This is the accepted manuscript made available via CHORUS. The article has been published as:

Natural orbitals for the ab initio no-core configuration interaction approach

Patrick J. Fasano, Chrysovalantis Constantinou, Mark A. Caprio, Pieter Maris, and James P.

> Vary

Phys. Rev. C 105, 054301 - Published 2 May 2022
DOI: 10.1103/PhysRevC.105.054301

Natural orbitals for the $a b$ initio no-core configuration interaction approach

Patrick J. Fasano, ${ }^{1}$ Chrysovalantis Constantinou, ${ }^{1,2, *}$
Mark A. Caprio, ${ }^{1}$ Pieter Maris, ${ }^{3}$ and James P. Vary ${ }^{3}$
${ }^{1}$ Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
${ }^{2}$ Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520-8120, USA
${ }^{3}$ Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA

(Dated: March 22nd, 2022)
$A b$ initio no-core configuration interaction (NCCI) calculations for the nuclear many-body problem have traditionally relied upon an antisymmetrized product (Slater determinant) basis built from harmonic oscillator orbitals. The accuracy of such calculations is limited by the finite dimensions which are computationally feasible for the truncated many-body space. We therefore seek to improve the accuracy obtained for a given basis size by optimizing the choice of single-particle orbitals. Natural orbitals, which diagonalize the one-body density matrix, provide a basis which maximizes the occupation of low-lying orbitals, thus accelerating convergence in a configuration-interaction basis, while also possibly providing physical insight into the single-particle structure of the many-body wave function. We describe the implementation of natural orbitals in the NCCI framework, and examine the nature of the natural orbitals thus obtained, the properties of the resulting many-body wave functions, and the convergence of observables. After taking ${ }^{3} \mathrm{He}$ as an illustrative testbed, we explore aspects of NCCI calculations with natural orbitals for the ground state of the p-shell neutron halo nucleus ${ }^{6} \mathrm{He}$.

[^0]${ }_{43}$ the underlying single-particle basis for expanding the many-body wave function. Moreover, ${ }_{44}$ in at least one way, they are qualitatively mismatched to the problem. Notably, as the ${ }_{45}$ solutions to the infinitely-bound harmonic oscillator problem, the oscillator functions fall ${ }_{46}$ off at large distance with Gaussian asymptotics, i.e., $\sim e^{-r^{2} /\left(2 b^{2}\right)}$. However, the nuclear 47 attraction is of finite-range. Consequently, the single-particle wave functions arising in mean${ }_{8}$ field descriptions of the nucleus instead fall off exponentially, i.e., $\sim e^{-\kappa r}$. While a suitable ${ }^{4}$ fall-off can be recovered, out to any finite distance of relevance, by taking a superposition 5_{50} of oscillator functions, to do so may require a large number of oscillator functions (see, e.g., Fig. 4 of Ref. [19]).

We are therefore motivated to look beyond the traditional harmonic oscillator many${ }_{53}$ body basis, to increase the accuracy attainable for a given NCCI problem dimension. In the 54 present work, we explore the improvement which may be obtained by optimizing the choice 55 of underlying orbitals used to construct the basis configurations. While we might simply ${ }_{66}$ prescribe a set of orbitals of some analytic form (e.g., Refs. [20, 21]), in the hopes that these ${ }_{7}$ might provide some benefit relative to the harmonic oscillator orbitals, a more informed s choice can be obtained by first carrying out some preliminary many-body calculation, and ${ }_{9}$ using the resulting information on the many-body wave function for guidance in constructing the orbitals.

In this spirit, the natural orbitals [22 26] have been used extensively in atomic and 62 molecular electron-structure theory [15, 25], and have also found application in the nuclear 3 problem [27-31]. They are constructed in a way intended to reduce the number of anti64 symmetrized product states required for an accurate representation of the many-body wave ${ }_{55}$ function, thereby accelerating the convergence of its description in a configuration interac6 tion basis [32, 33].

Natural orbitals are defined with reference to some many-body state $|\Psi\rangle$ — not necessarily в a single Slater determinant, but a general, correlated many-body state. The corresponding ${ }_{9}$ set of natural orbitals is obtained by diagonalizing the one-body density matrix of $|\Psi\rangle$. The ${ }_{0}$ eigenvectors define the natural orbitals, and the corresponding eigenvalues represent the ${ }_{71}$ mean occupancies of these orbitals within the reference many-body state $|\Psi\rangle$.
${ }_{72}$ In order to find the true natural orbitals for a given nuclear state, say, the ground state, ${ }_{33}$ we would have to have first solved the full many-body problem for this state, thence obtain${ }_{74}$ ing the densities. However, even from an approximate initial solution for the many-body
${ }_{5}$ wave function, which yields approximate densities, we may still obtain approximate natural 76 orbitals. It is these which we may attempt to use in constructing an improved basis for the ${ }_{7}$ many-body calculation.

Here we explore the use of natural orbitals in NCCI calculations. The initial manyو body calculation, providing the densities used to define the natural orbitals, is a traditional so $N_{\max }$-truncated oscillator-basis calculation. The natural orbitals for a subsequent manybody calculation are thus obtained as a unitary transformation on the original oscillator 82 orbitals. In addition to illustrating the convergence properties of the resulting NCCI calcu${ }_{3}$ lations, we attempt to illuminate the properties of the natural orbitals and probe some of 84 the implications for center-of-mass motion.

Preliminary results of the present work were reported in Refs. [34, 35]. Complemen\% tary approaches have since also been explored where natural orbitals for use in ab initio 7 nuclear many-body calculations are obtained from solutions of a spatially-localized twos body (deuteron) problem [36] or from many-body perturbation theory for closed-shell nu9 clei [37, 38]. The implications of natural orbitals for wave function entanglement in NCCI ocalculations have also been examined [39].

Whereas the preliminary results presented in Refs. [34, 35] were based on the earlier ${ }_{92}$ JISP16 interaction [13], the present examples are based on NCCI calculations using the , Daejeon16 internucleon interaction [40]. Relative to JISP16, Daejeon16 has the advantage 94 of providing both faster convergence of calculated observables and improved agreement with ${ }_{55}$ experimental binding and excitation energies 41]. 7 symmetry-adapted natural orbitals (of definite angular momentum and parity) are ex${ }_{88}$ tracted from the density matrix (Sec. II A) and outlining how these are obtained and used ${ }_{9}$ within the NCCI framework (Sec. IIB). Then, to see how the formalism is reflected in ortual NCCI calculations, we take ${ }^{3} \mathrm{He}$ as the simplest nontrivial example: examining the 1 convergence of energy and radius observables for ${ }^{3} \mathrm{He}$ (Sec. III B), inspecting the radial wave 2 functions of the natural orbitals themselves (Sec. IIIB), and diagnosing the center-of-mass ${ }_{03}$ motion of the many-body wave function (Sec. III C). After establishing this baseline, we ${ }^{104}$ explore aspects of NCCI calculations for the neutron halo properties of ${ }^{6} \mathrm{He}$ (Sec. IV).

[^1]3 basis as

$$
\begin{equation*}
\hat{\rho}_{\Psi}=\sum_{\alpha \beta}|\alpha\rangle\langle\Psi| a_{\beta}^{\dagger} a_{\alpha}|\Psi\rangle\langle\beta| . \tag{1}
\end{equation*}
$$

${ }_{134}$ Here, the labels α and β specify the single-particle basis states, e.g., for the nuclear problem, ${ }_{135}$ they may represent the magnetic substates $\alpha=\left(n_{a} l_{a} j_{a} m_{\alpha}\right)$ of $n l j$-orbitals [45], while a_{α}^{\dagger} and ${ }_{36} a_{\alpha}$ represent the creation and annihilation operators, respectively, for a nucleon in state $|\alpha\rangle$. 139 familiar canonical form for a density operator as a real linear combination of projection operators (e.g., Ref. 46]),

$$
\begin{equation*}
\hat{\rho}_{\Psi}=\sum_{i} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|, \tag{2}
\end{equation*}
$$

${ }_{41}$ where the λ_{i} are the corresponding real eigenvalues for the $\left|\phi_{i}\right\rangle$ (we rely here on the obser${ }_{12}$ vation that $\hat{\rho}_{\Psi}$ is a self-adjoint operator). 145 from (1) as

$$
\begin{equation*}
\rho_{\alpha \beta}=\langle\Psi| a_{\beta}^{\dagger} a_{\alpha}|\Psi\rangle . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
n_{\leq q}=\sum_{i=1}^{q} \rho_{i i} \leq \sum_{i=1}^{q} \lambda_{i}=n_{\leq q}^{\prime} \tag{4}
\end{equation*}
$$

${ }_{55}$ That is, for any q, the natural orbitals constitute the basis which maximizes the total mean 6 occupation of the first q single-particle states [32].

The "naive" or generic natural orbitals as defined above, by simply diagonalizing ρ without further precautions, fail to take into account the symmetry properties of the system. Despite their name, these natural orbitals are simply an independent set of single-particle

[^2]214 for the present problem, angular momentum (and parity).
We construct a rotational scalar one-body density matrix $\bar{\rho}$ in terms of the spherical tensor ${ }_{216}$ scalar coupled product [45, 50] of the creation and annihilation operators for an orbital $]^{3}$ ${ }_{17}$ This rotational scalar one-body density matrix has elements

$$
\begin{equation*}
\bar{\rho}_{a b}=\left\langle\Psi_{J M}^{P}\right|\left[a_{b}^{\dagger} \tilde{a}_{a}\right]_{00}\left|\Psi_{J M}^{P}\right\rangle \tag{5}
\end{equation*}
$$

218 or, equivalently, in terms of the original, uncoupled one-body density matrix elements defined ${ }_{219}$ in (3), $\bar{\rho}_{a b}=\delta_{j_{a} j_{b}} \hat{\jmath}_{a}^{-1} \sum_{m} \rho_{\left(n_{a} l_{a} j_{a} m\right)\left(n_{b} l_{b} j_{b} m\right)}$, where we adopt the notation $\hat{\jmath} \equiv(2 j+1)^{1 / 2}$.
${ }_{220}$ This scalar density matrix $\bar{\rho}$ is now simply a matrix with respect to orbitals (labeled by ${ }_{221} a$), rather than their magnetic substates (labeled by α). The matrix elements $\bar{\rho}_{a b}$ must be 222 independent of the magnetic substate M of the reference state, since they are given in (5) 3 as the matrix element of a scalar operator in the many-body space $\underbrace{4}_{-}$

Nonzero matrix elements $\bar{\rho}_{a b}$ only arise between orbitals of the same angular momentum $225\left(j_{a}=j_{b}\right)$, parity, and thus (as argued above) orbital angular momentum $\left(l_{a}=l_{b}\right)$. That is, 226 the scalar one-body density matrix is block diagonal in (l, j). Symmetry-adapted natural ${ }_{227}$ orbitals, obtained as eigenvectors of $\bar{\rho}$, may thus be found by diagonalizing independently 2 within each (l, j) subspace. The resulting natural orbitals are related to the underlying 229 orbitals simply by a unitary transformation

$$
\begin{equation*}
\left|\phi_{n^{\prime} l j m}\right\rangle=\sum_{n} A_{n n^{\prime}}^{(l, j)}|n l j m\rangle \tag{6}
\end{equation*}
$$

230 on the radial wave functions $R_{n l j}$ within each (l, j) space separately.
The total number operator, summed over all magnetic substates of an orbital, is $\hat{N}_{a}=$ ${ }_{232} \hat{\jmath}_{a}\left[a_{a}^{\dagger} \tilde{a}_{a}\right]_{00}$. Thus, the diagonal matrix elements $\bar{\rho}_{a a}$ of the scalar density matrix are propor${ }_{233}$ tional to the mean occupancy of the orbital a,

$$
\begin{equation*}
n_{a}=\hat{\jmath}_{a} \bar{\rho}_{a a}, \tag{7}
\end{equation*}
$$

${ }^{3}$ The creation and annihilation operators for the magnetic substates $\alpha=\left(n_{a} l_{a} j_{a} m_{\alpha}\right)$ of an orbital $a=$ $\left(n_{a}, l_{a}, j_{a}\right)$ together constitute spherical tensors a_{a}^{\dagger} and \tilde{a}_{a} with components $\left(a_{n_{a} l_{a} j_{a}}^{\dagger}\right)_{m_{\alpha}}=a_{n_{a} l_{a} j_{a} m_{\alpha}}^{\dagger}$ and $\left(\tilde{a}_{n_{a} l_{a} j_{a}}\right)_{m_{\alpha}}=(-)^{j_{a}+m_{\alpha}} a_{n_{a} l_{a} j_{a},-m_{\alpha}}$, respectively [45].
${ }^{4}$ Alternatively, the vestigial reference to the M quantum number in 5 can be eliminated by recourse to the Wigner-Eckart theorem [50], which gives $\bar{\rho}_{a b}=\hat{J}^{-1}\left\langle\Psi_{J}^{P}\left\|\left[a_{b}^{\dagger} \tilde{a}_{a}\right]_{0}\right\| \Psi_{J}^{P}\right\rangle$, where $\hat{J}=(2 J+1)^{1 / 2}$. ${ }^{247}$ in general obtained as a linear combination of many such antisymmetrized product states, ${ }_{28}$ involving different choices of occupied m-substates for each orbital, as required to couple 9 the angular momenta of the individual nucleons to yield resultant total angular momentum so J [49] ${ }^{6}$ Transformation to the symmetry-adapted natural orbitals serves to reveal if a ref51 erence state can be represented, not as a single antisymmetrized product state, but rather 52 as a pure shell-model configuration, for some choice of basis orbitals. More generally, it ${ }_{253}$ serves to allow the expansion of the many-body wave function in terms of fewer low-lying 254 configurations.

[^3]harmonic oscillator. The nuclear Hamiltonian
\[

$$
\begin{equation*}
H=T_{\mathrm{intr}}+V+a N_{\mathrm{c} . \mathrm{m} .}, \tag{8}
\end{equation*}
$$

\] 275 represents the number of oscillator quanta contributed by the i th particle. This number ${ }_{276}$ may be reexpressed as $N=N_{0}+N_{\text {ex }}$, where N_{0} is the number of quanta in the lowest filling ${ }_{277}$ of oscillator shells permitted by the Pauli principle for the given nucleus, so that $N_{\text {ex }}$ then 278 represents the number of excitation quanta relative to this lowest filling.

${ }_{279}$ The $N_{\max }$ truncation scheme restricts the basis configurations to those with $N_{\text {ex }} \leq N_{\max }$, 280 that is, limiting the total number of excitation quanta. Thus, $N_{\max }=0$ yields a traditional

[^4] ${ }_{311}$ ing excitation of the intrinsic wave function are cleanly separated from what would otherwise ${ }_{312}$ be a thicket of spurious excitations in the calculated spectrum (see Fig. 8 of Ref. [20] for an

313 ${ }_{33}$ body truncation schemes ${ }^{8}$ are also feasible, e.g., in which orbitals are weighted by measures

[^5]other than the number of oscillator quanta [70] or in which the basis configurations are selected through more sophisticated importance criteria [71].

Regardless of basis choice, the essential inputs into the construction of the Hamiltonian matrix in the NCCI basis are the two-body matrix elements of this Hamiltonian (assuming the internucleon interaction V is two-body, or three-body matrix elements, if the interaction is three-body, etc.). These must be obtained for the given choice of orbitals. The rest of the Hamiltonian construction follows from the standard treatment of n-body operators in second quantization [67]. The eigenproblem is thus cast as a large, sparse matrix diagonalization problem, which is solved numerically using, e.g., the Lanczos algorithm [49, 72].

One-body densities are readily extracted from the resulting wave functions. These densities are commonly used for the computation of one-body observables, such as matrix elements of electromagnetic operators for moments and transitions [45], and as inputs to reaction calculations [73]. More precisely, while the electromagnetic operators, taken properly in the center-of-mass frame, involve two-body or higher contributions, they may effectively be replaced by one-body operators when the center-of-mass motion has the harmonic-oscillator $0 s$ form noted above [18, 74]. The scalar densities (5), in particular, are also the necessary ingredient for deducing natural orbitals appropriate to the NCCI framework (Sec. II A).

Our procedure is thus to carry out an initial NCCI calculation in a traditional $N_{\max }$ truncated oscillator basis. One of the calculated eigenstates, say, the ground state, is taken as the reference state for generating natural orbitals, and the relevant scalar densities are extracted.

To see which oscillator orbitals contribute to the resulting natural orbitals, note that, in an $N_{\text {max }}$-truncated NCCI basis, the configurations involve nucleons reaching orbitals with $N_{\max }$ quanta above the valence shell. The active orbitals thus have $N \leq N_{v}+N_{\max }$, where N_{v} is the number of oscillator quanta for the valence shell (e.g., $N_{v}=0$ for an " s-shell" nucleus, or $N_{v}=1$ for a " p-shell" nucleus). The calculated scalar densities reflect only these active orbitals, and the natural orbitals resulting from diagonalizing the resulting density
antisymmetrized product states. It should be noted that symmetry-adapted coupling schemes for NCCI calculations, based on $\mathrm{SU}(3)$ [8] or $\mathrm{Sp}(3, \mathbb{R})$ [69] symmetry groups, are subject to truncation schemes of a different nature, as these schemes involve a change of basis, before truncation, to correlated many-body basis states. 6ody basis consists of antisymmetrized products of the single-particle orbitals, a change of basis on the single-particle space inherently induces a change of basis on the many-body product space.

However, if all antisymmetrized products are retained, as in the FCI truncation, while the

[^6]0 basis itself may change, the many-body space spanned by this basis is invariant under such 401 a rearrangement of the single-particle space. Thus, an FCI calculation based on the original 402 oscillator orbitals, or on natural orbitals obtained by a unitary transformation of these, ${ }_{403}$ yield identical results. No benefit in convergence is achieved. The truncated many-body 404 spaces obtained before and after transformation to natural orbitals thus only differ when 5 the set of antisymmetrized product states constituting the many-body basis is truncated in 406 a nontrivial fashion, that is, to a proper subspace of the FCI space (as compared in Sec. III A ${ }_{7}$ below). The dimension of the $N_{\max }$ truncated space and the enveloping FCI space involving 8 the same orbitals (dotted line) for ${ }^{3} \mathrm{He}$ may be compared in Fig. 1 .

An obvious, though not necessarily optimal, choice of many-body truncation scheme, as 0 adopted here, is to simply carry over the formal structure of the $N_{\max }$ truncation. The ${ }_{11}$ natural orbitals are already identified by ($n l j$) labels, where, again, n reflects the chosen 2 ordering by decreasing occupancy in the reference state. For each of these orbitals, we may simply define a weighting label $N=2 n+l$ (as in Refs. [20, 37]), although this label no ${ }_{4}$ longer has any direct meaning in terms of oscillator quanta. We then proceed as before, 5 by treating this label as an additive quantity, thereby defining $N=\sum_{i=1}^{A} N_{i}$ for a many6 body configuration, and imposing a nominal $N_{\max }$ truncation on the configurations. This 7 truncation no longer has any direct connection to the oscillator excitation quanta in the 8 system, nor does it guarantee exact center-of-mass separability. However, conveniently for ${ }_{9}$ purposes of comparison, the dimension of the problem is exactly as it was for the original $N_{\max }$-truncated oscillator basis (Fig. 1). ${ }_{428}$ means that essentially converged results can be obtained, as a reference against which the

Results for the ground state energy eigenvalue of ${ }^{3} \mathrm{He}$ are shown in Fig. 2, first as obtained in the oscillator basis [Fig. 2(a)], then as obtained in the natural orbital basis [Fig. 2(b)]. For these illustrations, we take the Daejeon16 internucleon interaction [40, which is based on the two-body part of the Entem-Machleidt (EM) $\mathrm{N}^{3} \mathrm{LO}$ chiral EFT interaction [12], sub3 sequently softened via a similarity renormalization group (SRG) transformation [76] to enhance convergence and then adjusted via a phase-shift equivalent transformation to provide 6 better description of nuclei with $A \leq 16$. Calculations are obtained using the many-body code MFDn [77, 78], along with codes for the transformation of two-body matrix elements from the oscillator basis to the natural-orbital basis [79], and no Lawson term [see (88] is included in the Hamiltonian for the calculations in the natural-orbital basis. We also show the experimental binding energy [80] for comparison.

The eigenvalues obtained in the oscillator-basis calculations [Fig. 2(a)] follow a familiar convergence pattern (e.g., Refs. [58, 76]). Each curve represents calculations at fixed $N_{\text {max }}$ (from 8 to 16), for varying $\hbar \omega$, and has a variational minimum with respect to $\hbar \omega$, which arises in the vicinity of $\hbar \omega=12.5 \mathrm{MeV}$ for this particular nuclide, state, and interaction. Increasing $N_{\max }$, at given $\hbar \omega$, strictly expands the space in which the calculation is carried out, and is thus guaranteed by the variational principle to monotonically lower the ground state energy. Convergence towards the true eigenvalue, as would be obtained in the full, untruncated many-body space, is signalled by insensitivity to the basis truncation $N_{\text {max }}$ (compression of successive curves), as well as local insensitivity to the oscillator parameter $\hbar \omega$ (flattening of the curves). For the ground state energy, this manifests as compression of the curves against a variational floor.

For each of these oscillator-basis calculations, the resulting one-body densitites yield a set 3 of approximate natural orbitals, which define the natural orbital basis, which we then use for a subsequent many-body calculation, as outlined in Sec. IIB. For the resulting energies [Fig. 2(b)], each curve again represents calculations at fixed $N_{\max }$, now in the sense of the nominal $N_{\max }$ trucation scheme for natural orbitals (Sec. II B).

Comparing the overall shapes of the curves, of E vs. $\hbar \omega$, in Fig. 2, we may observe that the natural-orbital basis provides an overall flattening, or reduced dependence on $\hbar \omega$, in the vicinity of the variational minimum. However, for a more direct quantitative comparison of the results obtained with the two bases, the approximately exponential nature of the
convergence with $N_{\max }[76,81,82]$ means that comparison can be carried out more readily on a logarithmic scale. To provide a meaningful zero point for the logarithmic scale, we must take the residual with respect to a "converged" reference value $E_{\text {ref }}$, which we obtain from higher- $N_{\max }$ calculations (for $N_{\max } \approx 24$, the energy in the vicinity of the variational minimum is converged to the keV scale). The energies, thus recast as residuals, are shown on a logarithmic scale in Fig. 2(c), for the results obtained both with the oscillator (filled circles) and natural-orbital (open squares) bases. To provide clear separation in the plot, only the $N_{\max }=8,14$, and 16 results are shown.

At lower $N_{\max }$, as exemplified by the $N_{\max }=8$ results (dotted lines) in Fig. 2 (c), there is little distinction between the results obtained in oscillator and natural-orbital bases. This is perhaps to be expected. In the limit of $N_{\max }=0$, the bases for the oscillator and subsequent natural-orbital bases are strictly identical. More generally, a low- $N_{\max }$ underlying oscillator calculation provides little opportunity for high- N orbitals to appear in the densities and thus natural orbitals.

At higher $N_{\max }$, as exemplified by the $N_{\max }=14$ and 16 results (dashed and solid lines, respectively) in Fig. 2(c), one way of comparing the results is measure the advance obtained by the transformation to natural orbitals in terms of the equivalent increase in $N_{\text {max }}$ required with a traditional oscillator basis to achieve the same advance. In this sense, for calculations in the vicinity of the variational minimum, the energies obtained with natural orbitals are approximately "one step" in $N_{\max }$ ahead of those obtained with oscillator orbitals. Away from the variational minimum, the advantage provided by the natural orbitals is more marked, reflecting the comparative $\hbar \omega$-independence already noted for these calculation in the natural-orbital basis.

Alternatively, we may assess the results of the change of basis in terms of the fraction by which it reduces the residual, i.e., how far it brings us towards the true value which would be obtained in the full, untruncated space. On a logarithimic scale, a given downward vertical shift represents a given fractional reduction. Comparing the $N_{\max }=16$ results obtained in the two bases, we may observe an approximately uniform downward shift, across the range of $\hbar \omega$, representing a reduction in the residual by a factor of ~ 3 (a somewhat greater reduction is attained with the natural-orbital basis for $\hbar \omega \approx 10 \mathrm{MeV})$.

However, there is an obvious bound on the improvement which may be expected from the transformation to the natural-orbital basis derived from an $N_{\text {max }}$-truncated oscillator

525 ${ }_{547}$ various curves for different $N_{\max }$ (from 10 to 16) cross in the vicinity of $\hbar \omega=10 \mathrm{MeV}$. (Such 548 crossings have been suggested, purely heuristically, as a means of estimating the true radius as it would be obtained in the full, untruncated space [57, 86, 87], though in practice this prescription must be treated with caution [21].)

The subsequent calculations in the natural-orbital basis (open squares) do not share such 552 a sharply-defined crossing point. Rather, they more clearly demonstrate the traditional 553 hallmarks of convergence, namely, flattening and compression of the curves. For instance, the ${ }_{554} N_{\text {max }}=16$ curve varies by $\lesssim 0.04 \mathrm{fm}$ over the range of $\hbar \omega$ from 10 MeV to 20 MeV , while the ${ }_{555} N_{\max }=14$ and 16 curves differ by less than $\lesssim 0.01 \mathrm{fm}$ over this same range. As a consequence ${ }_{556}$ of this flattening, by the high end of the $\hbar \omega$ range shown $(\hbar \omega=25 \mathrm{MeV})$, the calculations ${ }_{585} 15 \mathrm{MeV}$ [Fig. 5(b)], and 25 MeV [Fig. 5(c)]. The 0 s radial function for the underlying ${ }_{586}$ oscillator basis is also shown for comparison (thick gray line). Note that the natural orbital
${ }_{587}$ obtained from an $N_{\max }=0$ oscillator calculation is still simply this oscillator function, as the ${ }_{593}$ of the radial wave function appears to change comparatively little for $N_{\max }$ beyond about 4 594 or 6 dependence of the natural orbitals may similarly be expected to arise from such sensitivity ω_{0} to the $N_{\text {max }}$ and $\hbar \omega$-dependence of the calculted intrinsic structure. This dependence is ${ }_{601}$ expected to ultimately disappear with increasing $N_{\max }$, as the intrinsic structure converges.

However, recall (Sec. IIB) that even in the large $N_{\max }$ limit the natural orbitals for the ${ }_{003}$ NCCI problem are not uniquely defined. Rather, they may be expected to have an inherent ${ }^{4} \hbar \omega$-dependence arising from the center-of-mass zero-point motion of the reference many${ }^{605}$ body state, which varies with the $\hbar \omega$ of the underlying oscillator basis. Thus, it should ${ }_{606}$ not be surprising that, even at high $N_{\max }$, the natural orbitals obtained from underlying 607 oscillator-basis calculations with different $\hbar \omega$ do not coincide. Compare the solid curves in the different panels of Fig. 5. These clearly do not coincide, with the location of the 69 maximum moving to smaller radius with increasing $\hbar \omega$.

To characterize how the radial wave functions for the natural orbitals at high $N_{\max }$ (solid ${ }_{611}$ lines) differ qualitatively from those of the underlying oscillator functions (thick gray lines), ${ }_{612}$ in Fig. 5, we shall find it convenient to separately consider the central region of the wave 13 function and its large-radius tail (porous though this distinction may be). Let us first ${ }_{14}$ consider the central region, that is, around the peak in the wave function.

For the $0 s_{1 / 2}$ natural orbital obtained from the reference wave function calculated in 6 an $\hbar \omega=15 \mathrm{MeV}$ oscillator basis [Fig. 5(b)], there is little apparent change going from ${ }_{617}$ the underlying oscillator function to the natural orbital. For the natural orbital obtained ${ }_{618}$ in an $\hbar \omega=9 \mathrm{MeV}$ oscillator basis [Fig. 5(a)], which has a longer oscillator length [recall
$b \propto(\hbar \omega)^{-1 / 2}$], the peak shifts inward, to lower radius, relative to the underlying oscillator function, though not all the way to the peak location for $\hbar \omega=15 \mathrm{MeV}$ [Fig. 5(b)]. Alternatively, for the natural orbital obtained in an $\hbar \omega=25 \mathrm{MeV}$ oscillator basis, which has a shorter oscillator length [Fig. 5(c)], the peak shifts outward, to larger radius, relative to the underlying oscillator function, though again not all the way to the peak location for for $\hbar \omega=15 \mathrm{MeV}$.

Either way, a portion of the effect of transforming from the underlying oscillator basis to natural orbitals is to "dilate" the radial function to more closely resemble a 0 s oscillator function of $\hbar \omega \approx 15 \mathrm{MeV}$. The effect is to moderate the change in characteristic length scale for the natural orbitals, as the $\hbar \omega$ for the underlying oscillator basis is varied, as compared to the change in oscillator length for the underlying oscillator orbitals themselves. This reduced $\hbar \omega$ dependence of the orbitals (at least in the central region) presumably contribues to the reduction in $\hbar \omega$ dependence found for the observables in the calculations based on the natural-orbital basis (Sec. III A).

A simple and intuitive explanation for this behavior of the orbitals is that the natural orbitals are the result of a compromise between the intrinsic structure and center-of-mass motion embodied within the reference wave function. The intrinsic structure is described well by nucleons occupying orbitals resembling an $\hbar \omega=15 \mathrm{MeV} 0 s_{1 / 2}$ oscillator orbital, regardless of underlying oscillator basis. But the center-of-mass motion of the reference wave function for $\hbar \omega=9 \mathrm{MeV}$ is well described by nucleons in an $\hbar \omega=9 \mathrm{MeV} 0 s_{1 / 2}$ oscillator orbital. The resulting $0 s_{1 / 2}$ natural orbital lies somewhere inbetween. Similarly, the center-of-mass motion of the reference wave function for $\hbar \omega=25 \mathrm{MeV}$ is well described by nucleons in an $\hbar \omega=25 \mathrm{MeV} 0 s_{1 / 2}$ oscillator orbital, and the resulting $0 s_{1 / 2}$ natural orbital lies somewhere inbetween.

Turning now to the tail region of the orbital, the natural question is the extent to which the natural orbitals take on the exponential asymptotics anticipated from the mean-field description of the nucleus. Recall that these asymptotics are expected to be particularly important for the convergence of long-distance observables (Sec. III A).

The asymptotic behavior is more readily apparent if we replot the radial probability densities on a logarithimic scale, as in Fig. 6. A tail with exponential asymptotics appears as a straight line on such a plot, while a tail with the Gaussian asymptotics characteristic of the oscillator functions appears as downward-curving parabola, as seen for the underlying

651
oscillator radial functions (grey lines). We may observe that the tail "grows in", with the inclusion of additional oscillator functions, so that exponential asymptotics (i.e., straightline falloff on the log plot) are gradually established, extending to larger radii with increasing $N_{\max }$. (One may compare to Fig. 4 of Ref. [19], for a classic illustration of an exponential tail growing in for a Hartree-Fock orbital, or to Fig. 1 of Ref. [21], for the schematic example of a Woods-Saxon orbital expanded in an oscillator basis [45].) The emergence of exponential asymptotics is most clearly visible for the $\hbar \omega=15 \mathrm{MeV}$ natural orbitals [Fig. 6(b)], where the progression from the underlying oscillator orbital to the true, high- $N_{\max }$ natural orbital is not complicated by a signficant radial shift in the peak location.

NCCI calculations for ${ }^{3} \mathrm{He}$ in a natural-orbital basis involve, of course, not just the notionally occupied $0 s_{1 / 2}$ orbital, but also basis configurations incorporating the higher, notionally unoccupied, natural orbitals, as well. Some of the low-lying natural orbitals are shown in Fig. 7, for both protons (short dashed lines) and neutrons (long dashed lines). Here we follow the analogy to an oscillator basis, by focusing on natural orbitals with nlj quantum numbers corresponding to the traditional $N=0(s), 1(p)$, and $2(s d)$ oscillator shells. We focus on the natural orbitals obtained from the $\hbar \omega=15 \mathrm{MeV}$ oscillator-basis calculation at $N_{\max }=16$, so that the proton $0 s_{1 / 2}$ orbital here corresponds to the highest- $N_{\max }$ case shown in Fig. 5(b). Again, the underlying oscillator orbital is shown for comparison (thick gray lines).

Let us first consider the "occupations" (7) of these orbitals in the reference wave function, which we know from the corresponding eigenvalues of the scalar density matrix (Sec. II A). (Such occupations provide only an estimate of the occupation in any subsequent manybody calculation using the natural-orbital basis.) The occupations are shown graphically at the top of each panel in Fig. 7, but at this scale are indistinguishable from those of the traditional shell model description (in which $n_{0 s_{1 / 2}}=1$ for the neutrons, $n_{0 s_{1 / 2}}=2$ for the protons, and all other orbitals are unoccupied). More precisely, for the present illustrative calculation, we have $n_{0 s_{1 / 2}} \approx 0.96$ for the neutrons and $n_{0 s_{1 / 2}} \approx 1.92$ for the protons. The next most occupied orbitals are the p-shell orbitals and the $1 s_{1 / 2}$ orbital of the $s d$ shell, with mean occupations of $\sim 10^{-2}$, while occupations fall off towards $\sim 10^{-3}$ and below for higher orbitals.

Overall, in Fig. 7, the general impression is that the natural orbitals simply "tweak" the oscillator radial functions, with modest shifts to the peak location and overall shape (again,

683 684 and neutron structure in the reference many-body calculation for ${ }^{3} \mathrm{He}$ is manifest in the 685 686 687 688 689 ${ }_{692}$ remain localized in the region of high particle density [25]. This is to be contrasted with 69 the unoccupied (virtual) Hartree-Fock orbitals, which instead provide an expansion of the 694 continuum.

It is thus worth elaborating on an essential difference between natural orbitals and Hartree-Fock orbitals (e.g., Ref. [42]). The unoccupied natural orbitals are well-defined, ${ }_{97}$ from the densities of the reference many-body calculation. In contrast, the basic variational 88 condition for the Hartree-Fock ground state focuses entirely on optimizing the occupied or9 bitals, so as to minimize the energy in a single Slater determinant. The unoccupied orbitals ore entirely unconstrained by this variational condition (except insofar as they must span an 101 orthogonal complement to the occupied orbitals). The iterative calculational procedure for 702 obtaining Hartree-Fock orbitals introduces a single-particle eigenproblem (involving Hartree ${ }_{20}$ and exchange potentials), intended to yield the occupied orbitals. While the set of solu704 tions can be extended to provide a definition (one particular choice) for the unoccupied ${ }^{205}$ Hartree-Fock orbitals, it is not at all obvious that these unoccupied Hartree-Fock orbitals 706 should be particularly well-suited for efficiently expanding the many-body wave functions in 707 a configuration-interaction basis.

709 A factorized and well-controlled center-of-mass motion is important, as discussed in ${ }_{710}$ Sec. IIB, if the results of the many-body calculation are to be of practical use, beyond 711 limited calculations for ground-state observables. Recall that the $N_{\max }$-truncated oscillator 22 basis is special, in that the many-body wave functions resulting from NCCI calculations ${ }_{731} \hbar \omega_{\text {c.m. }}$ taken for the center-of-mass motion:

$$
\begin{align*}
N_{\text {c.m. }}\left(\hbar \omega_{\text {c.m. }}\right) & =\mathbf{c}_{\text {c.m. }}^{\dagger} \cdot \mathbf{c}_{\text {c.m. }} \\
& =\frac{1}{2}\left(\hbar \omega_{\text {c.m. }}\right)^{-1} \frac{(\hbar c)^{2}}{A\left(m_{N} c^{2}\right)} K^{2}+\frac{1}{2}\left(\hbar \omega_{\text {c.m. } .}\right) \frac{A\left(m_{N} c^{2}\right)}{(\hbar c)^{2}} R^{2}-\frac{3}{2} \tag{9}
\end{align*}
$$

${ }_{732}$ where $\mathbf{c}_{\mathrm{c} . \mathrm{m} \text {. }}^{\dagger}$ and $\mathbf{c}_{\mathrm{c} . \mathrm{m} \text {. }}$ are the center-of-mass ladder operators (see Sec. F. 3 of Ref. [18] for ${ }_{733}$ definitions), $K^{2}=\left|\mathbf{k}_{\text {c.m. }}\right|^{2}$ is the squared magnitude of the center-of-mass momentum vector ${ }_{734}$ or, more precisely, wave vector, where $\mathbf{p}_{\text {c.m. }}=\hbar \mathbf{k}_{\text {c.m. }}$, and $R^{2}=\left|\mathbf{x}_{\text {c.m. }}\right|^{2}$ is the squared ${ }_{35}$ magnitude of the center-of-mass coordinate vector [18]. Taking the expectation value of 6 the expression in (9), we see that $\left\langle N_{\text {c.m. }}\left(\hbar \omega_{\text {c.m. }}\right)\right\rangle$ depends on the many-body wave function ${ }_{37}$ only through the two expectation values $\left\langle K^{2}\right\rangle$ and $\left\langle R^{2}\right\rangle$, which must then be taken in linear ${ }_{38}$ combination, weighted by the appropriate numerical coefficients from (9). These expectation ${ }^{59}$ values are readily evaluated within standard NCCI many-body codes, since R^{2} and K^{2} are 740 simply scalar two-body operators, like the Hamiltonian itself.
with this basis factorize into intrinsic and center-of-mass parts, and the center-of-mass part can be selected to have pure oscillator $0 s$ zero-point motion in the center-of-mass coordinate. Such exact factorization is no longer guaranteed, and no longer to be expected, if we move away from the $N_{\max }$-truncated oscillator basis. However, approximate factorization may arise, with or without the persuasion of a Lawson term in the Hamiltonian. Let us therefore diagnose the center-of-mass motion which arises in our present calculations with the natural-orbital basis, and how it depends upon the choice of underlying oscillator basis.

For many purposes, we might be satisfied by factorization involving an arbitrary center-of-mass wave function. For instance, angular momentum selection rules which allow the intrinsic electromagnetic operators to be replaced with one-body operators in practical calculations [18] require factorization with an s-wave center-of-mass wave function, as $\left|\Psi_{J}\right\rangle=$ $\left[\left|\Psi_{J}^{\text {intr }}\right\rangle \times\left|\Psi_{L_{\text {c.m. }}=0}^{\mathrm{c.m}}\right\rangle\right]_{J}$, but not specifically an oscillator $0 s$ wave function. But, in practice, we do not have a good way to measure how well a many-body wave function factorizes, unless the factorization specifically involves $0 s$ harmonic-oscillator motion.

Specifically, the expectation value of the center-of-mass number operator $N_{\text {c.m. }}$ allows us to measure deviations from pure $0 s$ center-of-mass motion [20, 61 63]. Such $0 s$ center-of-mass motion then incidentally implies factorization as $\left|\Psi_{J}\right\rangle=\left[\left|\Psi_{J}^{\text {intr }}\right\rangle \times\left|\Psi_{0 s}^{\text {c.m. }}\right\rangle\right]_{J}$. The definition of a center-of-mass harmonic-oscillator number operator depends upon the oscillator parameter 735
${ }_{72}$ harmonic-oscillator $0 s$ center-of-mass motion, corresponding to the given oscillator length. A ${ }_{743}$ nonvanishing $\left\langle N_{\text {c.m. }}\right\rangle$ measures, or at least places a limit upon, the deviation from such pure ${ }_{4}$ factorized $0 s$ motion $\sqrt[10]{10}$ In particular, the total contribution to the norm from components 745 with nonzero excitation of the center-of-mass degree of freedom is $P\left(N_{\text {c.m. }}>0\right) \leq\left\langle N_{\text {c.m. }}\right\rangle$. 746 However, as emphasized in Ref. [61], simply evaluating $\left\langle N_{\text {c.m. }}(\hbar \omega)\right\rangle$, with $\hbar \omega_{\text {c.m. }}$ taken 747 as the $\hbar \omega$ of the underlying oscillator basis, will, in general, overestimate the center-of${ }_{748}$ mass contamination. Even if it so happens that the wave function obtained in an NCCI 749 calculation, in some natural-orbital basis, factorizes (or approximately factorizes), with 0 s 50 oscillator motion for the center of mass, there is no reason to expect that the oscillator 1 parameter for this center-of-mass motion will match that of the oscillator basis used in 752 the original NCCI calculation which yielded the reference state from which the natural ${ }_{753}$ orbitals were derived. Rather, we must search for the value of $\hbar \omega_{\text {c.m. }}$ in (9) which minimizes ${ }_{754}\left\langle N_{\text {c.m. }}\left(\hbar \omega_{\text {c.m. }}\right)\right\rangle$. This value, denoted by $\hbar \tilde{\omega}_{\text {c.m. }}$ (or simply $\hbar \tilde{\omega}$ in Ref. 61]), is readily extracted ${ }_{755}$ from (9) in analytic form, as

$$
\begin{equation*}
\hbar \tilde{\omega}_{\mathrm{c} . \mathrm{m} .}=\frac{(\hbar c)^{2}}{A\left(m_{N} c^{2}\right)}\left(\frac{\left\langle K^{2}\right\rangle}{\left\langle R^{2}\right\rangle}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

${ }_{756}$ and the corresponding minimized measure of the center-of-mass contamination, $\tilde{N}_{\text {c.m. }} \equiv$ ${ }_{757}\left\langle N_{\text {c.m. }}\left(\hbar \tilde{\omega}_{\text {c.m. }}\right)\right\rangle$, is given by

$$
\begin{equation*}
\tilde{N}_{\text {c.m. }}=\left(\left\langle K^{2}\right\rangle\left\langle R^{2}\right\rangle\right)^{1 / 2}-\frac{3}{2} . \tag{11}
\end{equation*}
$$

With this in mind, let us now examine the center-of-mass motion for the ${ }^{3} \mathrm{He}$ ground 759 state wave functions obtained in a natural-orbital basis. The values of $\left\langle N_{\text {c.m. }}\left(\hbar \omega_{\text {c.m. }}\right)\right\rangle$, as 760 we sweep $\hbar \omega_{\text {c.m. }}$ in (9), are shown in Fig. 8. Each curve is simply determined analytically, ${ }_{761}$ by (9), taking the calculated $\left\langle K^{2}\right\rangle$ and $\left\langle R^{2}\right\rangle$ for the corresponding wave function. We again ${ }_{762}$ (as in Fig. 5) take $\hbar \omega=9 \mathrm{MeV}$ [Fig. 8(a)], 15 MeV [Fig. 8(b)], and 25 MeV [Fig. 8(c)] as ${ }_{763}$ representative values for the oscillator parameter of the underlying oscillator basis (namely, 764 below, near, and above the variational energy minimum, respectively).
${ }^{10}$ In general, the many-body state $|\Psi\rangle$ may be decomposed into components with different eigenvalues of $N_{\text {c.m. } .}:|\Psi\rangle=\alpha_{0}\left|\Psi_{N_{\text {c.m. }}=0}\right\rangle+\alpha_{1}\left|\Psi_{N_{\text {c.m. } .}=1}\right\rangle+\alpha_{2}\left|\Psi_{N_{\text {c.m. } .}=2}\right\rangle+\cdots$. Then $\left\langle N_{\text {c.m. }}.\right\rangle=\sum_{\nu} \alpha_{\nu}^{2} \nu$, which vanishes if and only if $|\Psi\rangle=\left|\Psi_{N_{\text {c.m. }}=0}\right\rangle$. This is simply the variational principle for the nonnegative-definite operator $N_{\text {c.m. }}$. 776 again, converging to a value $\sim 10^{-3}$. The optimal $\hbar \omega_{\text {c.m. }}$. for recognizing this approximate ${ }_{777}$ factorization is $\hbar \tilde{\omega}_{\text {c.m. }} \approx 9.4 \mathrm{MeV}$, slightly above the $\hbar \omega$ of the underlying oscillator basis ${ }_{778}(\hbar \omega=9 \mathrm{MeV})$. ${ }_{795}$ dependence of $\hbar \tilde{\omega}_{\text {c.m. }}$. on $\hbar \omega$ [Fig. 9 (a)] is nearly linear, but of shallower slope than the ${ }_{96}$ reference line $\hbar \tilde{\omega}_{\text {c.m. }}=\hbar \omega$ (dashed diagonal line). The oscillator parameter $\hbar \tilde{\omega}_{\text {c.m. }}$. for the ${ }_{814}$ tally provides an upper bound on the breakdown of center-of-mass factorization. Nonzero ${ }_{815}\left\langle N_{\text {c.m. }}\right\rangle$ could reflect that factorization is broken, but it could also simply mean that we have ${ }_{816}$ factorization which is of a more difficult form to recognize, since the center-of-mass motion ${ }_{817}$ is not simply described by a $0 s$ oscillator wave function.
${ }_{818}$ Furthermore, for the present many-body calculations in the natural-orbital basis, recall 819 that we have included no Lawson center-of-mass term (Sec. II) in the Hamiltonian. For ${ }_{820}$ now, we are thus identifying the center-of-mass motion which emerges spontaneously when ${ }_{821}$ we diagonalize a translationally-invariant intrinsic Hamiltonian, restricted to the particular 822 truncated many-body space of these calculations. Starting from this baseline, one may then ${ }_{823}$ explore the effect of including a Lawson term, which is expected to refine the center-of-mass 824 motion, at some cost to the convergence of the intrinsic motion (see Ref. [35] for initial ${ }_{825}$ examples of such calculations). Here one might more naturally choose an $\hbar \omega_{\text {c.m. }}$. parameter ${ }_{826}$ for the Lawson term which reinforces the center-of-mass motion as it already spontaneously ${ }_{827}$ emerges in the natural-orbital basis $\left(\hbar \omega_{\text {c.m. }}=\hbar \tilde{\omega}_{\text {c.m. }}\right)$ rather than simply matching the 828 oscillator parameter the underlying oscillator basis $\left(\hbar \omega_{\text {c.m. }}=\hbar \omega\right)$. 54 obtained in the oscillator basis for $\left.N_{\max }=14\right)$. The $\hbar \omega$ dependence of the calculated energy 555 is, again, much reduced in the natural-orbital basis, so the improvement of the natural6 orbital results over the oscillator-basis results becomes more marked as we move away from ${ }_{857}$ the variational energy minimum and towards the extreme values of $\hbar \omega$ shown in Fig. 10.

IV. NATURAL ORBITALS AND HALO STRUCTURE: ${ }^{6} \mathrm{He}$

A. Convergence of observables

For a halo nucleus, such as ${ }^{6} \mathrm{He}$, the connection between natural orbitals and the singleparticle structure of the nucleus should be particularly revealing. The natural orbitals occupied by halo nucleons may be expected to reflect the large-distance behavior which generates the halo. The ground state of ${ }^{6} \mathrm{He}$ is understood to be clusterized, consisting of a ${ }^{4} \mathrm{He}($ or α) core plus two weakly-bound neutrons. This leads to a spatially-extended neutron distribution [88, 89], with possible correlations in the motion of the halo neutrons [39, 90 92]. The weak binding is reflected in a small two-neutron separation energy ($\approx 0.97 \mathrm{MeV}$), while the extended spatial structure is reflected in a marked increase in r.m.s. radius observables from ${ }^{4} \mathrm{He}$ to ${ }^{6} \mathrm{He}$. Having already explored the basic properties of NCCI calculations in a natural-orbital basis for ${ }^{3} \mathrm{He}$ (Sec. III), we will take these as a baseline for comparison for ${ }^{6} \mathrm{He}$. Let us first consider the calculated energy and radius observables for ${ }^{6} \mathrm{He}$, with a natural-orbital basis, then (in the subsequent Sec. IIIB below) the radial wave functions of the orbitals themselves.

The ${ }^{6} \mathrm{He}$ ground state energy is shown in Fig. 10, as calculated with oscillator (solid circles) and natural-orbital (open squares) bases. Here we consider truncations through $N_{\max }=14$, again with the Daejeon16 interaction. The experimental binding energy [80] is

The energy obtained with natural orbitals, in Fig. 10, is consistently lower than that obtained in the underlying oscillator basis, and is thus, by the variational principle, closer to the true energy in the full many-body space. In the vicinity of the variational minimum, the energy obtained with natural orbitals is approximately "one step" in $N_{\max }$ ahead of that

Whereas for ${ }^{3} \mathrm{He}$ we could benchmark the calculated energies against an effectively con-
${ }_{859}$ verged value obtained at much higher $N_{\max }$, as in Fig. 2 (c), we no longer have this luxury ${ }_{860}$ for ${ }^{6} \mathrm{He}$, where the growth in dimension with $N_{\max }$ is much more rapid (Fig. 1). We must 861 simply compare the calculations obtained with oscillator and natural-orbital bases, and for 862 different $N_{\max }$, against each other.

The overall scale of the change in calculated energy with $N_{\max }$ for ${ }^{6} \mathrm{He}$ is much larger 864 than for ${ }^{3} \mathrm{He}$. In the vicinity of the variational energy minimum, the change in calculated ${ }_{865}$ energy with each step in $N_{\max }$ is $\lesssim 0.1 \mathrm{MeV}$ (Fig. 10), compared to steps of $\approx 0.001 \mathrm{MeV}$ ${ }_{866}$ for comparable $N_{\max }$ in ${ }^{3} \mathrm{He}$ (Fig. 22). This difference might be taken to reflect the greater ${ }_{867}$ complication in reproducing a higher- A system in general, as well as the challenging halo ${ }_{868}$ structure of ${ }^{6} \mathrm{He}$ in particular.

869
However, in judging convergence, what is important is not only the size of the change 0 between values calculated with successive $N_{\max }$, but how this change decreases with $N_{\max }$. ${ }_{871}$ A convenient baseline against which to compare the convergence of the ground state energy ${ }_{872}$ is the hypothesis of exponential convergence with respect to $N_{\max }$,

$$
\begin{equation*}
E\left(N_{\max }\right)=E_{\infty}+a \exp \left(-c N_{\max }\right) \tag{12}
\end{equation*}
$$

${ }_{873}$ where E_{∞} is then the full-space value [57]. The calculated values approach the full-space ${ }_{874}$ value in a geometric progression with successive steps in $N_{\max }$. For exponential convergence, ${ }_{875}$ the residual $\delta E\left(N_{\max }\right) \equiv E\left(N_{\max }\right)-E_{\infty}$ of the calculated energy relative to the full-space ${ }_{876}$ value, considered above for ${ }^{3} \mathrm{He}$ (Sec. III A), is given by $\delta E\left(N_{\max }\right)=a \exp \left(-c N_{\max }\right)$, and 77 thus decreases by a constant factor $e^{-2 c}$ with each (even) step in $N_{\max }$. On a logarithmic s plot of the residual, as we considered for ${ }^{3} \mathrm{He}$ in Fig. 2(c), this appears as equally spaced 879 steps with respect to $N_{\max }$, as was indeed approximately noted for ${ }^{3} \mathrm{He}$ (Sec. III A).

For ${ }^{6} \mathrm{He}$, we have no converged value with respect to which to take residuals, and thus ${ }_{881}$ cannot generate a logarithmic plot of residuals as in Fig. 2(c). Nonetheless, we can still 882 compare successive calculated values of the energy, for successive truncations $N_{\max }$, and ${ }_{3}$ consider their difference $\Delta E\left(N_{\max }\right)=E\left(N_{\max }\right)-E\left(N_{\max }-2\right)$. For exponential convergence, 84 the ratio of successive steps

$$
\begin{equation*}
\eta\left(N_{\max }\right) \equiv \frac{E\left(N_{\max }\right)-E\left(N_{\max }-2\right)}{E\left(N_{\max }-2\right)-E\left(N_{\max }-4\right)}, \tag{13}
\end{equation*}
$$

${ }_{885}$ is simply a constant $\eta=e^{-2 c}$, independent of $N_{\max }$. E.g., $\eta=0.5$ corresponds to a step size 6 in E which is halved with each successive step in $N_{\max }$, and a smaller value of η corresponds ${ }_{911}$ simple relation to the charge radius. It is important to keep in mind that r_{p}, as calculated 12 here and as accessed in experiment, is defined relative to the common center of mass of the ${ }^{13}$ protons and neutrons (see, e.g., Refs. [6, [18, 21, [89]). In the cluster halo description of ${ }^{6} \mathrm{He}$, 14 the α recoils against the halo neutrons, which consequently displaces the center of mass of 915 ${ }_{916}$ increase in r_{p} going from ${ }^{4} \mathrm{He}$ to ${ }^{6} \mathrm{He}$. (There may also be contributions from modifications ${ }_{917}$ to the structure of the α particle itself, or "core polarization" 855.) Experimentally, the ${ }_{98}$ increase in r_{p} from $1.462(6) \mathrm{fm}$ for ${ }^{4} \mathrm{He}$ to $1.934(9) \mathrm{fm}$ for ${ }^{6} \mathrm{He}$ [85, 93 , 94] is taken as a 944 the natural-orbital basis. This shift is perhaps not surprising given the larger radial extent of ${ }_{945}$ the structure being described. These two crossing points again occur at comparable values 946 for r_{n}, in the range $r_{n} \approx 2.6 \mathrm{fm}-2.7 \mathrm{fm}$. (In conjunction with the above value for r_{p}, this ${ }_{947}$ suggests $r_{m} \approx 2.4 \mathrm{fm}-2.5 \mathrm{fm}$.) The highest $N_{\text {max }}$ curves for the natural orbital calculations ${ }_{948}$ develop a flat "shoulder", varying by $\lesssim 0.05 \mathrm{fm}$ over several steps in $\hbar \omega$. This range of ${ }_{949}$ calculated r_{n} values is comparable with the range $r_{n} \approx 2.5 \mathrm{fm}-3.0 \mathrm{fm}$ suggested by the ${ }_{950}$ range of experimental matter radii (discussed above) in conjuction with r_{p}.

The transformation to a natural-orbital basis clearly does not definitively solve the problem of convergence for the r.m.s. radius observables. Nonetheless, it does contribute to taming the convergence behavior for these observables.

B. Natural orbitals

Turning to the natural orbitals themselves, the radial wave functions for the lowest natural orbitals are shown in Fig. 13, for a high- $N_{\max }$ calculation $\left(N_{\max }=14\right)$ with $\hbar \omega$ near the variational energy minimum ($\hbar \omega=15 \mathrm{MeV}$). The orbitals shown again correspond, by their $n l j$ labels, to the oscillator orbitals through the $s d$ shell, as in the analogous figure above for ${ }^{3} \mathrm{He}$ (Fig. 7). Radial functions are shown for both protons (short dashed lines) and neutrons (long dashed lines), and the oscillator radial functions are again shown for comparison (thick gray lines).

The mean occupancies of these natural orbitals, indicated by the bars at top right in each panel of Fig. 13, are not far from what would be expected in a traditional shell model picture. The s shell is almost filled, with an occupancy of 1.81 for protons and 1.86 for neutrons. Most of the remaining occupancy, out of a total occupancy of 2 for the protons and 4 for the neutrons, lies in the p shell. For the neutrons, in particular, the $0 p_{3 / 2}$ orbital, which would be the expected orbital for the two valence neutrons in an extreme noninteracting shell model picture, naturally enough has a mean occupancy of 1.81 , while the $0 p_{1 / 2}$ orbital accounts for a mean occupancy of 0.21 . By contrast, the $1 s_{1 / 2}$ orbital has a mean occupation of <0.05. Thus, the halo neutrons are decisively p-shell nucleons. The occupancies for the low-lying natural orbitals are higher than for the corresponding oscillator orbitals in the underlying calculation, but only marginally so: the increase in occupancy is by ≈ 0.16 for the neutron $p_{3 / 2}$ orbital, but only at the level of ≈ 0.01 for the remaining s-shell and p-shell orbitals, for both protons and neutrons.

The $0 s_{1 / 2}$ natural orbitals appear virtually unchanged, in Fig. 13 , relative to the underlying oscillator orbital, for both protons and neutrons. This is consistent with an unmodified α "core". However, to examine the large-distance behavior, we turn to logarithmic plots, shown in Fig. 14. Intriguingly, while both the proton and neutron netural orbitals have linear tails on the logarithmic plot, indicating exponential fall-off, the decay constants differ, with a slower fall-off (longer tail) for the neutron orbital.

The $0 p_{3 / 2}$ orbital is of course of special interest, as the orbital "occupied" by the halo 2 neutrons. The peak of the probability distribution, in the central region (Fig. 13), shifts ${ }_{3}$ only marginally outward in the radial coordinate, on the scale of $\approx 0.1 \mathrm{fm}$. But the tail 4 is noticeably extended even viewed on a linear scale. This is confirmed as a shallow exponential fall-off when viewed on a logarithmic scale (Fig. 14). In contrast, the peak for the "unoccupied" proton $0 p_{3 / 2}$ orbital moves to smaller radius, by a comparable amount, and the tail similarly is retracted (Fig. 13), with a much steeper exponential fall-off (Fig. 14). Similar observations hold for the $0 p_{1 / 2}$ orbital, which, as noted above, is partially occupied by the valence neutrons.

The $s d$-shell orbitals are notionally "unoccupied" orbitals for both the protons and neutrons. The mean occupations of these orbitals are each $\lesssim 0.05$. The proton orbitals move 2 radially inward, relative to the oscillator orbital, both in terms of peak location and tail ${ }_{3}$ extent (Fig. 13). For the neutrons, the behavior is less consistent. The second peak of the $1 s_{1 / 2}$ orbital, as well as the peak of the $0 d_{5 / 2}$ orbital, both move markedly outwards, by ${ }_{995} \approx 1 \mathrm{fm}$, and the tails of these orbitals are even more exaggeratedly extended than for the 996 neutron p-shell orbitals. Yet the neutron $0 d_{3 / 2}$ orbital has a behavior which closely resembles 997 that of the corresponding proton orbital, in the central region at least. Asymptotically, the 998 proton orbitals have similar exponential tails, with faster decay than the neutron orbitals 999 (Fig. 14).

For a "core" orbital, the proton $0 s_{1 / 2}$ orbital, we explore the dependence on the $\hbar \omega$ and $1001 N_{\max }$ of the reference calculation in Fig. 15. The sensitivity of the natural orbital to the 1002 spectator $0 s$ motion of the center of mass degree of freedom is similar to that already seen 1003 for this same orbital in ${ }^{3} \mathrm{He}$, discussed in Sec. IIIB. Once again, convergence is rapidly 1004 reached with increasing $N_{\max }$ for the reference oscillator-basis calculation, while the shape 1005 of this converged natural orbital is dependent upon the $\hbar \omega$ of the underlying oscillator1006 basis calculation, which determines the $\hbar \omega_{\text {c.m. }}$ of the center-of-mass zero-point motion. In ${ }_{1007}{ }^{6} \mathrm{He}$ (Fig. 15), the peak location for the natural orbital depends on the $\hbar \omega$ of the reference ${ }_{1008}$ calculation less strongly than for ${ }^{3} \mathrm{He}$ (Fig. 5), especially at low $\hbar \omega$.

1009 Then, for the principal "halo" orbital, the neutron $0 p_{3 / 2}$ orbital, the $\hbar \omega$ and $N_{\text {max }}$ depen1010 dence is similarly explored in Fig. 16, now on a logarithmic scale. (The peak location has 1011 a similar dependence to that noted above for the proton $0 s_{1 / 2}$ orbital.) The $\hbar \omega=9 \mathrm{MeV}$ 1012 oscillator basis [Fig. 16(a)], with its comparatively long oscillator length, provides the best

1013 support in the tail region, and thus the fastest realization of a region of exponential decay 1014 (again, indicated by a straight line on the logarithmic plot). In constrast, the $\hbar \omega=25 \mathrm{MeV}$ 1015 basis [Fig. 16(c)] yields the slowest grow-in of the exponential tail.
1016 Finally, there is the question of the center-of-mass motion which emerges in these cal1017 culations for ${ }^{6} \mathrm{He}$ in a natural-orbital basis. We apply the same diagnostics for ${ }^{6} \mathrm{He}$, shown 1018 in Fig. 17, as considered earlier for ${ }^{3} \mathrm{He}$ in Sec. IIIC. That is, starting from the natural 1019 orbitals obtained from a reference oscillator basis calculation of given $\hbar \omega$, we carry out the 1020 many-body calculation for ${ }^{6} \mathrm{He}$, then evaluate the center-of-mass $\left\langle R^{2}\right\rangle$ and $\left\langle K^{2}\right\rangle$ observables. ${ }_{1021}$ From these, we deduce the "optimal" value of the $\hbar \omega_{\text {c.m. }}$ parameter for center-of-mass mo1022 tion, $\hbar \tilde{\omega}_{\text {c.m. }}$, such that the expectation value $\left\langle N_{\text {c.m. }}\right\rangle$ of the center-of-mass number operator ${ }_{1023}$ assumes its minimum value $\tilde{N}_{\text {c.m. }}$.
1024 Comparing the ${ }^{6} \mathrm{He}$ results for the center-of-mass diagnostics (Fig. 17) to the ${ }^{3} \mathrm{He}$ results ${ }_{1025}$ (Fig. 94, a few features stand out. The dependence of both $\hbar \tilde{\omega}_{\text {c.m. }}$ [Fig. 17(a)] and $\tilde{N}_{\text {c.m. }}$ ${ }_{1026}$ [Fig. 17(b)] on the reference basis parameters $\hbar \omega$ and $N_{\max }$ is generally smoother for ${ }^{6} \mathrm{He}$ ${ }_{1027}$ than for ${ }^{3} \mathrm{He}$. The zig-zagging irregularities of Fig. 9 are no longer in evidence.
${ }_{1028}$ The oscillator parameter $\hbar \tilde{\omega}_{\text {c.m. }}$. for the center-of-mass motion [Fig. 17(a)] again matches 1029 that of the underlying oscillator basis for the natural orbitals in the vicinity of $\hbar \omega=10 \mathrm{MeV}$ 1030 to 12.5 MeV . However, the $\hbar \omega$ dependence of $\hbar \tilde{\omega}_{\text {c.m. }}$ is less steep, above this point, for ${ }^{6} \mathrm{He}$ ${ }_{1031}$ than for ${ }^{3} \mathrm{He}$ and, indeed, is continuing to become shallower with increasing $N_{\max }$. ${ }_{1032}$ Furthermore, $\tilde{N}_{\text {c.m. }}$ [Fig. 17 (b)] is comparatively independent of $\hbar \omega$. By $N_{\text {max }}=14, \tilde{N}_{\text {c.m }}$. 1033 has decreased to $\approx 10^{-3}$ over most of the $\hbar \omega$ range shown, and it continues to decrease with ${ }_{1034}$ increasing $N_{\max }$. Thus, in short, for practical purposes, a near-pure harmonic-oscillator $0 s$ 1035 center-of-mass motion is uniformly obtained in the many-body calculations for ${ }^{6} \mathrm{He}$ in the 1036 natural-orbital basis.

V. CONCLUSION

1038 The nuclear many-body system is highly correlated, and thus inherently requires many 1039 antisymmetrized product states (Slater determinants) for its accurate description. No choice 1040 of single-particle states can completely obviate the need for superposing antisymmetrized ${ }_{1041}$ product states in representing a correlated system. Nonetheless, a judicious choice of single1042 particle basis can accelerate the convergence of the description of the many-body wave

1043

\qquad

1047 1054 which is only an approximation to the true solution of the many-body problem (as it would 1055 be obtained in an untruncated space). This reference state is represented in terms of or1056 bitals from a truncated single-particle space, which limits the portion of the single-particle 1057 space which the natural orbitals can sample. Moreover, the many-body space in which the ${ }_{1058}$ reference state is calculated is then subjected to a nontrivial truncation (e.g., by $N_{\max }$), 1059 which may be expected to further restrict the fidelity of the reference state found therein 1060 and, specifically, the representation of high-lying orbitals in the scalar density obtained from 1061 this reference state.

1062 Furthermore, even if the reference state could be found exactly, and its natural orbitals 1063 deduced exactly, one-body densities obtained from a laboratory-frame reference state are not 1064 uniquely defined by the intrinsic structure. Rather, they reflect some spectator center-of1065 mass motion arbitrarily superposed on this intrinsic structure. The natural orbitals obtained 1066 from these densities are then used in a many-body calculation which, although intended 1067 simply to reproduce the intrinsic structure of interest, in practice must yield some possibly 1068 complicated combination of intrinsic and center-of-mass motion.

Nonetheless, changing to a many-body basis constructed from natural orbitals does per1070 mit an NCCI calculation to probe portions of the many-body space which were not acces1071 sible in the original reference calculation. If the initial calculation is in an $N_{\text {max }}$-truncated 1072 harmonic oscillator basis, as here, then the calculation in a natural orbital basis brings in 1073 highly-excited oscillator configurations which were beyond the limit of the initial calculation.

We find that the transformation from harmonic oscillator orbitals to natural orbitals

1075

 1077 observation (e.g., Fig. 15) already explains the relative insensitivity of calculated energies

1078

 1079 as one varies $\hbar \omega$, the transformation to natural orbitals simply undoes this variation. Such 1080 dilation, in itself, merely recovers the results of a harmonic oscillator basis chosen with 1081 optimal length scale, rather than improving on it.1082 More substantially, though, the transformation to natural orbitals provides genuine mod1083 ifications to the shape of the radial wave functions. Notably, the artificial Gaussian fall-off of 1084 the oscillator functions is modified to more closely resemble the exponential fall-off physically 1085 expected from the finite range of the nuclear interaction (e.g., Fig. 14). These differences 1086 can account for the improvements over the results obtained, even with an optimal choice of ${ }_{1087} \hbar \omega$, using the harmonic oscillator basis.

1088 In the present work, where we retain the convenient but simpleminded "nominal $N_{\max }$ " 1089 truncation scheme (Sec. IIB) for the many-body basis generated from the natural orbitals, 1090 we find improvements by about one step in $N_{\max }$ over the oscillator-basis calculations. (Al1091 though illustrated here for the Daejeon16 interaction, similar results are found with other 1092 interactions, e.g., in the preliminary study [34, 35] with JISP16.) While this improvement 1093 is incremental, it is nonetheless welcome. The computational cost of a second calculation 1094 (with natural orbitals) in a space of the same dimension as the underlying reference calcula1095 tion (with oscillator orbitals) is typically far less than that of performing a new calculation 1096 in a space of higher $N_{\max }$, which typically entails an order-of-magnitude increase in dimen1097 sion (Fig. 1), and correspondingly larger increase in memory demands and computational 1098 load 95].

1099 However, the present exploration is also intended to provide a baseline for understanding 1100 more sophisticated many-body calculations based on natural orbitals derived from NCCI ${ }_{1101}$ reference calculations. Here we reiterate that the eigenvalues of the density matrix provide 1102 information on the "importance" of orbitals, which could ostensibly be used to good effect ${ }_{1103}$ in defining a weighting scheme for the many-body truncation. Moreover, natural orbitals ${ }_{1104}$ provide a reasonable starting point [37] for hybrid many-body calculations which incorporate 1105 truncated configuration-interaction bases for portions of the calculation, e.g., in-medium ${ }_{1106}$ NCSM [96] and perturbatively-improved NCSM 97] calculations.

ACKNOWLEDGMENTS

 1111 comments on the manuscript. This material is based upon work supported by the U.S. De1112 partment of Energy, Office of Science, under Award Numbers DE-FG02-95ER-40934, DE-FG02-91ER-40608, DE-SC0018223 (SciDAC4/NUCLEI), and DE-FG02-87ER40371. This 1114 research used computational resources of the University of Notre Dame Center for Research 1115 Computing and of the National Energy Research Scientific Computing Center (NERSC), a 1116 U.S. Department of Energy, Office of Science, user facility supported under Contract DE1117 AC02-05CH11231.[1] P. Navrátil, J. P. Vary, and B. R. Barrett, Properties of ${ }^{12} \mathrm{C}$ in the $a b$ initio nuclear shell model, Phys. Rev. Lett. 84, 5728 (2000).
[2] S. C. Pieper, R. B. Wiringa, and J. Carlson, Quantum Monte Carlo calculations of excited states in $A=6-8$ nuclei, Phys. Rev. C 70, 054325 (2004).
[3] T. Neff and H. Feldmeier, Cluster structures within fermionic molecular dynamics, Nucl. Phys. A 738, 357 (2004).
[4] G. Hagen, D. J. Dean, M. Hjorth-Jensen, T. Papenbrock, and A. Schwenk, Benchmark calculations for ${ }^{3} \mathrm{H},{ }^{4} \mathrm{He},{ }^{16} \mathrm{O}$, and ${ }^{40} \mathrm{Ca}$ with ab initio coupled-cluster theory, Phys. Rev. C 76, 044305 (2007).
[5] S. Quaglioni and P. Navrátil, Ab initio many-body calculations of nucleon-nucleus scattering, Phys. Rev. C 79, 044606 (2009).
[6] S. Bacca, N. Barnea, and A. Schwenk, Matter and charge radii of ${ }^{6} \mathrm{He}$ in the hypersphericalharmonics approach, Phys. Rev. C 86, 034321 (2012).
[7] N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma, and T. Otsuka, New-generation Monte Carlo shell model for the K computer era, Prog. Exp. Theor. Phys. 2012, 01A205 (2012).
[8] T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek,

1135
${ }_{1137}$ [9] B. R. Barrett, P. Navrátil, and J. P. Vary, Ab initio no core shell model, Prog. Part. Nucl. 1138 Phys. 69, 131 (2013).
${ }_{1139}$ [10] S. Baroni, P. Navrátil, and S. Quaglioni, Unified ab initio approach to bound and unbound ${ }^{1140}$ states: No-core shell model with continuum and its application to ${ }^{7} \mathrm{He}$, Phys. Rev. C 87, 034326 (2013).
${ }_{1142}$ [11] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Accurate nucleon-nucleon potential with 1143 charge-independence breaking, Phys. Rev. C 51, 38 (1995).

1144 [12] D. R. Entem and R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at fourth 1145 order of chiral perturbation theory, Phys. Rev. C 68, 041001(R) (2003).

1146 [13] A. M. Shirokov, J. P. Vary, A. I. Mazur, and T. A. Weber, Realistic nuclear Hamiltonian: $A b$ 147 exitu approach, Phys. Lett. B 644, 33 (2007).

1148 [14] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Modern theory of nuclear forces, Rev. 1149 Mod. Phys. 81, 1773 (2009).

1150 [15] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electron-Structure Theory (Wiley, Chichester, 2000).
${ }_{1152}$ [16] M. Moshinsky and Y. F. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood 1153 Academic Publishers, Amsterdam, 1996).

1154 [17] J. P. Elliott and T. H. R. Skyrme, Centre-of-mass effects in the nuclear shell-model, Proc. R. 1155 Soc. London A 232, 561 (1955).
${ }_{1156}$ [18] M. A. Caprio, A. E. McCoy, and P. J. Fasano, Intrinsic operators for the translationally1157 invariant many-body problem, J. Phys. G 47, 122001 (2020).
${ }_{1158}$ [19] K. T. R. Davies, S. J. Krieger, and M. Baranger, A study of the Hartree-Fock approximation as applied to finite nuclei, Nucl. Phys. 84, 545 (1966).

1160 [20] M. A. Caprio, P. Maris, and J. P. Vary, The Coulomb-Sturmian basis for the nuclear many1161 body problem, Phys. Rev. C 86, 034312 (2012).
${ }_{1162}$ [21] M. A. Caprio, P. Maris, and J. P. Vary, Halo nuclei ${ }^{6} \mathrm{He}$ and ${ }^{8} \mathrm{He}$ with the Coulomb-Sturmian basis, Phys. Rev. C 90, 034305 (2014).

1164 [22] P.-O. Löwdin, Quantum theory of many-particle systems. I. Physical interpretations by means 1165 of density matrices, natural spin-orbitals, and convergence problems in the method of config-

1168 [24] P.-O. Löwdin and H. Shull, Natural orbitals in the quantum theory of two-electron systems,

1170 [25] E. R. Davidson, Properties and uses of natural orbitals, Rev. Mod. Phys. 44, 451 (1972).
1171 [26] C. Mahaux and R. Sartor, Single-particle motion in nuclei, Adv. Nucl. Phys. 20, 1 (1991).
${ }_{1172}$ [27] G. A. Lalazissis, S. E. Massen, and C. P. Panos, Systematic study of the effect of short range
${ }_{1185}$ [33] D. H. Kobe, Natural orbitals, divergences, and variational principles, J. Chem. Phys. 50, 5183
${ }_{1189}^{[}$[35] Ch. Constantinou, Natural orbitals for the no-core configuration interaction approach, Ph.D.
${ }_{1195}$ [38] J. Hoppe, A. Tichai, M. Heinz, K. Hebeler, and A. Schwenk, Natural orbitals for many-body
urational interaction, Phys. Rev. 97, 1474 (1955).
[23] H. Shull and P.-O. Löwdin, Natural spin orbitals for helium, J. Chem. Phys. 23, 1565 (1955). Phys. Rev. 101, 1730 (1956). correlations on the occupation numbers of the shell model orbits in light nuclei, Phys. Rev. C 46, 201 (1992).
[28] M. V. Stoitsov, A. N. Antonov, and S. S. Dimitrova, Natural orbital representation in nuclei, Phys. Rev. C 47, R455 (1993).
[29] M. V. Stoitsov, A. N. Antonov, and S. S. Dimitrova, Natural orbital representation and shortrange correlations in nuclei, Phys. Rev. C 48, 74 (1993).
[30] I. J. Shin, Y. Kim, P. Maris, J. P. Vary, C. Forssén, J. Rotureau, and N. Michel, Ab initio no-core solutions for ${ }^{6} \mathrm{Li}, \mathrm{J}$. Phys. G 44, 075103 (2017).
[31] Y. Jaganathen, R. M. Id Betan, N. Michel, W. Nazarewicz, and M. Płoszajczak, Quantified Gamow shell model interaction for psd-shell nuclei, Phys. Rev. C 96, 054316 (2017). schemes, Rev. Mod. Phys. 32, 328 (1960). (1969).
[34] Ch. Constantinou, M. A. Caprio, J. P. Vary, and P. Maris, Ab initio properties of the halo nucleus ${ }^{6} \mathrm{He}$ in a natural orbital basis, Nucl. Sci. Techniques 28, 179 (2017). thesis, University of Notre Dame (2017).
[36] G. Puddu, Many-body calculations with deuteron based single-particle bases and their associated natural orbits, Physica Scripta 93, 065301 (2018). calculations, Phys. Rev. C 99, 034321 (2019). expansion methods, Phys. Rev. C 103, 014321 (2021).

1197 [39] C. Robin, M. J. Savage, and N. Pillet, Entanglement rearrangement in self-consistent nuclear 1198 structure calculations, Phys. Rev. C 103, 034325 (2021).

1199 [40] A. M. Shirokov, I. J. Shin, Y. Kim, M. Sosonkina, P. Maris, and J. P. Vary, N3LO NN ${ }_{1200}$ interaction adjusted to light nuclei in $a b$ exitu approach, Phys. Lett. B 761, 87 (2016).

1201 [41] P. Maris, I. J. Shin, and J. P. Vary, Ab initio structure of p-shell nuclei with chiral effective National University, Khabarovsk, Russia, 2019) p. 168.
${ }_{1205}$ [42] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980).
1206 [43] A. J. Coleman and V. I. Yukalov, Reduced Density Matrices, Lecture Notes in Chemistry, ${ }_{1207} \quad$ Vol. 72 (Springer, Berlin, 2000).

1208 [44] R. McWeeny and W. Kutzelnigg, Symmetry properties of natural orbitals and geminals I. construction of spin- and symmetry-adapted functions, Int. J. Quantum. Chem. 2, 187 (1968).

1210 [45] J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, Berlin, 2007).
1211 [46] J. J. Sakurai, Modern Quantum Mechanics, rev. ed., edited by S. F. Tuan (Addison-Wesley, 1212 Reading, Massachusetts, 1994).
${ }^{1213}$ [47] P. A. M. Dirac, Note on exchange phenomena in the Thomas atom, Math. Proc. Cambridge $1214 \quad$ Phil. Soc. 26, 376 (1930).

1215 [48] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. 1216 Acad. Sci. USA 35, 652 (1949).

1217 [49] R. R. Whitehead, A. Watt, B. J. Cole, and I. Morrison, Computational methods for shell1218 model calculations, Adv. Nucl. Phys. 9, 123 (1977).

1219 [50] A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd ed., Investigations in Physics $1220 \quad$ No. 4 (Princeton University Press, Princeton, New Jersey, 1960).
1221 [51] D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World 1222 Scientific, Singapore, 2010).
${ }_{1223}$ [52] H. A. Bethe and M. E. Rose, Kinetic energy of nuclei in the Hartree model, Phys. Rev. 51,
$1224 \quad 283$ (1937).
1225 [53] P. J. Brussaard and P. W. M. Glaudemans, Shell-Model Applications in Nuclear Spectroscopy 1226 (North-Holland Publishing Company, Amsterdam, 1977).
${ }_{1227}$ [54] D. H. Gloeckner and R. D. Lawson, Spurious center-of-mass motion, Phys. Lett. B 53, 313

1228
1229 [55] R. D. Lawson, Theory of the Nuclear Shell Model (Clarendon Press, Oxford, 1980).
1230 [56] A. M. Lane, Reduced widths of individual nuclear energy levels, Rev. Mod. Phys. 32, 519 1231 (1960).
${ }_{1232}$ [57] S. K. Bogner, R. J. Furnstahl, P. Maris, R. J. Perry, A. Schwenk, and J. Vary, Convergence ${ }^{1233}$ _ in the no-core shell model with low-momentum two-nucleon interactions, Nucl. Phys. A 801,
${ }_{1241}$ [61] G. Hagen, T. Papenbrock, and D. J. Dean, Solution of the center-of-mass problem in nuclear 1242 structure calculations, Phys. Rev. Lett. 103, 062503 (2009), G. Hagen, T. Papenbrock, D. J. 1243 Dean, and M. Hjorth-Jensen, Ab initio coupled-cluster approach to nuclear structure with 1244 modern nucleon-nucleon interactions, Phys. Rev. C 82, 034330 (2010).

1245 [62] R. Roth, J. R. Gour, and P. Piecuch, Center-of-mass problem in truncated configuration ${ }_{1246} \quad$ interaction and coupled-cluster calculations, Phys. Lett. B 679, 334 (2009).

1247 [63] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tsukiyama, The in-medium ${ }^{1248}$ similarity renormalization group: A novel ab initio method for nuclei, Phys. Rep. 621, 165 1249 (2016).
${ }^{1250}$ [64] H. Shull and P.-O. Löwdin, Role of the continuum in superposition of configurations, J. Chem. $1251 \quad$ Phys. 23, 1362 (1955).

1252 [65] E. J. Weniger, Weakly convergent expansions of a plane wave and their use in Fourier integrals, 1253 J. Math. Phys. 26, 276 (1985).

1254 [66] A. E. McCoy and M. A. Caprio, Algebraic evaluation of matrix elements in the Laguerre function basis, J. Math. Phys. 57, 021708 (2016).
${ }^{1256}$ [67] J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Redwood 1257 City, CA, 1988).
${ }_{1258}$ [68] T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Utsuno, and J. P. Vary, Benchmarks of the full
${ }_{1263}$ [70] J. P. Vary, P. Maris, P. J. Fasano, and M. A. Caprio, Perspectives on nuclear structure and
${ }_{1265}$ [71] R. Roth and P. Navrátil, Ab initio study of ${ }^{40} \mathrm{Ca}$ with an importance-truncated no-core shell model, Phys. Rev. Lett. 99, 092501 (2007).

1267 [72] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. (U. S.) 45, 255 (1950).
${ }_{1269}$ [73] M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964).
1270 [74] P. Navrátil, Translationally invariant matrix elements of general one-body operators, Phys.
1271 Rev. C 104, 064322 (2021), arXiv:2109.04017 [nucl-th].
1272 [75] G. Hagen, M. Hjorth-Jensen, and N. Michel, Gamow shell model and realistic nucleon-nucleon $1273 \quad$ interactions, Phys. Rev. C 73, 064307 (2006).

1274 [76] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Similarity renormalization group for nucleon1275 nucleon interactions, Phys. Rev. C 75, 061001(R) (2007).

1276 [77] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, Improving the scalability of sym1277 metric iterative eigensolver for multi-core platforms, Concurrency Computat.: Pract. Exper.
${ }_{1279}$ [78] M. Shao, H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, Accelerating nuclear 1280 configuration interaction calculations through a preconditioned block iterative eigensolver,

1282 [79] M. A. Caprio and P. J. Fasano, computer code library shell.
1283 [80] M. Wang, W. Huang, F. Kondev, G. Audi, and S. Naimi, The AME 2020 atomic mass evaluation (II). tables, graphs and references, Chin. Phys. C 45, 030003 (2021).

1285 [81] C. Forssen, J. P. Vary, E. Caurier, and P. Navratil, Converging sequences in the ab-initio no-core shell model, Phys. Rev. C 77, 024301 (2008).

1288 light nuclei, Phys. Rev. C 79, 014308 (2009).
[83] I. Angeli and K. P. Marinova, Table of experimental nuclear ground state charge radii: An
${ }_{1319}$ [96] E. Gebrerufael, K. Vobig, H. Hergert, and R. Roth, Ab initio description of open-shell nuclei:
update, At. Data Nucl. Data Tables 99, 69 (2013)
[84] J. L. Friar, J. Martorell, and D. W. L. Sprung, Nuclear sizes and the isotope shift, Phys. Rev. A 56, 4579 (1997).
[85] Z.-T. Lu, P. Mueller, G. W. F. Drake, W. Nörtershäuser, S. C. Pieper, and Z.-C. Yan, Laser probing of neutron-rich nuclei in light atoms, Rev. Mod. Phys. 85, 1383 (2013).
[86] A. Nogga, P. Navrátil, B. R. Barrett, and J. P. Vary, Spectra and binding energy predictions of chiral interactions for ${ }^{7}$ Li, Phys. Rev. C 73, 064002 (2006).
[87] C. Cockrell, J. P. Vary, and P. Maris, Lithium isotopes within the ab initio no-core full configuration approach, Phys. Rev. C 86, 034325 (2012).
[88] B. Jonson, Light dripline nuclei, Phys. Rep. 389, 1 (2004).
[89] I. Tanihata, H. Savajols, and R. Kanungo, Recent experimental progress in nuclear halo structure studies, Prog. Part. Nucl. Phys. 68, 215 (2013).
[90] S. Quaglioni, C. Romero-Redondo, and P. Navrátil, Three-cluster dynamics within an ab initio framework, Phys. Rev. C 88, 034320 (2013).
[91] D. Sääf and C. Forssén, Microscopic description of translationally invariant core $+n+n$ overlap functions, Phys. Rev. C 89, 011303(R) (2014).
[92] C. Romero-Redondo, S. Quaglioni, P. Navrátil, and G. Hupin, How many-body correlations and α clustering shape ${ }^{6} \mathrm{He}$, Phys. Rev. Lett. 117, 222501 (2016).
[93] L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, Laser spectroscopic determination of the ${ }^{6} \mathrm{He}$ nuclear charge radius, Phys. Rev. Lett. 93, 142501 (2004).

2 [94] M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M. J. Smith, A. Lapierre, R. Ringle, V. L. Ryjkov, S. Bacca, P. Delheij, G. W. F. Drake, D. Lunney, A. Schwenk, and J. Dilling, First direct mass measurement of the two-neutron halo nucleus ${ }^{6} \mathrm{He}$ and improved mass for the four-neutron halo ${ }^{8} \mathrm{He}$, Phys. Rev. Lett. 108, 052504 (2012).
[95] P. Maris, H. M. Aktulga, S. Binder, A. Calci, Ü. V. Çatalyürek, J. Langhammer, E. Ng, E. Saule, R. Roth, J. P. Vary, and C. Yang, No core CI calculations for light nuclei with chiral 2- and 3-body forces, J. Phys. Conf. Ser. 454, 012063 (2013). Merging no-core shell model and in-medium similarity renormalization group, Phys. Rev. Lett.

1321 118, 152503 (2017).
${ }_{1322}$ [97] A. Tichai, E. Gebrerufael, K. Vobig, and R. Roth, Open-shell nuclei from no-core shell model ${ }^{1323}$ with perturbative improvement, Phys. Lett. B 786, 448 (2018).

FIGURES

FIG. 1. Dimension of the NCCI many-body space as a function of the number of oscillator excitations $N_{\text {max }}$ included in the basis, including for ${ }^{3,6} \mathrm{He}$ (highlighted). The dimension of the FCI space constructed from the same orbitals is also shown for ${ }^{3} \mathrm{He}$ (dotted gray line). Dimensions are those obtained with M-scheme bases ($M=0$ for even-mass nuclei, or $M=1 / 2$ for odd-mass nuclei) for the normal-parity space.

FIG. 2. Convergence of ${ }^{3} \mathrm{He}$ ground-state energy, as calculated in (a) oscillator (solid circles) and (b) natural-orbital (open squares) bases, shown also (c) on a logarithmic scale as the residual $E-E_{\text {ref }}$ with respect to the true "full-space" value. Calculated values are shown as functions of the basis parameter $\hbar \omega$, for successive even value of $N_{\max }$, from $N_{\max }=8$ (dotted lines) to 16 (solid lines, highlighted). The experimental binding energy (solid diamond) [80 is also shown.

FIG. 3. Comparison of ${ }^{3} \mathrm{He}$ ground-state energies as calculated in spaces defined by $N_{\text {max }}$-truncated bases - oscillator (solid circles) or natural-orbital (open squares) - and the corresponding enveloping FCI space (solid triangles). Energies are shown as residuals, as in Fig. 2. Calculated values are shown as functions of the basis parameter $\hbar \omega$, for $N_{\max }=4$ (dotted lines) and 8 (solid lines, highlighted).

FIG. 4. Convergence of ${ }^{3} \mathrm{He}$ ground-state point-proton r.m.s. radius, as calculated in oscillator (solid circles) and natural-orbital (open squares) bases. Calculated values are shown as functions of the basis parameter $\hbar \omega$, for successive even value of $N_{\max }$, from $N_{\max }=8$ (dotted lines) to 16 (solid lines, highlighted). The value deduced from the experimental charge radius 83 is also shown (filled diamond).

FIG. 5. Radial wave functions obtained for the ${ }^{3} \mathrm{He}$ proton $0 s_{1 / 2}$ natural orbital, from different underlying oscillator-basis calculations, plotted as the radial probability density $P(r)=r^{2}|\psi(r)|^{2}$. Results are shown as obtained from underlying oscillator-basis calculations with (a) $\hbar \omega=9 \mathrm{MeV}$, (b) $\hbar \omega=15 \mathrm{MeV}$, and (c) $\hbar \omega=25 \mathrm{MeV}$. Radial wave functions are shown for $N_{\max }=2$ (dotted lines) through $N_{\max }=16$ (solid lines, highlighted), with the oscillator $0 s$ function for the given $\hbar \omega$ (thick gray lines) shown for comparison. The locations of the peaks of the underlying harmonicoscillator orbital and $N_{\max }=16$ natural orbital are marked with dashed vertical lines.

FIG. 6. Radial wave functions obtained for the ${ }^{3} \mathrm{He}$ proton $0 s_{1 / 2}$ natural orbital, from different underlying oscillator-basis calculations, plotted as the radial probability density $P(r)$, as in Fig. 5 , but now on a logarithmic scale.

FIG. 7. Radial wave functions for the ${ }^{3} \mathrm{He} s$-, p-, and $s d$-shell natural orbitals, for both protons (short dashed lines) and neutrons (long dashed lines), plotted as the radial probability density $P(r)$. These are obtained from the underlying oscillator-basis calculation near the variational minimum $(\hbar \omega=15 \mathrm{MeV})$ and at high $N_{\max }\left(N_{\max }=16\right)$. The corresponding oscillator radial functions for $\hbar \omega=15 \mathrm{MeV}$ (thick gray lines) are shown for comparison. The mean occupancy n_{a} for each natural orbital, from the corresponding eigenvalue of the scalar density matrix, is indicated by the filling of the bar at top right (upper bar for protons, lower bar for neutrons).

FIG. 8. Dependence of $\left\langle N_{\text {c.m. }}\right\rangle$ on $\hbar \omega_{\text {c.m. }}$, for ${ }^{3} \mathrm{He}$ ground state wave functions obtained in calculations with a natural-orbital basis, derived from underlying oscillator-basis calculations with (a) $\hbar \omega=9 \mathrm{MeV}$, (b) $\hbar \omega=15 \mathrm{MeV}$, and (c) $\hbar \omega=25 \mathrm{MeV}$. Results are shown for calculations with $N_{\max }=4$ (short-dashed lines) through $N_{\max }=16$ (solid lines, highlighted), with the curve obtained for an oscillator $0 s$ wave function with $\hbar \omega_{\mathrm{c} . \mathrm{m} .}=\hbar \omega$ (thick gray lines) - or, equivalently, the calculation in an $N_{\max }=0$ natural-orbital basis - shown for comparison. The underlying oscillator basis $\hbar \omega$ is indicated (dotted vertical line), as are the minimal $\hbar \tilde{\omega}_{\text {c.m. }}$ and $\tilde{N}_{\text {c.m. }}$ for each curve (dots with dotted vertical line).

FIG. 9. Dependence of the approximate $0 s$ center-of-mass motion of the calculated ${ }^{3} \mathrm{He}$ ground state (and its degree of contamination) on the $\hbar \omega$ of the underlying oscillator basis, in calculations with a natural-orbital basis, as measured by (a) $\hbar \tilde{\omega}_{\text {c.m. }}$ and (b) $\tilde{N}_{\text {c.m. }}$. Results are shown for calculations with $N_{\max }=4$ (dotted lines) through $N_{\max }=16$ (solid lines, highlighted).

FIG. 10. The ${ }^{6} \mathrm{He}$ ground-state energy, as calculated in oscillator (solid circles) and natural orbital (open squares) bases. Calculated values are shown as functions of the basis parameter $\hbar \omega$, for successive even value of $N_{\max }$, from $N_{\max }=8$ (dotted lines) to 14 (solid lines, highlighted). The experimental binding energy [80] is also shown (filled diamond).

FIG. 11. Differences of calculated ${ }^{6} \mathrm{He}$ ground-state energies obtained for successive $N_{\max }$, as obtained for oscillator (solid circles) and natural orbital (open squares) bases, shown on a logarithmic scale.

FIG. 12. The ${ }^{6} \mathrm{He}$ ground-state point-proton and point-neutron r.m.s. radii, as calculated in oscillator (solid circles) and natural orbital (open squares) bases. Calculated values are shown as functions of the basis parameter $\hbar \omega$, for successive even value of $N_{\max }$, from $N_{\max }=8$ (dotted lines) to 14 (solid lines, highlighted). The value deduced from the experimental charge radius [83] is also shown (filled diamond).

FIG. 13. Radial wave functions for the ${ }^{6} \mathrm{He} s-, p$-, and $s d$-shell natural orbitals, for both protons (short dashed lines) and neutrons (long dashed lines), plotted as the radial probability density $P(r)$. These are obtained from the underlying oscillator-basis calculation near the variational minimum $(\hbar \omega=15 \mathrm{MeV})$ and at high $N_{\max }\left(N_{\max }=14\right)$. The corresponding oscillator radial functions for $\hbar \omega=15 \mathrm{MeV}$ (thick gray lines) are shown for comparison. The mean occupancy n_{a} for each natural orbital, from the corresponding eigenvalue of the scalar density matrix, is indicated by the filling of the bar at top right (upper bar for protons, lower bar for neutrons).

FIG. 14. Radial wave functions for the ${ }^{6} \mathrm{He} s$-, p-, and $s d$-shell natural orbitals, plotted as the radial probability density $P(r)$, as in Fig. 13, but now on a logarithmic scale.

FIG. 15. Radial wave functions obtained for the ${ }^{6} \mathrm{He}$ proton $0 s_{1 / 2}$ natural orbital, from different underlying oscillator-basis calculations, plotted as the radial probability density $P(r)$. Results are shown as obtained from underlying oscillator-basis calculations with (a) $\hbar \omega=9 \mathrm{MeV}$, (b) $\hbar \omega=$ 15 MeV , and (c) $\hbar \omega=25 \mathrm{MeV}$. Radial wave functions are shown for $N_{\text {max }}=2$ (dotted lines) through $N_{\max }=14$ (solid lines, highlighted), with the oscillator $0 s$ function for the given $\hbar \omega$ (thick gray lines) shown for comparison. The locations of the peaks of the underlying harmonic-oscillator orbital and $N_{\max }=14$ natural orbital are marked with dashed vertical lines.

FIG. 16. Radial wave functions obtained for the ${ }^{6} \mathrm{He}$ neutron $0 p_{3 / 2}$ natural orbital, from different underlying oscillator-basis calculations, plotted as the radial probability density $P(r)$, on a \log arithmic scale. Results are shown as obtained from underlying oscillator-basis calculations with (a) $\hbar \omega=9 \mathrm{MeV}$, (b) $\hbar \omega=15 \mathrm{MeV}$, and (c) $\hbar \omega=25 \mathrm{MeV}$. Radial wave functions are shown for $N_{\max }=2$ (dotted lines) through $N_{\max }=14$ (solid lines, highlighted), with the oscillator 0 s function for the given $\hbar \omega$ (thick gray lines) shown for comparison.

FIG. 17. Dependence of the approximate $0 s$ center-of-mass motion of the calculated ${ }^{6} \mathrm{He}$ ground state (and its degree of contamination) on the $\hbar \omega$ of the underlying oscillator basis, in calculations with a natural-orbital basis, as measured by (a) $\hbar \tilde{\omega}_{\text {c.m. }}$ and (b) $\tilde{N}_{\text {c.m. }}$. Results are shown for calculations with $N_{\max }=4$ (dotted lines) through $N_{\max }=14$ (solid lines, highlighted).

[^0]: * Present address: Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus

[^1]: ${ }^{1}$ Such a one-body density operator, derived from a pure state of a many-body system, is properly known as a reduced one-body density operator 43.

[^2]: ${ }^{2}$ Only for the special case of a reference state with $J=0$ do spherical tensor selection rules prevent the density matrix from connecting and thus mixing single-particle states of different j. Even here, caution would be necessary in diagonalizing ρ, as it would contain redundant (l, j, m) blocks, one for each $m=-j, \ldots, j$. Diagonalizing these blocks together would lead to degeneracies and thus ambiguity (and, in general, undesirable m-mixing) in the choice of eigenstates within each degnerate eigenspace, while diagonalizing each block of definite m independently would still fail to enforce consistent phase relations between the m-substates of an $n l j$ orbital.

[^3]: ${ }^{5}$ If the spherical tensor annihilation operator in footnote 3 is instead defined with the common alternative phase convention $\left(\tilde{a}_{a}\right)_{j_{a}, m_{\alpha}}=(-)^{j_{a}-m_{\alpha}} a_{\left(n_{a}, l_{a}, j_{a},-m_{\alpha}\right)}$ 51, which differs by an overall sign, then we instead have $\hat{N}_{a}=-\hat{\jmath}_{a}\left[a_{a}^{\dagger} \tilde{a}_{a}\right]_{00}$, and $n_{a}=-\hat{\jmath}_{a} \bar{\rho}_{a a}$.
 ${ }^{6}$ The notable exception is a closed-shell configuration, for which the resulting $J=0$ state is indeed simply an antisymmetrized product state.

[^4]: ${ }^{7}$ For states of definite total angular momentum to emerge from the diagonalization, the many-body space spanned by this basis should also be "complete" for this purpose, i.e., invariant under rotations. Such is guaranteed in the standard construction procedure for an M-scheme basis, where all m-substates of a given orbital are treated on an equal footing. But this assumption would in general be violated if we were to treat m-substates unequally in the basis truncation, as might happen if we were to work with "naive" natural orbitals (Sec. II A).

[^5]: ${ }^{8}$ Here we specifically have in mind truncation schemes for a traditional configuration interaction basis of

[^6]: ${ }^{9}$ Admittedly, this same comment applies to the choice of truncation scheme for NCCI calculations defined in terms of oscillator orbitals as well, discussed above, where the freedom of choice is commonly ignored.

