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Background Charge-exchange reactions are a powerful tool for exploring nuclear structure and nuclear astrophysics, however,
a robust charge-exchange reaction theory with quantified uncertainties is essential to extracting reliable physics.

Purpose The goal of this work is to determine the uncertainties due to optical potentials used in the theory for charge-exchange
reactions to isobaric analogue states.

Method We implement a two-body reaction model to study (p,n) charge-exchange transitions and perform a Bayesian analysis.
The (p,n) reaction to the isobaric analog states of 14C, 48Ca, and 90Zr targets are studied over a range of beam energies.
We compare predictions using standard phenomenological optical potentials with those obtained microscopically.

Results Charge-exchange cross sections are reasonably reproduced by modern optical potentials. However, when uncertainties
in the optical potentials are accounted for, the resulting predictions of charge-exchange cross sections have very large
uncertainties.

Conclusions The charge-exchange reaction cross section is strongly sensitive to the input interactions, making it a good
candidate to further constrain nuclear forces and aspects of bulk nuclear matter. However, further constraints on the
optical potentials are necessary for a robust connection between this tool and the underlying isovector properties of
nuclei.

I. INTRODUCTION

Charge-exchange reactions are isobaric transitions
where a neutron in the target is exchanged with a proton
in the projectile, or vice-versa. Charge-exchange reac-
tions are a versatile probe with broad applications rang-
ing from testing nuclear structure calculations to con-
straining neutrino detector response [3, 4]. Since they
can populate the same states as beta decay, these re-
actions can be used to extract information about weak
decays in regions where beta decay cannot be directly ob-
served. Moreover, charge-exchange reactions are a pow-
erful tool in the realm of nuclear astrophysics: they can
provide constraints on bulk properties of nuclear matter,
which are central to understanding neutron stars and
their mergers, and act as an indirect probe for stellar
electron-capture processes.

Charge-exchange reactions can be used to constrain
bulk nuclear matter by placing limits on the nuclear
symmetry energy [5]. The symmetry energy accounts
for the energy difference due to an imbalance of neu-
trons and protons within nuclear matter and is directly
linked to the nuclear equation of state, a key compo-
nent for modeling the behavior of neutron stars. Fermi
transitions (∆L=0, ∆S=0, ∆T=1) between IAS provide
a unique tool for exploring isovector densities. A sig-
nificant number of experimental groups have measured
charge-exchange cross sections to IAS for a wide range of
isotopes (see for example [6–10]). Moreover, there have
been several theoretical efforts, informed by these mea-
surements, to explore the isovector properties of nuclei
[11–14].

Typically charge-exchange reactions to the IAS are
studied within 1-step DWBA. Models that incorporate
more complex reaction dynamics explored in other reac-

tion channels, such as transfer reactions and Coulomb
dissociation (see [15–19]), could present relevant exten-
sions for improving the theory of charge-exchange reac-
tions to IAS. More importantly, given the advances in un-
certainty quantification for reactions [20–23], it is imper-
ative to quantify the uncertainties in the charge-exchange
predictions from theory. To achieve this, uncertainties of
the optical potential, the principal input for predicting
charge-exchange reactions, must be understood.

Over the last decade much work has been invested in
obtaining microscopic optical potentials that are derived
from many-body calculations based on realistic nuclear
forces (e.g [24–28]). In particular, the Whitehead-Lim-
Holt (WLH) optical potential [28], derived from many-
body perturbation theory with chiral forces in nuclear
matter, is the only microscopic global optical potential.
It has a range in mass and energy comparable to the
most recent phenomenological global parameterization of
Koning and Delaroche (KD) [29]. When compared to ex-
perimental data for elastic scattering, the WLH potential
and the KD potential have similar performance [30, 31].

Ultimately, our goal is to build a modern framework
for charge-exchange reactions from scratch. As a first
step, we begin with Fermi transitions within a one-step
reaction model. We examine the sensitivity of the charge-
exchange cross section to the interaction that mediates
the process and compare results obtained using a phe-
nomenological optical potential and the global micro-
scopic WLH potential. For the phenomenological ap-
proach, we use the Bayesian tools developed in [20] and
propagate the uncertainties to the charge-exchange cross
section. For the microscopic approach, we use the optical
potential derived in [28] to propagate the uncertainties
from chiral forces to the charge-exchange cross section.
The paper is organized in the following way. In Section
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FIG. 1: Angular distributions for 14C(p,n)14NIAS , 48Ca(p,n)48ScIAS , and 90Zr(p,n)90NbIAS at E = 25, 35, 45 MeV. Insets
show the same results in log scale. The curves represent predictions from the WLH (blue solid) and KD (green dash-dot) global
optical potentials. Experimental data with error bars (black) are from [1, 2].

II we briefly describe the necessary theory and numeri-
cal details. The charge-exchange results with uncertainty
quantification are presented in Section III and the uncer-
tainty quantification is described in Section IV. A discus-
sion of uncertainties in the prediction of charge-exchange
reactions is given in Section V. We draw conclusions of
this investigation in Section VI.

II. THEORETICAL FRAMEWORK

Within this work we have employed a two-body frame-
work using single-step DWBA, to analyze (p,n) charge-
exchange reactions between 0+ IAS, as done in previous
studies (e.g. [11]). In this formalism, charge-exchange
transitions are mediated by the difference between the
incoming and outgoing optical potentials which charac-
terize nucleon-target elastic scattering. These optical po-
tentials may be written in the Lane form [32]:

U(R1A) = U0(R1A) +
τ · T
4A

U1(R1A), (1)

where R1A is the coordinate that connects the pro-
jectile to the center of mass of the target, U0(R1A)
is the isoscalar potential which drives elastic scatter-
ing, U1(R1A) is the isovector potential which drives the
charge-exchange transition, and τ and T are the isospin
operators which act on the projectile nucleon and tar-
get nucleus, respectively. The isovector part of the Lane
potential can be written as

U1(R1A) =
A

2(N − Z)
[Un(R1A)− Up(R1A)], (2)

where N, Z, and A are the neutron number, charge num-
ber, and mass number of the target nucleus and Un, Up
are the neutron- and proton-target optical potentials.
Here we will utilize the global potentials developed by
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FIG. 2: Histogram and correlation plots of optical potential parameters for p+48Ca at E = 35 MeV that characterize the
entrance channel for the 48Ca(p,n)48ScIAS reaction at a beam energy of E = 35 MeV. Parameter distributions of the Bayesian
posteriors are shown in green and distributions of the WLH potential are shown in blue. The black vertical lines indicate the
mean value of the Bayesian prior which is taken from the Koning-Delaroche global optical potential.

Koning-Delaroche (KD) [29] and WLH [28]. Both poten-
tials take the following form

Un,p(R) = −V f(R; rV , aV )− iWf(R; rW , aW ) (3)

+ i4aSWS
d

dR
f(R; rS , aS)

+ VSO
1

m2
π

1

R

d

dR
f(R; rSO, aSO)~̀ · ~σ,

where f(R; ri, ai) = 1

1+e(R−A1/3ri)/ai
(for V and W ) and

its derivative (for WS and VSO). Note that the KD po-
tential also includes an imaginary spin-orbit term that
is negligible for both elastic and charge-exchange chan-
nels at the scattering energies presently considered. This
term is included for all calculations labeled as Koning-
Delaroche or Bayesian.

In the case of (p,n) charge-exchange reactions to the
isobaric analog state, the transition matrix element can
be expressed simply as

TCE2B = 〈χf (R1A)|2
√
|N − Z|
A

U1(R1A)|χi(R1A)〉, (4)

where χi(R1A) and χf (R1A) represent the p+A/n+B dis-

torted waves that are calculated using Up and Un, respec-
tively. Note that this simplified matrix element is specific
to (p,n) IAS transitions. A more complex formulation is
needed for other charge-exchange reactions (see Ref. [37])

Calculations for (p,n) reactions are performed using a
new charge-exchange reaction code, chexpn, that was
developed for this work. This code is not to be con-
fused with chex2 [38], a charge-exchange code capable
of calculating form factors for reactions with compos-
ite probes in addition to (p,n). Scattering wave func-
tions χi,f , as well as elastic scattering cross sections,
were benchmarked against results produced by the re-
action code fresco [39]. Charge-exchange calculations
were compared with results from the unpublished code
used in [11]. For all cases presented here, we began by
calculating the charge-exchange cross section using two
choices for the optical potential (KD and WLH). For con-
sistency, the same optical potential was used to calculate
both the distorted waves and the transition operator in
Eq. 4. Calculations for each of the cases studied here
required less than 10 partial waves to converge and take
only a few seconds to run.
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FIG. 3: Histogram and correlation plots of optical potential parameters for n+48Sc at E = 28 MeV that characterize the exit
channel for the 48Ca(p,n)48ScIAS reaction at a beam energy of E = 35 MeV. Parameter distributions of the Bayesian posteriors
are shown in green and distributions of the WLH potential are shown in blue. The black vertical lines indicate the mean value
of the Bayesian prior which is taken from the Koning-Delaroche global optical potential.

III. PREDICTION OF CHARGE-EXCHANGE
WITHOUT UNCERTAINTY QUANTIFICATION

We study (p,n) charge-exchange reactions to 0+ IAS in
14C, 48Ca, and 90Zr. These targets were chosen because
they span a large range of nuclear masses and there are
experimental charge-exchange cross section data avail-
able for the IAS transition of each target. Each of these
reactions are studied at three different beam energies:
E=25, 35, and 45 MeV.

Experimental cross sections for 14C(p,n) are taken
from Taddeucci et al., where the reaction to the IAS was
measured at Elab = 25.7, 35 and 45 MeV [1]. Experi-
mental charge-exchange cross sections for 48Ca(p,n) and
90Zr(p,n) come from Doering et al., in which transitions
were measured at Elab = 25, 35 and 45 MeV for both
targets [2].

In the first part of this study, we calculate IAS charge-
exchange transitions using the global optical potentials
referenced in Sec. II. The cross sections for each of
the reactions considered in this work are shown in Fig.
1: first column is for 14C(p,n)14NIAS , the second col-
umn is for 48Ca(p,n)48ScIAS , and the third column for
90Zr(p,n)90NbIAS . The three rows correspond to the dif-

ferent beam energies, Elab = 25, 35, and 45 MeV. Insets
show the same information on a log scale, which is par-
ticularly helpful for clarifying behavior at large angles
where cross sections are typically small. The solid blue
lines correspond to predictions using the microscopic po-
tential WLH while the dashed green lines are predictions
of the KD phenomenological global potential. The results
of the WLH potential in this section pertain to a particu-
lar chiral interaction (that is computed up to N3LO with
a cutoff of Λ = 450 [31]) for direct comparison to the
Koning-Delaroche results.

When comparing cross sections produced by the two
global optical potentials, it is clear that the choice of
optical potential has a large impact on the angular dis-
tributions. Despite having similar orders of magnitude,
the angular distributions obtained using KD and WLH
are very different, in part due to differences in their radii.
It is clear from Fig. 1 that if we were to estimate the er-
ror from comparing KD and WLH, it would exceed the
standard 30% uncertainty that is often cited in reactions
[40]. A more rigorous quantification of the uncertainty is
necessary and will be done in the next section.

Next we compare our predictions to experimental data.
As can be seen in Fig. 1, in most cases the charge-
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FIG. 4: Angular distributions for 14C(p,p) at E = 25, 35, 45 MeV and 14N(n,n) at E = 22, 32, 42 MeV. The Bayesian 95% con-
fidence interval is shown in green and the 95% confidence interval of the WLH optical potential is shown in blue. Experimental
data are from [33, 34]. Mock data are predictions of the Koning-Delaroche global optical potential.

exchange calculations are able to capture the broad fea-
tures of the data at small and large angles. Although
a particular potential may describe any specific data set
better than the other, the opposite may be true for a
different target/energy combination. Phenomenological
optical potentials are fit to large data sets and optimized
to best describe trends in elastic scattering data over a
wide range of energies and target masses. Even for the
elastic channel, they cannot predict all the details in the
angular distributions.

We note that our study employs a similar methodol-
ogy to that employed by Danielewicz et al. [11]. In that
work, an equivalent charge-exchange framework is used
to calculate transitions between 0+ IAS using a Lane po-
tential. The results in this section are consistent with
those presented by Danielewicz et al., however, we do
not include any modifications to the isovector term due
to Coulomb interactions since Coulomb interactions are
fully included in our calculations. See the discussion per-
taining to Eq. (24) and (25) in Ref. [11] for more details.

IV. UNCERTAINTY QUANTIFICATION

We present two distinct approaches of estimating the
theoretical uncertainty in predictions of charge-exchange
cross sections. Firstly, from the phenomenological per-
spective, we carry out a full Bayesian analysis by con-
straining the optical potentials to elastic scattering and
propagating the uncertainties to charge-exchange. Sec-
ondly, from a microscopic perspective, we utilize the
WLH global optical potential that estimates the theoret-
ical uncertainty of scattering observables based on uncer-
tainties from chiral interactions.

In our Bayesian analysis, we use elastic scattering mock
data to constrain the optical potential and then, from the
obtained parameter distributions, propagate those un-
certainties to obtain confidence intervals on the charge-
exchange cross sections. For more details on the imple-
mentation of the Bayesian analysis, see Ref. [20]. The
entrance and exit channel interactions are modeled by
proton- and neutron-target optical potentials at the ap-
propriate energies. Priors for the optical potential pa-
rameters are gaussians centered on the Koning-Delaroche
values with widths equal to the mean value of the distri-
bution, reflecting that a priori there is a large uncertainty
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FIG. 5: Angular distributions for 48Ca(p,p) at E = 25, 35, 45 MeV and 48Sc(n,n) at E = 18, 28, 38 MeV. The Bayesian
95% confidence interval is shown in green and the 95% confidence interval of the WLH optical potential is shown in blue.
Experimental data are from [35]. Mock data are predictions of the Koning-Delaroche global optical potential.

in optical potential parameters. We find that Bayesian
optimization of all three central optical potential terms
is not adequately constrained by elastic scattering data.
We remedy this by assuming that the radius and diffuse-
ness parameters of the real volume and imaginary volume
terms are equal, following the assumptions in [29]. The
resulting seven parameter Bayesian optimization yields
improved posterior distributions. For each reaction, pos-
teriors are generated by sixteen separate MCMC sam-
plings, each with 1600 parameter pulls, to ensure that
parameter space is sufficiently explored. Ideally, proton
and neutron elastic scattering data would be available
for a wide range of energies and targets, however, there
are large gaps in the available data. Because of this,
we use mock data generated from the predictions of the
Koning-Delaroche global optical potential. It should be
noted that although this mock data is expected to be
close to empirical data, there are discrepancies in some
cases. However, they are of little consequence to the un-
certainties obtained [41]. In contrast to our approach
that only uses elastic scattering to constrain the optical
potential, Danielewicz et al., used charge-exchange data
in combination with proton and neutron elastic scatter-
ing.

We now turn to the uncertainty quantification in the
microscopic approach. Like traditional global optical po-
tentials, the WLH global optical potential is expressed
in terms of Woods-Saxon parameters that define the
strength and shape of the various terms in the poten-
tial. However, the WLH potential of [28] is unique since
it is the first global optical potential to incorporate un-
certainty quantification. The WLH optical potential is
based on five separate global optical potentials, each cal-
culated using a different chiral interaction. Each of these
five global optical potentials is parameterized in the same
way, then for each parameter a normal distribution is
assumed about the values they take in each of the five
global optical potentials. In practice, one generates un-
certainty estimates by randomly sampling the WLH op-
tical potential parameter distributions many times and
calculating a given reaction observable for each sample.
The resulting calculations represent the uncertainty in
that observable, arising from chiral EFT uncertainties
through the optical potential. This procedure is car-
ried out for charge-exchange reactions by sampling the
WLH potential for both the entrance and exit channel
optical potentials and calculating the cross section for
each sample. Samples from the WLH potential include
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FIG. 6: Angular distributions for 90Zr(p,p) at E = 25, 35, 45 MeV and 90Nb(n,n) at E = 13, 23, 33 MeV. The Bayesian
95% confidence interval is shown in green and the 95% confidence interval of the WLH optical potential is shown in blue.
Experimental data are from [36]. Mock data are predictions of the Koning-Delaroche global optical potential.

twelve Woods-Saxon parameters from the real volume,
imaginary volume, imaginary surface, and real spin-orbit
terms. The resulting 95% confidence intervals are di-
rectly compared to the Bayesian results obtained from
the phenomenological approach.

In Figs. 2 and 3 we show the posterior distribu-
tions and correlations for the entrance channel and
exit channel optical potentials used in computing the
48Ca(p,n)48ScIAS cross section for a beam energy of
E = 35 MeV. This particular reaction is shown as a rep-
resentative example; other reactions have qualitatively
similar features. In Fig. 2 the real depth parameter dis-
tribution from the WLH potential is relatively narrow,
while the Bayesian distribution is wider and extends to
much higher values. The radius parameter distributions
for each approach are similar while the diffuseness pa-
rameter distributions in the Bayesian approach are more
broad. In the Bayesian approach the real geometry pa-
rameters (rV , aV ) are set equal to the imaginary volume
geometry parameters (rW , aW ), therefore they do not ap-
pear in their correlation plots. Optical potentials derived
from nuclear matter calculations generally overestimate
the strength of the imaginary term and in this case the
WLH imaginary potential is stronger than the Bayesian

estimate. The imaginary surface term of the WLH po-
tential diminishes as projectile energy increases and, for
protons, it is already zero at E = 35 MeV. The Bayesian
imaginary surface term is quite strong compared to its
imaginary volume and the radius and diffuseness distri-
butions take typical values. The neutron parameter dis-
tributions shown in Fig. 3 follow similar patterns ex-
cept that the Bayesian radius parameter distributions
are wider and the WLH potential has an imaginary sur-
face peak for neutron projectiles at intermediate energies.
The WLH imaginary surface is smaller in magnitude than
the Bayesian counterpart while the WLH radius distri-
bution is centered on a relatively low value.

In Figs. 4, 5, 6 the elastic scattering cross sections
corresponding to the entrance and exit channels of the
charge-exchange reactions studied in this work are shown.
These figures contain the 95% confidence intervals ob-
tained in the Bayesian approach (green hash), using the
mock data from KD (red circles); the 95% confidence in-
tervals from samples of the WLH potential (blue hash)
and, when available, the elastic scattering data (black tri-
angles). The uncertainties on the elastic scattering angu-
lar distributions obtained within the Bayesian approach
are similar to those presented in previous studies [22, 23].
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FIG. 7: Angular distributions for 14C(p,n)14NIAS , 48Ca(p,n)48ScIAS , and 90Zr(p,n)90NbIAS at E = 25, 35, 45 MeV. The
Bayesian 95% confidence interval propagated from elastic scattering is shown in green and the 95% confidence interval of the
WLH optical potential is shown in blue. Experimental data with error bars shown in black are from [1, 2]. Note that the local
minima of the charge-exchange cross sections cause the lower band to be jagged; these features have been smoothed out so that
the uncertainty bands may be more clearly interpreted.

The microscopic WLH approach tends to produce sim-
ilar uncertainties as the phenomenological approach at
forward angles, but larger uncertainties at backward an-
gles.

The charge-exchange cross sections with uncertain-
ties from both approaches are shown in Fig. 7. In
the Bayesian approach, the uncertainties are propagated
through optical potentials that are optimized to elastic
scattering reactions that represent the entrance and exit
channels of the charge-exchange process. In contrast, the
uncertainty intervals of the WLH predictions reflect the
uncertainties coming from the underlying chiral two- and
three-body forces. It is an interesting coincidence that
the magnitudes of these uncertainty intervals are so sim-
ilar, particularly considering that they are derived in a
completely different manner. In the following section we
discuss the large uncertainties of charge-exchange cross
sections.

V. DISCUSSION OF CHARGE-EXCHANGE
UNCERTAINTY

The uncertainties for charge-exchange cross sections
computed in both frameworks outlined above are sur-
prisingly large. A comparison of the confidence interval
widths, taken to be the upper limit of dσ/dΩ divided
by the corresponding lower limit, is shown in Fig. 8:
Bayesian results are shown in green while the microscopic
WLH results are shown in blue. We include charge-
exchange (solid lines), neutron elastic scattering (dash-
dot lines) and proton elastic scattering (dashed lines) for
all cases considered in this work. We find that the con-
fidence interval widths for charge-exchange in both the
Bayesian and WLH approaches are several orders of mag-
nitude larger than the elastic scattering counterparts.

To understand this unexpected result, we take three
example parameter sets from the Bayesian posterior dis-
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tribution for the 48Ca(p,n)48ScIAS reaction at E = 35
MeV. In Fig. 9, we show their charge-exchange predic-
tions as well as the isovector potentials as functions of
radius. Case 1 and Case 2 have similar charge-exchange
cross sections. Their real and imaginary isovector poten-
tials shown on the right have surface peaks with similar
positions and magnitudes, however, their central values
are quite different. In contrast, the charge-exchange cross
section for Case 3 is substantially different. The real
isovector potential for Case 3 has a smaller surface peak
than the other cases, but its central value is nearly equal
to Case 2. The imaginary isovector potential for Case 3
is shifted towards the interior and slightly smaller than
the other cases, while its central values fall between the
other cases.

This examination of the isovector potentials demon-
strates that modest differences can lead to very large
discrepancies in the charge-exchange cross section. It is
important to note that the wide posterior distributions
of the Bayesian approach allow for larger differences in
the isovector potentials than the three cases presented
here. We take examples far from the extremes to show
that even minor changes in the surface region of the
isovector potential can indeed produce large variations
in the charge-exchange cross section. This sensitivity to
the isovector potential may be exploited to extract infor-
mation about the isovector nature of nuclear forces from
experimental charge-exchange data.

VI. CONCLUSIONS

This study focuses on the predictions for angular dis-
tributions of (p,n) charge-exchange reactions to isobaric
analogue states. We consider the reaction within a two-
body framework, mediated by a Lane potential, corre-
sponding to the difference in the proton- and neutron-
target optical potentials. We include two different global
optical potentials, one phenomenological [29] and the
other microscopically based [28]. We study (p,n) reac-
tions on 14C, 48Ca, and 90Zr at Elab =25, 35 and 45 MeV.
Our calculations show that, although the magnitude ob-
tained with the phenomenological approach is similar to
the microscopic approach, the angular distributions dif-
fer considerably. At forward angles, the difference greatly
exceeds the nominal 30% value often quoted.

We also quantify the uncertainties in the charge-
exchange cross section. In the phenomenological ap-
proach, we perform a Bayesian analysis that incorporates
mock elastic scattering data to constrain nucleon-nucleus
optical potentials and, from the resulting posterior pa-
rameter distributions, obtain the charge-exchange con-
fidence intervals. In the microscopic approach, we uti-
lize the uncertainty quantification integrated in the WLH
global optical potential that is based on uncertainties
from chiral nuclear forces. We find that the two distinct
approaches to quantifying the uncertainty in the charge-
exchange angular distributions give similar uncertainty:

three to four orders of magnitude. The main conclusion
of this work is that the charge-exchange data provides
an extraordinarily sensitive constraint to the isovector
component of the optical potential. Building on previous
work [11, 42], a comprehensive systematic study examin-
ing charge-exchange transitions to IAS on a wide range of
targets and beam energies has the potential of revealing
these details in an remarkable manner.

The large uncertainties found in this work stem at least
in part from the construction of the Lane potential from
separate proton and neutron interactions. These uncer-
tainties can be improved upon if optical potentials ex-
pressed in terms of isoscalar and isovector components
such as in Ref. [43, 44] are employed. In such a formula-
tion, we expect the uncertainties in the charge-exchange
cross sections to be reduced. The development and im-
plementation of such an optical potential will be the focus
of future work.

All interactions considered for this work are purely lo-
cal, but it will be interesting to include the effects of non-
local interactions, since they have been shown to have
a large impact on other reaction channels (e.g. [16]).
The new code chexnp, developed during this study, has
the capability of incorporating several global optical po-
tentials, including non-local potentials, since it uses the
non-local Schrödinger equation solver from the NLAT
reaction code [45]. Moreover, our current implementa-
tion assumes the reaction takes place in a single step.
While the single-step approximation is expected to be
valid at medium to high beam energies, this study in-
cludes beam energies as low as 25 MeV, where there
may be contributions to the charge-exchange cross sec-
tion from higher-order processes. There have been ef-
forts to quantify effects from multistep processes in (p,n)
charge-exchange, including work by Madsen et al. which
proposes an energy dependent correction factor [46]. Ad-
ditionally there have been studies of multistep mecha-
nisms for charge-exchange reactions with heavier probes
such as (3He,t) [47], (7Li,7Li) [38], (12C,12N) [48]. Future
plans for chexnp include the extension to multi-step pro-
cesses.
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