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Background: The nuclear fission process is a dramatic example of the large-amplitude collective
motion in which the nucleus undergoes a series of shape changes before splitting into distinct frag-
ments. This motion can be represented by a pathway in the many-dimensional space of collective
coordinates. Within a stationary framework rooted in a static collective Schrödinger equation, the
collective action along the fission pathway determines the spontaneous fission half-lives as well as
mass and charge distributions of fission fragments.
Purpose: We study the performance and precision of various methods to determine the minimum-
action and minimum-energy fission trajectories in the collective space.
Methods: We apply the nudged elastic band method (NEB), grid-based methods, and Euler-
Lagrange approach to the collective action minimization in two- and three-dimensional collective
spaces.
Results: The performance of various approaches to the fission pathway problem is assessed by
studying the collective motion along both analytic energy surfaces and realistic potential energy
surfaces obtained with the Skyrme-Hartree-Fock-Bogoliubov theory. The uniqueness and stability
of the solutions is studied. The NEB method is capable of efficient determination of the exit points
on the outer turning surface that characterize the most probable fission pathway and constitute the
key input for fission studies. This method can also be used to accurately compute the critical points
(i.e., local minima and saddle points) on the potential energy surface of the fissioning nucleus that
determine the static fission path. The dynamic programming method also performs quite well and
it can be used in many-dimensional cases to provide initial conditions for the NEB calculations.
Conclusions: The NEB method is the tool of choice for finding the least-action and minimum-
energy fission trajectories. It will be particularly useful in large-scale static fission calculations
of superheavy nuclei and neutron-rich fissioning nuclei contributing to the astrophysical r-process
recycling.

I. Introduction

Fission is a fundamental nuclear decay that is impor-
tant in many areas of science, ranging from structure and
stability of heavy and superheavy nuclei [1–3] to studies
devoted to physics beyond the standard model of particle
physics [4] and the synthesis of heavy elements [5–7].

Theoretically, the nuclear fission process is an example
of the nuclear large-amplitude collective motion originat-
ing from the single-particle motion of individual nucleons.
Due to the complexity of this process, our understand-
ing of nuclear fission is still incomplete. For the state of
affairs in this field, we refer to the recent review [8, 9].

When it comes to realistic predictions, the self-
consistent nuclear energy density functional (EDF)
method [10, 11] has proven to be very successful in terms
of quantitative reproduction of fission lifetimes and frag-
ment yields. Unfortunately, realistic self-consistent fis-
sion calculations in multidimensional collective spaces,
based on the microscopic input, are computationally ex-
pensive when it comes to large-scale theoretical fission
surveys. Given the computational cost of microscopic

methods and the large number of fissioning nuclei that
are, e.g., expected to contribute to the astrophysical r-
process nucleosynthesis, calculations have mostly relied
on simple parametrizations or highly phenomenological
models. The new perspective is offered by state-of-the-
art theoretical frameworks and modern computational
techniques that promise to speed up the calculations to
be able to carry out quantified global fission surveys for
multiple inputs [9].

This study is concerned with finding the optimal path-
way during the tunneling motion phase of spontaneous
fission (SF). Within a static collective Schrödinger equa-
tion framework, such a trajectory, dubbed the least-
action path (LAP), is obtained by minimizing the col-
lective action in a many-dimensional collective space
[12, 13]. A number of techniques have been proposed
to deal with this challenging task. In the early ap-
plication [14], the trial pathways were assumed in a
parametrized form and the LAP was obtained by min-
imizing the penetration integral with respect to the vari-
ational parameters. Grid-based techniques such as the
dynamic-programming [15] and Ritz [16] methods have
been used in numerous EDF calculations of LAPs [17–



2

23]. In Refs. [24–29] LAPs were obtained by solving the
eikonal equation by the method of characteristics. Ef-
fectively, this method can be related to the instanton ap-
proach: a quantum mechanical propagation in imaginary
time that amounts to solving the classical equations of
motion in an inverted potential. Only one solution of the
eikonal equations, called the escape path, arrives at the
outer turning surface with zero velocity. Other trajecto-
ries, corresponding to different initial conditions, cannot
reach the outer turning surface. For the recent applica-
tions of the instanton framework to fission, we refer the
reader of Refs. [30–32]. Up to now, however, applica-
tions of this method to nuclear physics problems have
been limited because of enormous numerical difficulties
[30, 33].

In this paper, we compare grid-based approaches to
the LAPs with the nudged elastic band (NEB) method
that was originally formulated in the context of molecular
systems [34–37]. In NEB, the minimum action path
can be obtained iteratively by continuously shifting the
pathway to the nearest minimum action path [38–40].
A similar approach is a growing string method [41]. To
provide more insights, we also employ the Euler-Lagrange
(EL) method to compute the stationary action path.

In addition to the LAP, another characteristic trajec-
tory in the collective space is the minimum-energy path
(MEP), sometimes referred to as the static path. The
MEP can serve as a first, rough approximation to the
LAP. It is obtained by computing the steepest descent
line on the potential energy surface, which passes through
the local minima and saddle points. To find the MEP, a
flooding, or watershed, algorithm has been applied [42–
46]. The NEB approach can also be adopted to find the
MEP and saddle points [47]. (For a review of modern
optimization methods for finding MEPs, see [48, 49].)

This paper is organized as follows. In Sec. II we de-
fine the basics concepts of the nuclear EDF approach as
applied to nuclear fission. Section III describes the path-
optimization methods used. The results of our calcula-
tions and an analysis of trends are presented in Sec. IV.
Finally, Sec. V contains the conclusions of this work.

II. Nuclear EDF approach to spontaneous fission

The main ingredients for a theoretical determina-
tion of SF lifetimes are the collective potential en-
ergy surface (PES) and the inertia tensor. To com-
pute the PES, one solves the constrained Hartree-Fock-
Bogoliubov (HFB) equations with the realistic energy
density functional in the space of collective coordinates
q ≡ {qi}. These are usually represented by the expec-
tation values of the quadrupole moment operator Q̂20

(elongation), quadrupole moment operator Q̂22 (triaxial-
ity), octupole moment operator Q̂30 (mass-asymmetry),
and the particle-number dispersion term λ2τ (N̂2

τ −〈N̂τ 〉2)
(τ = n, p) that controls dynamic pairing correlations

[18, 50, 51]. In some cases one also considers the hex-
adecapole moment Q40 (necking coordinate) [52]. That
is, in practical applications, we consider 2-5 collective
coordinates which describe the collective motion of the
system. Figure 1 shows a representative PES of 256Fm
in the space of Q20 ≡ 〈Q̂20〉 and Q30 ≡ 〈Q̂30〉.

The collective inertia (or mass) tensor Mij(q) is ob-
tained from the self-consistent densities by employing the
the adiabatic time-dependent HFB approximation (ATD-
HFB) [56–58]. In this study, we use the non-perturbative
cranking approximation [56]:

Mij(q) =
~2

2q̇iq̇j

∑
αβ

(
F i∗αβF

j
αβ + F iαβF

j∗
αβ

)
Eα + Eβ

, (1)

where qi is the collective coordinate, q̇i represents the
time derivative of qi, and Eα are one-quasiparticle ener-
gies of HFB eigenstates |α〉. The matrices F i are given
by

F i∗

q̇i
= AT

∂κ∗

∂qi
A+AT

∂ρ∗

∂qi
B−BT ∂ρ

∂qi
A−BT ∂κ

∂qi
B, (2)

where A and B are the matrices of the Bogoliubov trans-
formation, and ρ and κ are particle and pairing density
matrices, respectively, determined in terms of A and B.
Derivatives of the density matrices with respect to collec-
tive coordinates are calculated by employing the three-
point Lagrange formula. It is important to remark that
rapid variations in Mij are expected in the regions of
configuration changes (level crossings) due to strong vari-
ations of density derivatives in (2) associated with struc-
tural rearrangements [14, 17].

Since SF is a quantum-mechanical tunneling process
and the fission barriers are usually both high and wide,
the SF lifetime is obtained semi-classically [13] as T1/2 =
ln 2/(nP ), where n is the number of assaults on the fission
barrier per unit time and P is the penetration probability
given by

P = (1 + exp [2S(Lmin)])
−1
, (3)

where Lmin is the path that minimizes the fission action
integral calculated along the one-dimensional trajectory
L(s) in the multidimensional collective space:

S(L) =
1

~

∫ sout

sin

S(s) ds, (4)

where

S(s) =
√

2Meff(s) (Veff(s)− E0) (5)

with Veff(s) andMeff(s) being the effective potential en-
ergy and inertia along the fission path L(s), respectively.
Veff can be obtained by subtracting the vibrational zero-
point energy from the total HFB energy. (In the exam-
ples considered in this paper we assume the zero-point en-
ergy to be zero.) The integration limits sin and sout cor-
respond to the classical inner and outer turning points,
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FIG. 1. Potential energy surface of 256Fm calculated with nuclear EDF method using the D1S parametrization of the Gogny
interaction [53] in the space of two collective coordinates: Q20 (elongation) and Q30 (mass asymmetry). The static fission
pathways are marked by solid lines: red (symmetric pathway) and green (asymmetric pathway). The outer turning line (OTL)
is indicated, together with the outer turning points associated with the static pathways. For simplicity, we assume that the
inner turning point corresponds to the ground-state configuration (i.e., E0 = 0). The high-energy region that is practically not
accessible during collective motion is indicated in black. The intersections of fission pathways with outer turning points are
indicated by dots; these are important for determining fission fragment yields [54, 55].

respectively, defined by Veff(s) = E0 on the two extremes
of the fission path, see Fig. 1. The collective ground state
(g.s.) energy is E0, and ds is the element of length along
L(s). A one-dimensional path L(s) can be defined in the
multidimensional collective space by specifying the col-
lective variables q(s) as functions of path’s length s. The
expression forMeff is [59]:

Meff(s) =
∑
ij

Mij(q)
dqi
ds

dqj
ds

. (6)

The least-action path (LAP) Lmin is obtained by min-
imizing the action integral (4) with respect to all possi-
ble trajectories L that connect the lines/surfaces of in-
ner turning points sin and outer turning points sout [17].
However, as discussed in Refs. [24, 25] and this paper,
only the pathways related to the exit points are station-
ary. The MEP can instead be described as the union of
steepest descent paths from the saddle point(s) to the
minima. The corresponding trajectory q(s) satisfies

dq

ds
∝∇V

(
q(s)

)
(7)

which characterizes a path of steepest descent on a sur-
face V (q) [60]. For the NEB, one finds the MEP by
allowing the elements of the path to follow the gradient
of the PES in their immediate vicinity. We shall assume

that the PES in the tunneling region is free from dis-
continuities associated with rapid configuration changes
[61–63]. This assumption is usually valid because of non-
vanishing pairing correlations inside the potential barrier.
It is also to be noted that, as in any optimization/min-
imization approach, the stationary path determined nu-
merically corresponds to a local action minimum, which
is not guaranteed to be the global minimum. Moreover,
there could be many stationary pathways representing
different fission modes, see Fig. 2. To simplify notation,
we assume in the following discussions that the station-
ary action path found by our algorithms is indeed the
LAP.

Since S(s) = 0 on the outer turning surface V (q) = E0,
it follows that paths moving on the surface V (q) = 0 do
not contribute to the action. This is illustrated in Fig.
2 by the path connecting the g.s. and, for example, the
purple star labeled (3). Such a path consists of the cyan
curve – the exit trajectory – and the green dashed line,
connecting (1) with (3) through the OTL, which results
in the same action integral as the exit trajectory.

III. Methods/algorithms

All path-optimization methods described in the fol-
lowing subsections, bar the EL method, have a refer-
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FIG. 2. Illustration of two stationary action paths (repre-
senting competing fission modes) from the g.s. to the OTL
(marked white) on the PES given by Eq. (12). The cyan line
shows the primary path (1). The secondary path (2) is in-
dicated by the black line. The corresponding exit points are
marked by stars. The green dashed line connects the exit
point (1) with the point (3) on the OTL; the action along the
dashed path is zero. The inset shows the spring force and
the action force acting on the image i on the NEB for the
intermediate (not fully converged) grey path. For the video
illustrating the NEB determination of both LAPs, see the
supplemental material (SM) [64].

ence implementation included in the python package,
PyNEB [65], which has been developed by the authors
for this work.

III.1. Nudged Elastic Band

The NEB method was originally formulated to provide
a smooth transition of a molecular system on a potential
energy surface from the reactant to the product state [35–
37]. Upon application of this variant of the NEB method,
one obtains the MEP as well as a series of “images” of the
molecular system as it transitions along the path. The
NEB technique has been subsequently refined, with im-
proved numerical stability [39] and a more accurate de-
termination of a saddle point [38] being two key advances
towards a more widely applicable numerical approach for
MEP determination.

To obtain the LAP, the procedure must be modified
such that the images move towards the minimum of the
action [66] which amounts to replacing the standard gra-
dient of the PES with the gradient of the action

gi = −∇iS (8)

with respect to the image qi. With this prescription, the
images will settle to the LAP in the collective space.

While the NEB method will, by design, drive the line
of images towards either the MEP or LAP, the itera-
tive scheme chosen greatly impacts the total number of
iterations required before the solution converges. In the
early implementations, a simple velocity Verlet algorithm
[67] was used to adjust the position of the images step
to step [35–39]. This approach is robust and relatively
stable, though the convergence can be slow for flatter sur-
faces where the images are not pulled strongly to their
optimal positions. To aid this process, the Fast Inertial
Relaxation Engine (FIRE) was proposed [68] to acceler-
ate convergence without sacrificing stability. The method
was subsequently updated [69] to further improve perfor-
mance. Indeed, in our tests, the inertial algorithm reg-
ularly outperforms the velocity Verlet algorithm by an-
order-of-magnitude reduction in iterations at the same
convergence criteria.

With this, our implementation of the NEB approach is
defined. The algorithm itself is outlined in Algorithm 1 in
SM [64]. The force used in the optimization step for each
image, F opt

i , is constructed by adding the perpendicular
component of the action gradient to the spring force F ki
between the images,

F ki = k(|qi+1 − qi| − |qi − qi−1|)τi, (9)

where k is a tunable parameter that controls the strength
of the spring force and τi is the unit vector tangent to
the line of images from image i − 1 to image i + 1. The
spring force on the endpoints is defined differently:

F k1 = k|q2 − q1|, F kN = k|qN − qN−1|. (10)

The total force acting on the interior images is then

F opt
i = F ki + g⊥i . (11)

The NEB approach is illustrated in Fig. 2 for the case
of bimodal tunneling from the g.s. minimum to the OTL
on an analytic PES defined by:

V (q) = 3.17 + 2e−5
(
(x−1)2+(y− 1

2 )
2
)
− 3e−(x

2+y2)

− 1

2
(3x+ y), (12)

where q = (x, y). The inset shows the forces on the
images of the NEB grey path, which has not converged
yet to the black path. The spring force F ki keeps the
images from drifting too much from each other, while
the perpendicular part of the action gradient g⊥i pushes
them towards the nearest stationary action path. This
example shows that the NEB algorithm, depending on
the initial locations of the images, will converge to a local
stationary path, not necessarily the least action path.

For the endpoint, i = N , one can choose to either fix
the position of the image or to allow the image to move
towards the outer turning surface. In the second case, a
harmonic restraint term is added to the spring force to
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construct F opt
N ,

F opt
N = F kN−

[
F kN · f(qN )− η(V (q)− E)

]
f(qN ), (13)

where f = −∇V/|∇V | and η determines the strength
of the harmonic restraint term [66]. This force pulls the
endpoint i = N very quickly to the outer turning surface
and helps find the optimal outer turning point.

The default iteration scheme used in our implementa-
tion is the inertial algorithm mentioned above, though a
standard Verlet minimizer is also included in the PyNEB
python package [65]. The structure of the NEB solver is
modular and allows for the simple replacement of compo-
nents like the minimizer, allowing for easy checks on the
convergence and parameters that describe the iterative
scheme.

III.2. Grid-Based Methods

Some traditional methods to compute the LAP begin
by computing the PES and the collective inertia on a
grid of collective coordinates. The calculation of the
LAP is then reduced to finding the path through the
grid points that minimizes a discrete approximation of
the action. Two methods that we have benchmarked
are the dynamic programming method (DPM) [15], and
Dijkstra’s algorithm (DA) [70]. Here, both will be de-
scribed for two-dimensional (2D) grid, with points la-
belled by qij = (xi, yj) (i = 1, . . . , N , j = 1, . . . ,M).
Both methods can be straightforwardly extended to a
higher-dimensional grid.

Dynamic programming is a general mathematical tech-
nique for solving multi-decision problems by breaking the
problem down into simpler overlapping sub-problems. It
was first adapted to the action integral minimization in
Ref. [15] and used in [17] to determine the LAP. This
adaptation is what we refer to as the DPM.

The DPM approximates the LAP between an initial
point, qin, and a final point, qfin. This method finds
paths that traverse diagonally from a given cell: from cell
qij , only cells qi+1,j can be reached, for j = 1, . . . ,M .
The allowed cells are highlighted in red in Fig. 3. The
LAP from qin to qfin is constructed iteratively as follows:
for a cell qij , there are M possible paths, each passing
through a cell at xi−1. The LAP from qin to qij is se-
lected and stored in memory. This is repeated for every
cell with x = xi, for a total of M possible paths. Once
qfin is reached, there are only MN paths (out of a total
of MN paths), and the LAP is selected from these. The
DPM algorithm is detailed in Algorithm 2 in SM [64].

Dijkstra’s method [70] is similar to DPM, in that it
breaks down the large optimization problem into a set
of smaller problems. Given a cell qij , the action to ev-
ery neighbor qi′j′ is calculated as if the path to qi′j′
passes through qij . If this action integral is smaller than
that along the current path to qi′j′ , qi′j′ is said to come

FIG. 3. Different types of paths that can be found in the
different grid-based methods. The single node qij can reach
the red (blue) regions in DPM (Dijkstra’s algorithm). The
initial and final points are marked.

from qij . This is repeated, starting from qin, until qfin
is reached. Figure 3 shows the nearest-neighbors of qij
(the cell marked in green) in a blue square. Dijkstra’s
algorithm is described in Algorithm 3 in the SM [64].

Dijkstra’s algorithm can find paths that pass through
multiple cells with the same xi value, or even paths that
backtrack. DPM cannot find such paths. However, DPM
can find paths that jump from qij to qi+1,j′ , for any j′,
while Dijkstra’s algorithm is limited to j′ = j− 1, j, j+ 1
(see Fig. 3). For fission calculations, one frequently takes
the x coordinate as the quadrupole moment Q20, and
fission can be viewed as collective motion in which Q20

continuously increases towards scission. So, the paths
that Dijkstra’s algorithm can find, that DPM cannot, are
rather unlikely. In general DPM tends to find paths with
a smaller action than Dijkstra’s algorithm, see Sec. IV.

III.3. Euler Lagrange Equations

In order to find the LAP for the functional (4) using
the EL equations [71], we first parametrize the trajectory
q by a time variable t, i.e., q = q(t) with t ∈ [0, tf ]. This
is done in order to explicitly account for the arclength
ds = (

∑
dq2i )1/2. In terms of t, the action integral (4)
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reads:

S(L) =∫ tf

0

√
2
(
Veff[q(t)]− E0

)( n∑
ij

Mij [q(t)]q̇iq̇j

)1/2
dt

=

∫ tf

0

L(q, q̇)dt,

(14)

where q̇i ≡ dqi/dt, and L is the corresponding La-
grangian. The associated EL equation can be written
as:

∂L
∂qi

=
d

dt

( ∂L
∂q̇i

)
, (15)

with the boundary conditions: q(t = 0) = qin (the initial
location) and q(t = tf ) = qfin (the final location).

In order to numerically solve Eq. (15) we use the shoot-
ing method [72]. That is, we start at the initial position
qin and vary the direction and orientation of the initial
“velocity” q̇(t = 0). We use a numerical differential equa-
tion solver to propagate the solution until we find an
initial condition that satisfies q(tf ) = qfin. Finding such
initial conditions can present some challenges, which we
discuss in the SM [64].

The EL approach is equivalent to what is done in
Ref. [24] where the eikonal equation is solved by the
method of characteristics. Each different trajectory ob-
tained by varying q̇(t = 0) corresponds to one of the
characteristics of the leading order (cf. Eqs.(2.8) and
(4.3) of [24]). It is worth noting that if the imaginary
part of the phase of the wave function W (q) is negligi-
ble, as is the case of the motion in the deep subbarrier
region, then the eikonal equation for W is a valid ap-
proximation [12]. The trajectories corresponding to the
stationary functional (4) are equivalent to the solutions
of the eikonal equation for W (see Eqs. (11) and (13) of
[12]). A connection between the eikonal equation, the
dynamic programming approach, and a variational prin-
ciple in the context of geometrical optics is discussed in
Ref. [73].

IV. Results

IV.1. Analytic surfaces: Illustrative examples

We benchmark the performance of the NEB method
by comparing the LAP found using NEB (denoted as
NEB-LAP) to the paths found using the DPM, DA, and
EL approaches for analytic surfaces defined in terms of
the position vector q = (x, y). Throughout this section,
we assume a constant inertia Mij = δij . Within the
NEB framework, the action functional (4) can develop
some noise as the NEB algorithm approaches the final
action. This noise is a function of the NEB hyperparam-
eters and the optimization method used. All surfaces

discussed in this section are released as example cases
with PyNEB [65].

In the analytic cases, the NEB is initialized by fixing
an initial and final points qin and qfin, respectively, and
defining a linear trajectory connecting them. The NEB
algorithm is then iterated until convergence is reached.
Grid-based methods use a grid spacing of ∆x = 0.1 along
the x-axis and ∆y = 0.005 along the y-axis for all ana-
lytic surfaces. Details of the numerical methods used for
solving the EL equations for all surfaces are discussed
in SM [64]. The action values for each surface consid-
ered are included in Table I. Action integrals in Table I
are evaluated using linearly interpolated trajectories over
500 uniformly-distributed points.

We compute both LAP and MEP in the NEB frame-
work. Since the MEP is a solution of Eq. (7), images
along the path converge to critical points on the surface
depending on the position of the boundary images at qin
and qfin. Critical points on the surface V (q) contained
in the MEP can be extracted by calculating ∇V along
the path and are classified by computing the eigenvalues
of the Hessian at those points.

TABLE I. Action integrals for the 6-Camel-Back (CB-S and
CB-A) and Müller-Brown (MB) surfaces. The integrals have
been calculated using a linear spline interpolation evaluated
at 500 points along each trajectory.

NEB-MEP NEB-LAP DPM EL DA
CB-S 5.522 5.518 5.524 5.536 5.563
CB-A 6.793 6.404 6.405 6.407 6.886
MB 28.491 22.875 22.909 22.871 23.427

First, we consider the symmetric 6-Camel Back poten-
tial (CB-S) [49] defined as

VCB−S(q) =
(
4−2.1x2 +

1

3
x4
)
x2 +xy+4(y2−1)y2 (16)

In this example, we seek the LAP connecting the local
minimum located at qin = (1.70,−0.79) to the local min-
imum located at qfin = (−1.70, 0.79). Figure 4 shows the
CB-S PES normalized to zero at its global minimum to-
gether with the calculated NEB-MEP, NEB-LAP, DPM,
EL, and DA trajectories. The action integrals along these
trajectories are listed in Table I. The MEP and the LAPs
computed by using the NEB, EL, DPM, and DA methods
are very similar. However, the DA trajectory slightly de-
viates from the other ones. This is because DA is more
constrained by the grid spacing than DPM: regardless
of the grid spacing, DA can only consider its immediate
neighbors, while DPM does not have this constraint (see
Fig. 3 and III.2).

As indicated by Fig. 4, the final action values for the
LAP obtained by the NEB, DPM, and EL methods agree
well with the MEP. However, the MEP and LAP are not
necessarily equivalent in general; the MEP can be viewed
as an approximation of the LAP. A detailed discussion on
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FIG. 5. Similar as in Fig. 4 but for the asymmetric camel-
back surface VCB-A(q). For the video illustrating the NEB
determination of both LAP and MEP, see the SM [64].

the conditions for the MEP to be an LAP is contained in
the SM [64]. To see the MEP limitations, we consider an
asymmetric variant of the Camel-Back potential (CB-A)

VCB−A(q) = VCB−S(q) +
1

2
y (17)

where the end points of the local minima are qin =
(1.70,−0.8) and qfin = (−1.70, 0.76). Figure 5 shows
the MEP trajectory which is markedly different from the
LAP solutions and corresponds to an appreciably larger
action integral. Still, the MEP can be used for finding
critical points (minima and saddles) on the surface.

The Müller-Brown potential is a canonical example of
a PES used in theoretical chemistry [66, 74, 75]. The
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FIG. 6. Similar as in Fig. 4 but for the shifted Müller-Brown
surface. The inset shows the LAP pathways close to the initial
point qin. The yellow dashed line shows the vertical. As can
be seen, all paths except for the DPM curve start by moving
to the left of the vertical.

Müller-Brown surface shown in Fig. 6 is defined as

VMB(q) =

4∑
i=1

Aie
ai(x−x0i

)2+bi(x−x0i
)(y−y0i )+ci(y−y0i )

2

,

(18)
where we use the same set of parameters as in
Ref. [74], namely: A = (−200,−100,−170, 15),
a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c =
(−10,−10,−6.5, 0.7), x0 = (1, 0,−0.5,−1), and y0 =
(0, 0.5, 1.5, 1). The MEP follows the bent trajectory that
goes through the critical points: two saddle points and
one local minimum. This trajectory markedly differs
from the LAPs, which are in a rough agreement. The
MB surface highlights a problem with the DPM. As men-
tioned in Sec. III, the DPM can only search a single di-
rection of each coordinate axis of the domain. In the case
of the Muller-Brown surface, the DPM cannot search for
trajectories bending back in the negative-x direction. As
seen in the inset of Fig. 4, the NEB, EL, and DA meth-
ods start their trajectories moving backwards in x from
the initial point qin. The DPM path, on the other hand,
always moves in the positive-x direction. Consequently,
the action integral along the DPM path is slightly larger
than in the other methods.

IV.2. Realistic calculations

To illustrate the performance of the NEB method and
other approaches to the LAP in realistic cases, we car-
ried out nuclear EDF calculations for 232U in two collec-
tive coordinates and 240Pu in three collective coordinates.
In the particle-hole channel we used the Skyrme func-
tional SkM∗ [76], which is often employed in fission stud-
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ies. The particle-particle interaction was approximated
by the mixed density-dependent pairing force [77].

In the case of 232U, we considered two collective co-
ordinates q ≡ (Q20, Q30) and for 240Pu we took three
collective coordinates q ≡ (Q20, Q30, λ2). The axial
quadrupole and octupole moment operators are defined
as in Ref. [78]:

Q̂λ0(r, θ) = Nλ
√

2λ+ 1

4π
rλPλ(cos θ) (19)

where Pλ is the Legendre polynomial, N2 =
√

16π
5 , and

N3 = 1. The collective coordinate λ2 = λ2n+λ2p defined
in Sec. II represents the dynamic pairing fluctuations.
The value of λ2τ= 0 corresponds to static HFB pairing.

As in Ref. [18], to render collective coordinates dimen-
sionless, we use dimensionless coordinates xi defined as

xi =
qi
δqi

, (20)

where δqi are the scale parameters used in determining
numerical derivatives of density matrices in Eq. (2). Here
we took δQ20 = 1b, δQ30 = 1b3/2 and δλ2 = 0.01MeV.

Two dimensional case: SF of 232U

The PES was computed by solving the HFB equations
using the parallel axial solver HFBTHO(v3.00)[79]. The
large stretched harmonic oscillator basis of N = 25 ma-
jor shells was used to guarantee good convergence. We
adopted a 458 × 501 grid with 0 ≤ Q20 ≤ 457 b and
0 ≤ Q30 ≤ 50 b3/2. To apply the NEB method, which
involves local gradient calculations at arbitrary values
q, we interpolate the PES and the inertia tensor on the
mesh. Because the grid is two dimensional, a cubic spline
interpolator suffices. Close to the Q30 = 0 axis, we take
into account the mirror symmetry of the PES by setting
V (−Q30) = V (Q30). Finally, since NEB updates oc-
casionally push an image outside of the computed PES
mesh, we extended the PES to grow exponentially with
the distance outside the mesh, to smoothly push images
back into the evaluated region.

Figure 7 shows the two-dimensional PES of 232U. The
least action fission pathway which goes from the g.s. at
qin=(24 b, 0) to the exit point qfin=(281 b, 37 b3/2) is
calculated using the methods explained in Sec. III. To
select the endpoint qfin, we compute the LAP using DPM
for all points on the OTL, and select the point with the
lowest action integral. This point is then used as the
exit point for the other methods. While NEB does not
require a fixed endpoint in general, we fix the endpoint
here in order to facilitate inter-method comparison. The
MEP path is calculated using the NEB method.

The action integral computed with different methods
is shown in Table II. When computing the action, we
interpolate the paths using a linear spline interpolator,
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FIG. 7. The PES of 232U in the (Q20, Q30) plane calculated
with SkM∗. Solid lines mark the LAPs and MEP obtained
with the constant inertia tensor; dotted lines correspond to
the non-perturbative inertia tensor. The OTL is shown in
white. The blue, orange, purple and black curves represent
the LAPs calculated using the NEB, DPM, EL, and DA meth-
ods, respectively. The green curve is the MEP, which was also
calculated using NEB.

and the action integral is computed using 500 evaluations
along the path. This reduces the differences in the action
that may arise from using a different number of points
along the path (for instance, NEB gives a similar path to
DPM using as few as 30 images). For all paths, we com-
pute the action using the inertia tensor evaluated along
the path. As can be seen, the action values computed
for 232U using different methods agree well, with DA be-
ing the worst performer. As seen in Fig. 7 and Table II
the MEP is very close to the LAP. This is because the
static fission pathway (i.e., MEP) is fairly straight and
the fission valley is well delineated. Note that perfect
agreement is not expected, and in fact was not observed
for the analytic surfaces, either. This is due in part to
the different approximations used in each method — for
DPM and DA, this is the grid spacing; for NEB, this
is the number of images and approximate treatment of
derivatives; and for EL, this is a variety of simplifications
described in Sec. 3 in the SM [64]. Additional variation
in the quality of the interpolator further hampers agree-
ment beyond what is listed.

Three dimensional case: SF of 240Pu

The SF of 240Pu in several collective coordinates was
studied in Ref. [18] where the details pertaining to the
computation, grid size, etc., can be found. Between the
g.s. minimum and the fission isomer (FI), the fission
pathway is affected by triaxial degrees of freedom. Be-
tween the FI and the outer turning surface (OTS), how-
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TABLE II. Action integrals for 232U computed with different
methods. The paths computed using the constant and non-
perturbative inertia tensor are labelled as “con.” and “n.-p.”,
respectively.

NEB-MEP NEB-LAP DPM EL DA

232U con. 174.5 174.2 174.2 174.9 175.8
n.-p. - 173.6 173.3 175.0 178.5

240Pu con. 19.09 18.98 19.21 19.01 22.85
n.-p. - 16.54 16.47 18.18 30.50

ever, the predicted fission trajectory is axial. In this pa-
per, we consider the fission of the FI of 240Pu so the OTS
corresponds to the FI energy.

For three-dimensional tunneling, the system of equa-
tions that must be solved to construct a global spline in-
terpolator is too large for practical applications. Instead,
we use piecewise linear interpolation. The PES at λ2 = 0
for 240Pu shown in Fig. 8 varies very smoothly in the bar-
rier region where the potential energy is larger than the
energy of the FI, and so this interpolation scheme is rea-
sonable.
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FIG. 8. The PES for 240Pu in the space of collective coor-
dinates Q20, Q30 with λ2 = 0. Only the region beyond the
fission isomer is shown. The energy is normalized to the en-
ergy of the fission isomer. The OTL is shown in white. The
MEP (green) practically coincides with the LAPs calculated
with the constant inertia using the NEB (blue), DPM (or-
ange), and EL (purple) methods.

Figure 9 shows the LAPs for 240Pu computed with
the NEB, DPM, and EL methods in three dimensions
(3D). The pathways begin at the FI minimum at
qin = (Q0

20 = 87b, Q0
30 = 0b3/2, λ2 = 0.0) and the

exit point was chosen for DP in the same way as the
232U results before. The NEB endpoint in this case was
allowed to vary according to Eq. 13, better representing
standard procedure for production runs. The exit points

qfin predicted by NEB (185.1 b, 18.4 b3/2, 3.3MeV),
DPM (184.0 b, 18.6 b3/2, 4.8MeV) and EL
(179.8b, 17.7b3/2, 0.0) then differ. When the col-
lective mass is held constant, all methods find very
similar paths in the λ2 = 0.0 plane, which are also
shown in Fig. 8. The paths vary more when the
non-perturbative inertia tensor is used, with the main
difference between the NEB and DPM paths appearing
in the region close to the FI minimum; beyond the
saddle point, both paths are similar.
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FIG. 9. The PES for 240Pu in the collective coordinates Q20,
Q30 and λ2. The 2D cross section at λ2 = 0 shown in Fig. 8 is
indicated. The blue, orange, and purple curves are the LAP,
calculated using the NEB, DPM, and EL methods, respec-
tively. The non-perturbative inertia tensor was used for the
dashed curves. The OTS is indicated by the dark blue contour
surface.

As seen in Table II, the NEB and DPM are in a good
agreement. In general, one would expect a better perfor-
mance from NEB as this method is not constrained to a
grid (this is true in the case of the analytic surfaces dis-
cussed in Sec. IV.1). However, in rare cases, the DPM
produces a slightly lower action than the NEB. In such
cases the NEB converges to an even lower action if is
initialized with the DPM result. This suggests that for
tunneling in more than 2D, a combination of NEB and
DPM might be beneficial.

V. Conclusions

Finding the path that minimizes the action integral can
be extremely challenging since it involves searching over
the space of all continuous paths that fulfill the boundary
conditions. Each method explored in this paper simpli-
fies such task in different ways. DPM and DA project
the PES onto a finite grid and explore decisions in mak-
ing the path between the boundary conditions. In the
EL approach the surface is modified in several ways to
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smooth the relation between initial conditions and the
end point of the trajectory. The NEB method reduces
the original search over continuous path into considering
only piece-wise linear paths, the number of pieces given
by the number of images. It is this simplification that
makes the NEB robust and accurate, since the total ac-
tion now becomes a smooth function of the position of
the images, a function that can straightforwardly be nu-
merically minimized by gradient descent methods.

A significant advantage of the NEB is that it can ac-
commodate any initial positions of the images, which
speeds the convergence appreciably if a good prior guess
of the LAP is provided. Other methods lack for such
incorporation of prior knowledge. Finally, the resolution
of the NEB for a rapidly varying surface can be adjusted
locally by increasing the amount of images or spring con-
stants, while for DPM and DA the entire grid resolution
would have to be increased, giving an appreciable toll on
the computational cost.

For both analytic and realistic potential energy sur-
faces the NEB robustly produces a LAP. In the cases
studied, NEB outperforms the EL and DA methods, and
produces close results to those of the DPM with usually
lower action integral. For many-dimensional tunneling,
initiating the NEB method from the DPM path might be
a winning strategy.

A huge advantage of the NEB over other methods is
that it can efficiently and accurately estimate exit points.
By exploring different initial conditions for the positions
of the images which lead to distinct exit points, one can
use the NEB method to study the phenomenon of mul-
timodal fission. An example of such an application is
shown in video 1 in the SM [64]. Whilst other methods
can find a least-action trajectory for an arbitrary final
point placed on the OTL, as done, e.g., in Refs. [17–23],
they cannot guarantee that this trajectory is stationary.
All such trajectories can be gradually transformed into a
stationary pathway by moving the final point along the
OTL towards the exit point, see Fig. 2.

In this paper we also explored the minimum-energy (or
static) path. We adjusted our NEB algorithm to gener-
ate MEPs, including the determination of local minima
and saddle points. The necessary conditions for an MEP
to also be an LAP are discussed in the SM [64]. Video 2
in the SM [64] illustrates the way the NEB method gen-
erates LAP and MEP.

An important contribution of this work is providing
a beta release of the PyNEB package, a python suite
of codes that implement the NEB algorithm described
in this paper. The package can be found in [65] to-
gether with the respective documentation and code sam-
ples serving as a tutorial for its use. A comprehensive
investigation into the intricacies of the numerical imple-
mentations and performance of the package itself will ac-
company the version 1.0 release.

The NEB approach can be readily paired with accel-
erated DFT calculations, such as the recent applications

of Gaussian process regression to PES emulation [75, 80].
In these works, a Gaussian process is used to emulate the
PES and DFT calculations are only run if the Gaussian
process is uncertain as to the actual PES value. As NEB
is not a grid-based method, it can sensibly be paired with
a Gaussian process emulator that is updated as necessary
while NEB runs. In this way, the LAP can be deter-
mined using far fewer DFT evaluations than is necessary
in DPM.

The ability to determine the exit points is essential for
determining fission fragment yields [54, 55]. The min-
imum action provides information on SF half-lives. In
this context, the NEB method described in this paper is
expected to speed up the global calculations of nuclear
fission for r-process simulations and studies of superheavy
nuclei stability.
•
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