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Two-neutrino double-beta (2νββ) decay has been used to constrain the neutron-proton part of
effective interactions, which in turn used to compute the nuclear matrix elements for neutrinoless
double-beta decay, the observation of which would have important consequences for fundamen-
tal physics. We carefully examine 2νββ matrix elements within the proton-neutron quasiparti-
cle random-phase approximation (pnQRPA) with nuclear energy density functionals (EDFs). We
work with functionals that are fit globally to single-beta-decay half-lives and charge-exchange giant-
resonance energies, but not to 2νββ half-lives themselves, to evaluate the 2νββ nuclear matrix
elements for all important nuclei, including those whose half-lives have not yet been measured.
Such a comprehensive evaluation in large model spaces without configuration truncation requires an
efficient computational scheme; we employ a double contour integration within the finite-amplitude
method. The results generally reproduce the nuclear matrix element extracted from half-lives well,
without the use of any of those half-lives in the fitting procedure. We present predictions of the
matrix elements in a total of 27 nuclei with half-lives that are still unmeasured.

I. INTRODUCTION

Experiments all over the world are attempting to ob-
serve neutrinoless double-beta (0νββ) decay, which oc-
curs only if neutrinos are Majorana particles, at a rate
that is related to neutrino masses. To learn anything
quantitative from an observed decay rate, one must know
a nuclear matrix element that cannot be measured inde-
pendently and so must be computed [1–4]. Such com-
putations, which must handle the exchange of a virtual
neutrino among nucleons and mesons, are difficult, and so
the matrix elements for isotopes used in experiments are
not known with high precision. A related process, two-
neutrino double-beta (2νββ) decay, has been observed,
however, and its rates are often a part of attempts to
reduce the uncertainty in 0νββ nuclear matrix elements.

The 2νββ nuclear matrix elements have been extracted
from measured half-lives in 11 nuclei at present [5]. To
believe the results of many-body computations of 0νββ
decay, one would like to see similar computations that
reproduce these 2νββ matrix elements. Because the clo-
sure approximation — replacing the energies of states in
the decay’s intermediate nucleus with an average — is ac-
curate for 0νββ, some approaches rely on it and have a
harder time with 2νββ decay, for which the approxima-
tion is poor. Nuclear density functional theory (DFT)
in combination with the proton-neutron quasiparticle-
random phase approximation (pnQRPA) is not one of
these approaches, however; 0νββ and 2νββ matrix ele-
ments can be computed in similar ways. In many applica-
tions of the pnQRPA, in fact, the 2νββ matrix element is
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used to constrain the strength of the piece of the density
functional associated with isoscalar proton-neutron pair-
ing, which suppresses both the 0νββ and 2νββ matrix
elements [6, 7].

The pnQRPA can be used in conjunction with a phe-
nomenological Hamiltonian as well as in nuclear DFT.
The advantage of DFT is its large single-particle model
space and universality; a single energy-density functional
(EDF) is taken to describe all the isotopes in the nu-
clear chart. The authors of Ref. [8] used a deformed-
nucleus pnQRPA with a Skyrme EDF, computing 2νββ
and 0νββ matrix elements in several experimentally im-
portant isotopes. They fit the strength of the isoscalar
pairing interaction, on which rates depend sensitively, it
obtains the correct 2νββ matrix elements before comput-
ing the 0νββ matrix elements.

Nuclear EDFs are commonly optimized to reproduce
a number of experimental observables from a wide range
of nuclei [9–14]. The optimization is easiest when the
observables are ground-state expectation values in even-
even isotopes. The time-odd part of the EDF and the
proton-neutron pairing strength have no effect on even-
even ground states, however, and so cannot be fixed in
the same way. Instead, they are usually optimized glob-
ally, through the use of single-β-decay rates and Gamow-
Teller and spin-dipole giant-resonance energies in nuclei
all over the table of isotopes [15].

We would like to assess the ability of these globally
determined EDFs to reproduce 2νββ matrix elements so
that we can further optimize them if necessary and then
confidently apply them to 0νββ decay. Standard pn-
QRPA calculations, however, require the construction of
a QRPA matrix Hamiltonian, which within large single-
particle spaces can consume too much computational
time and memory. We can turn instead to the finite-
amplitude method (FAM) within time-dependent DFT.
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The FAM, which is formally equivalent to the QRPA
[16, 17], computes the linear response induced by an ex-
ternal field with a complex frequency. One-body induced
fields and the response of quasiparticle states are cal-
culated by iteration, without the need to compute the
two-body QRPA matrix elements. The proton-neutron
version of the FAM (pnFAM) was developed and imple-
mented in Ref. [18] in order to calculate β-decay rates and
Gamow-Teller strength distributions [19, 20]. Because of
its efficiency, it was used in Ref. [15] in an attempt to
optimize the neutron-proton part of a particular nuclear
EDF.

In this paper, we show how to use the pnFAM to effi-
ciently compute 2νββ nuclear matrix elements. Our pro-
cedure, a preliminary version of which was reported on
in Ref. [21], employs a complex-plane integration tech-
nique [22, 23] to perform the summation over interme-
diate states. We compare our 2νββ nuclear matrix ele-
ments in 76Ge, 130Te, 136Xe, and 150Nd to those obtained
from matrix diagonalization with the same EDF in Ref.
[8]. Then we use the EDFs with time-odd terms fit in
Ref. [15] to compute the matrix elements for all 11 nuclei
in which the 2νββ decay rate has been measured, and for
27 nuclei in which it has not.

The rest of this paper is organized as follows: Sec-
tion II briefly presents the definition of the 2νββ matrix
element and describes the pnQRPA. Section III formu-
lates our scheme for computing 2νββ nuclear matrix el-
ements in the pnFAM. Section IV compares the pnFAM
2νββ matrix elements with those obtained by matrix di-
agonalization in the pnQRPA, and Sec. V assesses the
performance of globally fit functionals and offers predic-
tions for unmeasured rates. Section VI is a conclusion.

II. 2νββ MATRIX ELEMENT AND THE QRPA

A. 2νββ matrix element

The nuclear matrix element governing the 2νββ decay
of the nucleus (N,Z) to the ground state of the nucleus
(N − 2, Z + 2) contributes to the half-life T 2ν

1/2 as follows:

[T 2ν
1/2]−1 = G2ν(Qββ , Z)|M2ν |2 , (1)

where G2ν is a phase space factor, and the 2νββ matrix
element is a sum of Fermi and Gamow-Teller parts [1],

M2ν = M2ν
GT −

g2
V

g2
A

M2ν
F , (2)

M2ν
F =

∑
n

〈0+
f |
∑
a

τ−a |n〉〈n|
∑
b

τ−b |0
+
i 〉

En −
Mi +Mf

2

, (3)

M2ν
GT =

∑
n

〈0+
f |
∑
a

σaτ
−
a |n〉 · 〈n|

∑
b

σbτ
−
b |0

+
i 〉

En −
Mi +Mf

2

. (4)

Here τ−a is the isospin-lowering operator for nucleon a,
σa is the corresponding spin operator, Mi and Mf are
the ground-state energies of the initial and final states of
the decay (so that Qββ ≡Mi−Mf ), and |n〉, with energy
En is one of a complete set of intermediate states in the
nucleus (N−1, Z+1). The Fermi part of the 2νββ matrix
element is very small because isospin is nearly conserved
[24], and we neglect it here.

B. The pnQRPA

The proton-neutron QRPA evaluates the transition
matrix elements between the initial or final state and
the intermediate states that appear in the numerator of
Eq. (4), taking into account the effect of the proton-
neutron residual interaction beyond the mean-field ap-
proximation. In the pnQRPA, both the initial and final
states |0+

i/f,QRPA〉 are based on Hartree-Fock-Bogoliubov

(HFB) quasiparticle vacua, which incorporate axially-
symmetric deformation in our work. The intermediate
states are related to the initial or final state by a QRPA
phonon operator

|λ,K〉 = Q̂λ†K |0
+
QRPA〉

Q̂λ†K =
∑
pn

jz,p+jz,n=K

Xλ
pn,K â

†
pâ
†
n − Y λpn,K ân̄âp̄ , (5)

where âτ=n,p is a neutron or proton quasiparticle oper-
ator, defined so that âτ |0+

HFB〉 = 0. Here, the indices p
and n label proton and neutron quasiparticles. jz,τ and
K are the projections along the symmetry axis of the
quasiparticle and phonon angular momentum, and the
index τ̄ labels the time-reversal partner of the state τ
(jz,τ̄ = −jz,τ ). From now on, for the sake of simplicity,
we omit the restriction jz,p + jz,n = K when summing
over the proton and neutron quasiparticle states.

The QRPA amplitudes Xλ
pn,K and Y λpn,K are solutions

of the QRPA equations,

∑
p′n′

(
Apn,p′n′ Bpn,p′n′

B∗pn,p′n′ A∗pn,p′n′

)(
Xλ
p′n′,K

Y λp′n′,K

)
= ΩλK

(
Xλ
pn,K

−Y λpn,K

)
,

(6)

where ΩλK is an excitation energy, measured from the
QRPA ground state of the initial/final state. The A and
B matrices contain residual interactions, computed from
the second functional derivative of the EDF. The 2νββ
matrix element can be calculated by combining the pn-
QRPA transition matrix elements from the initial and
final states of the decay to the intermediate states. Be-
cause the procedure introduces two sets of the interme-
diate states, an additional approximation for matching
them is necessary. We thus approximate the Gamow-
Teller matrix element in Eq. (4) by
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M2ν
GT =

1∑
K=−1

(−1)K
∑
λi>0
λf>0

〈0+
f,QRPA|F̂

GT−
−K |λf ,K〉〈λf ,K|λi,K〉〈λi,K|F̂

GT−
K |0+

i,QRPA〉

Ωλi

K + Ω
λf

K

2

. (7)

In the summation, the expression λ > 0 denotes the
states with ΩλK > 0.

The Gamow-Teller operator in the quasiparticle basis
is

F̂GT±
K =

∑
a

(σK)aτ
±
a

=
∑
pn

[
FGT±

20,K (pn)â†pâ
†
n + FGT±

02,K (pn)ân̄âp̄

]
+ (â†â−terms), (8)

and its transition amplitudes in Eq. (7) are given by

〈λi,K|F̂GT−
K |0+

i,QRPA〉 =∑
pn

[
FGT−

20,K (pn)Xλi∗
pn,K +FGT−

02,K (pn)Y λi∗
pn,K

]
〈0+
f,QRPA|F̂

GT−
−K |λf ,K〉 =∑

pn

[
FGT−

02,K (pn)X
λf

pn,K +FGT−
20,−K(pn)Y

λf

pn,−K

]
.

(9)

To compute the overlap of the two intermediate states
〈λf ,K|λi,K〉 we adapt expressions based on the QRPA
[25] and the quasiparticle Tamm-Dancoff approximation
(QTDA) [8]. The result is

〈λf ,K|λi,K〉 =
∑
pnp′n′

(
X
λf∗
p′n′,KX

λi

pn,K − αY
λf∗
p′n′,KY

λi

pn,K

)
×Opp′(α)Onn′(α)

=
∑
pn

(
X̄
λf∗
pn,KX̄

λi

pn,K − αȲ
λf∗
pn,K Ȳ

λi

pn,K

)
,

(10)

where α is a parameter that is 0 for the QTDA over-
lap and 1 for the QRPA overlap, and the Oττ ′(α) are
elements of the matrix that connects the quasiparticles
associated with the initial and final states of the decay.
Explicit expressions for these elements, together with the
derivation of Eq. (10), are in Appendix A. X̄ and Ȳ are
defined by

X̄λi

pn,K =
∑
p′

OTpp′(α)Xλi

p′n,K , (11a)

Ȳ λi

pn,K =
∑
p′

OTpp′(α)Y λi

p′n,K , (11b)

X̄
λf

pn,K =
∑
n′

X
λf

pn′,KO
T
n′n(α), (11c)

Ȳ
λf

pn,K =
∑
n′

Y
λf

pn′,KO
T
n′n(α). (11d)

III. THE FAM

A. pnFAM

The FAM is formally equivalent to the QRPA and en-
ables us to compute DFT response functions efficiently.
A detailed formulation of the like-particle FAM and the
pnFAM in the presence of the pairing correlations appear,
respectively, in Refs. [17] and [18].

In the pnFAM, one applies a time-dependent external
field of the form

F̂TK(t) = η(F̂TKe
iωt + F̂T†K e−iωt) , (12)

with F̂TK a one-body proton-neutron excitation operator
and ω a complex frequency. The excitation operator in-
duces oscillations of quasiparticle annihilation operators
(e.g. for neutrons) of the form

δân(t) = η
∑
p

â†p

[
Xpn(ω, F̂TK)e−iωt + Y ∗pn(ω, F̂TK)eiωt

]
.

(13)

Solving the time-dependent DFT equations results in
the FAM amplitudes Xpn(ω, F̂TK) and Ypn(ω, F̂TK), which
are related to the QRPA amplitudes Xλ

pn,K and Y λpn,K
through [22]

Xpn(ω, F̂TK) = −
∑
λ>0

{
Xλ
pn,K〈λ,K|F̂TK |0+〉

ΩλK − ω

+
Y λ∗pn,K〈0+|F̂TK |λ,−K〉

ΩλK + ω

}
, (14)

Ypn(ω, F̂TK) = −
∑
λ>0

{
Y λpn,K〈λ,K|F̂TK |0+〉

ΩλK − ω

+
Xλ∗
pn,K〈0+|F̂TK |λ,−K〉

ΩλK + ω

}
. (15)

B. 2νββ matrix elements in the pnFAM

To calculate the QRPA 2νββ nuclear matrix element
in Eq. (7), we separately solve the pnFAM computations
in the initial and final nuclei, distinguishing quantities
from the two nuclei with the superscripts (i) and (f).
We then compute a quantity that is a combination of the
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FIG. 1. Contours Ci and Cf .

two sets of pnFAM amplitudes

T (α;ωi, F̂
Ti

Ki
;ωf , F̂

Tf

Kf
) ≡

∑
pn

[
Ȳ (f)
pn (ωf , F̂

Tf

Kf
)X̄(i)

pn (ωi, F̂
Ti

Ki
)

−αX̄(f)
pn (ωf , F̂

Tf

Kf
)Ȳ (i)
pn (ωi, F̂

Ti

Ki
)
]
,

(16)

where X̄(i/f) and Ȳ (i/f) are the amplitudes in Eqs. (14)
and (15), labeled in the same way as the QRPA ampli-
tudes in Eq. (11). By substituting Eqs. (14) and (15)
into Eq. (16), we obtain an expression for T in terms of
the QRPA amplitudes:

T (α;ωi, F̂
Ti

Ki
;ωf , F̂

Tf

Kf
) =

∑
pn

∑
λi>0
λf>0

 (X̄
λf∗
pn,Kf

X̄λi

pn,Ki
− αȲ λf∗

pn,Kf
Ȳ λi

pn,Ki
)〈0+

f |F̂
Tf

Kf
|λf ,−Kf 〉〈λi,Ki|F̂Ti

Ki
|0+
i 〉

(Ω
λf

Kf
+ ωf )(Ωλi

Ki
− ωi)

+
(Ȳ

λf∗
pn,Kf

X̄λi

pn,Ki
− αX̄λf∗

pn,Kf
Ȳ λi

pn,Ki
)〈λf ,Kf |F̂

Tf

Kf
|0+
f 〉〈λi,Ki|F̂Ti

Ki
|0+
i 〉

(Ω
λf

Kf
− ωf )(Ωλi

Ki
− ωi)

+
(X̄

λf∗
pn,Kf

Ȳ λi

pn,Ki
− αȲ λf∗

pn,Kf
X̄λi

pn,Ki
)〈0+

f |F̂
Tf

Kf
|λf ,−Kf 〉〈0+

i |F̂
Ti

Ki
|λi,−Ki〉

(Ω
λf

Kf
+ ωf )(Ωλi

Ki
+ ωi)

+
(Ȳ

λf∗
pn,Kf

Ȳ λi

pn,Ki
− αX̄λf∗

pn,Kf
X̄λi

pn,Ki
)〈λf ,Kf |F̂

Tf

Kf
|0+
f 〉〈0

+
i |F̂

Ti

Ki
|λi,−Ki〉

(Ω
λf

Kf
− ωf )(Ωλi

Ki
+ ωi)

 . (17)

T has first-order poles at ωi = ±Ωλi

Ki
and ωf = ±Ω

λf

Kf
.

We choose a counterclockwise contour Ci (Cf ) for ωi (ωf )
that includes positive-energy (negative-energy) poles and
excludes all the negative-energy (positive-energy) poles,
as in Fig. 1, to extract the residues from the first term
on the right side of Eq. (17).

Integrating T together with an arbitrary regular com-
plex function of ωi and ωf over those frequencies, we ob-
tain an expression that can be used for two-body matrix
elements:

M(α; F̂Ti

Ki
, F̂

Tf

Kf
; f(ωi, ωf ))

= − 1

4π2

∮
Ci

dωi

∮
Cf

dωfT (α;ωi, F̂
Ti

Ki
;ωf , F̂

Tf

Kf
)f(ωi, ωf )

=
∑
λi>0
λf>0

∑
pn

(
X̄
λf∗
pn,Kf

X̄λi

pn,Ki
− αȲ λf∗

pn,Kf
Ȳ λi

pn,Ki

)

× f(Ωλi

Ki
,−Ω

λf

−Kf
)〈0+

f |F̂
Tf

Kf
|λf ,−Kf 〉〈λi,Ki|F̂Ti

Ki
|0+
i 〉.
(18)

The Fermi and Gamow-Teller 2νββ decay nuclear matrix

elements are then given by

M2ν
F =M

(
α; F̂F−, F̂F−; f =

2

ωi − ωf

)
, (19)

M2ν
GT =

1∑
K=−1

(−1)KM
(
α; F̂GT−

K , F̂GT−
−K ; f =

2

ωi − ωf

)
,

(20)

under the assumptions that X
λf

−K = X
λf

K , Y
λf

−K = Y
λf

K ,

and Ω
λf

−Kf
= Ω

λf

Kf
. Even when starting from the final

state we use the external operator σ−Kτ
− that changes

neutrons into protons to properly include the backward
amplitudes in Eqs. (14) and (15).

By setting f = 1, α = 1, and taking the same HFB
vacuum for the initial and final states in Eq. (18), we can
use that equation to compute the unweighted summed
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TABLE I. Experimental values of ∆̃
(3)
n and ∆̃

(3)
p (in MeV) and

the volume-pairing strengths Vn and Vp fit to those values (in
MeV fm3). The averages of the strengths in the initial and
final nuclei used in the pairing EDF. Experimental binding
energies are taken from Ref. [29]. Data in parentheses are not
used to fit the pairing strengths.

∆̃
(3)
n ∆̃

(3)
p Vn Vp

76Ge 1.393 1.114 −182.70 −194.49
76Se 1.551 1.392 −185.40 −202.22

average −184.05 −198.36
130Te 1.114 (0.801) −166.21 N/A
130Xe 1.170 1.016 −173.80 −194.00

average −170.01 −194.00
136Xe (0.841) 0.751 N/A −148.66
136Ba 0.960 1.005 −184.16 −172.54

average −184.16 −160.60
150Nd 1.070 0.918 −181.64 −202.31
150Sm 1.194 1.196 −184.84 −195.24

average −183.24 −198.78

strengths:

Mi=f (1; F̂F∓, F̂F±; 1) =
∑
λ>0

|〈λ, 0|F̂F∓|0+〉|2, (21)

Mi=f (1; F̂GT∓
K , F̂GT±

−K ; 1) = (−1)K

×
∑
λ>0

|〈λ,K|F̂GT∓
K |0+〉|2.

(22)

Sum rules can be used to check the routines that compute
matrix elements.

IV. RESULTS WITH SKM* AND
COMPARISON WITH PRIOR WORK

Our calculation of 2νββ nuclear matrix elements uses
an extension of the pnFAM code developed in Ref. [18],
which is in turn based on the nuclear DFT solver hfbtho
[26–28]. That last code uses the harmonic oscillator basis
in a cylindrical coordinate system and allows axial defor-
mation. In this section we provide details of our calcu-
lations with the SkM* functional and compare our 2νββ
matrix elements for 76Ge, 130Te, 136Xe, and 150Nd with
those obtained in Ref. [8] by diagonalizing the pnQRPA
matrix.

A. Parameter values

To integrate in cylindrical coordinates, we use Gauss-
Hermite quadrature with NGH = 40 points for the z
direction, and Gauss-Laguerre quadrature with NGL =
40 points for the r direction. To compute the direct
Coulomb mean field, we use the prescription described in

Ref. [27] with length parameter L = 50 fm and NLeg = 80
Gauss-Legendre points.

We include Nsh = 20 harmonic-oscillator major shells
to describe the HFB wave functions. This corresponds
to 1,771 single-particle states for neutrons and pro-
tons (with axial and time-reversal symmetry taken into
account), and, in the pnFAM, to 257,686 K = 0
two-quasiparticle states and 256,025 K = ±1 two-
quasiparticle states. We include all such states, with no
additional model-space truncation, in the pnFAM calcu-
lations. The dimension of the pnQRPA matrix corre-
sponding to our pnFAM calculations is about 500,000 for
each K quantum number.

We employ the same Skyrme SkM* functional [30] and
volume-type pairing with 60 MeV energy cutoff (with
~2/2m = 20.73 MeV fm2 and the one-body center-of-
mass correction included in the kinetic term) as that in
Ref. [8]. The HFB solver cited in that paper, however,
works in a cylindrical box with rmax = zmax = 20 fm and
a coordinate spacing of 0.7 fm, and is thus different from
ours.

We adjust the volume pairing strengths to repro-
duce experimental odd-even staggering (OES) with the
density-averaged pairing gap. To reduce fluctuations [10],
we take as the experimental data an average of the results
of the three-point formula evaluated at the two even-odd

TABLE II. Properties of HFB ground states with the SkM*
+ volume pairing (with average pairing strengths) EDF. The
table shows pairing gaps (in MeV), quadrupole deforma-
tion, and total HFB energies (in MeV), and compares the
quadrupole deformation to the value in Ref. [8].

∆n ∆p β EHFB β (Ref [8])
76Ge 1.609 1.473 −0.021 −661.804 −0.025

1.435 1.205 0.185 −662.274 0.184
1.612 1.475 0. −661.802

76Se 1.589 1.648 0. −659.315 −0.018
1.508 1.257 −0.194 −659.594

130Te 1.178 1.028 0. −1096.839 0.01
130Xe 1.078 1.009 0.141 −1093.423 0.13

1.107 1.113 −0.124 −1093.152
1.359 1.351 0. −1092.393

136Xe 0. 0.878 0. −1143.253 0.004
136Ba 1.025 0.931 −0.047 −1139.268 −0.021

0.928 0.735 0.094 −1139.538
1.057 0.985 0. −1139.231

150Nd 1.129 0.764 0.292 −1235.794 0.27
1.375 1.358 −0.177 −1232.563
1.422 1.688 0. −1231.080

150Sm 1.131 1.307 0.223 −1234.675 0.22
1.294 1.707 0. −1232.436
1.305 1.534 −0.137 −1233.068
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TABLE III. Q values for each double-beta decay in units of
MeV. ExperimentalQ values are obtained from atomic masses
[29].

This paper SkM* (Ref. [8]) Exp.
76Ge → 76Se 4.05 4.84 2.04

130Te → 130Xe 4.98 4.22 2.53
136Xe → 136Ba 5.55 5.60 2.46
150Nd → 150Sm 2.68 2.35 3.37

or odd-even systems:

∆̃(3)
n (N,Z) =

∆
(3)
n (N − 1, Z) + ∆

(3)
n (N + 1, Z)

2

∆̃(3)
p (N,Z) =

∆
(3)
p (N,Z − 1) + ∆

(3)
p (N,Z + 1)

2
,

(23)

where ∆
(3)
n/p is the result of the three-point formula [31].

Table I lists the experimental values for this quantity, and
the neutron and proton volume pairing strengths that
best reproduce them. In order to use the same EDF for
both nuclei in the decay, we take the average of the pair-
ing strengths fit in the initial and final nuclei. We note

that the experimental ∆
(3)
n/p values do not provide use-

ful information if the series of isotopes used to calculate

them includes closed-shell nuclei. ∆
(3)
p in 130Te (Z = 50

included) and ∆
(3)
n in 136Xe and 136Ba (N = 82 included)

are such cases if the average of the results of two odd-
even mass formulae is used. We avoid using the pairing

gap ∆̃
(3)
p of 130Te to fit the proton pairing strength, fit-

ting the pairing strength instead to the proton gap in
130Xe. We do adopt the neutron ∆̃(3) of 136Ba, however,
to determine the neutron pairing strength because the

strengths fit to ∆
(3)
n and ∆̃

(3)
n are quite similar in that

nucleus. The globally fit EDFs described in Sec. V are
free from these problems.

Table II shows the results of the DFT calculations for
the initial and final nuclei. The quadrupole deformations
of the HFB states are quite close to those in Ref. [8]. We
choose the HFB solution in the top line for each nucleus
in which several HFB solutions coexist.

Table III shows ββ Q values. Our calculation does
not perfectly reproduce the values in Ref. [8], which were
obtained from the same SkM* EDF but a different HFB
code. We suspect that the differences are due to the
different representations of the oscillator basis states and
treatments of pairing.

Table IV lists the values of the HFB overlap included
in the matrix O. Our values agree with those of previ-
ous calculations with similar nuclear deformation. The
overlap becomes small when the deformation of the ini-
tial and final states are different. That situation arises
in 130Te and 136Xe, where the initial states are spherical
while the final states are prolate and oblate, respectively.
The overlap also becomes small when the initial or final
state has no pairing gap. That is the case for neutrons

in 136Xe.

B. Contour

To use the expression in Eq. (18), we must choose the
contours Ci and Cf . We take each to be centered on
the real axis and circular, with the circle specified by
the two energies ωL and ωR at they cross the real axis.
The radius r and the center of the contour ω0 are then
given by r = (ωR − ωL)/2 and ω0 = (ωL + ωR)/2, and
every point on the contour can be written in the form
ω = ω0 + reiθ. We use ωL = 0.1 MeV and ωR = 120
MeV for Ci and ωL = −120 MeV and ωR = −0.1 MeV
for Cf to include all the unperturbed two-quasiparticle
states within the quasiparticle-energy cutoff.

Figure 2 shows the integrands for the summed GT
strength and the 2νββ matrix element in 76Ge as a func-
tion of the angle θ for the contour Ci. The main contri-
bution to each comes from the peak at θ = π, the point
at ω = ωL where the two contours are closest. While
the integrand of the sum is distributed broadly along the
whole contour Ci, the energy denominator 2/(ωi − ωf )
concentrates the 2νββ contribution at θ = π. To take
this contribution into account precisely and efficiently,
we introduce a parameter γ to control the distribution of
the discretized points near the origin, i.e., we discretize
the angle θ as follows:

θk = (m+ xγk)π, (24)

xk = −1 + 2
k − 1

nr − 1
(k = 1, 2, · · · , nr) , (25)

where γ is an odd number, and m is 1 for Ci and 0 for Cf .
The parameter θk runs from 0 to 2π for Ci and −π to π
for Cf . We use nr = 202 and omit the contribution from
(ωi, ωf ) = (ωR,−ωL) because those points are on the real
axis and can be very close to the QRPA poles, although
their contribution to the nuclear matrix element should
be small because of the factor 2/(ωi − ωf ).

Table V shows the dependence of the summed
strengths and the 2νββ matrix element in 76Ge on the
parameter γ. The matrix element converges by γ = 5,
which is the value we use.

TABLE IV. Neutron and proton parts of the HFB overlap
〈0+
f,HFB|0

+
i,HFB〉 between the initial and the final states, com-

pared with values from previous QRPA calculations.

neutron proton total Ref. [8] Ref. [32] Ref. [33]
76Ge 0.907 0.886 0.803 0.81 0.72, 0.73
130Te 0.329 0.403 0.133 0.73, 0.73
136Xe 0.480 0.787 0.378 0.47 0.43, 0.39
150Nd 0.679 0.589 0.400 0.52 0.51, 0.52
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TABLE V. Dependence on the discretization param-
eter γ in 76Ge of summed Fermi and Gamow-Teller
strengths m(F±) =

∑
λ>0 |〈λ, 0|F̂

F±|0+〉|2 and m(GT±) =∑
K(−1)K

∑
λ>0 |〈λ,K|F̂

GT±
K |0+〉|2 and of the dimensionless

Gamow-Teller 2νββ nuclear matrix element. We use volume
like-particle pairing and no isoscalar pairing.

γ 1 3 5 7
m(F−) 12.0213 12.0209 12.0201 12.0189
m(F+) 0.0252 0.0255 0.0260 0.0269

m(F−)−m(F+) 11.9961 11.9954 11.9940 11.9920
m(GT−) 37.5860 37.5837 37.5811 37.5774
m(GT+) 1.6065 1.6070 1.6085 1.6109

m(GT−)−m(GT+) 35.9795 35.9767 35.9726 35.9664
M2νmec

2 0.1802 0.1574 0.1574 0.1575

C. Summed Strengths

Table VI shows the unweighted summed Fermi and
Gamow-Teller strengths obtained from the double con-
tour integration for selected nuclei of interest to experi-
mentalists. Integration up to 120 MeV reproduces more
than 99.9% of the Ikeda sum rule in all these nuclei.

D. 2νββ matrix element

We calculate the 2νββ matrix elements for 76Ge, 130Te,
136Xe, and 150Nd, setting the neutron-proton isovector
pairing strength to the average of the neutron and pro-
ton like-particle pairing strengths (V1 = (Vn + Vp)/2)
and varying the isoscalar pairing strength V0 from 0 to
−300 MeV fm3. We use the QTDA (α = 0) to compute
the overlap among intermediate states. Figure 3 displays
the dependence of the 2νββ Gamow-Teller nuclear ma-
trix elements on the isoscalar pairing strength. Like the
authors of that paper, we use two values of gA: one “un-
quenched” (gA = 1.25, though the currently accepted

 0
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 0.3
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 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0π 0.5π 1.0π 1.5π 2.0π
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te
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GT- sum
2νββ

FIG. 2. Integrand in computation of summed Gamow-Teller
strength and 2νββ matrix element for 76Ge, as a function of
the angle θ for the contour Ci. The integrand is normalized
to one at θ = π.
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FIG. 3. Dependence on the isoscalar pairing strength of
the 2νββ Gamow-Teller nuclear matrix element (in units of
MeV−1) for 76Ge, 130Te, 136Xe, and 150Nd, with the SkM* +
volume pairing EDF. Red curves indicate the results with the
time-odd functional derived from the SkM* interaction and
blue curves the results with the modified time-odd functional.
The thick solid and dotted curves correspond to gA = 1.25,
and the dashed and thin solid curves to the quenched value
gA = 1.0.

value is greater than 1.27) and one quenched (gA = 1.0),
and compare results for the EDF SkM* with and with-
out a modified proton-neutron piece [Cs1 = 100 MeV fm3,
CT1 = C∇s1 = 0, see Eq. (26)]. Our matrix elements agree
reasonably well with those of Ref. [8] in 130Te, 136Xe, and
150Nd, while they are about twice as large in 76Ge.

V. GLOBAL EDF

A. Performance of global EDFs

As Fig. 3 shows, the 2νββ and 0νββ nuclear matrix ele-
ments are suppressed by isoscalar proton-neutron pairing
correlations that cannot be constrained from the ground-
state properties of even-even nuclei. The usual QRPA ap-
proach uses 2νββ decay rates to determine the strength

TABLE VI. Summed Fermi and Gamow-Teller transitions,
from double contour integration (ωL = 0.1 MeV and ωR = 120
MeV, nr = 202, and γ = 5), as percentages of the correspond-
ing sum rules.

m(F−)−m(F+)

N − Z
m(GT−)−m(GT+)

3(N − Z)
76Ge 0.9995 0.9992
76Se 0.9994 0.9992

130Te 0.9996 0.9993
130Xe 0.9996 0.9993
136Xe 0.9998 0.9997
136Ba 0.9996 0.9994
150Nd 0.9996 0.9994
150Sm 0.9996 0.9995
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of isoscalar pairing separately in each decaying nucleus.
The philosophy of nuclear DFT, however, is that one
EDF parameter set should, if possible, describe all the
ββ-decaying nuclei in the nuclear chart. In this subsec-
tion, we assess the ability of globally-fit EDFs to describe
2νββ decay, without using that observable at all in the
fitting. We use Skyrme-type EDFs, with the isovector
time-odd and isoscalar pairing parts globally fit to single-
β decay rates and to Gamow-Teller and spin-dipole reso-
nances. Reference [15], which deals with single-β decay in
many isotopes, undertakes the global fitting and proposes
ten parameter sets, called 1A, 1B, 1C, 1D, 1E, 2, 3A,
3B, 4, and 5, each corresponding to a different EDF. The
time-even parts for all the sets except set 2 are taken from
the functional SkO′ [34]; that of parameter set 2 comes
from the functional SV-min [14] (though tensor-density
terms are neglected, and the neutron and proton have dif-
ferent masses). In both cases, center-of-mass corrections
to the mean field are neglected. The paper uses mixed
volume-surface like-particle isovector pairing terms, fit
to reproduce odd-even staggering in ten isotopes with
50 ≤ A ≤ 250; the strengths are Vn = −253.75 MeV
fm3, Vp = −274.68 MeV fm3 for SkO′ and Vn = −244.06
MeV fm3, Vp = −257.90 MeV fm3 for SV-min [35].

The isovector time-odd part of any Skyrme-type EDF
is given by

χodd
1 (r) = Cs1 [ρ0]s2

1 + C∆s
1 s1 ·∆s1 + Cj1j

2
1

+ CT1 s1 · T1 + C∇j1 s1 ·∇× j1
+ CF1 s1 · F1 + C∇s1 (∇ · s1)2 , (26)

where s1, j1,T1, and F1 are the isovector spin, current,
spin-kinetic, and tensor-kinetic densities, respectively.
The isoscalar pairing functional in all these parameteri-
zations has the mixed density dependence

χ̃0(r) =
V0

4

[
1− 1

2

ρ0(r)

ρc

]
|s̃0(r)|2 , (27)

where s̃0 is the isoscalar pair density, ρc = 0.16 fm−3,
and ρ0 is the usual isoscalar density. In the parameter
sets 1A, 1B, 1C, 1D, 1E, only Cs1 (with no density de-
pendence) and V0 are fit. In sets 3A and 3B CT1 and CF1
are fit as well. In the parameter set 4, Cj1 , C

∇j
1 , and C∇s1

are adjusted, while other parameters are the same as in
set 3A. In set 5, V0, Cs1 , and Cj1 are fit.

Table VII lists the pairing gaps and quadrupole defor-
mation of the HFB states used to compute 2νββ nuclear
matrix elements. Neutron pairing collapses only in 136Xe
and proton pairing collapses in 48Ca and 116Sn. SkO′ and
SV-min cause different amounts of deformation. 96Zr,
100Mo, and 100Ru are oblate, oblate, and prolate (re-
spectively) with SkO′, while they are all spherical with
SV-min. 116Cd is spherical with SkO′, but is prolate with
SV-min.

Table VIII contains the overlaps of the initial and fi-
nal HFB vacua. Significant differences in deformation
and pairing between the two HFB states lead to small

TABLE VII. The neutron and proton pairing gaps (in MeV)
and quadrupole deformation for the lowest-energy HFB solu-
tions in the initial and final nuclei of the decay, computed with
the SkO′ and SV-min EDFs, together with a mixed pairing
EDF. Solutions with parentheses are not the lowest-energy
ones, but we use them in addition when calculating matrix
elements.

SkO′ SV-min
∆n ∆p β ∆n ∆p β

48Ca 0.771 0.000 0.000 0.793 0.000 0.000
48Ti 1.270 1.386 0.000 1.275 1.309 0.000
76Ge 1.063 1.189 0.136 1.123 1.094 0.131
76Se 1.134 1.532 0.000 1.165 1.352 0.000
82Se 0.619 1.106 0.152 0.689 1.124 0.134
82Kr 1.014 1.353 0.112 1.041 1.230 0.101
96Zr 1.153 1.133 −0.173 1.041 0.986 0.000

(1.354 1.129 0.000)
96Mo 1.202 1.174 0.000 0.991 1.090 0.000
100Mo 1.200 1.089 −0.192 1.299 1.078 0.000

(1.123 1.246 0.214)
100Ru 0.994 1.092 0.186 1.189 1.137 0.000
116Cd 1.430 0.854 0.000 1.463 0.492 0.120
116Sn 1.406 0.000 0.000 1.553 0.000 0.000
128Te 1.139 0.970 0.000 1.209 0.907 0.000
128Xe 1.136 0.912 0.142 1.152 0.841 0.156

(1.147 1.064 −0.112) (1.179 0.986 −0.122)
130Te 1.013 0.971 0.000 1.043 0.902 0.000
130Xe 1.051 1.001 0.111 1.077 0.947 0.118
136Xe 0.000 1.180 0.000 0.000 1.143 0.000
136Ba 0.767 1.349 0.000 0.775 1.296 0.000
150Nd 0.962 0.686 0.311 0.886 0.830 0.266
150Sm 0.901 1.074 0.238 0.823 1.101 0.203
238U 0.863 0.735 0.265 0.763 0.596 0.269
238Pu 0.828 0.640 0.269 0.745 0.572 0.272

overlaps, and because the two EDFs can produce dif-
ferent levels of deformation and pairing in any nucleus,
the overlaps depend significantly on the EDF. In 96Zr
and 100Mo, the HFB overlaps with SkO′ are extremely
small because the initial state is oblate and the final state
spherical or prolate. In 116Cd, the HFB overlap with SV-
min is smaller for a similar reason. The QRPA may not
be adequate when the overlaps, like those with SkO′ in
100Mo, are very small. Our treatment omits both pro-
jection onto states with good angular momentum, which
involves the mixing of states with different orientations,
and the fluctuation in shape and pairing captured, e.g.,
by the generator coordinate method [36, 37]. The effects
of the physics we have neglected can be significant when
the matrix elements are small at the HFB or QRPA lev-
els.

In Fig. 4, we compare the Gamow-Teller 2νββ nuclear
matrix element, scaled by g2

Amec
2 to be dimensionless,

that result from calculations with the ten different SkO′-
and SV-min-based EDFs discussed just above. We also
show the experimental matrix elements, extracted from
the half-lives in Ref. [5]. We use a quenched axial-vector
coupling constant gA = 1.0 to match the value from



9

TABLE VIII. The HFB overlap 〈0+
f,HFB|0

+
HFB,i〉 between the

initial and the final states of the double-beta decay, computed
with SkO′ and SV-min EDFs. The numbers in parentheses
denote powers of 10.

SkO′ SV-min
neutron proton total neutron proton total

48Ca 0.764 0.513 0.392 0.776 0.512 0.398
76Ge 0.577 0.559 0.323 0.586 0.587 0.344
82Se 0.729 0.829 0.604 0.772 0.862 0.665
96Zr 0.283 0.306 0.087 0.882 0.877 0.774

(sph.→sph.) 0.915 0.893 0.818
100Mo 1.8(−3) 1.4(−2) 2.6(−5) 0.914 0.905 0.828

(pro.→pro.) 0.864 0.875 0.755
116Cd 0.932 0.521 0.485 0.507 0.293 0.148
128Te 0.342 0.388 0.133 0.294 0.343 0.101

(obl.128Xe) 0.440 0.533 0.235 0.403 0.487 0.197
130Te 0.489 0.523 0.256 0.464 0.509 0.236
136Xe 0.517 0.921 0.476 0.522 0.931 0.486
150Nd 0.624 0.601 0.375 0.711 0.683 0.485
238U 0.912 0.882 0.805 0.902 0.873 0.787
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FIG. 4. Comparison of dimensionless 2νββ nuclear matrix
elements obtained from global EDFs with experimental val-
ues. The matrix elements computed with the lowest-energy
HFB solutions are marked with crosses, while those elements
computed with the other HFB solutions are marked with tri-
angles. Orange symbols come from computations with the
QTDA overlap and blue symbols from computations with the
QRPA overlap. The EDFs that give rise to each particular
point appear in Table IX in Appendix B.

Ref. [15], which determines the EDF parameters. De-
spite the differences among the EDFs in the pieces of
the functional that were fit and in the data chosen to fit
them, the 2νββ matrix elements that they produce are
quite close to one another in some of the heavier nuclei.
This fact means that the parts of the EDF that affect
the 2νββ matrix element are determined almost fully by
the β decay rates and giant resonance energies used in
fitting them. In some lighter isotopes such as 48Ca, 96Zr,
and 100Mo, on the other hand, the values of the nuclear
matrix element, like those of the overlap, depend sig-
nificantly on the EDF. Although such matrix elements

may provide an additional constraint on the pnEDF, the
disagreement also suggests, as we noted earlier, that cor-
relations that escape the QRPA are important [38, 39].
Table IX in Appendix B contains more detail than Fig.
4, in particular the values for each individual EDF of all
the matrix elements.

In some nuclei, such as 76Ge, the EDFs all produce
comparable values for the matrix element, but those val-
ues are quite different from the experimental one. The
reason for the discrepancy, again, is the quite different
degrees of deformation in the initial and final nuclei, a
difference that in reality is probably made less signifi-
cant by shape fluctuations. In other nuclei, 96Zr, 100Mo,
and 128Te (and especially the first two), the values span
a wide range. The reason is that two local minima ap-
pear in the initial isotopes, and the value of the 2νββ
matrix element depends strongly on which minimum is
used. In these two cases, the HFB overlaps associated
with the lowest minima for SkO′ are very small (0.087
and 2.6×10−5 in 96Zr and 100Mo), and the 2νββ ma-
trix elements from the lowest minimum are consequently
smaller than the experimental values, while the matrix
elements associated with the other HFB solutions are
larger than or comparable to the experimental values.
Correlations that admix states near those other minima,
if they were taken into account, would probably increase
the 2νββ matrix elements produced by the lowest min-
ima. Such admixtures are beyond what the QRPA in-
cludes, however, and seeing their effects would require an
approximation such as the generator-coordinate method.

Figure 4 also shows that overlaps computed with the
QTDA prescription result in larger matrix elements than
those computed with the QRPA prescription.

B. Predictions

Using the same global EDFs as in the previous section,
we compute the 2νββ matrix elements for all the nuclei in
which that decay might conceivably be observed: 46Ca,
70Zn, 80Se, 86Kr, 94Zr, 98Mo, 104Ru, 110Pd, 114Cd, 122Sn,
124Sn, 134Xe, 142Ce, 146Nd, 148Nd, 154Sm, 160Gd, 170Er,
176Yb, 186W, 192Os, 198Pt, 204Hg, 226Ra, 232Th, 244Pu,
and 248Cm. Figure 5 summarizes the results while Table
X in Appendix B indicates the individual EDFs responsi-
ble for each symbol in the figure. We emphasize that we
are able to make these predictions only because we use
EDFs that are fit globally and without considering 2νββ
half-lives. In typical QRPA calculations, by contrast, the
strength of isoscalar pairing is adjusted in each nucleus
individually to reproduce the 2νββ half life.

As we mentioned in the previous subsection, the QRPA
nuclear matrix elements may not be reliable if the defor-
mations of the initial and final states of the decay are dif-
ferent. The deformation parameters differ by more than
0.1 for the following decays: 70Zn → 70Ge, 80Se → 80Kr,
134Xe → 134Ba, and 146Nd → 146Sm with SkO′ and 80Se
→ 80Kr, 114Cd→ 114Sn, 122Sn→ 122Te, 134Xe→ 134Ba,
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FIG. 5. Dimensionless 2νββ nuclear matrix elements calculated with the global EDFs. The matrix elements from parameter
set 4 are excluded.

and 146Nd → 146Sm with SV-min. We also saw earlier
that the QRPA can go awry if shape mixing is important.
A full treatment of shape mixing requires something like
the generator coordinate method [40, 41], but we can
get a good idea of when it will be significant by examin-
ing potential energy curves. These turn out to be broad
near the minimum for the nuclei 46Ti, 70Ge, 94Zr (only
SkO′), 98Mo, 104Ru, 110Pd, 114Cd, 122Te, 124Te, 134Ba,
142Ce, 198Pt, and 198Hg. Unfortunately, the generator
coordinate method, while it has been applied to 0νββ
decay [37, 38, 42–52] is difficult to apply to 2νββ decay
because the closure approximation is poor there and a
complete set of intermediate states is required.

With the parameter set 4, the pnFAM converges more
slowly than with the other parameter sets, and the result-
ing matrix elements are often quite different from those
produced by the other sets. Thus, we exclude set 4 from
the distribution of the nuclear matrix elements shown in
Fig. 5. We see better agreement among the other EDFs
in heavier isotopes as a general rule, and the QTDA pre-
scription for the overlap again leads to larger numbers
than does QRPA prescription.

VI. CONCLUSIONS

We have presented a computationally efficient frame-
work for calculating the matrix elements for two-neutrino
double-beta decay within nuclear density functional the-
ory. We employ the finite amplitude method to compute
the QRPA approximation to the matrix elements. Our
approach allows large single-particle model spaces and
the use of a single nuclear EDF for all nuclei. It also
eliminates the need to truncate two-quasiparticle spaces.

We first used harmonic-oscillator based HFB and FAM
codes together with familiar EDFs to compute the 2νββ
matrix elements in a few important nuclei, comparing
the results with those obtained previously by diagonal-
izing the QRPA matrix. Using EDFs that had been fit
globally to single-β decay rates and giant-resonance en-
ergies, we then computed the 2νββ matrix elements in
all nuclei in which double-beta decay has or could be ob-
served. Agreement with the matrix elements extracted
from already measured half-lives is good in general, and
we offered predictions for those nuclei that have unmea-
sured half-lives.

Although we focus on 2νββ decay in this paper, we can
also compute double-electron capture matrix elements in
the same way. The most interesting extension of our work
is to neutrinoless double-beta decay. The presence of
a neutrino propagator in that matrix element, however,
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will make that process more challenging to treat than
2νββ decay.
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Appendix A: Overlap

1. QRPA overlap

We follow the discussion in Ref. [25] to evaluate the
overlap 〈λf ,K|λi,K〉 of two intermediate states. The
QRPA phonon operators that excite the initial HFB state
are related to the those that excite the final state by

Q̂λi†
K =

∑
λf

(
aλiλf

Q̂λf†
K + bλiλf

ˆ̃Qλf

K

)
, (A1)

where ˆ̃QλK = Q̂λ−K . This relation is based on the fact
that the both operators span the complete set of two-
quasiparticle states with angular momentum projection
K. The overlap of the intermediate state can be written
in terms of the phonon operators as

〈λf ,K|λi,K〉 = 〈0+
f,QRPA|Q̂

λf

K Q̂
λi†
K |0

+
i,QRPA〉

=
∑
λ′
f

(
〈0+
f,QRPA|Q̂

λf

K Q̂
λ′
f†
K |0

+
i,QRPA〉aλiλ′

f

+ 〈0+
f,QRPA|Q̂

λf

K Q̂
λ′
f

−K |0
+
i,QRPA〉bλiλ′

f

)
≈ aλiλf

〈0+
f,HFB|0

+
i,HFB〉 , (A2)

where we neglect the term proportional to bλiλ′
f
, because

it involves a two phonon state, and approximate the over-
lap between the two QRPA correlated ground states.

We have two sets of the quasiparticles, one defined for
the initial HFB state and the other for the final state:

â(i)
µ |0+

i,HFB〉 = 0, â(f)
µ |0+

f,HFB〉 = 0, (A3)

with µ a proton or neutron single-particle state with pos-
itive angular momentum jz along the symmetry axis.

We write the transformation between the two sets of the
quasiparticles in the form

â(i)†
µ =

∑
ν∈τ

′ (
Rµν â(f)†

ν + Sµν̄ â(f)
ν̄

)
, (A4)

â
(i)†
µ̄ =

∑
ν∈τ

′ (
Rµ̄ν̄ â(f)†

ν̄ + Sµ̄ν â(f)
ν

)
, (A5)

where
∑′

means that the summation is only over states
with jz > 0, and the notation ν ∈ τ means that index ν
corresponds to the same kind of particle (proton or neu-
tron) as does the index µ on the left side of the equation.

The relation

RTR∗ + S†S = I, (A6)

RTS∗ + S†R = 0 (A7)

follows from the unitarity of the transformation.
This transformation is defined in the full quasiparticle

model space; any quasiparticle cutoff thus breaks unitar-
ity. Because the matrix composed of R and S is also
unitary, the inverse transformation is given by

â(f)†
µ =

∑
ν∈τ

′ (
Sν̄µâ(i)

ν̄ +R∗νµâ(i)†
ν

)
, (A8)

â
(f)†
µ̄ =

∑
ν∈τ

′ (
Sνµ̄â(i)

ν +R∗ν̄µ̄â
(i)†
ν̄

)
. (A9)

Using the Bogoliubov transformation

â(i/f)†
µ =

∑
k∈τ

′
V

(i/f)

k̄µ
ĉk̄ + U

(i/f)
kµ ĉ†k, (A10)

â
(i/f)†
µ̄ =

∑
k∈τ

′
V

(i/f)
kµ̄ ĉk + U

(i/f)

k̄µ̄
ĉ†
k̄
, (A11)

we can write the matrix elements of R and S in the form

Rµν =
∑
k∈τ

′
V

(i)

k̄µ
V

(f)∗
k̄ν

+ U
(i)
kµU

(f)∗
kν , (A12)

Rµ̄ν̄ =
∑
k∈τ

′
V

(i)
kµ̄ V

(f)∗
kν̄ + U

(i)

k̄µ̄
U

(f)∗
k̄ν̄

, (A13)

Sµν̄ =
∑
k∈τ

′
V

(i)

k̄µ
U

(f)

k̄ν̄
+ U

(i)
kµV

(f)
kν̄ , (A14)

Sµ̄ν =
∑
k∈τ

′
V

(i)
kµ̄ U

(f)
kν + U

(i)

k̄µ̄
V

(f)

k̄ν
. (A15)

Defining the proton-neutron two-quasiparticle creation
and annihilation operators

A(i)†(pn,K) ≡ â(i)†
p â(i)†

n , A(i)†(p̄n̄,K) ≡ â(i)†
p̄ â

(i)†
n̄ ,

(A16)

we can relate the two-quasiparticle operators defined
with respect to the initial and final HFB states in the
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following way:

A(i)†(pn,K) =
∑
p′n′

′ [
Rpp′Rnn′A(f)†(p′n′,K)

−Spp̄′Snn̄′A(f)(p̄′n̄′,K)
]

+ (â†â−terms),

(A17)

A(i)(p̄n̄,K) =
∑
p′n′

′ [
R∗p̄p̄′R∗n̄n̄′A(f)(p̄′n̄′,K)

−S∗p̄p′S∗n̄n′A(f)†(p′n′,K)
]

+ (â†â−terms).

(A18)

The QRPA phonon operator is a combination of two-
quasiparticle creation and annihilation operators:

Q̂λi†
K =

∑
pn

′ [
Xλi

pn,KA
(i)†(pn,K)− Y λi

pn,KA
(i)(p̄n̄,K)

]
,

(A19)

ˆ̃Qλi

K =
∑
pn

′ [
Xλi

pn,KA
(i)(p̄n̄,K)− Y λi

pn,KA
(i)†(pn,K)

]
.

(A20)

Inverting this yields the relation

A(f)†(pn,K) =
∑
λf

[
X
λf∗
pn,KQ̂

λf†
K + Y

λf∗
pn,K

ˆ̃Qλf

K

]
, (A21)

A(f)(p̄n̄,K) =
∑
λf

[
X
λf∗
pn,K

ˆ̃Qλf

K + Y
λf∗
pn,KQ̂

λf†
K

]
, (A22)

which leads to an expression for the a matrix in Eq. (A2):

aλiλf
=
∑
pnp′n′

′ [
X
λf∗
p′n′,KRpp′Rnn′Xλi

pn,K

−Y λf∗
p′n′,KR

∗
p̄p̄′R∗n̄n̄′Y λi

pn,K

+X
λf∗
p′n′,KS

∗
p̄p′S∗n̄n′Y λi

pn,K

−Y λf∗
p′n′,KSpp̄′Snn̄′Xλi

pn,K

]
. (A23)

In Ref. [25], the contribution from S in Eq. (A23) is ne-
glected.

The overlap between the HFB states is given by the
Onishi formula, e.g. in Eq. (E.49) of Ref. [40]:

N−1 = 〈0+
f,HFB|0

+
i,HFB〉 = 〈0+

i,HFB|0
+
f,HFB〉

=
(
detRT

) 1
2 =

[
det
(
1 +D†D

)]− 1
4 , (A24)

where D is a skew-symmetric matrix that determines the
relation between the initial and final HFB states through

|0+
i,HFB〉 = N−1 exp

(∑
τ

∑
µν∈τ

Dµν â(f)†
µ â(f)†

ν

)
|0+
f,HFB〉,

(A25)

and satisfies the relation

D = S†(R†)−1 = −(R−1S)∗ = −DT . (A26)

Thus, we end up with

〈λf ,K|λi,K〉 = (detR)
1
2

∑
pnp′n′

′
Rpp′Rnn′

×
(
X
λf∗
p′n′,KX

λi

pn,K − Y
λf∗
p′n′,KY

λi

pn,K

)
.

(A27)

2. QTDA overlap

Reference [8] uses the QTDA to evaluate the overlap
among intermediate states, which are given by

|λi/f ,K〉 =
∑
pn

X
λi/f

µν,K â
(i/f)†
p â(i/f)†

n |0+
i/f,HFB〉. (A28)

From Eqs. (A25) and (A28), we find that

〈λf ,K|λi,K〉 = (detR)
1
2

∑
pnp′n′

′
X
λf∗
p′n′,KX

λi

pn,K

×

Rpp′ + 2
∑
p′′

Spp′′Dp′′p′


×

(
Rnn′ + 2

∑
n′′

Snn′′Dn′′n′

)
. (A29)

The two QRPA and QTDA overlaps in Eqs. (A27) and
(A29) can be written in the same form as

〈λf ,K|λi,K〉 =
∑
pnp′n′

′ (
X
λf∗
p′n′,KX

λi

pn,K − αY
λf∗
p′n′,KY

λi

pn,K

)
×Opp′(α)Onn′(α), (A30)

where O is a matrix that does not depend on the QRPA
and includes the HFB overlap and the transformation
relating the initial and final quasiparticle states

Oρρ′(α) =
[
detR(τ)

] 1
2

Rρρ′ + 2(1− α)
∑
ρ′′∈τ

′
Sρρ′′Dρ′′ρ′

 .
(A31)

Here ρ, ρ′ are both proton or both neutron states, and
R(τ) is the neutron or proton part of the matrix R. The
QRPA expression in Ref. [25] corresponds α = 1 and the
QTDA expression in Ref. [8] to α = 0.

Appendix B: Numerical Results for Matrix
Elements in Individual Nuclei

Table IX below provides details related to Fig. 4. Table
X does the same for Fig. 5.
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TABLE IX. Dimensionless Gamow-Teller 2νββ nuclear matrix element mec
2M2ν

GT computed with the SkO′- and SV-min-based
EDFs, with globally fitted proton-neutron parts [15]. The value of the matrix element is compared with experimental values
extracted from Ref. [5]. The overlap of the intermediate states is evaluated both with QTDA (α = 0, Ref. [8]) and QRPA
(α = 1, Ref. [25]) prescriptions. The numbers in parentheses denote powers of 10.

α 1A 1B 1C 1D 1E 2 3A 3B 4 5 Exp.
48Ca 0 0.0759 0.0734 0.0763 0.0722 0.0934 0.0698 0.0729 0.0879 0.0706 0.118 0.035±0.003

1 0.0399 0.0386 0.0401 0.0382 0.0489 0.0372 0.0386 0.0463 0.0385 0.0588
76Ge 0 0.0496 0.0477 0.0496 0.0441 0.062 0.0469 0.0462 0.0588 0.0502 0.0426 0.106± 0.004

1 0.0343 0.033 0.0344 0.0304 0.0431 0.0331 0.0319 0.0409 0.0355 0.0293
82Se 0 0.0572 0.0547 0.0572 0.05 0.0736 0.0543 0.0528 0.0693 0.0567 0.061 0.085± 0.001

1 0.0464 0.0444 0.0464 0.0404 0.0599 0.0463 0.0428 0.0564 0.0474 0.0485
96Zr 0 0.0265 0.0257 0.0267 0.026 0.0321 0.123 0.0267 0.032 0.0296 0.0228 0.080±0.004

1 0.0133 0.0129 0.0134 0.013 0.0164 0.108 0.0134 0.0164 0.015 0.0113
(96Zr sph.) 0 0.202 0.197 0.204 0.202 0.243 0.123 0.207 0.244 0.232 0.173

1 0.18 0.175 0.181 0.178 0.219 0.108 0.183 0.22 0.206 0.152
100Mo 0 1.71(−5) 1.67(−5) 1.72(−5) 1.69(−5) 2.02(−5) 0.234 1.73(−5) 2.01(−5) 1.7(−5) 1.53(−5) 0.151± 0.005

1 2.67(−6) 2.58(−6) 2.68(−6) 2.57(−6) 3.25(−6) 0.2 2.67(−6) 3.24(−6) 3.16(−6) 2.32(−6)
(100Mo pro.) 0 0.166 0.161 0.167 0.162 0.201 0.234 0.166 0.199 0.179 0.147

1 0.142 0.138 0.143 0.137 0.175 0.2 0.142 0.173 0.16 0.125
116Cd 0 0.11 0.107 0.111 0.108 0.131 0.0606 0.11 0.13 0.082 0.0997 0.108±0.003

1 0.0728 0.0708 0.0732 0.0707 0.0865 0.0132 0.0725 0.086 0.0541 0.0655
128Te 0 0.0161 0.0153 0.0161 0.0137 0.0215 0.0124 0.0149 0.0207 0.00873 0.0131 0.043±0.003

1 0.00993 0.00944 0.00994 0.00848 0.0134 0.00695 0.00923 0.0129 0.00626 0.00808
(128Xe obl.) 0 0.0306 0.0291 0.0306 0.0263 0.0407 0.0263 0.0285 0.0393 0.0155 0.0251

1 0.0195 0.0185 0.0195 0.0165 0.0264 0.0154 0.018 0.0253 0.0106 0.0159
130Te 0 0.0227 0.0215 0.0227 0.0189 0.0308 0.0215 0.0208 0.0295 0.0149 0.0185 0.0293±0.0009

1 0.0168 0.0159 0.0168 0.0141 0.0229 0.0151 0.0154 0.0219 0.0118 0.0138
136Xe 0 0.0222 0.0208 0.0221 0.0173 0.0318 0.0238 0.0194 0.0296 0.0184 0.0232 0.0181± 0.0006

1 0.018 0.0169 0.018 0.0139 0.0261 0.0201 0.0156 0.0243 0.0136 0.0175
150Nd 0 0.0413 0.0395 0.0414 0.0369 0.0541 0.0552 0.0399 0.0536 0.0511 0.0341 0.044 ± 0.005

1 0.0345 0.0329 0.0346 0.0308 0.0455 0.0463 0.0334 0.0451 0.0425 0.0284
238U 0 0.0462 0.044 0.0462 0.039 0.0616 0.048 0.0434 0.0609 0.0717 0.0374 0.13+0.09

−0.07

1 0.0428 0.0407 0.0428 0.0359 0.0573 0.0431 0.04 0.0566 0.0597 0.0345
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TABLE X. Dimensionless Gamow-Teller 2νββ nuclear matrix element mec
2M2ν

GT for nuclei whose half lives have not been
measured yet. The column and row labels are the same as in Table IX.

α 1A 1B 1C 1D 1E 2 3A 3B 4 5
46Ca 0 0.0868 0.0849 0.0874 0.0874 0.1 0.00611 0.0867 0.097 0.0831 0.117

1 0.0529 0.0518 0.0534 0.0532 0.0616 0.00332 0.0529 0.0595 0.0534 0.07
70Zn 0 0.0848 0.0823 0.0854 0.0823 0.102 0.189 0.0831 0.0992 0.0982 0.0807

1 0.0263 0.0254 0.0265 0.0248 0.0326 0.138 0.0252 0.0312 0.0306 0.0246
80Se 0 0.0673 0.0646 0.0674 0.0599 0.0849 0.0343 0.0626 0.0802 0.0657 0.0677

1 0.0505 0.0485 0.0505 0.0446 0.0638 0.0228 0.0468 0.0603 0.0507 0.0495
86Kr 0 0.0308 0.0293 0.0308 0.0256 0.0411 0.0267 0.0274 0.0379 0.0276 0.0433

1 0.0228 0.0217 0.0227 0.0187 0.0303 0.0208 0.0201 0.028 0.0206 0.0294
94Zr 0 0.166 0.162 0.168 0.169 0.195 0.0959 0.171 0.196 0.195 0.146

1 0.147 0.143 0.148 0.148 0.175 0.0841 0.151 0.175 0.172 0.127
98Mo 0 0.186 0.181 0.188 0.186 0.223 0.171 0.189 0.222 0.208 0.169

1 0.149 0.144 0.15 0.146 0.181 0.148 0.149 0.18 0.168 0.133
104Ru 0 0.18 0.175 0.181 0.177 0.217 0.198 0.181 0.216 −0.718 0.162

1 0.155 0.15 0.156 0.15 0.189 0.16 0.155 0.188 −0.149 0.137
110Pd 0 0.179 0.173 0.18 0.175 0.215 0.187 0.18 0.214 0.279 0.16

1 0.127 0.123 0.128 0.123 0.154 0.111 0.127 0.153 0.134 0.113
114Cd 0 0.126 0.123 0.127 0.126 0.149 0.0506 0.128 0.148 0.102 0.115

1 0.0771 0.0751 0.0776 0.0762 0.0911 0.00702 0.0775 0.0908 0.0623 0.0699
122Sn 0 0.0279 0.0265 0.028 0.0239 0.0377 0.0193 0.026 0.0364 0.0645 0.0226

1 0.0171 0.0162 0.0172 0.0145 0.0234 0.00955 0.0159 0.0225 0.0285 0.0137
124Sn 0 0.0488 0.0462 0.0489 0.041 0.0676 0.0263 0.0451 0.065 0.055 0.0391

1 0.0382 0.0361 0.0382 0.0319 0.053 0.0157 0.0351 0.0508 0.0386 0.0303
134Xe 0 0.0203 0.0192 0.0202 0.017 0.0274 0.0218 0.0185 0.0261 0.0142 0.0176

1 0.015 0.0142 0.015 0.0126 0.0204 0.016 0.0138 0.0195 0.0114 0.0131
142Ce 0 0.0289 0.0281 0.029 0.0277 0.0339 0.0168 0.0291 0.0343 0.0322 0.025

1 0.0224 0.0218 0.0225 0.0215 0.0264 0.013 0.0226 0.0266 0.026 0.0194
146Nd 0 0.0117 0.0113 0.0117 0.0109 0.0145 0.0135 0.0116 0.0145 0.0145 0.00979

1 0.00512 0.00491 0.00514 0.0047 0.00655 0.00832 0.00505 0.00654 0.00663 0.00419
148Nd 0 0.116 0.112 0.117 0.109 0.149 0.109 0.116 0.149 0.137 0.0979

1 0.0937 0.0898 0.0942 0.0869 0.121 0.0826 0.0928 0.121 0.112 0.0782
154Sm 0 0.0725 0.0694 0.0728 0.0652 0.0944 0.0639 0.0701 0.0933 0.0958 0.0603

1 0.0658 0.0629 0.066 0.0589 0.0862 0.0571 0.0635 0.0852 0.083 0.0545
160Gd 0 0.0847 0.081 0.085 0.0759 0.11 0.0807 0.0819 0.109 0.097 0.0704

1 0.0766 0.0732 0.0768 0.0682 0.1 0.0724 0.0737 0.0994 0.0914 0.0633
170Er 0 0.0753 0.0722 0.0756 0.0677 0.0974 0.0844 0.0729 0.0965 −0.0389 0.0627

1 0.0651 0.0622 0.0652 0.0578 0.0847 0.0612 0.0626 0.0837 0.025 0.0538
176Yb 0 0.0657 0.0627 0.0659 0.0585 0.087 0.0391 0.0635 0.0862 −0.0577 0.0542

1 0.0557 0.0531 0.0558 0.0493 0.074 0.026 0.0536 0.0733 0.0181 0.0457
186W 0 0.0966 0.0923 0.0969 0.0853 0.127 0.0637 0.0923 0.125 −0.07 0.0799

1 0.0892 0.0851 0.0894 0.0781 0.118 0.0512 0.0848 0.116 0.00665 0.0733
192Os 0 0.0672 0.0642 0.0673 0.0579 0.0881 0.0927 0.0631 0.0863 −0.0446 0.0553

1 0.0618 0.0589 0.0618 0.0529 0.0814 0.083 0.0578 0.0797 −0.0295 0.0506
198Pt 0 0.0272 0.0262 0.0272 0.0238 0.0341 0.0478 0.0255 0.0333 0.396 0.0229

1 0.0167 0.016 0.0167 0.0144 0.0209 0.0279 0.0155 0.0204 −0.0265 0.014
204Hg 0 0.0133 0.0127 0.0132 0.0107 0.0167 0.0195 0.0117 0.016 −0.023 0.0109

1 0.0108 0.0104 0.0107 0.0087 0.0136 0.0161 0.00954 0.013 0.0178 0.00885
226Ra 0 0.0739 0.0703 0.074 0.064 0.0987 0.0706 0.0708 0.0986 0.343 0.06

1 0.068 0.0646 0.068 0.0585 0.0913 0.061 0.0649 0.091 0.172 0.0549
232Th 0 0.0509 0.0485 0.0509 0.0434 0.0678 0.0531 0.0481 0.0672 0.171 0.0414

1 0.0465 0.0443 0.0465 0.0394 0.0623 0.0433 0.0438 0.0617 0.0894 0.0376
244Pu 0 0.0431 0.0409 0.043 0.0359 0.0576 0.0454 0.0401 0.0568 0.0265 0.0347

1 0.0399 0.0379 0.0399 0.0331 0.0536 0.0404 0.037 0.0528 0.0384 0.0321
248Cm 0 0.0415 0.0394 0.0414 0.0346 0.0552 0.0435 0.0387 0.0545 −0.00664 0.0335

1 0.0389 0.0369 0.0388 0.0322 0.052 0.0391 0.0361 0.0512 0.0184 0.0313
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