
neutron stars with masses M ∼ 2M� distinctly indicates
a stiff EOS at ρ & 3ρ0 to support them. There are sev-
eral EOS models (e.g. WFF [8], APR [9], BL [10]) that
can reconcile a soft EOS at ρ ∼ (2–3) ρ0, as suggested by
GW170817, with a stiff EOS at ρ & 3ρ0 to support mas-
sive neutron stars against gravitational collapse to black
holes.

The recent simultaneous determination of the mass
and radius of a few neutron stars by the Neutron star
Interior Composition Explorer (NICER) aboard the In-
ternational Space Station is providing new and signifi-
cant information to constrain the nuclear EOS. In the
case of the neutron star J0030+0451 the NICER collab-
oration applied different analyses on the observational
data and obtained values of (all at 68% credibility)
R = 12.71+1.14

−1.19 km and M = 1.34+0.15
−0.16M� [11] and R =

13.02+1.24
−1.06 km and M = 1.44+0.15

−0.14M� [12], which are con-
sistent with the constraints on the stellar radius derived
from GW170817 data. Another recent measurement by
the NICER team was of the pulsar PSR J0740+6620,
which is of major interest to nuclear physicists due to
its much heavier mass, M = 2.08+0.07

−0.07M� [13] (this
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is an update from the original value reported by [7]).
Two independent analyses found the radius to be R =
12.39+1.3

−1.06 km [14] and R = 13.71+2.61
−1.50 km [15] at 68%

credibility.

In addition to the above astrophysics implications, pre-
cise calculations of pure neutron matter (PNM) EOS
have become relevant for the construction of nuclear en-
ergy density functionals (EDFs). Traditional EDFs are
able to reproduce a myriad of nuclear observables but are
biased towards experimentally well-known regions, e.g.
nuclei close to the stability valley [16]. Novel strategies
to constrain the EDF on microscopic calculations of PNM
have been developed [16–21] to accompany the growing
experimental research efforts devoted to unstable nuclei
at the limits of the nuclear chart. Their success how-
ever, relies on accurate microscopic calculations of the
EOS, supplemented by reliable estimates of theoretical
uncertainties.

Despite recent remarkable progress, it is still unclear
whether there exist microscopic nuclear potentials that
accurately describe light nuclear systems — e.g. nucleon-
nucleon scattering, light nuclear spectra, densities, struc-
ture functions, transitions, and responses — and the EOS
of infinite neutron matter. For example, the phenomeno-
logical Argonne v18 [22] plus Illinois 7 [23] (AV18+IL7)
Hamiltonian can reproduce the experimental energies of
nuclei with up to A = 12 with high precision [24], but
it fails to provide sufficient repulsion in pure neutron
matter [25]. On the other hand, the Argonne v18 plus
Urbana IX [26] model (AV18+UIX), which provides a
good description of nuclear-matter properties and the ba-
sis for the highly-cited APR beta-stable EOS for neutron
stars [9], does not give as satisfactory a reproduction of
the spectrum of light nuclei [27]. These interactions being
largely phenomenological, no clear prescriptions are cur-
rently available to properly assess their uncertainties and
to systematically improve them, especially as far as three-
nucleon forces are concerned [28]. Over the last decades,
chiral effective field theory (χEFT) has been extensively
employed to systematically derive high-quality NN and
3N interactions [29–32]. Local, coordinate-space versions
of χEFT 3N forces were first included in quantum Monte
Carlo methods in Ref. [33], in combination with phe-
nomenological Argonne v′6 (AV6P) NN potential. Local,
χEFT NN potentials were first implemented in quantum
Monte Carlo methods by the authors of Ref. [34]. As a
major breakthrough, the results presented in Ref. [34, 35]
also include consistent coordinate-space χEFT 3N forces
that were fit to reproduce the binding energy of 4He and
low-energy neutron - 4He scattering. These interactions
have been subsequently employed to carry out quantum
Monte Carlo calculation of the equation of state of sym-
metric nuclear matter [36], and have proven to reproduce
empirical saturation density and energy well within sta-
tistical and systematic uncertainties. It has to be noted
that even state-of-the-art χEFT interactions do not fully
solve the tension between light systems and infinite mat-
ter. For instance, the potentials developed in Ref. [37]

yield binding energies and radii for a wide range of nu-
clei that are compatible with experiments together with
an accurate nuclear matter EOS, but fail to reproduce
proton-proton scattering data below 100 MeV laboratory
energy [38].

In this work, we employ the first and second generation
of χEFT Norfolk NN and 3N interactions that provide
accurate description of the spectra and low-energy transi-
tions of light nuclei [39, 40]. These two generations differ
in the strategy adopted to determine the low-energy con-
stants entering the 3N force. The first one uses the exper-
imental trinucleon ground-state energies and nd doublet
scattering length, while the second includes in the fit-
ting procedure the empirical value of the Gamow-Teller
matrix element of tritium β decay. We test their pre-
dictions in neutron matter using three many-body ap-
proaches: the Brueckner–Bethe–Goldstone (BBG) [41,
42], the Fermi hypernetted chain/single-operator chain
(FHNC/SOC) [43, 44], and the auxiliary-field diffusion
Monte Carlo (AFDMC) [45]. In our analysis we also con-
sider the widely-used AV18+UIX and its simplification
AV6P+UIX. In the same spirit as our previous work [46],
which only included NN potentials, by performing these
benchmark calculations we aim at better assessing the
systematic error associated with the method used for
solving the many-body Schrödinger equation and quanti-
fying its relative importance compared to the uncertain-
ties inherent to the nuclear Hamiltonian. While bench-
marks of the various many-body methods have been reg-
ularly undertaken for nuclei [47–49], with the exception
of Ref. [46, 50], they have not been as frequently carried
out for PNM.

This work is organized as follows. In Section II, we in-
troduce the nuclear Hamiltonians with particular empha-
sis on the 3N force. The many-body methods employed
for calculating the EOS of PNM are summarized in Sec-
tion III. The benchmark calculations obtained within
three different many-body methods are discussed in Sec-
tion IV. Finally, in Section V we draw our conclusions
and provide some perspective on future research direc-
tions.

II. NUCLEAR HAMILTONIANS

Our PNM calculations are based on the well-known
AV18+UIX [22, 26] model as well as the Norfolk NN and
3N interactions developed in Ref. [40, 51, 52]. The latter
are referred to in the literature as NV2+3. The NV2+3
potentials are formulated in coordinate space and derived
from chiral effective field theory (χEFT) in which pions,
nucleons and ∆’s are retained as fundamental degrees
of freedom. They include long-range components medi-
ated by one- and two-pion exchange, as well as contact
terms characterized by unknown low-energy constants
(LECs). Specifically, the two-body component (NV2) is
constructed up to N3LO in the chiral expansion, retain-
ing only contact terms at this order, and the three-body
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force (NV3) includes corrections up to N2LO.
The LECs that enter the NV2 contact interactions are

constrained to reproduce NN scattering data from the
most recent database collected by the Granada group [53,
54]. The contact terms are regularized via a Gaussian
cutoff function with RS as the Gaussian parameter [40,
51, 52],

CRS(r) =
1

π3/2R3
S

e−(r/RS)2 , (1)

while the divergences appearing at high values of mo-
mentum transfer in the pion-range operators are removed
via a special radial function characterized by the cutoff
RL [40, 51, 52],

CRL
(r) = 1− 1

(r/RL)6 e(r−RL)/aL + 1
, (2)

with the diffuseness aL being fixed at aL = RL/2. There
are two classes of NV2 potentials. Class I (II) has been
fitted to NN data up to 125 MeV (200 MeV). For each
class, two combinations of short- and long-range reg-
ulators have been used, namely (RS , RL)=(0.8, 1.2)
fm (models NV2-Ia and NV2-IIa) and (RS , RL)=(0.7,
1.0) fm (models NV2-Ib and NV2-IIb). Class I (II) fits
about 2700 (3700) data points with a χ2/datum . 1.1
(. 1.4) [51, 52].

The NV3 3N potentials [39] are the sum of three con-
tributions

V =
∑
i<j<k

∑
cyc

[
V ∆(ijk) + V 2π(ijk) + V CT(ijk)

]
, (3)

where “cyc” denotes the cyclic permutations of particles
i, j, and k. The terms V ∆(ijk) and V 2π(ijk) repre-
sent the long-range piece of the 3N force mediated by
the two-pion exchange (TPE) diagrams with and with-
out ∆’s, respectively, and V CT(ijk) is the short-range
piece, which is parametrized by contact terms.

Considering that the isospin operator τi · τj = 1
in PNM, the expressions for V ∆(ijk), V 2π(ijk), and
V CT(ijk) relevant for this work are:

V ∆(ijk) = − g2
Ah

2
A

72 · 144π2

m6
π

m∆Nf4
π

2
{
X̃ij , X̃jk

}
(4)

V 2π(ijk) =
g2
A

256π2

m6
π

f4
π

[
− 16 c1 Z̃π(rij) Z̃π(rjk)

×σi · r̂ij σk · r̂jk +
4

9
c3

{
X̃ij , X̃jk

}]
(5)

V CT(ijk) =
gA cD
96π

m3
π

Λχ f4
π

X̃ik [CRS(rij) + CRS(rjk)]

+
cE

Λχ f4
π

CRS
(rij)CRS

(rjk) , (6)

In the above equations, gA and hA are the axial and the
N -to-∆ axial coupling constants, respectively, mπ and
m∆N are the pion and ∆ − N mass difference, respec-
tively, fπ is the decay amplitude, and Λχ = 1 GeV is

Ia (Ia*) Ib (Ib*) IIa (IIa*) IIb (IIb*)
cD 3.666 (–0.635) –2.061 (–4.71) 1.278 (–0.61) –4.480 (–5.25)
cE –1.638 (–0.090) –0.982 ( 0.55) –1.029 (–0.35) –0.412 (0.05)

TABLE I. Adimensional cD and cE values of the contact terms
in the NV3 interactions obtained from fits to i) the nd scat-
tering length and trinucleon binding energies [39]; and ii) the
central value of the 3H GT matrix element and the trinucleon
binding energies (starred values) [40].

the chiral-symmetry-breaking scale. Their values are re-

ported in Table I and II of Ref. [52]. The operator X̃ij

is defined as

X̃ij = T̃π(rij)Sij + Ỹπ(rij)σi · σj , (7)

where the regularized functions are

Ỹπ(r) =
e−mπr

mπr
CRL(r) , (8)

T̃π(r) =

(
1 +

3

mπ r
+

3

m2
π r

2

)
Ỹπ(r) , (9)

Z̃π(r) = −
(

1 +
1

mπ r

)
Ỹπ(r) . (10)

The TPE contribution in Eq. (5) depends on the pion-
nucleon LECs c1, c3, and c4, that already appear in
the NN sector, and their values are listed in Table I
of Ref. [52]. The short-range component, instead, is
parametrized in terms of two unknown LECs, cD and
cE . In the first generation of Norfolk potentials (NV2+3-
Ia/b and NV2+3-IIa/b), these LECs have been deter-
mined by simultaneously reproducing the experimental
trinucleon ground-state energies and nd doublet scatter-
ing length [39]. Within the χEFT framework, cD is re-
lated to the LEC entering the axial two-body contact
current [55–57], allowing one to adopt a different strat-
egy to constrain cD and cE . In particular, in Ref. [40],
they have been determined to reproduce the trinucleon
binding energies and the empirical value of the Gamow-
Teller matrix element in tritium β decay. Norfolk models
that use this fitting procedure are designated with a ‘*’
namely, NV2+3-Ia*/b* and NV2+3-IIa*/b*. For com-
pleteness, we report the values of cD and cE in Table I.

III. MANY-BODY METHODS

One of the two sources of uncertainties in micro-
scopic calculations of neutron matter pertains to the
nuclear many-body method of choice. To gauge it,
we employ three largely different many-body methods:
the Brueckner–Bethe–Goldstone (BBG) many-body the-
ory, the Fermi hypernetted chain / single-operator chain
(FHNC/SOC), and the auxiliary-field diffusion Monte
Carlo (AFDMC). They are briefly described below, with
particular emphasis on their treatment of 3N forces.
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A. BBG

The BBG many-body theory (see e.g., [41, 42]) is based
on a linked cluster expansion (the so-called hole-line ex-
pansion) of the energy per nucleon E/A of nuclear mat-
ter. The various terms of the expansion can be repre-
sented by Goldstone diagrams [58] grouped according to
the number of independent hole-lines (i.e., lines repre-
senting empty single particle states in the Fermi sea).
The basic ingredient in this approach is the Brueckner
reaction matrix G [59, 60] which sums, in a closed form
the infinite series of the so-called ladder-diagrams and al-
lows treatment of the short-range strongly repulsive part
of the nucleon-nucleon interaction. The G-matrix can be
obtained by solving the Bethe–Goldstone equation [61]

G(ω) = V + V
∑
ka,kb

| ka,kb〉Q 〈ka,kb |
ω − ε(ka)− ε(kb) + iη

G(ω) , (11)

where V is the bare NN interaction (or a density depen-
dent two-body effective interaction when three-nucleon
forces are introduced as discussed below) the quantity ω
is the so-called starting energy. In the present work we
consider spin-unpolarized neutron matter, thus in equa-
tion (11) and in the following equations we drop the
spin indices to simplify the mathematical notation. The
Pauli operator | ka,kb〉Q〈ka,kb | projects on interme-
diate scattering states in which the momenta ka and kb

of the two interacting neutrons are above their Fermi
momentum kF since single particle states with momenta
smaller that this value are occupied by the neutrons of
the nuclear medium. Thus the Bethe–Goldstone equa-
tion describes the scattering of two nucleons (two neu-
trons in our case) in the presence of other nucleons, and
the Brueckner G-matrix represents the effective interac-
tion between two nucleons in the nuclear medium and
properly takes into account the short-range correlations
arising from the strongly repulsive core in the bare NN
interaction.

The single-particle energy ε(k) of a neutron with mo-
mentum k, appearing in the energy denominator of the
Bethe–Goldstone equation (11), is given by

ε(k) =
~2k2

2m
+ U(k) , (12)

where U(k) is a single-particle potential which represents
the mean field felt by a neutron due to its interaction with
the other neutrons of the medium. In the Brueckner–
Hartree–Fock (BHF) approximation of the BBG theory,
U(k) is calculated through the real part of the G-matrix
[62, 63] and is given by

U(k) =
∑
k′≤kF

Re 〈k,k′ | G(ω∗) | k,k′〉A , (13)

where the sum runs over all neutron occupied states,
the starting energy is ω = ω∗ ≡ ε(k) + ε(k′) (i.e., the

G-matrix is calculated on-the-energy-shell) and the ma-
trix elements are properly antisymmetrized. We make
use of the so-called continuous choice [64–67] for the
single-particle potential U(k) when solving the Bethe–
Goldstone equation. As it has been shown in Ref.
[68, 69], the contribution of the three-hole-line diagrams
to the energy per nucleon E/A is minimized in this pre-
scription for the single particle potential and a faster con-
vergence of the hole-line expansion for E/A is achieved
with respect to the so-called gap choice for U(k).

In this scheme Eqs. (11)–(13) have to be solved
self-consistently using an iterative numerical procedure.
Once a self-consistent solution is achieved, the energy
per nucleon of the system can be evaluated in the BHF
approximation of the BBG hole line-expansion and it is
given by

E

A
=

1

A

∑
k<kF

(
~2k2

2m
+

1

2
U(k)

)
. (14)

Making the usual angular average of the Pauli opera-
tor and of the energy denominator [65, 67], the Bethe–
Goldstone equation (11) can be expanded in partial
waves. In all the calculations performed in this work,
we have considered partial wave contributions up to a
total two-body angular momentum Jmax = 9. We have
verified that the inclusion of partial waves with Jmax > 9
does not appreciably change our results.

Within the BHF approach three-nucleon forces cannot
be used directly in their original form. This is because
it would be necessary to solve three-body Faddeev equa-
tions in the nuclear medium (Bethe–Faddeev equations)
[70, 71] and currently this is a task still far from achieve-
ment. To circumvent this problem an effective density
dependent two-body force Veff (ρ) is built starting from
the original three-body one by averaging over one of the
three nucleons [72–74] and this is added to the bare NN
interaction to solve the Bethe–Goldstone equation (11).

In the present work, we construct this effective density
dependent two-body force as follows: we first antitrans-
form the coordinate-space three-nucleon potential to mo-
mentum space, then we average over the momentum and
spin of one of the nucleons using:

Veff = Tr(σ3)

∫
dp3

(2π)3
np3

V123 (1− P13 − P23) , (15)

where

Pij =
1 + σi · σj

2
Ppi↔pj (16)

are spin-momentum exchange operators and np3
is the

momentum distribution of the third nucleon. Here we do
not consider the effects of NN correlations on the nucleon
momentum distribution [75–77] and we assume for np3

a
step function approximation.

An important point of the whole BHF calculation is
that when the three-nucleon force is added to the bare
NN interaction, some double counting is introduced both
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in the calculation of single-particle potentials and in the
total energy per particle. In order to take care of this
issue, we adopt the strategy suggested in Refs. [78, 79]
namely we subtract from the single-particle potentials
1/2 of the Hartree-Fock contribution due to the contri-
bution of the three-nucleon forces. We finally correct the
total energy per particle with the appropriate Hartree-
Fock correction due to the inclusion of the three-body
forces [78, 79].

B. FHNC/SOC

In the absence of interactions, a uniform system of A
non-interacting neutrons can be described as a Fermi gas
at zero temperature, and its ground state wave function
reduces to the Slater determinant of orbitals associated
with the single-particle states belonging to the Fermi sea

Φ(X) = A[φn1(x1) . . . φnA(xA) ] . (17)

In the above equation X = {x1, . . . , xA}, where the gen-
eralized coordinate xi ≡ {ri, si} represents both the po-
sition R = r1, . . . , rA and the spin S = s1, . . . , sA, vari-
ables of the i-th nucleon while ni denotes the set of quan-
tum numbers specifying the single particle state. Trans-
lational invariance imposes that the single-particle wave
functions be plane waves

φni(xi) =
1√
Ω

eiki·riχσi(si) (18)

In the above equations, Ω is the normalization volume,
χσi(si) is the spinor of the neutron and |ki| < kF =
(3π2ρ)1/3. Here kF is the Fermi momentum and ρ the
density of the system.

The variational ansatz of the Fermi hypernetted chain
(FHNC) and single-operator chain (SOC) formalism
emerges as a generalization of the Jastrow theory of
Fermi liquids [44, 80]

|ΨT 〉 =
F |Φ〉

〈Φ|F †F |Φ〉1/2
. (19)

where |Φ〉 is the Slater determinant of Eq. (17) and

F (x1, . . . , xA) = S

 A∏
j>i=1

Fij

 (20)

is the correlation operator. The spin-isospin structure of
Fij reflects that of the dominant parts of the nucleon-
nucleon potential

Fij =

8∑
p=1

fp(rij)O
p
ij , (21)

where the eight operators Opij are 1, σi · σj , Sij , and
L · S, and each of these times τi · τj . For pure neutron

matter, the expectation of the pair isospin operator is
unity, reducing the effective number of fp components to
four. Since, in general, [Opij , O

q
ik] 6= 0, the symmetriza-

tion operator S is needed to fulfill the requirement of an-
tisymmetrization of the wave-function. The fp(rij) are
finite-ranged functions, with the conditions

fp(r ≥ dp) = δp1 ,

dfp(r)

dr

∣∣∣
r=dp

= 0 . (22)

where the dp are “healing distances”. Consequently, the
correlation operator of Eq. (20) respects the cluster prop-
erty: if the system is split in two (or more) subsets of
particles that are moved far away from each other, the
F factorizes into a product of two factors in such a way
that only particles belonging to the same subset are cor-
related.

The radial functions fp(rij) are determined by mini-
mizing the energy expectation value

EV = 〈ΨT |H|ΨT 〉 ≥ E0 , (23)

which provides an upper bound to the true ground
state energy E0. The energy expectation value in mat-
ter is evaluated using a diagrammatic cluster expansion
and a set of 29 coupled integral equations, which effec-
tively make partial summations to infinite order – the
FHNC/SOC approximation [44]. This is a generaliza-
tion of the original hypernetted chain (HNC) method
for Bose systems developed by van Leeuwen, Groeneveld,
and de Boer [81], which requires the solution of a single
integral equation, and the corresponding extension for
spin-isospin independent Fermi systems by Fantoni and
Rosati [43], which requires four coupled integral equa-
tions. The integral equations are used to generate two-
and three-body distribution functions g2(rij) ≡ gij and
g3(rij , rik) ≡ gijk, which can then be used to evaluate the
energy or other operators without resorting to density-
dependent approximations of the 3N potential.

For the pure Jastrow case, we evaluate the
Pandharipande–Bethe [82] expression for the energy:

EPB = TF +W +WF + U + UF , (24)

where TF is the Fermi gas kinetic energy. The only terms
for a Bose system are

W =
ρ

2

∫ (
vij −

~2

m

∇2Fij
Fij

)
gijd

3rij ,

U = − ~2

2m

ρ2

4

∫ (∇iFij · ∇iFik
FijFik

)
gijkd

3rijd
3rik , (25)

while WF , UF are additional two- and three-body kinetic
energy terms present due to the Slater determinant. Al-
ternately we use the Jackson–Feenberg [83] energy ex-
pression

EJF = TF +WB +Wφ + Uφ , (26)
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WB =
ρ

2

∫ [
vij −

~2

2m

(∇2fij
fij

− (∇ifij)2

f2
ij

)]
, (27)

where WB is the boson term and Wφ and Uφ are kinetic
energy terms involving the Slater determinant. In prin-
ciple, these energies should be equivalent, but in practice
there are differences due to the FHNC/SOC approxima-
tion to the distribution functions. We take the average
EV = (EPB + EJF )/2 as our energy expectation value
and the difference δEV = |EPB −EJF |/2 as an estimate
of the error in the calculation.

The FHNC two-body distribution function can be writ-
ten as:

gij = f2
[
(1 +Gde + Ede)2 +Gee + Eee

− ν(Gcc + Ecc − `/ν)2
]

exp(Gdd + Edd) . (28)

where the chain functions Gxy are sums of nodal dia-
grams, with direct (d), exchange (e) or circular exchange
(c) end points, Exy are elementary diagrams, ` ≡ `(kF r)
is the Slater function, and ν is the degeneracy. An ex-
ample of the structure of the integral equations is:

Gdd,ij = ρ

∫
d3rk [(Xdd,ik +Xde,ik)Sdd,kj

+Xdd,ijSde,kj ] , (29)

where Sdd = f2 exp(Gdd +Edd)− 1 is a two-point super-
bond and Xdd = Sdd −Gdd is a link function.

The introduction of spin-isospin correlations with op-
erators that do not commute complicates the calculation.
Fortunately, the first six operators p = 1, 6 form a closed
spin-isospin algebra, allowing single continuous chains of
operator links – the SOCs – to be evaluated. These in-
volve five chain functions Gpxy for each of the five oper-
ators p = 2 − 6, with xy = dd, de, ee, ca, cb in addition
to the four Jastrow chain functions in Eq.(28), making
the total of 29 coupled integral equations to be solved
in nuclear matter, which reduces to 14 coupled integral
equations in pure neutron matter. There are significant
contributions from unlinked diagrams in the SOC cluster
expansion, but these can be accommodated by means of
“vertex” corrections, as discussed in Ref. [44]. Additional
higher-order corrections coming from (parallel) multiple
operator chains and rings are also calculated, as discussed
in Ref. [8].

As opposed to the FHNC/SOC calculations reported
in Ref. [50], in this work we include spin-orbit correla-
tions, corresponding to the p = 7, 8 terms in Eq. (21).
Because of the presence of a derivative operator, these
correlations cannot be “chained” so they are treated ex-
plicitly only at the two- and three-body cluster level. It
has to be noted that while the two-body cluster contri-
bution is evaluated exactly, following the prescription of
Ref. [8] only a limited number of three-body terms in the
cluster expansion are kept.

In standard FHNC calculations, the elementary di-
agrams of Eq. (28) are generally neglected. Inclusion

of the leading four-body elementary diagram leads to
the FHNC/4 approximation [84], while additional con-
tributions have been studied in liquid atomic helium sys-
tems [85]. In the present work we include many central
(p = 1) Exy diagrams, beyond the FHNC/4 approxima-
tion, by introducing three-point superbonds Sxyz, such
as

Sddd,123 = ρ

∫
d3r4 {Sdd,14Sdd,24(Sdd,34 + Sde,34)

+ (Sdd,14Sde,24 + Sde,14Sdd,24)Sdd,34 } , (30)

and then evaluating

Edd,12 =
1

2
ρ

∫
d3r3 {Sddd,132 [Sdd,13(Sdd,32 + Sde,32)

+ Sde,13Sdd,32 ] + Sded,132Sdd,24Sdd,32 } . (31)

With six Sxyz, where xyz = ddd, dde, dee, eee, ccd, and
cce, many elementary diagrams at the four-, five-, and
higher-body level contributing to gij and gijk can be eval-
uated. These central elementary diagrams also dress the
SOCs.

In matter calculations, the correlations of Eq.(22) are
generated by solving a set of coupled Euler-Lagrange
equations in different pair-spin and isospin channels for
S = 0, 1 and T = 0, 1. For pure neutron matter, only
T = 1 channels are needed, leaving a single-channel equa-
tion for S = 0, producing a singlet correlation, and
a triple-channel equation for S = 1, which produces
triplet, tensor, and spin-orbit correlations. The singlet
and triplet correlations are then projected into central
and σij combinations. Three (increasing) healing dis-
tances are used: ds for the singlet correlation, dp for the
triplet and spin-orbit, and dt for the tensor.

Additional variational parameters are the quenching
factors αp whose introduction simulates modifications of
the two–body potentials entering in the Euler–Lagrange
differential equations arising from the screening induced
by the presence of the nuclear medium

vij =

8∑
p=1

αpv
p(rij)O

p
ij , (32)

Changing αp affects the shape of the correlation func-
tions, as it alters the balance between the kinetic and
potential energy contributions when solving the Euler-
Lagrange differential equations. Note that the full (un-
quenched) potential is used when computing the energy
expectation value. In practice we use just two such pa-
rameters: αp=1 = 1 and αp=2,8 = α. In addition, the
resulting correlation functions fp may be rescaled accord-
ing to

Fij =

8∑
p=1

βpf
p(rij)O

p
ij , (33)

with βp=1 = 1, βp=2,4+7,8 = βσ, and βp=5,6 = βt. These
βp are not usually invoked when only two-body forces
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are considered, but they can significantly lower the vari-
ational energy when three-body forces are included. As
a major difference with the αp parameters, the βp do not
change the shape of fp(rij), but simply rescale them by
a constant factor. For the present work, the variational
parameters are the three healing distances dc, dp, and
dt, one quenching factor α, and two rescaling factors βσ
and βt. These are varied at each density with a sim-
plex search routine to minimize the energy. In principle,
more sophisticated functional forms for the fp(rij) can be
adopted. Examples are those based on cubic-splines, al-
ready employed in the AFDMC method — see the follow-
ing subsection. Their inclusion requires more advanced
optimization algorithm than simplex, suitable to handle
many variational parameters, and automatic differentia-
tion packages. Work in this direction is in progress.

The cluster diagrams for the three-body force are il-
lustrated in Ref. [86]; Fig.2 shows the diagrams con-
tributing to the V ∆ and V 2π terms of Eqs.(4), and (5),
while Fig.3 shows diagrams contributing to the cE term
of V CT of Eq.(6). Only the cD term of V CT requires
some new work, but this is a straightforward generaliza-
tion of the methods described in Ref. [86]; see also [33].
In the present work, the three-body force diagrams are
also dressed with all appropriate central three-point su-
perbonds Sxyz.

One measure of the convergence of the FHNC/SOC
integral equations is that the volume integral of the cor-
relation hole from the central part of the two-body distri-
bution function gij (which has operator components like
the Fij of Eq. (21)) should be unity. To help guarantee
that the variational parameters entering the FHNC/SOC
correlations are well behaved – and to ensure that in a
given region of the parameter space the cluster expansion
is converged – we minimize the energy plus a constant
times the deviation of the volume integral from unity:

E + C

{
1 + ρ

∫
d3r [gc(r)− 1]

}2

,

as discussed in Ref.[8]. A value of C = 1000 MeV is suffi-
cient to limit the violation of this sum rule to 1% or less
at normal density, and 3% or less at twice normal density
for all the potentials considered here. In symmetric nu-
clear matter there is a related condition that the integral
of the isospin component gτ (r)

1 +
1

3
ρ

∫
d3r gτ (r) ,

should vanish to guarantee equal numbers of protons and
neutrons. The corresponding integral with the spin com-
ponent gσ(r) is not constrained when tensor forces are
present. Instead, its deviation from unity provides a mea-
sure of the strength of the tensor (or spin-space) correla-
tions in the system.

C. AFDMC

The AFDMC method [45] projects out the ground-
state of the system |Ψ0〉 evolving a starting trial wave
function |ΨT 〉 in imaginary time τ as

|Ψ0〉 = lim
τ→∞

|Ψ(τ)〉 = lim
τ→∞

e−(H−ET )τ |ΨT 〉 , (34)

where ET is an estimate of the true ground-state energy
E0. The imaginary-time propagator e−(H−ET )τ is broken
down and evaluated stochastically in N small time steps
δτ , with τ = Nδτ . At each step, the generalized coordi-
nates X ′ are sampled from the previous ones according
to the short-time propagator

G(X ′, X, δτ) =
ΨI(X

′)

ΨI(X)
〈X ′|e−(H−E0)δτ |X〉 (35)

where ΨI(X
′) is the importance-sampling function. Sim-

ilar to Refs. [87, 88], we mitigate the fermion-sign prob-
lem by first performing a constrained-path diffusion
Monte Carlo propagation (DMC-CP), in which we take
ΨI(X) ≡ ΨT (X) and impose Re[ΨT (X ′)/ΨT (X)] > 0.
The solution obtained from the constrained propagation
is not a rigorous upper-bound to E0 [89]. To remove this
bias, the configurations obtained from a DMC-CP propa-
gation are further evolved using the positive-definite im-
portance sampling function [46, 90, 91]

ΨI(X) =
√

Re[ΨT(X)]2 + Im[ΨT(X)]2 , (36)

During this unconstrained diffusion (DMC-UC), the
asymptotic value of the energy is determined by fitting its
imaginary-time behavior with a single-exponential func-
tion [92].

Applying standard diffusion Monte Carlo techniques
to the nuclear many-body problem is made particularly
complicated by the spin-isospin dependence of the nu-
clear forces. The AFDMC keeps the computational
cost polynomial in the number of nucleons A by rep-
resenting the spin-isospin degrees of freedom in terms of
outer products of single-particle states. To preserve this
representation, during the imaginary-time propagation
Hubbard-Stratonovich transformations are employed to
linearize the quadratic spin-isospin operators entering the
nuclear potentials. When computing the AV18+UIX and
NV2+3 Hamiltonians, the propagation is made with a
simplified Hamiltonian H ′, which includes a re-projected
v′8 version of the full v18 potential [93]. The small differ-
ence ∆v = v18 − v′8 is estimated at first order in pertur-
bation theory as

〈∆v〉 ' 2
〈ΨT |∆v|Ψ(τ)〉
〈ΨT |Ψ(τ)〉

− 〈ΨT |∆v|ΨT 〉
〈ΨT |ΨT 〉

. (37)

As discussed in detail in Ref. [90] for the UIX po-

tential, the relation {σαi , σ
β
i } = δαβ is used to express

the anticommutator terms of Eqs. (4) and (5) as a sum
of two-body spin operators with a form and strength
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that depend upon the positions of three particles. For
each quantum Monte Carlo configuration, the sum over
the position of the third particle is carried out explic-
itly so that including these terms only involves changing
the strength of the NN potential’s spin matrices. Sim-
ilar strategies can be followed to handle the c1 term in
Eq. (5), which is equivalent to the S-wave component
of the Tucson-Melbourne three-body potential [94], and
the cD contribution [33]. Finally, in PNM the cE term
of Eq. (6) is identical to the phenomenological repulsive
scalar contribution of the UIX force — again with dif-
ferent radial functions and coupling constant — and its
inclusion is trivial [90]. Note that this procedure allows
us to include the 3N force “exactly” in the AFDMC,
and there is no need to use density-dependent approxi-
mations.

Within the AFDMC, infinite uniform neutron matter
is typically simulated using a finite number of neutrons
obeying periodic-box boundary conditions (PBC) [90].
The trial wave function adopted in our calculations re-
spects by construction these PBC and it is expressed as

ΨT (X) = 〈X|ΨT 〉 = 〈X|
∏
i<j

fc(rij)|Φ〉 . (38)

The spin-isospin independent Jastrow function fc(rij) is
parametrized in terms of a cubic spline that has a smooth
first derivative and continuous second derivative. The
variational parameters to be optimized are the values of
the spline at the grid points, plus the value of the first
derivative at rij = 0. In order for the PBC to be satisfied,
we impose fc(rij) = 1 and f ′c(rij) = 0 when rij ≥ L/2.
This Jastrow ansatz is more flexible than the one used
in our previous work [46] and has proven to be able to
capture highly clustered configurations of nucleons, as
discussed in Ref. [95] for the 16O nucleus.

In neutron-matter calculations, the mean-field part of
the wave function is usually taken to be the plane-waves
Slater determinant of Eq. (17). In order to satisfy the
PBC, the single-particle wave vectors take the discrete
values

ki =
2π

L
{nx, ny, nz} , ni = 0,±1,±2, . . . , (39)

L being the size of the box. When simulating homoge-
neous and isotropic systems, calculations are performed
with closed momentum shells. Since neutrons can be
spin-up or spin-down, this corresponds to A = 2, 14,
38, 54, 66, 114, etc., particles in a box. In this work,
we improve upon the plane-wave Slater determinant by
including the spin-dependent backflow correlations [96]
through the following replacement

eiki·rj → eiki·rj
[
1 +

1

2

∑
k 6=j

fb(rjk)(rjk × ki) · σj
]
. (40)

In our previous work, the spin-orbit Jastrow function
f b(rij) was determined minimizing the two-body clus-
ter contribution to the energy per particle, similarly to

VMCPW VMCBF DMC-CPPW DMC-CPBF

AV18+UIX 23.13(2) 21.78(1) 20.80(4) 19.32(3)
NV2+3-Ia∗ 20.40(1) 18.42(1) 17.31(4) 16.32(2)

TABLE II. Energies per particle of PNM at ρ = 0.16 fm−3

obtained with the plane-wave (PW) and spin-dependent back-
flow (BF) Slater determinant using the AV18+UIX and
NV2+3-Ia Hamiltonians simulating 66 neutrons with PBC.

what is done in the FHNC/SOC method. In that case,
we observed relatively minor improvements in the energy
per particle with respect to the simpler plane-wave Slater
determinant. Here, we adopt a more flexible cubic spline
parametrization, analogous to the one used for f c(rij);
the only difference with the latter is that to fulfill PBC
we impose fb(rij) = 0 and f ′b(rij) = 0 when rij ≥ L/2.
As shown in Table II, this ansatz lowers the VMC ener-
gies per particle by 1.3 MeV and 2.0 MeV per nucleon
at saturation density, for the AV18+UIX and NV2+3-
Ia∗ Hamiltonians, respectively. More importantly, the
DMC-CP results are also noticeably improved, and they
are closer to their DMC-UC values: 18.1(3) and 15.3(3)
MeV for the AV18+UIX and the NV2+3-Ia∗ models, re-
spectively. This behavior demonstrates that the flexible
cubic-spline spin-dependent backflow correlations refine
the phase structure of the variational wave function, mak-
ing it closer to the one of the true ground-state of the sys-
tem, thereby improving the accuracy of the constrained-
path approximation. In contrast to the linearized spin-
dependent correlations introduced in Ref. [97], these spin-
dependent backflow correlations add minor overhead to
the computational cost of the method, which still scales
as A3. In addition, their inclusion does not violate the
factorization theorem, and it is therefore better suited
for treating translation-invariant uniform systems.

The DMC-CP simulations presented in this work are
carried out employing A = 66 neutrons in a box. This
choice considerably reduces finite-size effects, since the
kinetic energy of 66 fermions approaches the thermo-
dynamic limit very well [98]. In addition, finite-size
effects due to the tail corrections of two- and three-
body potentials are accounted for by summing the con-
tributions given by neighboring cells to the simulation
box [99]. When not otherwise specified, the AFDMC
results presented in this work always refer to the uncon-
strained energies. The latter are obtained by adding to
the DMC-CP values obtained with 66 neutrons the dif-
ference between DMC-UC and DMC-CP energies com-
puted with 14 neutrons with PBC, applying tail correc-
tions to the potential-energy contribution as discussed
above. This procedure decreases the computational cost
of the method, which still requires about 150k core-hours
for each value of the density for a given Hamiltonian. Its
accuracy has been validated in Ref. [46] by performing
DMC-UC simulations with 14 and 38 neutrons, which
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showed negligible differences. Finally, we note that the
unconstrained energies are independent of the trial wave
function of choice, although including backflow correla-
tions significantly reduce the statistical noise of our re-
sults.

IV. RESULTS

In this Section, we present the numerical results
obtained with the three many-body methods dis-
cussed above. We first focus on the phenomenological
AV6P+UIX and AV18+UIX Hamiltonians — the latter
used in the celebrated Akmal-Pandharipande-Ravenhall
(APR) EOS. Then, we analyse the first and second gen-
erations of Norfolk potentials, elucidating the role of the
cE term in the 3N force.

A. Phenomenological Hamiltonians

In Fig. 1 we display the EOS of PNM using the semi-
realistic, phenomenological AV6P+UIX (upper panel)
and highly-realistic AV18+UIX (lower panel) Hamilto-
nians. The BHF, FHNC/SOC, and AFDMC many-body
methods yield almost identical energies per particle up
to saturation density for both interaction models. At
ρ > ρ0, the FHNC/SOC results lie below the BHF and
AFDMC ones, consistent with what was observed in
Ref. [46] for the NN interaction only.

For the specific case of the AV6P+UIX Hamiltonian,
the discrepancies between the FHNC/SOC and the other
two many-body methods are larger than with the NN
potential alone. As the density increases, the optimized
correlations change character, with large values of βt that
significantly enhance the normally small tensor correla-
tions in neutron matter from NN forces. This can change
the expectation value of the two-pion exchange part of
UIX from weak repulsion to strong attraction. For AV6P
alone, the optimized βt vary only slightly from unity with
no significant lowering of the energy. If UIX is added in
perturbation, i.e., without re-optimizing the variational
parameters, the result, shown by the dashed line labeled
FHNCp in the upper panel of Fig. 1, is very close to the
AFDMC result.

This kind of behavior of the FHNC/SOC energies has
been observed before [100] where it was identified as a
neutral pion condensate, i.e., a tendency toward spin-
space order in nucleon matter, and it is a noticeable fea-
ture of the WFF and APR EOS [8, 9]. The FHNC/SOC
calculations for AV18+UIX shown in the lower panel of
Fig. 1 also have this enhanced tensor correlation, but the
lowering of the energy relative to the BHF and AFDMC
calculations is less dramatic than for AV6P+UIX. This
kind of ordered solution in FHNC/SOC calculations de-
pends on the Hamiltonian, and is not found in most of
the Norfolk potentials – only model NV2+3-Ib* seems
to exhibit this behavior. Whether this kind of solution
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FIG. 1. Neutron-matter EOS as obtained from the
AV6P+UIX (upper panel) and AV18+UIX (lower panel)
Hamiltonians.

is a result of approximations in the treatment of the 3N
potential contribution [86], or it is actually discovering
a phase that the BHF and AFDMC calculations miss, is
unknown at this time.

For reference, in Fig. 1, we show the APR result of
Ref. [9], which has also been obtained solving the ground-
state of AV18+UIX with the FHNC/SOC method. Fol-
lowing the conventions of Ref. [1], we denote this EOS
“APR1” to differentiate it from the one that includes rel-
ativistic corrections arising from the boost of the NN po-
tential, dubbed “APR2”. The differences between APR1

and our own FHNC/SOC results are minimal and mainly
due to our improved treatment of elementary diagrams
and some differences in the handling of spin-orbit corre-
lations.

The AFDMC and BHF energies per particle remain
very close up to ρ = 0.32 fm−3 — the maximum differ-
ence being 3.2 MeV and 2.1 MeV for AV6P+UIX and
AV18+UIX, respectively. The AFDMC and BHF EOS
obtained with the AV18+UIX interaction are remarkably
similar to APR1 up to ρ0, thereby corroborating its accu-
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a2/3 a1 a2
AV6P+UIX 27.2 ± 0.4 −19.1 ± 0.8 11.80 ± 0.04
AV18+UIX 30.5 ± 1.1 −25.7 ± 2.4 13.24 ± 0.23

TABLE III. Best-fit parameters from Eq. (41) for the AFDMC
energy per particle obtained from the AV6P+UIX and
AV18+UIX Hamiltonians.

racy, but become stiffer at higher densities. This behav-
ior is consistent with a recent Bayesian analysis of the of
masses, radii, and tidal deformabalities measured by the
NICER satellite and the LIGO/Virgo collaboration that
favors a stiffer EOS than APR2 [101]. However, before
definitive conclusions can be drawn, relativistic correc-
tions must be included in both AFDMC and BHF cal-
culations. The latter can be fully included in the FHNC
and BHF methods, while their treatment in the AFDMC
requires applying the first-order perturbation approxima-
tions discussed in Eq. (37) for the difference ∆v = v18−v′8

It has also to be noted that cluster variational Monte
Carlo calculations indicate that the AV18+UIX Hamilto-
nian underbinds 16O and 40Ca nuclei [102]. A less repul-
sive version of the UIX force is therefore required to re-
produce the ground-state energies of these nuclei, which
will likely soften the EOS of PNM.

The differences between the AV6P+UIX and
AV18+UIX EOS are much smaller that when the
two-body forces alone are included [46, 50]. This
behavior may be ascribed to the phenomenological re-
pulsive term of the UIX potential that prevents nucleons
from getting close to each other, thereby reducing the
relevance of accurately fitting high partial waves in
NN scattering. Hence, as argued by the Authors of
Refs. [103], the AV6P+UIX Hamiltonian can be safely
employed to make predictions of neutron-matter prop-
erties, including finite-temperature ones [104], avoiding
the technical complications associated with spin-orbit
and quadratic spin-orbit operators.

The curves in the plot correspond to a polynomial fit
for the density dependence of the energy per particle.
Its functional form contains a term proportional to the
kinetic energy of a free Fermi gas plus two contributions
that are inspired by a cluster expansion of the energy
expectation value, truncated at the three- body level

E(ρ)

A
= a2/3

(
ρ

ρ0

)2/3

+ a1

(
ρ

ρ0

)
+ a2

(
ρ

ρ0

)2

. (41)

The fit parameters that best reproduce the AFDMC cal-
culations are listed in Table III with their estimated er-
rors. The covariance matrix of the fit has also been com-
puted and it is available upon request.

B. Chiral-EFT Hamiltonians

The first generation of Norfolk NN plus 3N Hamilto-
nians, fitted on the trinucleon ground-state energies and
nd doublet scattering length, are characterized by rela-
tively large and negative values of cE , listed in Table I.
When used as inputs in the AFDMC, all the NV2+3-Ia/b
and NV2+3-IIa/b Hamiltonians yield to the “collapse” of
PNM, whose energy per particles became large — of the
order of several GeV per particle — and negative already
at saturation density. Thanks to the flexibility of our
variational ansatz, based on cubic-spline correlations, the
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FIG. 2. Single snapshot of a Metropolis random walk for
VMC calculations. The variational wave functions are opti-
mized with the NV2-Ia two-body force alone (upper panel)
and including the three-body force NV2+3-Ia (lower panel)
which leads to the formation of neutron droplets.
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collapse is clearly visible already at the variational level.
On the other hand, using correlation functions deter-
mined minimizing the two-body cluster contribution to
the energy per particle, as done in our previous work [46],
prevents the collapse from happening at the VMC level.
In this latter case, PNM becomes deeply bound already
after a few time steps in the imaginary-time diffusion.

The collapse is associated with the formation of
“droplets” of closely packed neutrons, ultimately caused
by the attractive nature of the cE term in the 3N force.
Its strength grows with the third power of the number
of particles in a droplet, and overcomes the repulsive
kinetic-energy contribution. To better illustrate this be-
havior, in Fig. 2 we display the positions of 66 neutrons
with PBC obtained from a single Metropolis step of a
variational Monte Carlo calculation for model NV2+3-
Ia. In the upper panel, the 3N force is turned off and the
neutrons are distributed uniformly in the box. When the
3N is included in the Hamiltonian, the variational wave
function changes dramatically, making the neutrons form
closely-packed droplets. Note that the average density of
the system is unchanged, as the droplets move across the
box — and in fact they can enter nearby boxes so that
periodicity is enforced.

Requiring the energy per particle of PNM to be posi-
tive at ρ = ρ0 yields lower bounds on cE . We find that
these limits are fairly insensitive to the value of cD —
whose impact in PNM is modest — and, more surpris-
ingly, to the specific NN interaction of choice. In fact,
taking cE & −0.1 is sufficient to avoid the collapse, for all
the NV2+3-Ia/b and NV2+3-IIa/b models. These limits
are conservative for primarily two reasons. First, we have
obtained them by simulating 66 neutrons with PBC. At
fixed density, the expectation value of the 3N force grows
a factor ∼ N faster than the NN potential and a factor
∼ N2 faster than the kinetic energy, where N is the num-
ber of neutrons in the box. Hence, putting more neutrons
in the box will likely increase the relative importance of
the 3N interaction, bringing the lower limits on cE closer
to zero — see Ref. [105] for a mathematical discussion on
this point. Second, here we are only imposing positive
energies per particle, neglecting constraints coming from
astrophysical observations, such as the maximum mass
of the star or its tidal deformability, which will probably
require stiffer EOS, and hence more stringent limits on
cE .

The FHNC/SOC calculations for NV2+3-Ia/b and -
IIa/b also find these models are generally not suitable
for neutron star EOS. Finite energies are found at each
density, but models Ia and IIa, with their large negative
cE terms, have energy maxima near saturation density ρ0

and become less repulsive or even bound at higher densi-
ties, indicative of collapse. Energies for models Ib and IIb
continue to increase slowly up to 2ρ0, but NV2+3-Ib is al-
ready less repulsive than NV2-Ib alone. Model IIb shows
the greatest stability, consistent with having the least
negative cE term, but the energy appears to be near a
maximum at 2ρ0. As mentioned above, the FHNC/SOC

energies for these models show relatively little sensitivity
to the variational βt parameter, i.e., no evidence for a
neutral pion condensate.
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FIG. 3. Pure neutron-matter EOS as obtained from the
NV2+3-1a∗ (upper panel) and NV2+3-1b∗ (middle panel),
and NV2+3-2b∗ Hamiltonians.

The NV2+3-Ia*/b* and NV2+3-IIa*/b* Hamiltonians
are characterized by smaller values of cE than NV2+3-
Ia/b and NV2+3-IIa/b. As a consequence, among the
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a2/3 a1 a2
NV2+3-Ia* 24.23 ± 0.44 −15.09 ± 0.99 6.02 ± 0.13
NV2+3-Ib* 26.17 ± 0.18 −18.71 ± 0.40 10.85 ± 0.05
NV2+3-IIb* 24.35 ± 0.46 −15.11 ± 0.90 6.49 ± 0.06

TABLE IV. Best-fit parameters from Eq. (41) for the AFDMC
energy per particle obtained from the NV2+3-Ia*/b* and
NV2+3-IIb* Hamiltonians.

models fitted to also reproduce tritium β decay, only
NV2+3-IIa* causes PNM to collapse at ρ = ρ0. In the
latter case however, the uncertainty in cE , found by prop-
agating the experimental error of β decay rate, is about
0.1. Therefore, it may be possible to find a value for
cE for this model that does not yield collapsing PNM
while still providing a β-decay rate compatible with the
experimental value, at least within three-sigma.

The EOS obtained with the Norfolk models that
do not make neutron matter collapse using the BHF,
FHNC/SOC, and the AFDMC methods are displayed
in Fig. 3. The solid curves correspond to the poly-
nomial fit of Eq. (41), whose best parameters for the
AFDMC method are listed in Table IV. Similarly to
the AV6P+UIX and AV18+UIX cases, the BHF and
AFDMC energies are remarkably close up to twice sat-
uration density — the maximum difference remaining
within 2.7 MeV per particle. On the other hand, the EOS
computed within the FHNC/SOC method are softer, es-
pecially in the high-density region. It is however remark-
able that the three many-body methods differ at most by
1.9 MeV per particle for ρ ≤ ρ0. Extending the compar-
ison to the high-density region, the discrepancies among
the many-body methods remain below 5.9 MeV per par-
ticle, and hence significantly smaller than the 16.2 MeV
difference between the AFDMC results obtained with the
NV2+3-Ia* and NV2+3-Ib* Hamitlonians at ρ = 2ρ0.
Hence, the theoretical uncertainty associated with mod-
eling nuclear dynamics is more relevant than the one
pertaining to the many-body methods — even exclud-
ing from this comparison the Hamiltonians that yield a
deeply-bound EOS of PNM.

V. CONCLUSIONS

Using as input the phenomenological AV6P+UIX and
AV18+UIX Hamiltonians, we observe an excellent agree-
ment between the AFDMC, BHF, and FHNC/SOC
many-body approaches up to saturation density, while in
the region ρ > ρ0 the FHNC/SOC yields softer EOS than
the other two methods, consistent with our NN poten-
tial results [46]. Our updated version of the FHNC/SOC
method, which includes classes of elementary diagrams
that were previously neglected, is in excellent agreement
with the APR1 EOS. However, our AFDMC and BHF

results indicate that the AV18+UIX Hamiltonian pro-
duces an EOS which is even stiffer than APR1. Finally,
we observe that the repulsive component of the UIX
potential seems to reduce the importance of high par-
tial waves in the NN scattering. As a consequence, the
EOS obtained with the full AV6P+UIX and AV18+UIX
Hamiltonians are much closer to each other than those
obtained with then NN force alone, independent of the
many-body method of choice. This behavior suggests the
utility of using the AV6P+UIX Hamiltonian for study-
ing PNM properties, including finite-temperature ones,
without the technical complications that spin-orbit and
quadratic spin-orbit operators involve.

The AFDMC calculations indicate that the first gener-
ation of Norfolk potentials yields deeply bound PNM al-
ready at saturation density. This behavior, which is even
more extreme than already found in Refs. [33, 35, 36], is
driven by the attractive nature of the cE component of
the 3N force, when the operator τij is chosen among
the Fierz-equivalent ones. This term provides a non-
negligible contribution to the energy per particle of PNM
when regulators that are local in coordinate space are
used, and only vanishes in the infinite regulator limit.
The flexibility of the AFDMC trial wave function intro-
duced in this work makes it possible to observe the col-
lapse of PNM already at the variational level. On the
other hand, the BHF and the FHNC/SOC methods do
not provide such stringent indications of a collapse. The
former relies on a density dependent formulation of the
3N potential, similar to the normal ordering approxima-
tion used in other many-body methods [48, 106]. The
latter instead is based on correlation functions that are
largely determined minimizing the two-body cluster con-
tribution to the energy per particle. These approxima-
tions are reliable only when the 3N force is much weaker
than the NN one. However, this is not the case for the at-
tractive cE contribution, as it induces significant changes
in the ground-state wave function, leading to the forma-
tion of closely packed droplets of neutrons.

Our analysis reiterates the limitations of fitting the
LECs of the 3N force to reproduce highly-correlated ob-
servables. However, since the NV2+3-Ia model accu-
rately reproduces many ground- and excited state prop-
erties of light nuclei [39], there are no reason to expect
dramatically different values of cD and cE if these latter
quantities were included in the fit. Analogously to the
AV18+IL7 Hamiltonian, an accurate description of light-
nuclear spectra does not automatically translate into re-
liable predictions for the EOS of PNM. The reason be-
hind this common behavior is likely that A ≤ 12 nuclei
are either almost isospin-symmetric or too light to con-
strain the behavior of cE in dense neutron matter. The
above problems are mitigated by determining cD and cE
to simultaneously reproduce the tri-nucleon binding en-
ergies and β decay rates. Once again our three many-
body methods of choice, and in particular the AFDMC
and BHF, provide similar EOS of PNM for the NV2+3-
Ia*/b* and NV2+3-IIb* models up to twice saturation
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density — the FHNC/SOC results are softer, consistent
with what found using phenomenological Hamiltonians.
However, as shown by AFDMC calculations with the for
NV2+3-IIa* interactions, the problem of deeply bound
PNM is not fully solved by including the β decay in the
fit.

The benchmark calculations between the BHF,
FHNC/SOC, and AFDMC methods indicate that the
main source of theoretical uncertainty in the EOS of
PNM comes from modeling nuclear dynamics rather than
the many-body method used to solve the Schrödinger
equation. The highly-realistic Hamiltonian AV18+UIX
provides an EOS that satisfies astrophysical constraints,
but it underbinds light- and medium-mass nuclei [102].
In addition, being phenomenological, it does not come
with a clear-cut way to estimate its theoretical uncer-
tainty. On the other hand, the Norfolk local potentials
derived within χEFT provide an accurate description
of light-nuclei spectra, but their PNM predictions suf-
fer from significant regulator artifacts, hampering their
predictive power. To remedy this shortcoming, as in
Ref. [35], other choices than τij for the cE term should
be considered, such as the identity operator and the pro-
jector on triplets with S = 1/2 and T = 1/2 — the only
ones contributing in the infinite-regulator limit. In addi-
tion, as argued in the illuminating Ref. [107], including
subleading terms in the chiral expansion should reduce
these regulator artifacts.

AFDMC calculations of oxygen isotopes will help shed
some light on this problem, since their binding ener-
gies and radii should be more sensitive to the details of
the three-nucleon interaction, including its isospin depen-
dence, than lighter systems [108, 109]. Complementary
finite systems that are ideally suited to test the behavior
of three-neutron interactions are the ones comprised of
neutrons confined by an external potential, or “neutron
drops” [25, 110–114]. Based on the findings of the present
work, once enough neutrons are added to the system so
that the 3N force becomes dominant, it is plausible that
the attractive cE contribution makes neutron drops self
bound, even with no external confining potential. Since
no such systems are observed in nature, this fact would
impose additional constraints on the 3N interaction.

Before comparisons with astrophysical observations
can be made, relativistic boost corrections, which are
known to soften the EOS in the high-density regime,
must be included in our calculations. The phe-

nomenological 2+3-body AV18+UIX and relativistic
AV18+δv+UIX∗ interactions in Table VII of Ref. [9] are
close to each other up to 2ρ0, and well-separated from the
2-body AV18 or AV18+δv interactions alone. The dif-
ference between AV18+UIX and AV18+δ v+UIX∗ gets
much larger at higher density where the contribution of
the 3N potential grows as ρ2 but the relativistic δv cor-
rection grows only as ρ5/3. The somewhat reduced stiff-
ness of the relativistically-corrected EOS helps prevent
superluminal sound speeds at high density, which the
earlier work of Ref. [115] suffered from. This kind of
relativistic correction along with using beta-stable mat-
ter are needed to produce realistic neutron-star models.
With a few exceptions (e.g., Ref. [10]), chiral-EFT inter-
actions have not been used beyond 2ρ0 because of con-
cerns about convergence of the chiral expansion and, in
the specific case of the Norfolk potentials, because of sig-
nificant regulator artifacts. Once the latter are resolved
— for example by using choices different from τij in the
cE term — we will include relativistic-boost corrections
our methods.
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[53] R. Navarro Pérez, J. E. Amaro, and E. Ruiz Ar-
riola, Phys. Rev. C88, 064002 (2013), [Erratum: Phys.
Rev.C91,no.2,029901(2015)], arXiv:1310.2536 [nucl-th].
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