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The temperature dependence of stellar electron-capture (EC) rates is investigated, with a focus15

on nuclei around N = 50, just above Z = 28, which play an important role during the collapse16

phase of core-collapse supernovae (CCSN). Two new microscopic calculations of stellar EC rates are17

obtained from a relativistic and a non-relativistic finite-temperature quasiparticle random-phase ap-18

proximation approaches, for a conventional grid of temperatures and densities. In both approaches,19

EC rates due to Gamow-Teller transitions are included. In the relativistic calculation contributions20

from first-forbidden transitions are also included, and add strongly to the EC rates. The new EC21

rates are compared with large-scale shell model calculations for the specific case of 86Kr, providing22

insight into the finite-temperature effects on the EC rates. At relevant thermodynamic conditions for23

core-collapse, the discrepancies between the different calculations of this work are within about one24

order of magnitude. Numerical simulations of CCSN are performed with the spherically-symmetric25

GR1D simulation code to quantify the impact of such differences on the dynamics of the collapse.26

These simulations also include EC rates based on two parametrized approximations. A comparison27

of the neutrino luminosities and enclosed mass at core bounce shows that differences between sim-28

ulations with different sets of EC rates are relatively small (≈ 5%), suggesting that the EC rates29

used as inputs for these simulations have become well constrained.30

I. INTRODUCTION31

Electron-capture (EC) rates play a key role in vari-32

ous astrophysical phenomena, such as the final evolu-33

tion of intermediate-mass stars [1, 2], core-collapse super-34

novae (CCSN) [3–6], thermal evolution of the neutron-35

star crust [7, 8], and nucleosynthesis in thermonuclear36

supernovae [9, 10]. For a recent review work the reader37

may refer to Ref. [11]. CCSN are particularly impacted38

by the rate of electron captures prior and during the col-39

lapse phase as it defines the electron fraction (Ye), which40

drives the collapse dynamics and sets the diameter of the41

core at bounce [5, 6]. Indeed, at the onset of the collapse,42

the combination of a high stellar temperature (T ∼1043

GK), high density (ρ ∼1010g.cm−3), and low entropy44

(s ∼1kB) leads to a nuclear statistical equilibrium [12]45

in the core. While the core density increases, the elec-46

tron captures on nuclei and free protons reduce Ye and47

produce electron-type neutrinos, which escape the core48

freely while carrying away energy and entropy. Conse-49

quently, Ye further decreases and the collapse accelerates.50

The electron-capture reactions on nuclei dominate be-51

cause the mass fraction of free nucleons is small compared52

to that of nuclei [13]. Previous studies [5, 6] have shown53

that the nuclei having the largest impact on the evolution54

of Ye, and therefore on the production of electron neu-55

trinos, are located along the N = 50 shell closure near56

78Ni and along N = 82 near 128Pd. At ρ &10−12 g.cm−3,57

the electron-neutrino diffusion timescale becomes longer58

than the dynamical timescale of the collapse, the elec-59

tron neutrinos become trapped, and a β-equilibrium es-60

tablishes [12, 14]. The core continues its collapse up to61

ρ & nsat ≈ 2.81 · 1014 g.cm−3. At the interface where62

the in-fall velocity is equal to the speed of sound in the63

medium a shock wave forms and propagates outwards.64

The mass of the inner core, approximately the Chan-65

drasekhar mass, is proportional to Ye
2 [12, 14].66

During the collapse, the nuclei are in thermal equilib-67

rium and undergo continuum EC. As the stellar density68

is high, the Fermi energy is also high, and ECs can occur69

to states in the daughter at relatively high excitation en-70

ergy. In addition, because the temperature is also high,71

excited states in the parent are populated and ECs can72

occur on these states [15]. The EC rates are mediated by73

Gamow-Teller transitions and forbidden transitions [16–74

18]. The stellar conditions cannot be reproduced in the75

laboratory and to estimate the rates at extreme thermo-76

dynamic conditions one has to rely on theoretical mod-77

els. The theoretical models must be benchmarked with78
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experimental data where available, i.e. primarily from79

the ground state of the parent nucleus. While EC/β+-80

decay data provide benchmarks, the accessible Q-value81

window is very limited, especially on the neutron-rich82

side of stability, which contains the nuclei of most inter-83

est in the collapse phase of supernovae. Therefore, GT84

strengths extracted from (n,p)-type charge-exchange ex-85

periments [11] at intermediate energies, such as (n,p) [19–86

22], (d,2He) [23–25], and (t,3He) [26–28] reactions, have87

become the most important tool for testing theoretical88

models.89

Fuller, Fowler, and Newman [29] (FFN) were the first90

to perform calculations for a wide grid of stellar condi-91

tions and for an ensemble of nuclei near stability with92

mass number 21< A <60. The first FFN formulation93

was based on strict assumptions where a single resonance94

contains the total GT strength. The energy of this res-95

onance was determined phenomenologically and the to-96

tal strength was calculated with a single-particle model.97

Since then, many β-decay and charge-exchange experi-98

ments were performed, see e.g. Ref. [11] and references99

therein, and have motivated the development of more ac-100

curate models.101

Two methods arise for computing EC rates at finite102

temperature. One can determine the rates from each103

of the initial states in the parent nucleus and compute104

the Boltzmann-weighted sum of these rates. The other105

method consists of computing directly temperature-106

dependent strength functions. The first approach is re-107

lated to large scale shell model (LSSM) calculations [13,108

30–34] and the second is related to random-phase ap-109

proximation (RPA) [35, 36], (relativistic) quasi-particle110

random phase approximation (QRPA) [18, 37, 38] or111

relativistic time blocking approximation (RTBA) [17]112

calculations. Alternatively, one can use hybrid ap-113

proaches [16, 39, 40], in which the partial shell oc-114

cupation numbers at finite temperature are calculated115

within shell-model Monte-Carlo (SMMC) or Fermi-Dirac116

parametrizations. Subsequently, these partial occupation117

numbers are then used as inputs for RPA or QRPA cal-118

culations.119

In addition, an analytic approximation of the electron-120

capture rate as a function of the Q-value was proposed121

in [41]. The first parametrized version of this approxi-122

mation [42] was fitted to rates on pf-shell nuclei obtained123

with a hybrid SMMC-RPA approach. Then, for improv-124

ing the reliability of the extrapolation beyond pf-shell125

nuclei and far from stability, the parametrization was ex-126

tended [43] to take into account the effect of the high127

electron density, temperature, and isospin ratio.128

So far, no EC rate tables from finite-temperature mi-129

croscopic calculations cover the region of interest for the130

collapse phase of CCSN, along N=50 near 78Ni, here131

referred to as the diamond region. The first extensive132

calculations in this region were performed with a hybrid133

model [30], but only for a subset of the nuclei of inter-134

est, or with a QRPA model [44] for all nuclei in the135

diamond region but without considering temperature-136

dependent effects. Recently, few finite-temperature cal-137

culations [16, 17] were performed on selected nuclei in138

the region of interest. These studies show the impor-139

tance of including higher-order correlations and thermal140

excitations for explaining the unblocking of the GT+141

strength in the nuclei near N = 50, as well as the sig-142

nificant contribution of forbidden transitions to the total143

electron-capture rate for some N = 50 nuclei. Further-144

more, application of the relativistic FT-QRPA in Ref.145

[18] has demonstrated the importance of including pair-146

ing correlations for temperatures below the critical tem-147

perature of pairing collapse, as well as the sensitivity of148

EC rates to the strength of the isoscalar pairing in the149

residual interaction. In this work, we will present new150

finite-temperature EC rates, available in FFN grid for-151

mat, from two state-of-art finite temperature QRPA cal-152

culations covering the whole diamond region (71 nuclei).153

In order to have a better insight on those results, we will154

discuss the effect of the detailed nuclear structure on the155

electron capture rate, using a new shell model calcula-156

tion for 86Kr. The new results presented here will help157

quantifying the impact of the thermally induced weak-158

transitions, GT+ but also first-forbidden transitions, on159

the dynamics of the CCSN.160

This paper is structured as follows. In Sec. II, the for-161

malism used to make new finite-temperature EC rates162

libraries from two non-relativistic and relativistic finite-163

temperature QRPA models, are presented. The two mod-164

els are presented in the following sections III and IV,165

respectively. In Sec. V we give details about the electron-166

capture rates results based on large-scale shell model cal-167

culations. Then, in Sec. VI, we compare the temperature168

dependent electron-capture rates computed from the dif-169

ferent formalisms introduced previously. Afterwards, in170

Sec. VII the outcomes of CCSN simulations based on the171

new finite-temperature EC rates libraries are compared.172

Finally, the main conclusions of this work are outlined in173

Sec. VIII.174

II. ELECTRON-CAPTURE RATES175

CALCULATED FROM QRPA STRENGTH176

FUNCTIONS177

In a highly-dense and hot pre-supernova environment178

atoms are fully ionized, leaving free nuclei immersed in an179

electron plasma described by a Fermi-Dirac distribution180

of electrons. In order to derive EC rates within such181

an environment we follow the formalism developed by182

Walecka et al. in Refs. [45–47]. Fermi’s golden rule183

relates the electron-nucleus differential cross section to a184

transition matrix element through185

dσ

dΩ
=

1

(2π)2
V 2E2

ν

1

2

∑
lept.spin.

1

2Ji + 1

∑
MiMf

|〈F |ĤW |I〉|2,

(1)186

where V is the normalization volume, Eν is the (mass-187

less) neutrino energy, |I〉 denotes the initial state of the188
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nucleus-electron system, and |F 〉 is the final state (which189

includes the daughter nucleus and emitted neutrino).190

The nuclear state has angular momentum Ji and projec-191

tion Mi before decay and respectively Jf and Mf after192

decay. We assume the current-current form of the weak193

interaction Hamiltonian194

ĤW = − G√
2

∫
d3rjlept.µ (r)Ĵ µ(r), (2)195

where G is the Fermi constant, jlept.µ (r) is the lepton196

current and Ĵ µ(r) is the hadron current. Coordinate-197

space vectors are denoted by boldface symbols. Perform-198

ing the multipole expansion of 〈F | ĤW |I〉 and inserting199

the result into Fermi’s golden rule, while performing the200

sums over lepton spins we obtain the final expression for201

EC cross sections which can be found in Refs. [45–47].202

It contains the nuclear matrix elements of charge M̂J ,203

longitudinal L̂J , transverse electric T̂ el.J and transverse204

magnetic T̂ mag.J multipole operators. These can be read-205

ily evaluated within the FT-QRPA.206

While Section IV discusses the relativistic treatment of207

EC rates including first-forbidden contributions, to sim-208

plify further discussion we present EC rate expressions209

assuming allowed Gamow-Teller transitions in the low210

momentum-transfer approximation. This approach is211

taken in Section III, and corresponds to a non-relativistic212

reduction of expressions by Walecka et al. [45–47]. How-213

ever, differences between the two approaches are small for214

electrons with energies of up to 40 MeV as exemplified215

in Ref. [48]. In this limit the weak interaction reduces216

to the Gamow-Teller operator ~στ̂±, and we compute the217

total contribution to the stellar EC decay rates by av-218

eraging over initial states and summing over final states219

the phase space weighted transition strength,220

λ =
ln 2

κ

1

Z

∑
i,f

e−βEi |〈f |~στ̂+ |i〉|2f(W
(i,f)
0 ) . (3)221

Here κ = 6147 s, Z =
∑
i

(2Ji + 1)e−βEi is the partition222

function, and |i(f)〉 are the initial (final) nuclear states.223

The phase space factor is dimensionless, defined in terms224

of the electron mass,225

f(W
(i,f)
0 ) =

∫ ∞
W

(i,f)
th

pW (W
(i,f)
0 +W )2

× F0(Z,W )L0fe(W ) dW ,

(4)226

where W = Ee/(mec
2) is the total electron energy,227

p =
√
W 2 − 1 is the electron momentum, and fe(W ) is228

the electron occupation factor in a Fermi gas,229

fe(W ) =

[
1 + exp

(
W − µ/(mec

2)

kbT

)]−1

. (5)230

The neutrino momentum is pν = W
(i,f)
0 +W . It depends231

on the maximum positron energy for a β+ decay from232

parent state i to daughter state f ,233

W
(i,f)
0 = (MNi −MNf

+ E∗i − E∗f )/(mec
2)

= 1 + (Qβ+ + E∗i − E∗f )/(mec
2) ,

(6)234

where Qβ+ is the β+ Q-value, MNi (MNf
) is the initial235

(final) nuclear mass, and E∗i (E∗f ) is the excitation energy236

of the parent (daughter). The condition that pν > 0237

defines a threshold energy for the captured electron,238

W
(i,f)
th =

{
1 W

(i,f)
0 ≥ −1

|W (i,f)
0 | W

(i,f)
0 < −1

. (7)239

The remaining quantities needed in Eq. (4) are the240

electron chemical potential µ (which includes the elec-241

tron rest mass), and the Fermi function F0(Z,W ) and242

Coulomb function L0 [49].243

To connect with the FT-QRPA, we use the Q-value244

approximation of Ref. [50] for Qβ+ to express W
(i,f)
0 as245

a function of the QRPA energy,246

W i,f
0 = W k

0 ≈ −1 + (λp − λn −∆Mn−H − Ωk)/(mec
2) .
(8)247

∆Mn−H is the neutron-hydrogen mass difference, and248

λn (λp) is the neutron (proton) Fermi energy. At a given249

energy, the FT-QRPA strength function S̃F (ω) approxi-250

mates the ensemble averaged strength for all transitions251

with energy difference Ef − Ei ≈ Ωk [51], i.e.,252

Res

[
S̃F (ω)

1− e−βω
, Ωk

]

≈ 1

Z

∑
i,f

e−βEi |〈f |~στ̂+ |i〉|2 ∀ Ef − Ei ≈ Ωk .

(9)253

The rate can therefore be expressed as a single sum over254

QRPA energies,255

λ =
ln 2

κ

∑
k

Res

[
S̃F (ω)

1− e−βω
, Ωk

]
f(W k

0 ) . (10)256

While the range of relevant energies is in princi-257

ple from −∞ to +∞ — the lower bound to account258

for de-excitations with infinitely large Q-values (cf Sec-259

tion III B), and the upper bound to account for capture260

of infinitely energetic electrons in the Fermi gas — the261

phase space function dies off rapidly for larger energies262

and the exponential prefactor in Eq. (16) rapidly dies to263

zero at negative energies. Thus, in practice a finite en-264

ergy range can be chosen for a given temperature and265

chemical potential µ.266

III. NON-RELATIVISTIC SKYRME FT-QRPA267

CALCULATION268

A. Computational method269

In this section we discuss the details of the non-270

relativistic, axially-deformed Skyrme FT-QRPA calcula-271
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tion with the charge-changing finite amplitude method272

(FAM) [49]. We use the SKO’ Skyrme functional opti-273

mized for the global calculations in Refs. [52, 53]. This274

functional was fit with an effective axial vector coupling275

of gA = 1.0, and was also used for the electron cap-276

ture calculations in Ref. [44]. In that work, the FAM277

was used to compute Gamow-Teller strength functions278

at zero temperature with an artificial Lorentzian width279

of 0.25 MeV. Odd nuclei were treated in the equal filling280

approximation (EFA) [52, 54, 55]. These strength func-281

tions were weighted with the temperature- and density-282

dependent phase space function, Eq. (4), to estimate stel-283

lar electron capture rates. Here, we extend the work of284

Ref. [44] by accounting for the temperature dependence285

of the Gamow-Teller strength with the FT-QRPA.286

We make several adjustments to the calculations per-287

formed in Ref. [44] to accommodate finite temperature.288

Odd nuclei in the present work are treated by constrain-289

ing the finite-temperature Hartree-Fock-Bogoliubov (FT-290

HFB) [56] ensembles to have the desired odd particle291

number on average. We cannot use the equal filling ap-292

proximation because it is based on a statistical ensemble293

formalism, and there is currently no method to treat the294

EFA ensemble simultaneously with the finite tempera-295

ture ensemble. Additionally, rather than using strength296

functions with an artificial Lorentzian width, we compute297

EC rates using the complex contour integration method298

described in Ref. [49]. Although we do not gain any299

information about the strength distribution using this300

method, it is significantly less computationally expensive.301

Moreover, the contour integration method eliminates the302

artificial width from the calculations completely, provid-303

ing rates that are comparable to those computed with304

the matrix form of the FT-QRPA.305

B. The finite amplitude method306

An extension of the FAM to statistical ensembles was307

discussed in Refs. [52, 57] in the context of the EFA. Here308

we present a similar discussion for the finite-temperature309

ensemble. The FT-QRPA is equivalent to the free lin-310

ear response of a finite-temperature HFB ensemble. The311

corresponding linear response equations were derived in312

Ref. [58] and can be written as313

[
S̃ − ωM

]
δR̃(ω) = −TF(ω)

S̃ ≡ TH+ E , δR̃ ≡ TδR .
(11)314

In the notation of Ref. [58], we have defined matrices315

in an extended 4 × 4 supermatrix space and in a two-316

quasiparticle basis,317

Tαβ,γδ = diag[f−βα, (1− f
+
αβ), (1− f+

αβ), f−βα]δγδ

Eαβ,γδ = diag[E−αβ , E
+
αβ , E

+
αβ , E

−
αβ ]δγδ

Mαβ,γδ = diag[ 1, 1,−1,−1]δαβ,γδ

Hαβ,γδ =
∂Hαβ

∂Rγδ
.

(12)318

Matrix elements of T and E depend on the quasiparti-319

cle occupations fk = [1 + exp (Ek/kBT )]
−1
, and ener-320

gies Ek for two quasiparticles, and our shorthand nota-321

tion means, e.g., E±αβ ≡ Eβ ± Eα. The matrix H rep-322

resents the residual interaction, where expressions for its323

sub-matrices are given in Appendix B of Ref. [58]. Fi-324

nally, the vectors in Eq. (11) are the density response,325

δRαβ(ω) = (Pαβ , Xαβ , Yαβ , Qαβ), and the external field,326

Fαβ(ω) = (F 11
αβ , F

20
αβ , F

02
αβ , F

1̄1
αβ).327

The FAM avoids the expensive construction of the328

residual interaction matrix by computing the perturba-329

tion of the Hamiltonian directly with a finite difference,330

δH̃(ω) = (δH̃11, δH̃20, δH̃02, δH̃ 1̄1)

=
∂H

∂R

∣∣∣∣∣
R=R̃0

δR̃(ω)

= lim
η→0

1

η

[
H[R̃0 + ηδR̃(ω)]−H[R̃0]

]
,

(13)331

where R̃0 is the FT-HFB solution for the generalized den-332

sity. Equation (11) can then be rearranged to give the333

FT-FAM equations,334

[E − ωM ] δR̃(ω) = T
[
δH̃(ω) + F(ω)

]
. (14)335

In the charge-changing case, for Skyrme functionals with-336

out proton-neutron mixing we can directly evaluate the337

Hamiltonian perturbation with the perturbed density,338

i.e., δH̃ = H[δR̃]. Once we have solved the FAM equa-339

tions, the strength function can be computed from the340

density response with,341

S̃F (ω) = F†δR̃(ω)

=
∑
k±>0

[∣∣〈[Γk, F̂ ]〉∣∣2
ω − Ωk

−
∣∣〈[Γk, F̂ †]〉∣∣2
ω + Ωk

]
,

(15)342

where the sum is over FT-QRPA modes with positive343

norm, while Γk† is the FT-QRPA phonon creation opera-344

tor defined in Ref. [58]. To avoid the poles in the strength345

function, the FAM computes it at complex energies,346

ωγ = ω + iγ, which smears the poles with Lorentzians347

of half-width γ.348

As demonstrated in Ref. [51], the residues of Eq. (15)349

contain interfering contributions of strength for the re-350

verse process governed by F̂ † and the forward process,351

F̂ . In the zero-temperature case strength due to forward352

and reverse processes is well separated, but at finite tem-353

peratures the occurrence of de-excitations at ω < 0, in354
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addition to the usual excitations at ω > 0, causes them355

to interfere. The exponential prefactor 1/(1− exp−βω) is356

required to eliminate contributions from the reverse pro-357

cess, leaving the physical strength distribution for the358

forward process only,359

dB

dω
= − 1

π
Im

[
S̃F (ω)

1− e−βω

]
. (16)360

Unlike the zero-temperature case, Eq. (16) is defined for361

both positive and negative energies (but undefined at362

ω = 0 due to the pole from the exponential factor).363

C. Phase space integrals364

According to Eq. (10), the rate depends on two quanti-365

ties: the transition matrix elements and the phase space366

integrals. To fully take into account Coulomb effects, we367

compute the phase space integrals in Eq. (4) numerically.368

In contrast, the analytic integral used in Refs. [44, 59] re-369

quires a more approximate treatment of the Fermi func-370

tion.371

The Fermi-Dirac distribution fe(W ) causes the phase372

space integrand to change behavior around W = µ/mec
2.373

Below this energy, it behaves mostly like an increasing374

polynomial, while above µ/mec
2 it is mostly a decaying375

exponential. This suggests at least two quadratures are376

necessary to get an accurate result [60]. We therefore377

use Gauss-Legendre quadrature for energies below µ+ ε378

and Gauss-Laguerre for energies above this. ε is a small379

positive quantity that improves the quadrature’s perfor-380

mance at low temperatures where the exponential decay381

is very steep. We use a value of ε = 0.1 MeV and an382

80 point grid for both quadratures, which provides very383

reliable results.384

To carry out the integration, we also require the chem-385

ical potential, which is a function of the temperature and386

density. We compute the chemical potential “on the fly”387

by inverting the condition of charge-neutrality in the stel-388

lar medium [61],389

Yeρ =

√
2

π2NA

(
mec

2

~c

)3

β3/2
{[
F1/2(η, β′) + β′ F3/2(η, β′)

]
−
[
F1/2(−η − 2/β′, β′) + β′ F3/2(−η − 2/β′, β′)

]}
.

(17)390

Here η = µ/(kbT ), β′ = kbT/(mec
2), and Fk(η, β) is a391

generalized Fermi-Dirac integral that we compute using392

the method developed in Ref. [60].393

D. Contour integration394

As for the transition matrix elements, the FAM can395

compute them with Eqs. (15) and (16). The complex con-396

tour integration method converts the sum over residues397

in Eq. (10) to a complex contour integration,398

λ =
ln 2

κ

1

2πi

∮
C

dω
S̃F (ω)

1− e−βω
f(ω) , (18)399

where we take the contour C to be a circle centered on400

the real axis.401

As demonstrated in Ref. [51], treating finite-402

temperatures with this method introduces several nu-403

merical challenges. We use the same procedure as in404

that work to deal with the poles coming from the ex-405

ponential prefactor in Eq. (18). When we need to in-406

tegrate strength at positive and negative energies, so as407

to include contributions from both excitations and de-408

excitations as discussed in Section III B, we use two cir-409

cular contours that pass through ω = 0. Each contour410

picks up half the residue of the spurious pole at ω = 0411

coming from the prefactor. We therefore also perform412

a contour integration around just this pole to subtract413

its contribution. For low temperatures and large con-414

tours, poles from the prefactor along the imaginary axis415

get close to the edge of the contours and cause the in-416

tegrals to be inaccurate. In such cases, we deform the417

contours into ellipses to keep them sufficiently far away418

from the poles on the imaginary axis. For temperatures419

below 1.0 GK, we neglect the exponential prefactor and420

strength from de-excitations altogether.421

For stellar EC rates, several other numerical challenges422

arise. Just as in the zero-temperature case, the stellar EC423

phase space function (Eq. (4)) is not complex analytic424

and must be approximated by a function that we can425

evaluate in the complex plane [49]. However, the phase426

space integrals exhibit two problematic features. First,427

similarly to their integrands, the f(ω) change behavior428

when the threshold energy equals the chemical potential,429

i.e., when W i,f
0 (ω) = −µ/(mec

2). Second, above this430

energy the exponential decay causes f(ω) to approach431

zero very rapidly. A function with these properties is432

not able to be approximated well by a simple analytic433

function, like a polynomial or rational function.434

To address the former issue, for a given tempera-435

ture and density, if the ω corresponding to W i,f
0 (ω) =436

−µ/(mec
2) lies inside the contour bounds, we split the437

contour in two at that energy. The contour at smaller438

QRPA energies uses a 6th-order polynomial fit[62] to the439

phase space integrals, while the one at higher energies440

uses an exponential fit. As for the latter issue, if the441

phase space integral falls below machine precision at an442

energy less than the upper bound of a contour, we shrink443

the contour to exclude energies above this value. This444

avoids poorly conditioned exponential fits, which can be445

extremely oscillatory in the complex plane.446

For the rates computed in this work, we considered447

QRPA energies from −30 MeV to +30 MeV. We use448

a minimum energy cutoff defined as the energy at which449

the exponential prefactor becomes smaller than 10−20 for450

T > 1.0 GK, or zero for T ≤ 1.0 GK. For a maximum451

energy cutoff, we use the energy at which the phase space452



6

FIG. 1. Schematic representations of (a) least and (b) most
computationally expensive contour integrations as discussed
in the main text. Poles on the real and imaginary axes are
black markers, with circles representing poles from the expo-
nential prefactor in Eq. (16) and crosses poles from the QRPA
strength function.

0 max

Im[ ]

Re[ ]

(a)

min 0 max

Im[ ]

Re[ ]

(b)

function becomes smaller than machine precision for the453

given µ. If either cutoff is less than the ±30 MeV bounds,454

we reduce the energy range accordingly.455

We compute the Gamow-Teller contribution to the456

rates for the 78 nuclei identified in Refs. [44, 63] to be im-457

portant for core-collapse supernovae on the temperature458

and density grid used in Ref. [29]. While the strength459

function and lower energy bound are the same for a460

given temperature, the µ and upper energy bound de-461

pend also on the density. Thus, for a given temperature462

and density, the number of contour integrations can range463

from one, if T ≤ 1.0 GK and the threshold energy for µ464

lies outside the range 0–30 MeV (Fig. 1(a)), to four, if465

T > 1.0 GK and the threshold energy for µ falls within466

the relevant energy range (Fig. 1(b)). Of course, many467

contours for a given strength function will be identical,468

with only the phase space changing. So, the computa-469

tional expense for a rate at a fixed temperature and for470

Nρ densities is less than 4Nρ× the cost of a zero tem-471

perature calculation, but can be much greater than 1×472

that cost. We use an 88 point Gauss-Legendre grid for all473

contours, with the region of dense points always closest474

to the imaginary axis to improve the numerical stability.475

IV. RELATIVISTIC FT-QRPA CALCULATION476

A. Ground and excited-state calculations477

Relativistic mean field theory (RMF) can be formu-478

lated based on relativistic nuclear energy density func-479

tionals (EDFs). A variety of different functionals exists480

e.g. meson-exchange, point-coupling, non-linear and oth-481

ers [64]. Within this work we employ the meson-exchange482

EDF with momentum-dependent self-energies D3C∗ [65].483

The nucleons are treated as point-particles which inter-484

act via the minimal set of mesons: isoscalar-scalar σ,485

isoscalar-vector ω and isovector-vector ρ-meson, as well486

as the electromagnetic (EM) field. Thus the total La-487

grangian density can be written as [66, 67]488

L = LN + Lm + Lint, (19)489

where LN denotes the free-nucleon Lagrangian490

LN = ψ̄(iΓµ∂
µ − Γm)ψ, (20)491

where m is the bare nucleon mass and ψ is the Dirac
field. Meson Lagrangian Lm contains free meson fields
together with the EM field

Lm =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − 1

4
ΩµνΩµν +

1

2
m2
ωωµω

µ

− 1

4
~Rµν · ~Rµν +

1

2
m2
ρ~ρµ · ~ρµ −

1

4
FµνF

µν ,

(21)

with meson masses mσ,mω,mρ and field tensors

Ωµν , ~Rµν and Fµν defined as

Ωµν = ∂µων − ∂νωµ,
~Rµν = ∂µ~ρν − ∂ν~ρµ,
Fµν = ∂µAν − ∂νAµ,

(22)

corresponding to ω-meson, ρ-meson and the EM field.492

Lastly, Lint is the interaction term493

Lint = −gσΓψ̄ψσ−gωψ̄Γµψωµ−gρψ̄~τΓµψ~ρµ−eψ̄ΓµψAµ,
(23)494

with couplings gσ, gω, gρ and e. In the above, arrows over
symbols denote vectors in the isospin space, ~τ being the
isospin Pauli matrix. Within standard meson-exchange
functionals Γµ and Γ reduce to usual Dirac matrices γµ

and the unit matrix. However, within derivative coupling
(DC) interactions, like D3C∗, they are defined by [66]

Γµ = γνgµν + γνYµν − gµνZν , (24)

Γ = 1 + γµuνY
µν − uµZµ, (25)

with definitions [66]495

Y µν =
ΓV
m4

m2
ωω

µων , Zµ =
ΓS
m2

ωµσ. (26)496

We note that ΓV and ΓS are additional couplings of DC497

models not present in usual meson-exchange functionals.498

Couplings gσ, gω, gρ are functions of vector density ρv =499 √
jµjµ defined by the vector-current density jµ = ψ̄γµψ500

with the general functional form [64, 68, 69]501

gi(ρv) = gi(ρ0)fi(x), i = (σ, ω, ρ), (27)502

where ρ0 is the saturation density of symmetric nuclear503

matter, x = ρv/ρ0 and fi(x) is the function defined in504

Refs. [68, 69]. This density dependence of couplings505

includes the so-called rearrangement terms in the equa-506

tion of motion containing derivatives of couplings gσ, gω507

and gρ with respect to the density ρv. For finite nuclei508

it is sufficient to consider stationary solutions, meaning509
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that only time-components of four vectors are consid-510

ered. Furthermore, due to charge conservation only third511

component of isospin vectors is non-vanishing. Finally,512

relativistic EDF is defined as513

ERMF =

∫
d3rH(r), (28)514

where H(r) is the Hamiltonian density. Within this515

work, ground-state calculations are performed based516

on the finite-temperature Hartree Bardeen-Cooper-517

Schrieffer (FT-HBCS) theory assuming spherical sym-518

metry [56]. Only isovector (T = 1, S = 0) component519

of the pairing interaction is included, meaning that no520

proton-neutron mixing is assumed in the ground-state521

calculation. The FT-HBCS equations are derived by the522

minimization of grand-canonical potential Ω with respect523

to the density as defined in Ref. [56]. Assuming nuclei524

within heat bath of temperature T with chemical po-525

tential λq (q denoting protons or neutrons) the grand-526

canonical potential is defined as527

Ω = ERMF − TS − λqNq, (29)528

where S is entropy and Nq the particle number (either529

proton or neutron). At finite-temperature occupation530

probability of particular single-particle state is531

nk = v2
k(1− fk) + u2

kfk, (30)532

where vk, uk are the BCS amplitudes and fk is the Fermi-533

Dirac factor defined in Sec. III B. The pairing gap ∆k is534

obtained self-consistently through the gap equation [56]535

∆k =
1

2

∑
k′>0

Gkk′
∆k′(1− 2fk′)

Ek′
, (31)536

where the monopole pairing force Gkk′ = Gδkk′ is as-537

sumed, while the quasiparticle (q.p.) energies are Ek =538 √
(εk − λq)2 + ∆2

k, εk being the single-particle energies.539

The isovector pairing constants G are determined by re-540

producing the pairing gaps obtained from five-point for-541

mula [70] for all nuclei considered within this work.542

For the calculation of excited states we employ543

the finite-temperature proton-neutron relativistic QRPA544

(FT-PNRQRPA) which represents a small amplitude545

limit [cf. Eq. (14)] of a more general time-dependent546

Hartree-Fock equation. For the particle-hole (ph) part of547

the residual interaction only ρ-meson and π-meson terms548

are present, whereas the π-meson direct term vanishes549

at the ground-state level due to parity conservation. To550

account for the contact part of the nucleon-nucleon in-551

teraction, additional zero-range Landau-Migdal term is552

included of the form [71]553

Vδπ = g′
(
fπ
mπ

)2

~τ1~τ2Σ1 ·Σ2δ(r1 − r2), (32)554

where standard values are used for the pion-nucleon555

couplings f2
π/(4π) = 0.08, mπ = 138.0 MeV, and556

Σ =

(
σ 0
0 σ

)
, σ being the Pauli matrix. The param-557

eter g′ = 0.76 is adjusted to reproduce the experimental558

excitation energy of Gamow-Teller resonance (GTR) in559

208Pb [72]. We have also verified that such value of g′560

is consistent with the more recently established exper-561

imental GTR centroid energy in 132Sn [73], as well as562

48Ca [74] within the experimental uncertainty. For the563

particle-particle (pp) part of the residual interaction both564

isovector (T = 1, S = 0) and isoscalar (T = 0, S = 1)565

terms contribute. For the isovector pairing we employ566

the pairing part of the Gogny D1S interaction [75], while567

the isoscalar pairing is formulated as a combination of568

short-range repulsive Gaussian with a weaker long-range569

attractive Gaussian [71]570

V12 = V is0

2∑
j=1

gje
−r212/µ

2
j

∏
S=1,T=0

, (33)571

where
∏

S=1,T=0

denotes the projector on T = 0, S = 1572

states. For the ranges we use µ1 = 1.2 fm, µ2 = 0.7 fm,573

and strengths are set to g1 = 1 and g2 = −2 [71]. We note574

that although the self-consistency of the model is broken575

by using the monopole pairing in the isovector channel576

of the ground-state calculation and pairing part of the577

Gogny interaction at the QRPA level, we have found that578

such combination proves to be efficient for large-scale cal-579

culations. It reduces the computational time needed for580

the evaluation of Gogny pairing matrix elements, while581

being constrained by the experimental data due to ad-582

justing the monopole pairing strength Gn(p) to empirical583

pairing gaps.584

In contrast to the isovector pairing which is constrained585

by the experimental data at the ground-state level, for586

the strength of the isoscalar pairing we use the following587

functional form [76, 77]588

V is0 = VL +
VD

1 + ea+b(N−Z)
, (34)589

with parameters VL = 153.2 MeV, VD = 8.4 MeV, a =590

6.0 and b = −0.8 adjusted to reproduce best all available591

experimental half-lives in the range 8 ≤ Z ≤ 82 as in592

Ref. [78].593

The FT-PNRQRPA eigenvalue problem can be derived
from Eq. (14) by expanding the perturbed density δR̃ in
the configuration space of (quasi)proton-(quasi)neutron
basis. Here we omit the details and refer the reader
to Refs. [79–81] for additional information. We de-
note the eigenvector corresponding to eigenvalue Ωk as(
P k Xk Y k Qk

)T
. Calculations are symmetric with

respect to the isospin projection operator, meaning that
they can be split into ∆Tz = ±1 component, ∆Tz de-
noting the change in isospin projection. The ensemble
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average appearing in Eq. (15) is evaluated as

〈[Γk, F̂ ]〉 =
∑
πν

P k∗πνF
11
πν(fν − fπ) +Xk∗

πνF
20
πν(1− fπ − fν)

+ Y k∗πν F
02
πν(1− fπ − fν) +Qk∗πνF

1̄1
πν(fν − fπ),

(35)

in the quasiparticle proton-neutron (π−ν) basis. Within
the FT-HBCS the charge-changing external field opera-
tor F̂ in ∆Tz = −1 direction has the form

F 11
πν = uπuν〈π|F̂ |ν〉, F 20

πν = uπvν〈π|F̂ |ν〉,

F 02
πν = vπuν〈π|F̂ |ν〉, F 1̄1

πν = vπvν〈π|F̂ |ν〉,
(36)

where 〈π|F̂ |ν〉 are the single-(quasi)particle matrix ele-594

ments. The physical strength distribution dB/dω is fi-595

nally calculated from Eq. (16).596

Within ground-state calculation, equations of motion597

are solved by expanding nucleon and meson wave func-598

tions in the basis of spherical harmonic oscillator. We are599

using the following prescription: if T ≤ 10 GK expansion600

in 18 oscillator shells for both fermion and boson fields601

is used while for temperatures T > 10 GK we expand602

in 20 oscillator shells. We have verified that such ap-603

proach yields excellent convergence. Radial integrations604

are discretisized within a spherical box of 20 fm with605

24 meshpoints of Gauss-Hermite quadrature. Odd nuclei606

are treated by constraining neutron (proton) chemical607

potential λn(p) to odd particle number within the FT-608

HBCS calculation. This approach was already imple-609

mented for calculation of β-decay half-lives throughout610

the nuclide chart in Ref. [82], yielding reasonable agree-611

ment with experimental data. Due to the large number of612

2 q.p. states within the FT-PNRQRPA we use two con-613

straints: (i) maximal energy cut-off Ecut = 100 MeV is614

set for the sum of q.p. energies of particular pair Eπ+Eν615

and (ii) states with |uπvν | < 0.01 or |vπuν | < 0.01 are616

also excluded from calculations having quite small con-617

tribution to matrix elements. With these constraints618

our FT-PNRQRPA matrix never exceeds dimension of619

10000×10000. Furthermore, we neglect the contribution620

of antiparticle states, which is a good approximation for621

charge-exchange transitions [71].622

B. Calculation of electron capture rates623

The relativistic calculations of EC rates are based on624

the Walecka formalism as described in Sec. II, eval-625

uated by employing the FT-PNRQRPA for particular626

total angular momentum and parity Jπ. Both allowed627

(0+, 1+) and first-forbidden (0−, 1−, 2−) transitions are628

included in the calculations. We have checked that629

Fermi (0+) transitions at the density of neutrino trap-630

ping (ρYe ∼ 1012 g.cm−3) and temperatures in the range631

10−15 GK have a negligible contribution to the total EC632

rate. Only at a relatively high temperature of T = 30633

GK does their contribution go up to 1-2% of the total634

EC rate. Since the dynamics of CCSNe is mainly influ-635

enced by the EC rates before the neutrino trapping, we636

neglect the Fermi transitions in the further discussion.637

The axial-vector couping constant gA is quenched from638

its free-nucleon value gA = −1.26 to gA = −1.0 based639

on previous calculations in Refs. [18, 83] that is also640

consistent with non relativistic calculations in this work.641

Finally, EC rates are calculated by folding the EC cross642

sections with the Fermi-Dirac distribution of electrons643

λ =
(mec

2)3

π2~3

∞∫
Wk

th

pWσ(W )fe(W )dW, (37)644

where the threshold energy W k
th for the FT-PNRQRPA645

eigenvalue k with energy Ωk is defined in Eqs. (7)-(8).646

Electron chemical potential µ is evaluated by inverting647

Eq. (17) which determines the electron Fermi-Dirac fac-648

tors fe(W ). In order to solve for the EC rate in Eq.649

(37) we observe that due to Fermi-Dirac function, inte-650

grand displays a prominent peak when plotted with re-651

spect to the electron energy Ee = Wmec
2. As a first652

step of the integration we search for the energy of the653

peak Epeak within a predefined interval, with upper limit654

Emax = µ + 20kBT , that is large enough to include the655

peak. The integration array is split into 3 parts. If we656

define E1 = Epeak − 3kBT and E2 = Epeak + 3kBT ,657

they are: (i) [me, E1〉, (ii) [min(E1,me), E2] and (iii)658

〈E2, Emax]. Numerical integration of EC rates within all659

3 intervals is performed with the Gauss-Legendre quadra-660

ture. Intervals (i) and (iii) contain 16 mesh-points, while661

number of mesh-points in interval (ii) is calculated as662

|E2 − E1|/(0.1kBT ). We have verified that above in-663

tegration mesh yields excellent convergence for required664

temperatures T and stellar densities ρYe within this work.665

V. SHELL-MODEL CALCULATION666

Although it is challenging to perform shell-model cal-667

culation on many nuclei in the N = 50 region, it is668

instructive to compare the results from the QRPA cal-669

culations for a specific case. We focus on the case of670

86Kr, for which the GT strength distribution has been671

measured and compared to calculations at zero [44] and672

finite temperature [16]. Our shell-model calculations are673

performed with the code NUSHELLX [84] and the jj45c674

Hamiltonian, and are based on a 78Ni core with a model675

space that includes the orbitals (0f5/2, 1p3/2, 1p1/2, 0g9/2)676

for the protons and (0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2) for677

the neutrons. The jj45c Hamiltonian is described in [28].678

The proton-neutron two-body matrix elements were ob-679

tained from the CD-Bonn potential as described in [85].680

The proton-proton part of the Hamiltonian is taken681

from [86]. The neutron single-particle energies were ad-682

justed to reproduce the low-lying states of 89Sr. To683

account for temperature-dependent effects, GT transi-684

tions from the first 50 initial states for each Jπ =685
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0, 1, 2, 3, 4, 5, 6, 7, 8+,− in 86Kr were included, reaching686

to the first 500 final states for each initial state in687

86Br. These initial states cover excitation energies up to688

≈ 17 MeV, but the results shown here are restricted to689

states with an excitation energy below 12 MeV, as it was690

found that contributions to the overall electron-capture691

rate from states above ≈ 10 MeV were negligible for all692

stellar temperatures considered here. The GT strengths693

for the individual transitions were used to calculate the694

corresponding EC rates, with the code ”ECRATES” pre-695

viously developed and used in [59, 87, 88]. EC rates from696

different initial states were calculated as follows:697

λECi =
ln 2

κ
Pi
∑
j

BijΦ
EC
ij , (38)698

where the constant κ = 6146 ± 6 s can be deter-699

mined from super-allowed Fermi transitions. In our case700

Bij = Bij(GT+) are the reduced transition probabilities701

of only the GT+ transitions and are obtained from the702

NUSHELLX code [84] including a quenching of 0.77 for703

the Gamow-Teller operator. ΦECij is the phase-space inte-704

gral as defined in Eq. (4). For a parent nucleus in thermal705

equilibrium, at the temperature 1/β = kBT , where kB706

is the Boltzmann constant, the probability of populating707

an excited state i at the energy Ei is given by,708

Pi =
(2Ji + 1)e−Eiβ

Z
, (39)709

where Z =
∑
i(2Ji + 1)e−Eiβ is the partition function.710

As can be seen from Eq. (38), the EC rate on a given711

initial state depends on three main factors: i) the GT712

strength of the individual transitions; ii) the phase-space713

factor, which depends on the temperature and density714

of the stellar environments, and on the Q-value for the715

specific EC transition; and iii) the thermal population of716

the initial state. It is interesting to investigate the in-717

terplay between these three factors to better understand718

the total EC rate at high stellar densities.719

In the model space considered here, the key factor that720

determines the GT strength for an individual transition is721

the filling of the protons in the g9/2 shell, as other single-722

particle contributions to GT excitations are not available.723

The average population of this shell as a function of ex-724

citation energy is shown in Fig. 2(a). Initial states with725

positive (negative) parity have red (black) labels, and726

states with different spins have different symbols, as in-727

dicated. At low excitation energies, the g9/2 shell is only728

fractionally filled for states with positive parity. At an729

excitation energy of about 10 MeV, the positive parity730

states have two protons in the g9/2 shell. In the inter-731

mediate excitation region, the average filling of the g9/2732

shell slowly increases. For negative parity states at low733

excitation energy, the g9/2 shell is filled with about one734

proton. Above 10 MeV, some states have three protons735

in the g9/2 shell, slowly increasing the average population736

of the g9/2 shell.737

The filling of the g9/2 shell has a profound impact on738

the GT strengths, as shown in Fig. 2(b). It displays the739

summed GT strength from each individual initial state to740

all of its associated final states. Since for the low-lying741

initial states with positive parity the filling of the g9/2742

shell is small, the summed GT strengths are mostly sig-743

nificantly below 1. Since the lowest-lying negative parity744

states (first appearing at Ex,i ≈ 3.5 MeV) have one pro-745

ton in the g9/2 shell, the summed GT strength to all its746

final states is significantly higher than that for the pos-747

itive parity states. Above Ex,i ≈ 6 MeV, the spread in748

summed GT strengths from the initial states increases,749

as the population of protons in the g9/2 shell slowly in-750

creases and transitions from positive-parity states gener-751

ally have higher summed strengths, associated with hav-752

ing two protons in the g9/2 shell.753754

Fig. 2(c) shows the EC rates (in logarithmic scale) from755

each of the initial states, assuming equal population of756

all initial states. Clearly, the EC rates on the low-lying757

positive-parity states is much smaller than those on the758

negative-parity states and the highly excited positive-759

parity states. This has two causes: i) the lower GT760

strengths for the low-lying positive parity states as shown761

in Fig. 2(a), and ii) the favorable Q-value that greatly in-762

creases the phase-space factor for transitions from states763

at high excitation energy. This is due to the fact that764

for states at high initial excitation energy it is likely that765

the first final states have low excitation energies in the766

EC daughter. As the phase-space factor increases ex-767

ponentially with increasing (more positive) Q-value, the768

effects of the second cause can have a higher impact769

than that due to the difference in GT strength. Above770

Ex,i ≈5 MeV, we observe that the EC rate becomes al-771

most independent of spin, parity, and excitation energy772

of the initial state.773

Finally, one has to consider the thermal population774

of the initial state. This is shown in Fig. 2(d), where775

the data of Fig. 2(c) have been weighted by the ther-776

mal population factor of Eq. (39). We note that the EC777

rates shown here were calculated at T = 10 GK and778

ρYe = 109 g cm−3. This corresponds to an environment779

relatively early in the supernovae collapse phase. At even780

higher densities and temperatures, the EC rates become781

even less sensitive to the properties of individual initial782

and final states, as more initial and final states can con-783

tribute. The thermal population factor enhances the con-784

tributions from the initial states with the lowest excita-785

tion energies. However, it also indicates that the total EC786

rate is dominated by EC rates on negative-parity states787

in the initial excitation energy region between 3.5 and788

6.0 MeV. The impact of the (2Ji + 1) factor is also clear789

from this figure - contributions from states with higher790

initial spin are enhanced because of this factor. Fig. 2(e),791

shows the running sum of the EC rates as function of ex-792

citation energy of the initial state. It saturates just above793

6 MeV, after the strong contributions from the negative-794

parity states between 3.5 and 6 MeV. The contributions795

to the total EC rate from the low-lying positive-parity796

states only constitutes about 1% of the total EC rate.797

The model-space considered here is limited, likely caus-798
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FIG. 2. Five quantities are plotted against the exci-
tation energy in 86Kr, based on shell-model and electron-
capture rate calculations with the code NUSHELLX [84] and
ECRATES [59, 87, 89], respectively. a) The average occupa-
tion of the g9/2 shell in 86Kr, b) the total GT strength of each

initial state in 86Kr, the logarithm of the electron-capture
rates of each initial states in 86Kr, without c) and with d)
weighting with the probabilities of occupying the state i in
86Kr. e) The logarithm of the cumulative electron-capture
rates including thermal population weighting. The contribu-
tions from spins of states are represented by different symbols
and the parities are distinguished by red (positive) or black
(negative) color. The results are obtained at T = 10 GK and
ρYe = 109 g cm−3. These conditions are representative of the
start of CCSN and high density burning during SN1a.

ing an underestimation of the EC rates as more complex799

features are ignored, such as the excitation of protons or800

neutrons from 0g9/2 to 0g7/2. Still, the results indicate801

that the total EC rate on nuclei in the N =50 region de-802

pends on an interplay between nuclear structure effects,803

the EC phase-space factors, and the thermal population804

of initial states. As a consequence, the total EC rate is805

not very sensitive to a few nuclear transitions, but rather806

to the gross nuclear-structure properties in this region.807

VI. COMPARISON OF ELECTRON-CAPTURE808

RATES809

The comparison between our new results for the810

electron-capture rates on 86Kr is shown in Fig. 3, which811

shows the EC rate at a density of ρYe = 1011 g.cm−3 as a812

function of stellar temperature. Since the first-forbidden813

contributions are not included in the shell-model (SM)814

calculations, one can compare the SM to the FT-QRPA815

and the FT-PNRQRPA GT results. At temperatures816

below T ≈ 15 GK the SM rates are higher than the two817

QRPA calculations. Above this temperature, the oppo-818

site is the case. As already discussed in Ref. [90], the819

QRPA calculations are more sensitive to the effects of820

increased temperatures than the SM calculations. We821

show in Fig. 4 the GT+ strength distribution, from the822

two QRPA and the SM calculations for 86Kr at T = 0823

and 10 GK, as function of the energy required to make824

the transition Eif = Mf −Mi + Ex,f − Ex,i. Mi (Mf )825

and Ex,i (Ex,f ) are the mass and the excitation energy826

of the initial (final) nucleus. Our SM calculations are827

limited to Eif . 20 MeV as the calculations were per-828

formed up to finite excitation energies due to the strong829

increase in the density of states with the excitation en-830

ergy. Additionally, at T = 0 one can notice the first831

state in the relativistic QRPA calculations lies at higher832

Eif than in the SM and the non-relativistic QRPA calcu-833

lations, which is more consistent with the experimental834

data [44] and recent calculations [16]. In spite of the small835

differences between the calculations, the overall trends836

are the same: at high temperature, GT transitions with837

lower Eif become accessible, strongly increasing the EC838

rates. Indeed, at low temperatures, the GT strength dis-839840

tribution spread out to higher excitation energies in the841

QRPA calculations than in the SM calculation, result-842

ing in a lower EC rate. As the temperature increases,843

GT strengths at low excitation energies are enhanced in844

the QRPA calculations, leading to a rapid rise in EC845

rates. This is related with two main effects: (i) vanishing846

of pairing correlations with increasing temperature, and847

(ii) thermal unblocking, which allows transitions to pre-848

viously blocked q.p. states, as demonstrated in Ref. [16].849

On the other hand, at high temperatures, the restrictions850

to the model space in the SM calculations likely lead to851

an underestimation of the the EC rates. By compar-852853

ing the FT-PNRQRPA GT and FT-PNRQRPA GT+FF854

calculations, it is clear that the contributions from the855
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FIG. 3. Electron-capture rate of 86Kr as function of the tem-
perature at ρYe = 1011 g.cm−3, for the shell-model calculation
(SM), and the different temperature-dependent QRPA calcu-
lations (FT-QRPA, FT-PNRQRPA GT and FT-PNRQRPA
GT+FF including GT and first-forbidden transitions) of this
work, as well as for the approximation from [30] and the third
version of the modified approximation from [43].

FF transitions are significant. The impact is strongest856

at temperatures below 30 GK because the GT transi-857

tions are strongly Pauli-blocked [44]. At higher temper-858

atures, the Pauli blocking is reduced and the contribu-859

tions to the total EC rate from GT and FF transitions860

become comparable. Our results are in relatively good861862

agreement with TQRPA results in Ref. [16] for which,863

at T = 10 GK and ρYe = 1011 g.cm−3, the EC rates864

with all transitions included approach 104 s−1 as the865

FT-PNRQRPA with 3.8 × 103 s−1. Moreover, the rel-866

ative contribution of the first-forbidden (FF) transitions867

to the EC rates λFF/λ = 0.87 is reasonably close to 0.75868

obtained with Skyrme-SkO’-TQRPA in [16]. That the869

results from different sets of calculations are comparable870

gives confidence that the main nuclear structure features871

are covered in the calculations. One may remark that the872

”approx. mod.” curve in Fig. 3 follows the original ap-873

proximation [30] below T = 5 GK for ρYe = 1011 g/cm−3.874

Because these conditions correspond to the limits for875

which the parametrization of the average GT transition876

energy of Ref. [43] hold, we choose to follow the origi-877

nal parametrization [30] outside of these limits. Above878

T ≈ 10 GK, the shell model EC rates and the predictions879

from the approximation of [30] and [43] converge.880881

Figs. 5 and 6 illustrate comparisons of the EC rates882

of all the nuclei in the region of interest for CCSN, at883

T = 10 GK and ρYe = 1011 g.cm−3. In Fig. 5, the EC884

rates are represented as function of the isospin asymme-885

try (N − Z)/A. Overall, the EC rates from the original886

approximation [30] are higher than those from the micro-887

scopic calculations, except the FT-PNRQRPA GT+FF888

for a few neutron-rich nuclei ((N − Z)/A &0.25). The889

modified approximation (third parametrization in [43])890
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FIG. 4. Gamow-Teller strength distribution of 86Kr as func-
tion of the transition energy Eif (defined in the text), for
FT-PNRQRPA, FT-QRPA and shell-model calculations, re-
spectively from top to bottom. The red dashed line indicates
the ground-state threshold (8.1 MeV for 86Kr).

is the closest to the EC rates of FT-PNRQRPA GT+FF891

for (N − Z)/A .0.20, but strongly decreases for more892

neutron-rich nuclei. This can be explained by the re-893

fined parametrization of the average GT transition en-894

ergy in [43], which increases linearly with (N − Z)/A.895

The new parametrization has been introduced to better896

fit the EC rates of nuclei with low Q-value. The ref-897

erence rates of Ref. [91] used in Ref. [43] are obtained898

with large-scale shell-model calculations of pf-shell nu-899

clei (45 < A < 65), considering only few initial states900

(4 to 12) and without forbidden transitions. These as-901

sumptions can result in underestimating the EC rates of902

neutron-rich nuclei at finite temperature.903

The agreement between the FT-QRPA and the FT-904

PNRQRPA GT-only calculations is relatively good espe-905

cially around (N − Z)/A = 0.24. A more detailed com-906

parison between these two rate sets is shown in Fig. 6(a),907

which shows the ratio between the two sets as a func-908

tion of neutron and proton number. This ratio varies909

between 0.2 and 5.7. The EC rates obtained with FT-910
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FIG. 5. Electron-capture rate as function of the isospin
asymmetry (N−Z)/A at T = 10 GK and ρYe = 1011 g.cm−3.
Results from various electron-capture rate prescriptions are
compared: the shell-model calculation (SM), and the different
temperature-dependent QRPA calculations (FT-QRPA, FT-
PNRQRPA GT and FT-PNRQRPA GT+FF including GT
and first-forbidden transitions) of this work, as well as for the
approximation from [30] and the third version of the modified
approximation from [43].

QRPA model dominate around 79As (Z = 33, N = 36),911

whereas the FT-PNRQRPA model predicts higher EC912

rates for the nuclei around 75Co (Z = 27, N = 48) and913

for the most neutron-rich nuclei in general. Such differ-914

ences can be attributed to the systematic model depen-915

dence. The FT-QRPA calculations are performed with916

the non relativistic EDF with Skyrme SkO’ interaction,917

while the FT-PNRQRPA employs the relativistic deriva-918

tive coupling EDF. Furthermore, in the non relativis-919

tic FT-QRPA calculations axial-symmetry is assumed920

while the FT-PNRQRPA assumes spherical symmetry.921

Although a shape-phase transition is expected from de-922

formed to a spherical state at high temperatures [92, 93],923

deformation can persist at T = 10 GK, which leads to924

differences between two sets of EC rates. In Fig. 6(b),925

the ratio between rates from the FT-PNRQRPA GT-only926

calculation over the FT-PNRQRPA GT+FF calculation927

is shown. The ratio averages around 10, but for the928

most neutron-rich nuclei below Z = 31 the importance929

of the first-forbidden transitions increases because Pauli-930

blocking effects for the GT transitions are strongest in931

this region.932933

Furthermore, in Fig. 7, we compare the summed EC934

rates of the nuclei in the diamond region for the differ-935

ent models, as function of the temperature and the den-936

sity. Note that the EC rates in Fig. 7 are not weighted937

by the actual populations in the stellar medium, but938

still the unweighted sum gives a rough understanding939

of how the EC models may affect the CCSN scenario.940

As observed with the comparison of the individual EC941

rates, the FT-QRPA and the FT-PNRQRPA GT cal-942

culations agree well, the largest difference is seen in943

Fig. 7(b) for densities ρYe & 5 × 1012 g/cm−3. The944

relative contribution of the first-forbidden transitions in945

FIG. 6. Region of the nuclear chart with nuclei dominat-
ing the electron-capture rate during core-collapse supernovae,
as defined in [5]. The dashed lines distinguish the shell clo-
sures Z = 28 and N = 50. The color scale represent a ra-
tio of electron-capture rates from different prescriptions, in
(a) the FT-QRPA, over the FT-PNRQRPA, with GT tran-
sitions only, in (b) the FT-PNRQRPA with GT over the
FT-PNRQRPA with GT and first-forbidden transitions. The
rates are obtained at T = 10 GK and ρYe = 1011 g.cm−3.

the FT-PNRQRPA calculations is larger at low temper-946

ature (T . 10 GK for ρYe = 1011 g.cm−3) and high947

density ( ρYe & 1010 g/cm−3 for T = 10 GK). As al-948

ready mentioned, agreement for temperatures above 10949

GK is related to the shape-phase transition. At this950

point, small differences between the rates are attributed951

to use of different effective interactions. As mentioned952

previously the ”approx. mod.” curve in Fig. 7(a),(b) fol-953

lows the original approximation [30] below T = 5 GK954

for ρYe = 1011 g/cm−3 and above ρYe = 1011 g/cm−3
955

for T = 10 GK, because of the validity range of the956

parametrization [43]. The EC rate of the diamond re-957

gion from both approximations are less sensitive to the958

temperature than temperature-dependent QRPA calcu-959

lations. The latter give lower rates at temperatures960

T . 10 GK and higher rates above T ≈ 30 GK, for961

a density of ρYe = 1011 g/cm−3, similar to the specific962

case of 86Kr.963

Finally, all the new microscopic calculations of the EC964
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FIG. 7. Electron-capture rate as function of the temper-
ature (T ) for ρYe = 1011 g.cm−3 (a) and as function of
the density ρYe for T = 10 GK (b). Results from various
electron-capture rate prescriptions are compared: the differ-
ent temperature-dependent QRPA calculations (FT-QRPA,
FT-PNRQRPA GT and FT-PNRQRPA GT+FF including
GT and first-forbidden transitions) of this work, as well as
for the approximation from [30] and the third version of the
modified approximation from [43].

rate of the diamond region agree within around one or-965

der of magnitude at T = 10 GK and ρYe = 1011 g/cm−3,966

conditions where the deleptonization is relatively impor-967

tant during the CCSN. Therefore, one can expect small968

variations in the dynamics of CCSN associated with the969

choice of microscopic calculations, this point is discussed970

in the next section.971

VII. CORE-COLLAPSE SIMULATIONS972

In order to study the impact of the temperature de-973

pendent EC rates on the core-collapse dynamics we used974

the GR1D numerical simulation code. This code treats975

the collapse and the early stage of the post-bounce phase976

in spherical symmetry with general-relativistic hydro-977

dynamics and neutrino-transport based on the NuLib978

neutrino-interaction library. Details about GR1D and979

NuLib can be found in [5, 94, 95]. The results presented980

in this section are obtained with a 15-solar-mass, solar-981

metallicity star progenitor (s15WW95, [96]) and the tab-982

ulated nuclear statistical equilibrium equation of state983

SFHo [97]. We compare five simulations with different984

EC rates for nuclei in the diamond region. Three simu-985

lations were performed with the new finite-temperature986

EC rates presented in this work sections III and IV with987

and without including the first-forbidden transitions, as988

well as two simulations based on the EC rates parame-989

terizations [30, 43] used in the previous section.990991

A comparison of the evolution of the electron frac-992

tion (Ye) as function of the density of the inner core993

is shown in Fig. 8(a). We have shown previously in994

Sec. VI that the FT-QRPA and the FT-PNRQRPA cal-995

culations without first-forbidden transitions give similar996

EC rates, within a factor 10. No significant difference997

on the Ye evolution is observed when comparing these998

two sets. The effect of including the first-forbidden tran-999

sitions in FT-PNRQRPA calculations is mostly notable1000

for 8× 1010 . ρ . 8× 1011 g.cm−3, conditions at which1001

the most abundant nuclei are in the diamond region [5].1002

At ρYe = 3 × 1011 g.cm−3 and T = 13.9 GK, the Ye is1003

reduced by 3% compared to the calculations with rates1004

based on Gamow-Teller transitions only, while for these1005

thermodynamics conditions the EC rates are about one1006

order of magnitude higher when including first-forbidden1007

transitions. The original approximation [30] and its mod-1008

ified version [43] lead to lower Ye, because the EC rates of1009

the nuclei populated during the deleptonization are over-1010

all higher than the EC rates from our finite-temperature1011

microscopic calculations.1012

In addition, the models with higher EC rates produce1013

smaller electron-neutrino luminosity, Fig. 8(b), and lower1014

homologous inner core mass, Fig. 8(c), as already dis-1015

cussed in [5, 6]. Including the first-forbidden transitions1016

to the FT-PNRQRPA calculation reduces the amplitude1017

of the main electron-neutrino luminosity burst by 3%1018

and the mass of the homologous inner core by 4%. Al-1019

though this variation of homologous inner-core mass ef-1020

fects slightly the kinetic energy available for the shock1021

wave, the description of the EC rates of nuclei in the1022

diamond region is now better constrained by the new1023

microscopic calculations presented in this work.1024

The CCSN dynamics is not strongly dependent on the1025

EC rate set used. The differences between the EC rate1026

predictions have a relative small effect on the dynam-1027

ics because at high EC rates the neutrino absorption in-1028

creases and speeds up the onset of neutrino trapping,1029

thus reducing the effective time of deleptonization from1030

nuclei in the diamond region. Therefore, unlike a scenario1031

where the EC rates are relatively low and sensitivities of1032

the CCSN dynamics on variations in the rate are high,1033
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FIG. 8. Core-collapse simulations results obtained from
GR1D [94, 95] and NULIB [5] codes, with s15WW95 [96]
progenitor and SFHo [97] equation of state. Different finite-
temperature electron-capture calculations are compared, see
labels in panel (a), where the three first are the finite-
temperature microscopic calculations introduced in this pa-
per, ”approx.” corresponds the parametrization [30] and
”approx. mod.” stands for its modified version (third
parametrization in [43]). (a) the electron-fraction Ye as func-
tion of central baryon density ρ, (b) the electron neutrino
luminosity as measured at a radius of 500 km as function of
time after bounce and (c) the central velocity as function of
the enclosed mass.

at high EC rates, such sensitivities are strongly reduced,1034

as discussed earlier in [5, 63].1035

VIII. CONCLUSION1036

In this work, we have studied the temperature de-1037

pendence of EC rates for nuclei near N = 50 above1038

78Ni that play an important role in the collapse phase1039

of CCSN [5, 6]. For this purpose, two sets of newly-1040

developed finite-temperature QRPA calculations of EC1041

rates were performed at thermodynamic conditions rel-1042

evant for core-collapse supernovae: one consists of a1043

non-relativistic FT-QRPA based on an axially-deformed1044

Skyrme functional (SkO’ parametrization) and using the1045

charge-changing finite amplitude method, the other con-1046

sists of a relativistic FT-QRPA including nuclear pairing1047

in the charge-exchange channel (FT-PNRQRPA) based1048

on the relativistic nuclear energy density functional with1049

momentum-dependent self-energies (D3C* parametriza-1050

tion). In the latter, both allowed (GT) and first-1051

forbidden (FF) transitions have been included.1052

In addition, we have performed a large-scale shell-1053

model calculations on 86Kr for better understanding the1054

effects of finite-temperature on the EC rate of Pauli1055

blocked nuclei at N = 50. The main unblocking mech-1056

anism appears to be the thermal excitation of states for1057

which the g9/2 shell is occupied by at least one proton.1058

The interplay between the nuclear structure effects, the1059

electron-capture phase-space factor and the thermal pop-1060

ulation of initial states is complex and the EC rate on1061

86Kr is dominated by GT transitions from a small group1062

of excited states with negative-parity.1063

The comparison of the EC rates for 86Kr at ρYe =1064

1011 g.cm−3, shows that the shell model predicts higher1065

rates than finite-temperature QRPA models below T ≈1066

15 GK, while the rates from the FT-QRPA models are1067

higher above T ≈ 15 GK. The EC rates based on the shell1068

model GT strengths are close to predictions from the pa-1069

rameterized approximations of [30, 43] above T ≈ 15 GK.1070

From comparisons of the rates on the neutron-rich nuclei1071

of interest, and at thermodynamic conditions of CCSN,1072

the two FT-QRPA GT-only calculations agree within a1073

range of about an order of magnitude. The main discrep-1074

ancies emerge around 79As (Z = 33, N = 46) and for the1075

most neutron-rich nuclei. The agreement improves with1076

increasing temperature as the rates depend less on the1077

details of the nuclear structure. Finally, with the FT-1078

PNRQRPA calculations we have shown that the contri-1079

butions from the FF transitions are significant, especially1080

at low temperature: the EC rates increase by about an1081

order of magnitude for T . 10 GK at ρYe = 1011 g.cm−3.1082

The results with FT-PNRQRPA including FF contribu-1083

tions are consistent with the results from [16].1084

Finally, the new finite-temperature electron-capture1085

rates have been applied in 1D core-collapse simulations.1086

Although the total EC rates for nuclei in the region of1087

interest can vary by an order of magnitude during the1088
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deleptonization phase, depending on the choice of the1089

model used, the maximum electron-neutrino luminosity1090

and the enclosed mass at core bounce are impacted by1091

less than 5%. The new microscopic calculations pre-1092

sented in this work better constrain the EC rates and1093

uncertainties can be better quantified. Therefore, the1094

uncertainties introduced in core-collapse dynamical sim-1095

ulations due to uncertainties in EC rates are reduced and1096

better understood. Nonetheless, the differences between1097

the new finite-temperature EC rates could still have sig-1098

nificant impacts on the scenarios of other astrophysical1099

phenomena occurring at lower density, such as the ther-1100

mal evolution of the neutron-star crust [7, 8] and nucle-1101

osynthesis in thermonuclear supernovae [9, 10]. It will1102

be important to extend studies of the temperature de-1103

pendence of EC rates to other regions of the chart of1104

nuclei to investigate the impact on other astrophysical1105

phenomena. Present theoretical models have proven to1106

be instrumental in constraining the main observables of1107

the CCSNe evolution. Theoretical calculations have now1108

progressed to the point where models based on com-1109

pletely different assumptions and effective interactions1110

(relativistic vs non relativistic FT-QRPA or shell-model)1111

provide consistent description of EC rates, and produce1112

reasonably small uncertainties in modeling the CCSNe.1113

Therefore, we are now at the stage to perform large-scale1114

calculations of the EC rates across the nuclide chart and1115

establish a consistent table of EC rates available for the1116

whole nuclear astrophysics community.1117
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[7] H. Schatz, S. Gupta, P. Möller, M. Beard, E. F. Brown,1150

A. T. Deibel, L. R. Gasques, W. R. Hix, L. Keek, R. Lau,1151

et al., Nature 505, 62 (2014).1152

[8] N. Chamel, A. F. Fantina, L. Suleiman, J.-L. Zdunik,1153

and P. Haensel, Universe 7 (2021).1154

[9] Bravo, E., Astron. Astrophys. 624, A139 (2019).1155

[10] K. Iwamoto, F. Brachwitz, K. Nomoto, N. Kishimoto,1156

H. Umeda, W. R. Hix, and F.-K. Thielemann, Astro-1157

phys. J. Suppl. Ser. 125, 439 (1999).1158

[11] K. Langanke, G. Mart́ınez-Pinedo, and R. G. T. Zegers,1159

Rep. Prog. Phys. 84, 066301 (2021).1160

[12] H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).1161

[13] K. Langanke and G. Mart́ınez-Pinedo, Nucl. Phys. A1162

673, 481 (2000).1163

[14] S. L. Shapiro and S. A. Teukolsky, Black holes, white1164

dwarfs, and neutron stars: The physics of compact ob-1165

jects (John Wiley & Sons, 2008).1166

[15] H. Bethe, G. Brown, J. Applegate, and J. Lattimer,1167

Nucl. Phys. A 324, 487 (1979).1168

[16] A. A. Dzhioev, K. Langanke, G. Mart́ınez-Pinedo, A. I.1169

Vdovin, and C. Stoyanov, Phys. Rev. C 101, 0258051170

(2020).1171

[17] E. Litvinova and C. Robin, Phys. Rev. C 103, 0243261172

(2021).1173
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